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Abstract— In game theory, the Traveler’s Dilemma (abbrevi-
ated TD) is a non-zero-sum 1 game in which two players attempt
to maximize their own payoff without deliberately willing to
damage the opponent. In the classical formulation of this
problem, game theory predicts that, if both players are purely
rational, they will always choose the strategy corresponding
to the Nash equilibrium for the game. However, when played
experimentally, most human players select much higher values
(usually close to $100), deviating strongly from the Nash
equilibrium and obtaining, on average, much higher rewards.
In this paper we analyze the behaviour of a genetic algorithm
that, by repeatedly playing the game, evolves the strategy in
order to maximize the payoffs. In the algorithm, the population
has no a priori knowledge about the game. The fitness function
rewards the individuals who obtain high payoffs at the end of
each game session. We demonstrate that, when it is possible
to assign to each strategy a probability measure, then the
search for good strategies can be effectively translated into
a problem of search in a measure space using, for example,
genetic algorithms. Furthermore, the codification of the genome
as a probability distribution allows the analysis of common
crossover and mutation operators in the uncommon case where
the genome is a probability measure.

I. THE TRAVELER’S DILEMMA

The game was formulated in 1994 by Kaushik Basu [1]

and is as follows:

An airline loses two suitcases belonging to two different

travelers. Both suitcases happen to be identical and contain

identical antiques. An airline manager tasked to settle the

claims of both travelers explains that the airline is liable for

a maximum of $100 per suitcase, and in order to determine

an honest appraised value of the antiques, the manager

separates both travelers so they can’t confer and asks them

to write down the amount of their value, at no less than

$2 and no larger than $100. He also tells them that if both

write down the same number, he will treat that number as

the true dollar value of both suitcases and reimburse both

travelers that amount. However, if one writes down a smaller

number than the other, this smaller number will be taken as

the true dollar value, and both travelers will receive that

amount along with a bonus/malus: $2 extra will be paid

to the traveler who wrote down the lower value and a $2
deduction will be taken from the person who wrote down the

1In zero-sum games, a participant’s gain or loss is exactly balanced by the
losses or gains of the other participant(s), whereas in a non-zero-sum game,
the aggregate gains and losses of the participants is nonzero. Non-zero-sum
games are not strictly competitive.

higher amount. The challenge is: what strategy should both

travelers follow to decide the value they should write down?

The normal form game can be described by the following

payoff matrix:

π(x, y) =







(x + 2, x − 2) if x < y

(x, y) if x = y

(y − 2, y + 2) if x > y

where x and y denotes the players’ choices and π(x, y)
the payoff function. In game theory, the Nash equilibrium

describes a kind of optimal strategy, informally defined as

that set of strategies (one for each player) such that no player

can do better by choosing a different strategy while keeping

the others’ strategies fixed. In a two player game, it would

be a pair of strategies p, q such that:

{

π(p′, q) ≤ π(p, q) ∀p′ 6= p

π(p, q′) ≤ π(p, q) ∀q′ 6= q

The Nash Equilibrium for the TD is the only undominated2

solution x = y = $2 which purely rational players would

always want to play because, with any other pair of strategies

(x, y) 6= (2, 2), at least one player can improve by choosing a

value that is exactly one lower than the other player’s choice.
However, when the game is played experimentally (as

described in [3],[4],[5]) most participants select much higher

values, usually close to $100, and this is true both for

game-theory experts [3] and for those who have not thought

carefully through the logic of the game. As a matter of fact,

on average, by deviating strongly from the Nash equilibrium

players are able to obtain much higher rewards. This paradox

has led some to question the value of game theory in general,

whilst others have suggested that a new kind of reasoning

is required to understand how it can be quite rational to

ultimately make non-rational choices.
To study the properties of the Traveler’s Dilemma we

propose a genetic algorithm that simulates a population of

players, each one playing the game a fixed number of times

against other randomly chosen players.
In the first part of the article (Section II), we detail the

genetic algorithm used and in the second part, the results are

2A strategy is dominated if, regardless of what any other players do, the
strategy earns a player a smaller payoff than some other strategy. Hence,
a strategy is dominated if it is always better to play some other strategy,
regardless of what opponents may do.



discussed (Section III) and compared to the results obtained

from experimental studies on how people play the game.

