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1 Introduction

1.1 Monodromy and automorphism groups

• R is a strictly henselian DVR of inequal characteristic (0, p).

K := FrR; for example K/Qur
p finite.

π a uniformizing parameter.

k := RK/πRK.

C/K smooth projective curve, g(C) ≥ 1.

• C has potentially good reduction over K if there is L/K (finite) such that
C ×K L has a smooth model over RL. Then:

• There is a minimal extension L/K with this property; it is Galois and called
the monodromy extension.

• Gal(L/K) is the monodromy group.

• Its p-Sylow subgroup is the wild monodromy group .

• The base change C ×K Kalg induces an homomorphism ϕ : Gal(Kalg/K) →
AutkCs, where Cs is the special fiber of the smooth model over RL and L =
(Kalg)ker ϕ.

• Let ` be a prime number, then, n` := v`(|Gal(L/K)|) ≤ v`(|AutkCs|).

• If ` /∈ {2, p}, then `n` is bounded by the maximal order of an `-cyclic subgroup
of GL2g(Z/`Z) i.e. `n` ≤ O(g).

• If p > 2, then np ≤ inf`6=2,p vp(|GL2g(Z/`Z)|) = a + [a/p] + ..., where a = [ 2g
p−1

].

This gives an exponential type bound in g for |AutkCs|. This justifies our
interest in looking at Stichtenoth ([St,73]) and Singh ([Si,73]).

Theorem 1.1. ([Ra, 90]). Let YK → XK be a Galois cover with group G. Let us
assume that:
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• G is nilpotent.

• XK has a smooth model X.

• The Zariski closure B of the branch locus BK in X is étale over RK.

Then, the special fiber of the stable model YK is tree-like, i.e. the Jacobian of YK

has potentially good reduction.

Raynaud’s proof is qualitative and it seems difficult to give a constructive one in
the simplest cases.

We have given in [Le-Ma1] such a proof in the case of p-cyclic covers of the
projective line.

Thanks. The author would like to use this opportunity to thank T. Sekiguchi,
N. Suwa and B. Green for the pleasant and working atmosphere during his visit to
Tokyo.

2 Automorphism groups of curves in char.p > 0

2.1 p -cyclic covers of the affine line

k is an algebraically closed of char. p > 0.

• f(X) ∈ Xk[X] monic,deg f = m > 1 prime to p.

• Cf : W p − W = f(X). Let ∞ be the point of Cf above X = ∞ and z a local
parameter. Then, g := g(Cf) = p−1

2
(m − 1) > 0.

• G∞(f) := {σ ∈ AutkCf | σ(∞) = ∞}.

• G∞,1(f) := {σ ∈ AutkCf | v∞(σ(z) − z) ≥ 2} , the p-Sylow.

• ([St,73]) Let g(Cf) ≥ 2, then G∞,1(f) is a p-Sylow of AutkCf .

• It is normal except for f(X) = Xm where m|1 + p.

2.2 Structure of G∞,1(f)

• Let ρ(X) = X, ρ(W ) = W + 1, then < ρ >= G∞,2 ⊂ Z(G∞,1)

• 0 →< ρ >→ G∞,1 → V → 0, V := {τy| τy(X) = X + y, y ∈ k}.

f(X + y) = f(X) + f(y) + (F − Id)(P (X, y)), P (X, y) ∈ Xk[X].

V ' (Z/pZ)v as a subgroup of k.

• Let τy(W ) := W + ay + P (X, y), ay ∈ Fp, then [τy, τz] = ρε(y,z), where ε :
V × V → Fp is an alternating form.

• ε is non degenerated iff < ρ >= Z(G∞,1).
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2.3 Bounds for |G∞,1(f)|

Lemma 2.1. If f(X) =
∑

1≤i≤m tiX
i ∈ k[X] is monic, then:

• ∆(f)(X, Y ) := f(X + Y ) − f(X) − f(Y ) = R(X, Y ) + (F − Id)(Pf(X, Y )),

where R ∈
⊕

bm
p
c≤ipn(i)<m, (i,p)=1 k[Y ]X ipn(i)

and Pf ∈ Xk[X, Y ].

