MOSE 1003 2011/2012

feuille 1 : Dérivation, Intégration

Exercice 1 Calculer les dérivées des fonctions suivantes.

$$x \mapsto (3x^2 + 7) \ln x, \quad x \mapsto \frac{e^x}{x^2 + 1}, \quad x \mapsto \sqrt{x^4 + 8}$$

 $x \mapsto \cos(2 - x), \quad x \mapsto \ln(7 - x^2), \quad x \mapsto (\sin x + 3)^4.$

Exercice 2 A l'aide de la formule arccos(cos(x)) = x pour tout $x \in [0, \pi]$. Montrer que pour tout $y \in]-1, 1[$,

$$\arccos'(y) = \frac{-1}{\sqrt{1-y^2}}.$$

Exercice 3 Calucler les limites suivantes, en utilisant la définition de la dérivée.

$$\lim_{x\to 0}\frac{\sin(x)}{x},\quad \lim_{x\to 0}\frac{\sin(x^2)}{x},\quad \lim_{x\to 0}\frac{\sqrt{x+1}-1}{x},\quad \lim_{x\to 1}\frac{\sin(\pi x)}{x-1},$$

Exercice 4 Déterminer la limite $\lim_{n\to\infty} (1+\frac{1}{n})^n$.

Exercice 5 Calculer
$$\int_0^1 x^3 dx$$
, $\int_1^4 \frac{1}{x^2} dx$, $\int_0^1 \frac{1}{\sqrt{x}} dx$, $\int_1^4 \frac{1}{x\sqrt{x}} dx$.

Exercice 6 Déterminer les primitives des fonctions suivantes en précisant l'intervalle maximal de définition :

$$x \mapsto \cos(3x - 5)$$
 $x \mapsto \frac{x^2 - 3x + 4}{x}$ $x \mapsto \frac{1}{x - 2}$

Exercice 7 Supposons que $\int_0^3 \sqrt{9-x^2} = \frac{9\pi}{4}$ est connue.

Soient
$$A = \int_0^3 (\sqrt{9-x^2}-3) dx$$
 et $B = \int_0^3 \frac{x^2}{\sqrt{9-x^2}+3} dx$. Calculer $A, A+B$ puis B

Exercice 8 Calculer $\int_0^1 e^{-x} dx$, $\int_0^1 x e^{2x} dx$, $\int_0^1 2x e^{x^2} dx$, $\int_0^1 e^x \sqrt{e^x + 3} dx$.

Exercice 9 Calculer l'intégrale suivante (essayez de trouvez une solution par intégration par parties et une solution par changement de variables) : $\int \frac{\log(x)}{x} dx$

Exercice 10 Déterminer deux réels a et b tels que l'on ait pour tout réel x différent de -1 et $5: \frac{1}{x^2-4x-5} = \frac{a}{x+1} + \frac{b}{x-5}$. Calculer ensuite $\int_0^2 \frac{1}{x^2-4x-5} \, dx$.

1

Exercice 11 Calculer $\int_{2}^{3} \frac{x}{x^{2} - 3} dx, \qquad \int_{1}^{2} \frac{x}{\sqrt{5 - x^{2}}} dx \qquad \int_{0}^{1} \frac{\cos(x)}{1 - \sin(x)^{2}} dx$

Exercice 12 Trouver les primitives suivantes

$$\int x^2 \sqrt{x^3 + 1} \, dx, \qquad \int \frac{x+1}{x^2 + 2x + 2} \, dx, \qquad \int \sin(x) \cos(x) \, dx$$

Le dernier problème admet deux raisonnements différents. Les voyez-vous?

Exercice 13 Soient $\lambda, T > 0$. Calculer $I(T) = \int_0^T \lambda e^{-\lambda t} dt$ et $E(T) = \int_0^T t \lambda e^{-\lambda t} dt$. Discuter les limites de I(T) et E(T) quand T tend vers infini.

Exercice 14* Calculer
$$\int \frac{1}{\sin(x)} dx$$
, $\int \frac{1}{x \ln(x) \ln(\ln(x))} dx$,