Finally, we give our interpretation of the results, discuss the

conclusions and report on possible lines of further research.

II. DESCRIPTION OF THE GENETIC ALGORITHM

The idea of repeatedly playing a game and measuring the

sum of payoffs obtained at the end of each session to evaluate

a strategy is far from being new: it has been fruitfully applied

for instance to the famous Prisoner’s Dilemma and has led

to the discovery of effective strategies that let players obtain

good payoffs. Basic strategies for the IPD (Iterated Pris-

oner’s Dilemma) are for example RAND (Random), ALLD

(always defects), ALLC (always cooperates), NEG (negates

last opponent’s move), GRIM (starts with cooperation but

turns into ALLD after first defection), TFT (tif-for-tat, starts

with cooperation then plays last opponent’s move). Good

references are provided in [8]. IPD can be used in many

psychological, economic, military and decision-making prob-

lems as a model of sociologic behavior. We utilise a similar

technique, and propose here an analysis of what we can call

RTD (Repeated Traveler’s Dilemma) by means of genetic

algorithms. The Iterated Prisoner’s Dilemma is a version of

the Prisoner’s Dilemma where two opponents play against

each other repeatedly, with memory, allowing for retaliatory

strategies like tit-for-tat. Here, we analyze the Traveler’s

Dilemma in a different way, using a genotype encoding

that does not allow for memory or recognition of particular

opponents. The implication is that retaliatory dynamics are

not possible, thus we prefer to use the term “repeated” instead

of “iterated” when comparing it to similar works on other

games. In the Repeated Traveler’s Dilemma, each player

chooses an answer for each match using a of probability

distribution that measures the preference he assigns to the

possible values ($2 - $100). The distribution is encoded in

his genome and evolved through generations using mutation

and crossover operators. Thus, during each generation the

individual Ii is called to play N matches against a randomly

chosen opponent in the current population. Each player

selects a price according to his genome and receives a

corresponding payoff. As the algorithm is executed, the best

players (those whose total payoff in the current generation is

greater) are rewarded by assigning them a greater probability

to be selected when creating the next generation. Analyzing

the results of the simulations, it is possible to determine if,

after some time, an equilibrium condition is reached, if this

condition is the Nash equilibrium for the game or if the

population learns that playing high values is (sometimes)

more rewarding than playing the undominated strategy $2.

In addition, we want to analyze the differences between the

average strategy adopted by the population of individuals

in the algorithm and the strategy used by human players

when playing the game, to see if there are commons traits

and hopefully determine if, on average, humans are better in

playing TD than the GA proposed or vice versa.
The genetic algorithm definition goes through the follow-

ing steps:

Choice of the fitness function → Codification of a possible

solution into a genome → Evolution of the current population

(in this case playing the game repeatedly) → Selection of the

best players → Crossover → Mutation → New generation.

A brief description of each step is given:

1) Fitness function: The fitness function used to measure

the quality of a player’s strategy is the amount of

money gained during a generation.

2) Genome: As we are interested in understanding how

different strategies perform when used during repeated

game sessions we map each genome to a possible

strategy and measure its effectiveness with a fitness

value. More specifically, when playing the original ver-

sion of the game each player has a genome composed

of 99 values (the possible choices for a game, from

$2 to $100 inclusive). Each gene represents the value

of the probability the player assigns to that answer.

For example, if a player has a genome with the mass

of probability distributed on the low values ($2-$30

for example) when playing repeatedly he will have

a conservative strategy, playing low values most of

the time. On the contrary if the mass of probability

is concentrated on high values ($80-$100) the players

will have an aggressive game, taking the risk of playing

highly dominated strategies far from Nash equilibrium,

hoping for higher rewards.

