How a Genetic Algorithm Learns to Play Traveler's Dilemma by Choosing Dominated Strategies to Achieve Greater Payoffs

Michele Pace

Equipe ALEA

IMB - Institut de Mathématiques de Bordeaux
University of Bordeaux1

7 September 2009

Outline

(1) Traveler's Dilemma
(2) Nash Equilibrium
(3) Nash Equilibrium for Traveler's Dilemma
(4) Experimental studies
(5) Repeated Traveler's Dilemma and G.A.
(6) Results
(7) Conclusions

Traveler's Dilemma

Scientific American Magazine June 2007

http://www.scientificamerican.com/

- The game was formulated in 1994 by Kaushik Basu.
- American Economic Review, Vol. 84, No. 2 May 1994.
- Scientific American Magazine, June 2007.

Did this molecule

The Myteres of Anesthesia
When it Pass to Be Irrational
How laticles Shape the Cosmos

Traveler's Dilemma

- An airline loses two suitcases belonging to two different travelers, Lucy and Pete. Both suitcases contain identical antiques.
- A manager tasked to settle the claims explains that the airline is liable for a maximum of $\$ 100$ per suitcase.
- The manager separates both travelers and asks them to write down the amount of their value, at no less than $\$ 2$ and no larger than $\$ 100$.
- If both the travelers write down the same number, the company reimburse both travelers that amount, otherwise the smaller number will be taken as the true dollar value...
- ... and both travelers will receive that amount along with a bonus /malus: + \$2 will be paid to the "honest" traveler and -\$2 to the person who wrote the highest price.

Traveler's Dilemma

Question:

What number should the travelers write? What number would you write?

Nash Equilibrium

Nash Equilibrium

In game theory, the Nash equilibrium describes a kind of optimal strategy, informally defined as that set of strategies (one for each player) such that no player can do better by choosing a different strategy while keeping the others strategies fixed.

In a two player game, it would be a pair of strategies p, q such that:

$$
\begin{cases}\pi\left(p^{\prime}, q\right) \leq \pi(p, q) & \forall p^{\prime} \neq p \\ \pi\left(p, q^{\prime}\right) \leq \pi(p, q) & \forall q^{\prime} \neq q\end{cases}
$$

Nash Equilibrium for Traveler's Dilemma

Lucy:
Pete:
(1)...I should write $\$ 100 \ldots$

Nash Equilibrium for Traveler's Dilemma

Lucy:

Pete:

(2)...I should write $\$ 100$..

Nash Equilibrium for Traveler's Dilemma

Lucy:
Pete:
(3)...if he thinks the same, then if I write $\$ 99$ l'll get a little bit more money: \$101

Nash Equilibrium for Traveler's Dilemma

Lucy:

Pete:

(4)... if she thinks I'll say
\$100 she will probably say $\$ 99$, In that case I could do better by writing \$98, to have \$100..

Nash Equilibrium for Traveler's Dilemma

Lucy:
Pete:
(5)...if he thinks the $\$ 98$, I could deviate to $\$ 97$ and earn \$99..

Nash Equilibrium for Traveler's Dilemma

Lucy:
Pete:
\$2!
\$2!

Nash Equilibrium!

Nash Equilibrium in Traveler's Dilemma

- It is the best thing to do no matter what the other player does.

Nash Equilibrium in Traveler's Dilemma

- It is the best thing to do no matter what the other player does.
- Highly implausible that they would really go all the way down to 2 . When the game is played experimentally most participants select much higher values, usually close to $\$ 100$.

Nash Equilibrium in Traveler's Dilemma

- It is the best thing to do no matter what the other player does.
- Highly implausible that they would really go all the way down to 2 . When the game is played experimentally most participants select much higher values, usually close to \$100.
- Game theorists commonly use this style of analysis, called backward induction.

Nash Equilibrium in Traveler's Dilemma

- It is the best thing to do no matter what the other player does.
- Highly implausible that they would really go all the way down to 2 . When the game is played experimentally most participants select much higher values, usually close to \$100.
- Game theorists commonly use this style of analysis, called backward induction.
- Since the development of the Nash equilibrium concept, game theorists have discovered that it makes misleading predictions. Refinements proposed.

Nash Equilibrium in Traveler's Dilemma

- It is the best thing to do no matter what the other player does.
- Highly implausible that they would really go all the way down to 2 . When the game is played experimentally most participants select much higher values, usually close to \$100.
- Game theorists commonly use this style of analysis, called backward induction.
- Since the development of the Nash equilibrium concept, game theorists have discovered that it makes misleading predictions. Refinements proposed.
- 1965 Reinhard Selten proposed subgame perfect equilibrium to eliminate equilibria which depend on non-credible threats.

What happens... really?

A celebrated lab experiment by Capra,Goeree,Holt and Gomez. (University of Virginia) with economics students and using real money:

- Choices between 80 and 200 cents.
- Different penalties and rewards
- The experiment confirmed the intuitive expectation...
- Player would not play the Nash equilibrium strategy of 80c.
- With a reward of 5 cents, the players' average choice was 180 , falling to 120 when the reward rose to 80 cents. Web-based experiment confirmed.

Why?

- The thought processes that produce this pattern of choices remain mysterious
- Altruism, socialization and faulty reasoning guide most individuals' choices

Rubinstein: 4 sets of possible choices for 4 different cognitive process:

CHOICES MADE

Link to Mr. Hingston presentation

- Iterated Prisoner's Dilemma for Species
- How can cooperation evolve?
- Evolution rewards the selfish.

Repeated Traveler's Dilemma and G.A.

- A population of 100 players is set up.
- Each player chooses an answer for each match using a of probability distribution and plays against a random opponent.
- The best players (greater total payoff in the current generation) have a greater probability to be selected for the next generation.

Figure: Example of a genome used in the G.A.

Mutation and crossover

- Two individuals are chosen to mate.
- Their genomes are combined using a crossover operator.
- A gene is chosen randomly and a mutation value is added to it.

Crossover

Results

Figure: Average strategy after 5000 generations using different mutation values.

Results

Figure: Average and maximal payoff for each generation.

Convergence with different initial values

GA vs Human strategy

Strategy Entry		Strategy Entry		Strategy Entry	
2	3	88	1	96	3
4	1	90	1	97	6
31	1	93	1	98	9
49	1	94	2	99	3
70	1	95	2	100	10

Table: Distribution of human strategy described in Becker, Carter and Naeve. (Hohenheim)

GA vs Human strategy

Convergence varying rewards and penalties

Conclusions

- In this paper, we proposed a genetic algorithm to search over the probability space for the distributions that maximize the average payoff in repeated game sessions.
- Even if changing the rewards and penalties should theoretically have no impact, in practice, it has. The algorithm showed the same behaviour without having any a priori knowledge about the game. This probably means that the reasons of this effect are not exclusively psychological.
- The results show forms of convergence to equilibrium distributions.
- Possibility to apply probabilistic methods and convergence analysis.

Conclusions

Thank you!