• Pf = (Id + F + ... + F n−1)(∆(f)) mod X [m−1
p

]+1.

Let us denote by Adf(Y ) the content of R(X, Y ) ∈ k[Y ][X], then

• Adf(Y ) is an additive and separable polynomial.

• Z(Adf(Y )) ' V .

Let m − 1 = `ps with (`, p) = 1.

• ([St 73]) |G∞,1| = p deg Adf ≤ p(m − 1)2, i.e.
|G∞,1|

g2 ≤ 4p
(p−1)2

.

• ([St 73]) s = 0 i.e. (m − 1, p) = 1, then |G∞,1| = p.

• If s > 0,

– ` > 1, p = 2, then
|G∞,1|

g
≤ 2

3
.

– ` > 1, p > 2, then
|G∞,1|

g
≤ p

p−1
.

– ([St 73]) ` > 1, m = 1 + ps, then |G∞,1|

g
≤ 2ps p

p−1
(with equality for

f(X) = X1+ps
).

2.4 Characterization of G∞,1(f)

• We consider the extensions 0 → N ' Z/pZ → G → (Z/pZ)n → 0 (note that
G∞,1(f) is an extension of this type). Then G′ ⊂ N ⊂ Z(G).

• If G′ = Z(G), G is called extraspecial.

– Then, |G| = p2s+1 and there are 2 isomorphism classes for a given s.

– If p > 2, we denote by E(p3) (resp. M(p3)) the non abelian group of order
p3 and exponent p (resp. p2). Then, G ' E(p3) ∗ E(p3) ∗ ... ∗ E(p3) or
M(p3) ∗ E(p3) ∗ ... ∗ E(p3), according as the exponent is p or p2.

– If p = 2, then G ' D8 ∗ D8 ∗ ... ∗ D8 or Q8 ∗ D8 ∗ ... ∗ D8 (in both cases,
the exponent is 22).

• If G′ ⊂ Z(G), G is a subgroup of an extraspecial group E with Z(E) ⊂ G.

Theorem 2.2. ([Le-Ma 1]). Let f(X) = XΣ(F )(X) ∈ Xk[X], Σ(F ) =
∑

0≤i≤s aiF
i ∈

k{F} an additive polynomial with deg f = 1 + ps. Then,

• Adf(Y ) = F s(
∑

0≤i≤s(aiF
i + F−iai)(Y )), a palyndromic polynomial.

• G∞,1(f) is an extraspecial group with cardinal p2s+1 and exponent p for p > 2,
and of type Q8 ∗ D8 ∗ ... ∗ D8 for p = 2.
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Theorem 2.3. ([Le-Ma 1]). If G is an extension of type 0 → Z/pZ → G →
(Z/pZ)n → 0, there is f ∈ Xk[X] with G ' G∞,1(f).

• Sketch proof: Extraspecial groups with exponent p2 are realized by a modifica-
tion by a Witt cocycle of the polynomial f in the previous theorem.

• We can see G as a subgroup of an extraspecial group E, then we realize E with
fE and a suitable modification of f E will limit G∞,1(fE) to G.

3 Actions of p-groups over a curve C with g(C) ≥ 2

3.1 Big actions (I)

Theorem 3.1. ([Le-Ma 1]). Let f(X) ∈ Xk[X] with (deg f, p) = 1. If
|G∞,1|

g
> p

p−1

(2
3

for p = 2), then f(X) = cX + XΣ(F )(X) ∈ k[X].

• Sketch proof: One shows that monomials in f with a degree /∈ 1 + pN will limit
the degree of Adf .

• Let (C, G) with G ⊂ AutkC, a p-group. We say that (C, G) is a big action if:

(N) gC > 0 and |G|
gC

> 2p
p−1

.

It follows from ([Na 87]) that there is ∞ ∈ C, with

– C → C/G ' P1
k −∞ is étale and G = G∞,1.