3) Evolution of the population: During the evolution

step each individual plays against other individuals a

fixed number of times, accumulating the amount of

money gained in each game.

4) Selection: Based on the result of the games, the best

players are selected to mate and produce offspring.

The individuals are selected using a fitness proportional

selection (Random Wheel Selection).

5) Crossover and Mutation: When two individuals are

chosen to mate, their genomes (their strategies when

playing the game) are combined using crossover and

mutation operators to create the genome of a player in

the next generation.

6) New generation: The offspring of the previous players

is the population that will play in the next iteration of

the algorithm.

A. Crossover and Mutations

The genome being a distribution of probability on the

set of possible answers, add a series of constraints to the

crossover and mutation operators that can be used. In partic-

ular, for each genome the following must be satisfied:

N = 100
Support : g ∈ 2, 3 . . . , N

Pg ≤ 1, Pg ≥ 0
∑N

g=1
Pg = 1

(1)

Where Pg is the probability of choosing the value g as a

solution to a TD match.



Thus, crossover and mutations have to be performed

carefully in order to generate individuals with valid genomes.

It is not difficult to observe that all the crossover operators

commonly used in the literature (single point crossover,

multiple point crossover, etc.) can be used in this case if

followed by a normalization step to correct the genome to

have all the genes summing up to 1. The normalisation also

introduces an additional mutation component because the

generated genome does not necessarily contains the same

genes as the parents.

Furthermore, a genome that represent a distribution of

probability allows the definition of interesting crossovers and

mutation operators, such as the sum operator, which takes

the two parent genomes as input and generates a genome

having each gene as the sum of the corresponding genes.

Multiplication operator, which generates a genome where

each gene is the product of the corresponding parents’ genes,

and so on. In the present paper we focus our analysis on the

standard single point crossover operator.

After the application of the crossover operator, the new

genome is mutated accordingly to a certain probability. For

the mutation step, a gene is chosen randomly and a mutation

value is added to it. The entire genome is then normalized

and assigned to an individual playing in the next generation.

Note that, as the genome is normalized after the mutation, the

operation of adding a mutation value to a gene is equivalent

to moving probability mass from the other genes to the

mutated gene. The mutation rate and the mutation value are

the two fundamental parameters of the algorithm.

III. SIMULATIONS’ RESULTS

In this section we report the results of various iterations

obtained by varying some of the fundamental parameters.

Each run is a simulation of 5000 generations on a population

of 100 individuals, each playing in 100 random games.

More precisely, during the game phase of a simulation the

following algorithm is executed:

foreach player{
for (int plays = 0; plays < 100; plays++){
\\ choose a random player as opponent

opponent = random(numPlayers);

\\ Play the game

game.play(player, opponent);

}
}

The initial genome for the individuals of the first popu-

lation must be chosen. The uniform distribution seems the

natural choice, because in principle there is no reason to

force an individual to prefer a specific value as a solution

for a TD instance. Nevertheless, it is possible to force all

the individuals to prefer the value of $100 or the Nash

equilibrium in the first generation in order to analyze the

evolution of the strategies. The results obtained in those cases

are discussed in section IV. In what follows, the uniform

distribution is used as the starting distribution.

Number players 100
Matches per generation 100
Minimum price 2
Maximum price 100
Crossover type Single point crossover
Mutation type Uniform random
Mutation rate 0.05 - 0.02 - 0.1 - 0.2
Mutation value 0.1 - 0.7 - 5.0 - 10.0

TABLE I

PARAMETERS FOR THE GENETIC ALGORITHM. THE SIMULATIONS ARE

RUN USING AS MUTATION RATE AND MUTATION VALUE, ALL THE

COMBINATIONS OF THE VALUES REPORTED IN THE CORRESPONDING

ROWS OF THIS TABLE.

