Erratum to Smooth curves having a large automorphism
p-group in characteristic $p > 0$.

Michel Matignon and Magali Rocher.

April 26, 2010

The proof of the last statement in Lemma 2.4. part 2 is wrong. Namely the error concerns the
proof of the equality $G_2/H = (G/H)_2$. For this we use the equality $G_2 = G^2$ as a general fact for
p-groups which is wrong. Indeed for a p-group G, the Herbrand function φ_G satisfies
$G_2 = G^{\varphi_G(2)}$ and $\varphi_G(2) = 1 + \frac{|G|}{2p}$. Moreover $\varphi_G(2) = 2$ iff $G = G_2$ which is not the case in particular for big
actions!

The equality $G_2/H = (G/H)_2$ as stated in part 2 is still true but its proof is postponed after
Theorem 2.7.

So replace Lemma 2.4 by the following:

Lemma 2.4. Let G be a finite p-subgroup of $\text{Aut}_k(C)$. We assume that the quotient curve C/G is
isomorphic to \mathbb{P}^1_k and that there is a point of C (say ∞) such that G is the wild inertia subgroup
G_1 of G at ∞. We also assume that the ramification locus of the cover $\pi : C \to C/G$ is the point
∞, and the branch locus is $\pi(\infty)$. Let G_2 be the second ramification group of G at ∞ and H a
subgroup of G. Then

1. C/H is isomorphic to \mathbb{P}^1_k if and only if $H \supset G_2$.

2. In particular, if (C,G) is a big action with $g \geq 2$ and if H is a normal subgroup of G such that
$H \subsetneq G_2$, then $g_{C/H} > 0$ and $(C/H,G/H)$ is also a big action.

Proof:

1. Applied to the cover $C \to C/G \simeq \mathbb{P}^1_k$, the Hurwitz genus formula (see for instance [Stichtenoth
93]) yields $2(g - 1) = 2|G|(g_{C/G} - 1) + \sum_{i \geq 0}(|G_i| - 1)$. When applied to the cover $C \to C/H$,
it yields $2(g - 1) = 2|H|(g_{C/H} - 1) + \sum_{i \geq 0}(|H \cap G_i| - 1)$. Since $H \subset G = G_0 = G_1$, it follows that

$$2|H|g_{C/H} = 2(|G| - |H|) + \sum_{i \geq 0}(|G_i| - |H \cap G_i|) = \sum_{i \geq 2}(|G_i| - |H \cap G_i|).$$

Therefore, $g_{C/H} = 0$ if and only if for all $i \geq 2$, $G_i = H \cap G_i$, i.e. $G_i \subset H$, which is equivalent
to $G_2 \subset H$, proving 1.

2. Together with part 1, Proposition 2.2.4 shows that $(C/H,G/H)$ is a big action. \(\square \)

Now in the proof of Theorem 2.7 replace the sentence
"The first assertion now follows from Lemma 2.4.2."
by the following:

"As $(C/H,G/H)$ is a big action and $(C/H)/(G_2/H) \simeq \mathbb{P}^1_k$ it follows from Lemma 2.4.1 that
$(G/H)_2 \subset G_2/H$. Here $|G_2/H| = p$ and the equality $|(G/H)_2| = 1$ is in contradiction with
proposition 2.2.1. The equality $G_2/H = (G/H)_2$ then follows."

The end of the proof of Theorem 2.7 works the same.

Now one can complete Lemma 2.4. by the following:

Remark 2.8. Under the same hypothesis as in Lemma 2.4.2 we have the equality $G_2/H = (G/H)_2$.
Namely by Theorem 2.7.4 we have $G_2 = D(G)$ and $(G/H)_2 = D(G/H)$. It is a general fact that for
H a normal subgroup of G one has the equality $D(G/H) \simeq D(G)/(H \cap D(G))$. The equality then
follows as $H \subset G_2 = D(G)$.