– G∞,2 6= G∞,1 and C/G∞,2 ' P1
k

– Then, G∞,1/G∞,2 acts as a group of translations of the affine line C/G∞,2−
{∞}.

• Transfert of condition (N) to quotients. Let (C, G) a big action, if H C G
and if g(C/H) > 0, then (C/H, G/H) is a big action.

3.2 Condition (N) and G2

In this section (C, G) is a big action. Let Gi be the lower ramification groups.

• Let H C G and H with index p in G2 (H exists!), then (C/H, G/H) satisfies
(N).

• (G/H)2 = G2/H ' Z/pZ.

• There is S(F ) ∈ k{F}, f1 = cX + XΣ(F )(X) ∈ k[X] with C/H ' Cf1.

• If G2 ' (Z/pZ)t, then k(C) = k(X, W1, ..., Wt) and ℘(W1, ..., Wt) = (f1(X), f2(X), ..., ft(X)) ∈
(k[X])t

• f1(X), .., ft(X) are Fp-free mod ℘(k[X]).

• The group extension 0 → G2 → G1 → V = (Z/pZ)v → 0 induces a representa-
tion ρ : V → Glt(Fp)

• dual to the one given by V acting via translation: (v ∈ V )×(f1(X), f2(X), ..., ft(X))
mod ℘(k[X])t → → (f1(X + v), f2(X + v), ..., ft(X + v)) mod ℘(k[X])t
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• Imρ is a unipotent subgroup of Glt(Fp) which is the identity iff G2 ⊂ Z(G).
In this case fi(X) = ciX + XΣi(F )(X) where Σi(F ) ∈ k{F} and v ∈ V is a
commun zero to the palyndromic polynomials Adfi

∈ k{F, F−1}.

• Let f1 := X(αF )(X) = αX1+p with αp + α = 0; then Adf1 = Y p2
− Y .

• Let f2 := X1+2p − X2+p, then

• f2(X + Y ) − f2(X)− f2(Y ) = 2(Y p − Y )X1+p + (Y − Y p2
)X2p + (Y 2p2

− Y 2 +
2Y 1+p − 2Y p+p2

)Xp mod ℘(k[X, Y ])

• If y ∈ Z(Adf1) = Fp2 one has

f2(X + y) = 2(yp−y)
α

f1(X) + f2(X) + ℘(P2).

• y → 2(yp−y)
α

is a non zero linear form over Fp2 with value in Fp.

• |G| = p2p2 and g = p−1
2

(p + p(2p)).

• |G|
g

= 2p
p−1

p2

1+2p
.

• |G|
g2 = 4p

(p−1)2
p

(1+2p)2
.

Theorem 3.2. ([Le-Ma 4]) Let (C, G) be a big action then G2 = G′.

• Sketch proof: If G′ 6= G2, there is H C G with G′ ⊂ H ⊂ G2 and [G2 : H] = p.

(C/H, G/H) satisfies condition (N);

• C/H : W p − W = f := XΣ(F )(X), deg(f) = 1 + ps.

• (AutC/H)∞,1 := E, is extraspecial with order p2s+1.

• G/H is abelian and normal in E.

• ([Hu 67] Satz 13.7 p. 353) |G/H| ≤ ps+1 and so |G/H|/g(C/H) ≤ 2ps+1

(p−1)ps = 2p
p−1

,
a contradiction.

We deduce the following corollary from ([Su 86] 4.21 p.75).

Corollary 3.3. If |G2| = p3, then G2 is abelian.

3.3 Riemann surfaces

• In characteristic 0, an analogue of big actions is given by the actions of a
finite group G on a compact Riemann surface C with gC ≥ 2 such that |G| =
84(gC − 1) (we say that C is an Hurwitz curve) ([Co 90]).

• Let us mention Klein’s quartic (G ' PSL2(F7)) ([El 99]).

• The Fricke-Macbeath curves with genus 7 (G ' PSL2(F8)) ([Mc],65).