The average genome after 5000 generations, using differ-

ent mutation values and mutation rates, is reported in Fig. 1

and Fig. 2 respectively.

Fig. 1. Average strategy after 5000 generations using different mutation
values and different mutation rates.

As the mutation value increases, the algorithm is able to

explore a larger region of the search space: the convergence

is faster and the distribution of probability becomes more

and more concentrated on high values. The players tend to

play for greater payoffs, even if the corresponding solutions

are more and more dominated. On average, using these

dominated strategies, the population is able to reach a global

payoff much higher than the one it could obtain using more

conservative strategies.
Figure 3 shows the payoff evolution for the whole popula-

tion (expressed as the sum individual’s payoffs) during 5000

generations using the mutation values reported in table I;

high mutation values determine, on average, individuals with

a tendency to play high values ($80-$100), thus correspond-

ing to an high payoff for the whole population. However,

increasing the value of the mutation over some value has no

impact on the overall payoff whose average remains close to



Fig. 2. Average strategy after 5000 generations using different mutation
rates.

Fig. 3. Population fitness using different mutations values.

a value of 1.7∗106. Figure 3 also shows that as the mutation

value increases, the variance increases as well as the average

payoff for the population.

Both mutation value and mutation rate have a strong

impact on the evolution of the strategies among the play-

ers. When the mutation rate is fixed, the simulations show

that increasing the mutation value shifts the distribution of

probability toward high values: the population evolves to

play highly dominated values between $85 and $100. On the

contrary, fixing the mutation value and varying only the coef-

ficient of the mutation rate, the efficiency of the population

decreases: as mutations happen more and more frequently,

more individuals playing random values are introduced in

the population, lowering the fitness and preventing highly

Mut. Rate
Mut. Value 0.005 0.02 0.1 0.2

0.1 19 19 24 26
0.5 43 53 36 36
0.7 58 65 47 19
2.0 66 77 49 39
5.0 68 81 51 31
10.0 76 92 52 40

TABLE II

PROBABILITY DENSITY CONCENTRATION USING DIFFERENT MUTATION

VALUES AND RATES.

Fig. 4. Average and maximal payoff for each generation.

skilled players from achieving greater payoffs. In Fig. 4 the

average and maximal payoff for each generation is reported

for different mutation values. The increasing of the average

payoff as the population evolves is evident.

Considering the average genome after 5000 iterations

when using different mutation values and rates, it is possible

to identify the interval where the 90% of the probability

mass concentrates. Table II shows, for example, that using

values 0.1 and 0.005 as mutation parameters the 90% of

the probability mass results, on average, distributed between

$19 and $100, meaning that the average strategy is not very

concentrated. On the contrary the value $92 corresponding

to a mutation rate of 0.02 and a mutation value of 10 means

that the individuals play values between $92 and $100 with a

probability of 90%, thus using a strategy very concentrated

on high values. When the mutation rate is too low or too

high, the concentration of the final genome on high values

degrades; the highest concentration has been achieved using

0.02 as mutation rate. On the contrary, the mutation value

has a more predictible impact on the results: increasing it, the

probability always concentrate on higher values. Note that,

even with very high mutation values, the average genome

never assign probability 1 to $100.

IV. CONVERGENCE TO AN EQUILIBRIUM DISTRIBUTION

In the previous section, we have shown the behaviour of

the algorithm when the initial population is setup with a



uniform distribution. When the first generation of individuals

play according to a specific (non-random) strategy it is gener-

ally possible to calculate precisely the population payoff for

the first generation. For example, when all the individuals are

setup to play the Nash equilibrium (undominated solution)

they will always win 2$ during the first generation, with a

total payoff of $2 ∗ num players ∗ plays per generation.

On the contrary, when all the individuals are forced to

play the value of $100 the total payoff will be $100 ∗
num players ∗ plays per generation, this being also the

maximum possible payoff for the population.