• Let C be an Hurwitz curve with genus gC. Let n > 1 and Cn the maximal
unramified Galois cover whose group is abelian with exponent n. The Galois
group of Cn/C is (Z/nZ)2gC . It follows from the unicity of Cn that the k-
automorphisms of C have n2g prolongations to Cn. Therefore gCn−1 = n2g(gC−
1) and n2g|AutkC| ≤ |AutkCn|, where |AutkCn| ≥ 84(gCn −1); Cn is an Hurwitz
curve ([Mc],61).
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3.4 Ray class fields

• If (C, G) is a big action in char.p > 0), then C → C/G is an tale cover of the
affine line whose group is a p-group; it follows that the Hasse-Witt invariant of
C is zero; therefore, in order to adapt the previous proof to char. p > 0, one
needs to accept ramification. This is done with the so called ray class fields of
function fields over finite fields.

• Let K := Fq(X) where q = pe, S the set of finite rational places (X−v), v ∈ Fq

and m ∈ N. Let Kalg be an algebraic closure. Let Km
S ⊂ Kalg be the biggest

abelian extension L of K with conductor ≤ m∞ and such that the places in S
are completely decomposed.

• ([La 99], [Au 00]) The constant field of Km
S is Fq and GS(m) := Gal(Km

S /K) '
(1 + TFq[[T ]])/ < 1 + T mFq[[T ]], 1 − vT, v ∈ Fq >, is a p-group.

• ([Ma-Le 4]) Let Cm/Fq be the smooth projective curve with function field Km
S .

The translations X → X + v, v ∈ Fq stabilize S and ∞; they can be extended
to Fq-automorphisms of Km

S . In this way, we get an action of a p-group G(m)
on Cm with 0 → GS(m) → G(m) → Fq → 0

• ([Au 00] If nm := |GS(m)|, then gCm = 1+nm(−1+m/2)−(1/2)
∑

0≤j≤m−1 nj ≤
nm(−1 + m/2)

• |G(m)|
gCm

≥ nmq
nm(−1+m/2)

= q
−1+m/2

. This is a “big action” as soon as q
−1+m/2

> 2p
p−1

(we have G2 = GS(m))

• Let Nq := |Cm(Fq)|. Then, Nq = 1 + |G(m)|, and the quotient |G(m)|
gCm

∼ Nq

gCm
.

• ([La 99]) If q = pe,m2 := pde/2e+1 + p + 1 is the smallest conductor m such that
the exponent of Gm

S is > p.

• If e > 2, (Cm2 , G(m2)) is a big action and G2 is abelian with exponent p2.

3.5 Big actions (II)

From now on, k is any algebraically closed field and (C, G) is a big action.

• If G2 ' Z/pnZ, then n = 1 ([Le-Ma 4]).

– Sketch proof: Let H = Gpn−2

2 then (C/H, G/H) is a big action, it follows
that one can assume that n = 2. Then C → C/G2 is given by ℘(W0, W1) =
(f0, f1) with f0 = XΣ(F )(X), deg f0 = 1 + ps.

– Let v ∈ V := Z(Adf0) and P ∈ k[X] with f0(X + v) = f0(X) + ℘(P ) then
f1(X + v)− f1(X) = `(v)f0(X) + 1

p
(f0(X)p + P (X)p −P (X)p2

− (f0(X) +

P (X))p − f0(X + v)p + (f0(X + v) + P (X)p)p)

– = `(v)f0(X) +
∑

1≤i≤p−1
(−1)i−1

i
viXp−i+ps+1

mod Xps+1
where ` : V → Fp

is a linear form.

• More generally for G2 abelian with exponent pe, e ≥ 2, one can expect a lower
bound in O(log(gC)) for the p-rank of G2. This is the case in the preceding
situation i.e. (C, G) = (Cm2 , G(m2)) ([M. Rocher, thesis in preparation]).
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3.6 Maximal curves

Let us assume that (C, G) is a big action.

• Let i0 with G2 = G3 = .... = Gi0 % Gi0+1. Then g(C/Gi0+1) = 1
2
(|G2/Gi0+1| −

1)(i0 − 1).

• If 0 < M ≤ |G|

g2
C

, then

|Gi0+1| ≤
1
M

|G/Gi0+1|

g2
C/Gi0+1

≤ 1
M

4|G2/Gi0+1|

(|G2/Gi0+1|−1)2
.

Theorem 3.4. ([Le-Ma 1]) If |G|
g2

C
≥ 4

(p−1)2
, then there is Σ(F ) ∈ k{F} and f =

cX + XΣ(F )(X) ∈ k[X] with C ' Cf .
Moreover there are two possibilities for G:

• |G|
g2

C
= 4p

(p−1)2
and G = G∞,1(f) or

• |G|

g2
C

= 4
(p−1)2

and G ⊂ G∞,1(f) has index p.

• Note that the sequence pn

(pn−1)2
is decreasing and that |Gi0+1| ∈ pN .

• We deduce bounds for |G2/Gi0+1|, |Gi0+1| and so for |G2|.

We still assume that (C, G) is a big action.

• One can push the “classification ” of big actions up to the condition |G|
g2

C
≥ 4

(p2−1)2
.

Namely

• One first show that |G2| divides p3.

• G2 is abelian by corollary 7.

• Applying ([Mr 71]) to the case of abelian extensions with group Z/pZ×Z/p2Z,
one shows that G2 has exponent p (we have seen in 3.5 that G2 is cyclic iff
G2 = Z/pZ).

Theorem 3.5. ([Le-Ma 4]) For all M > 0, the set |G|
g2

C
> M , for (C, G) a big action

with G2 abelian with exponent p, is finite.

Sketch proof: We saw that |G2| and so t are bounded above. We use the notations
introduce in 3.2. moreover we can choose the fi and the mi := deg fi with m1 ≤
m2 ≤ ... ≤ mt and in such a way that deg(

∑

1≤i≤t λifi) ∈ {mi, 1 ≤ i ≤ t} for
[λi] ∈ Pt−1(Fp).

We distinguish two cases:

• If Imρ is trivial.

– Then mi − 1 = pνi and ν1 ≤ ... ≤ νt

– |G| = pt|V | ≤ pt+2ν1 .

– gC = (p−1)
2

(
∑

1≤i≤t p
i−1pνi)

– M ≤ pt|V |
g2 ≤ 4pt

(p−1)2(
P

1≤i≤t pi−1pνi−ν1 )2

– νi − ν1 is bounded above.
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– p2ν1

|V |
≤ 4pt

M(p−1)2(
P

1≤i≤t pi−1pνi−ν1 )2
and so {p2ν1

|V |
} is finite.

– { |G|
g2

C
= 4pt|V |p−2ν1

(p−1)2(
P

1≤i≤t pi−1pνi−ν1 )2
} is finite.

• If Imρ isn’t trivial.

– There is a smallest i0 such that fi0+1(X) 6= cX + XΣ(F )(X) (exercise).

– For v ∈ V fi0+1(X + v) = fi0+1(X) +
∑

1≤i≤i0
`i(v)fi(X) mod ℘(k[X])

– `i is a non zero linear form on the Fp-space V .

– Let W := ∩1≤i≤i0 ker `i, then |W | ≥ |V |
pi0

.

– gC = (p−1)
2

(
∑

1≤i≤t p
i−1(mi − 1)) ≥ (p−1)

2
(pi0(mi0+1 − 1)).

– 2p|W |
(p−1)(mi0+1−1)

≤ 2p
p−1

– gC ≥ p−1
2

pi0(mi0+1 − 1) ≥ p−1
2
|V |

– M ≤ pt|V |
g2 ≤ 4pt|V |

(p−1)2|V |2

– |V | is bounded above and g2
C ≤ pt|V |

M
is also bounded above .

– { |G|
g2

C
= |G2||V |

g2
C

} is finite. ///

4 Monodromy polynomial

• Let C −→ P1
K birationally given by the equation: Zp

0 = f(X0) =
∏

1≤i≤m(X0 −
xi)

ni ∈ R[X0], (ni, p) = 1 and (deg f, p) = 1, v(xi − xj) = v(xi) = 0 for i 6= j.