With this setup the effect of mutations is to introduce in-

dividuals with a less conservative strategy (who occasionally

play a solution greater than $2) in the first case, and indi-

vidual with a more conservative strategy (who occasionally

play a solution lower than $100) in the second. In the first

case the average payoff of the population will increase, in

the second it will decrease. It is natural to ask if after a

sufficiently high number of generations the fitness reaches

an equilibrium independently from the starting configuration.

Figure 5 shows that this happens and that the population

average payoff stabilizes around the value of 1.7 ∼ 1.8∗106.

Mutation parameters do not affect this value but determine

the average time taken to reach it.

Fig. 5. Population fitness evolution when the initial population is configured
to play Nash equilibrium and the completely dominated strategy $100.

V. ALGORITHM AND HUMAN STRATEGIES.

Considering the research of Becker, Carter and Naeve [3]

on how game theory experts play the Traveler’s Dilemma

we try to make a comparison between the strategy of human

experts and the average strategy adopted by the individuals in

the populations evolved using the algorithm discussed so far.

Fig. 6. Payoffs obtained by the genetic algorithm with various mutation
parameters when playing against the distribution characterising game experts
palying TD.

The 45 pure strategies of game theory experts as collected in

[3] (table 1, page 6), are reported in table III for reference.

Using these data it’s possible to build an approximate genome

that assigns to each value the probability of being played by

people, and evaluate how well it performs against virtual

opponents playing according to an evolved strategy. After

normalizing the data the resulting genome is reported in table

IV.

Strategy Entry Strategy Entry Strategy Entry
2 3 88 1 96 3
4 1 90 1 97 6

31 1 93 1 98 9
49 1 94 2 99 3
70 1 95 2 100 10

TABLE III

DISTRIBUTION OF HUMAN STRATEGY DESCRIBED IN BECKER, CARTER

AND NAEVE.[3]

Even experts in game theory who almost surely know

the Nash equilibrium for the Traveler’s Dilemma play,

with an high probability, dominated strategies, especially

the completely dominated value of $100. To evaluate the

relative performance of the solutions provided by the genetic

algorithm against human strategies we recorded the number

of victories, draws and losses during various game sessions

composed of 5000 matches each, where an individual using

a genome built from human statistics plays against the

solutions found using different mutation values.

Figure 6 reports the results of the simulations. The genetic

algorithm always obtains a greater payoff than the individual

playing with the strategy build from human statistics, but

this is due to the relatively low number of values used to

build the human game probability distribution and, most

importantly, to the possibility the algorithm has to evolve

the strategy counter a fixed opponent. A more interesting

and meaningful scenario would be to let the algorithm play

against true human players repeately, where both players

have the possibility to learn the strategy of the opponent and

to develop countermeasures. Here, as the mutations increase,



Gene Probability
2,96,99 0.06666

4,31,49,70,88,90,93 0.02222
94,95 0.04444

97 0.13333
98 0.2

100 0.22222

TABLE IV

DISTRIBUTION OF HUMAN STRATEGY

Fig. 7. Human strategy compared with the population’s average strategy
after 5000 generations and using different mutation values.

the GA becomes more and more concentrated on high values

(like the human strategy), and even if the algorithm always

performs better, both opponents obtain a much higher reward.

When using an high mutation coefficient the algorithm con-

centrates the probability between $85 and $95, but assigns a

lower probability to the value of $100. This assures the GA

the highest probability to win and the highest payoff it can

obtain. Figure 7 details the results at the end of each session.

VI. BEHAVIOUR VARYING REWARDS AND PENALTIES

Studies from Capra et al. [4], Land et al. [7] indicate the

dependency of the solution on rewards and penalties used

in the game. When the rewards and penalties are low, as

in the original version of the game, players tend to play

highly dominated strategy more often. When the penalties

increase, people are lesser ready to accept the risk of playing

high values, and prefer to play less-dominated strategies.