• f ′(Y )/f(Y ) = S1(Y )/S0(Y ), (S0(Y ), S1(Y )) = 1; then deg(S1(Y )) = m−1 and
deg(S0(Y )) = m .

• f(X + Y ) = f(Y )((1 + a1(Y )X + ... + ar(Y )Xr)p −
∑

r+1≤i≤n Ai(Y )X i), where
r + 1 = [n/p], ai(Y ), Ai(Y ) ∈ K(Y ).

• There is a unique α such that r < pα < n < pα+1

• There is T (Y ) ∈ R[Y ] with Apα(Y ) = −
( 1

p

pα−1

)
p

S1(Y )pα
+pT (Y )

S0(Y )pα .

• L(Y ) := S1(Y )pα
+ pT (Y ). This is a polynomial of degree pα(m − 1) which is

called the monodromy polynomial of f(Y ).

4.1 Marked stable model

We mean the R-model CR defined by Zp
0 = f(X0) =

∏

1≤i≤m(X0 − xi)
ni ∈ R[X0] (cf.

fig 1).

Theorem 4.1. ([Le-Ma 3])

• The components with genus > 0 of the marked stable model of C correspond
bijectively to the Gauss valuations vXj

with ρjXj = X0 − yj, where yj is a zero
of the monodromy polynomial L(Y )

• ρj ∈ Ralg satisfies v(ρj) = max{1
i
v

(

λp

Ai(yj)

)

for r + 1 ≤ i ≤ n}.

• The dual graph of the special fiber of the marked stable model of C is an oriented
tree whose ends are in bijection with the components of genus > 0.
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Figure 1: CR ⊗R k −→ P1
k with singularities and branch locus

4.2 Potentially good reduction

Theorem 4.2. ([Le-Ma 3])

• p > 2, q = pn, n ≥ 1, K = Qur
p (pp/(q+1)) and C −→ P1

K is birationally defined

by the equation Zp
0 = f(X0) = 1 + pp/(q+1)Xq

0 + Xq+1
0 .

• Then, C has potentially good reduction and L(Y ) is irreducible over K.

• The monodromy L/K is the extension of the decomposition field of L(Y ) ob-
tained by adjoining the p-roots f(y)1/p, for y describing the zeroes of L(Y ).

• The monodromy group is the extraspecial group with exponent p2 and order pq2

(which is maximal for this conductor).

4.3 Genus 2

• Case p = 2 and m = 5 ( i.e. curves with genus 2 over a 2-adic field ⊂ Qtame
2 ).

• There are 3 types of degeneration for the marked stable model.

•

genus 1
curves

genus 1
curves

genus 2
curveP1

k

P1
k

Type 1
Gal(K ′/K)w ↪→ Q8 × Q8 Gal(K ′/K)w ↪→ (Q8 × Q8) o Z/2Z Gal(K ′/K)w ↪→ Q8 ∗ D8

original component

Type 2

original component
P1

k
original component

P1
k

Type 3

• C −→ P1
K is birationally defined by the equation Zp

0 = f(X0) with f(X0) =
1 + b2X

2
0 + b3X

3
0 + b4X

4
0 + X5

0 ∈ R[X0].

Now, we see that the monodromy can be maximal for the 3 types of degeneration.
a) f(X0) = 1 + 23/5X2

0 + X3
0 + 22/5X4

0 + X5
0 and K = Qur

2 (21/15);

• C has a marked stable model of type 1.
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• The maximal monodromy group is ' Q8 × Q8.

b) Let K = Qur
2 (a) with a9 = 2 and f(X0) = 1 + a3X2

0 + a6X3
0 + X5

0 .

• C has a marked stable model of type 2.

• The maximal monodromy group is ' (Q8×Q8)oZ/2Z, where Z/2Z exchanges
the 2 factors.

c) K = Qur
2 and f(X0) = 1 + X4

0 + X5
0 .

• C has potentially good reduction (i.e. is of type 3)

• The maximal monodromy group is ' Q8 ∗ D8.
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