Finally, for the largest values of rewards (with a maximum of

$40), the average reaches the Nash equilibrium. To see if the

genetic algorithm shows similar effects, we ran simulations

varying penalties and rewards. Figure 8 reports the average

final distribution of probability when penalties and rewards

Number players 100
Matches per generation 100
Minimum price $2 - $5 - $10 - $20 - $30
Maximum price $2 - $5 - $10 - $20 - $30
Crossover type Single point crossover
Mutation type Uniform random
Mutation rate 0.05 - 0.02 - 0.1 - 0.2
Mutation value 0.1 - 0.7 - 5.0 - 10.0

TABLE V

PARAMETERS FOR THE GENETIC ALGORITHM. THE VALUES FOR

REWARDS AND PENALTIES ARE LISTED IN THE CORRESPONDING ROWS.

SAME VALUES ARE USED FOR REWARDS AND PENALTIES ($2-$2, $5-$5,

ETC.).

are set to $2, $5, $10, $20 and $30 respectively. The results

show that, when the penalty is low, the strategy is concen-

trated on high values ($90-$100); with a penalty/reward of

$5 the distribution starts to be distributed on less-dominated

values and when the penalties are big enough ($20 or $30),

most of the individuals play the Nash equilibrium for the

game. The process of fitness proportional selection rewards

the individual who utilise a conservative strategy, being able

to obtain, on average, a payoff greater than those who play

high values. To avoid negative payoffs in the simulations, the

lowest choice is set equal to the honesty rewards h, so the

possible choices when playing are $h - 100.

VII. CONCLUSIONS

Classic game theory doesn’t give a satisfactory description

of human behaviour when playing the Traveler’s Dilemma;

it does not take into account forms of cooperation that

often arise when humans are asked to make choices, and

it generally assumes that people are able to think as many

levels deep as needed. In this paper, we proposed a genetic

algorithm to search over the probability space for the distri-

butions that maximize the average payoff in repeated game

sessions. We performed various simulations varying the most

important parameters and analyzed the results trying to assess

the quality of the solution found. The results reported in

this paper derive from more than 2 billions of simulated

Traveler’s Dilemma matches, played by a population of 100

simulated players, each one playing against another 100

times for 5000 generations. Using a probability distribution

as genome makes it possible to effectively apply genetic

algoritms to probabilistic search spaces, and in our case we

found that it is generally possible to verify the convergence

to a solution providing an high fitness for the Traveler’s

Dilemma problem. We then compared the results found

by varying some of the fundamentals parameters with the

strategy used by experts in game theory when playing the

Traveler’s Dilemma. The solutions evolved by the algorithm

performed better, but this is due to the low amount of

data available to build the average human strategy and to

the fact that only one opponent (the algorithm) has the

possibility to change and evolve the strategy according to the

results in previous game sessions. Moreover, even if changing



Fig. 8. Average strategy after 5000 generations using different values for
rewards and penalties. With high rewards and penalties the distribution of
probability converges to Nash equilibrium.

the rewards and penalties to values higher than $2 should

theoretically have no impact on the strategy of the players,

experimental results show that, in practice, it has an impact:

as the rewards increase, the players are more and more

likely to go to the Nash equilibrium. The algorithm showed

the same behaviour without having any a priori knowledge

about the game. This probably means that the reasons of this

effect are not exclusively psychological. Genetic algorithms

have been used many times to find solutions to game theory

problems and have proven their effectiveness in cases where

general methods don’t give a satisfactory description of

how people behave. We showed that in the specific case

of Traveler’s Dilemma, a genetic algorithm can be used to

obtain solutions with an average payoff higher than what

we can obtain with other methods. Furthermore, the results

show forms of convergence to equilibrium distributions that,

although dependent on configuration parameters, suggest

possible directions of research, especially concerning the

application of formal probabilistic methods and convergence

analysis.
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