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Objectives

Need accurate dispersive model: Boussinesq-type systems

Boundary conditions are difficult to deal with
Recently: Perfectly Matched Layer, source function method→ costly

→We propose a new and efficient method for boundary conditions.
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Boussinesq-Abbott: dispersive model over flat bottom

Consider the Boussinesq-Abbott system ∂tζ + ∂xq = 0

(1 − κ2∂2
xx )∂t q + ∂x fNSW(ζ, q) = 0

in (0, `) (BA)

with generating boundary conditions

ζ(t , 0) = g0(t), ζ(t , `) = g`(t), (1)

where g0, g` ∈ C(0,T ) and

κ2 = H2
0/3, fNSW(ζ, q) =

q2

h
+

g
2

h2

z

Free surface

−H0

h(t, x) = H0 + ζu(t, x)

q = hu

0

ζ(t, x)
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Problematic

How to account for boundary conditions? How to recover q|x=0,`?

Hyperbolic case (κ = 0) : Riemann invariants

Dispersive case (κ > 0) : need to invert (1 − κ2∂2
xx )→ requires knowledge on ∂t q|x=0,`

Lannes and Weynans 2020

Equivalent writing of Boussinesq-Abbott
with flat bottom over (0,∞)

substitute (1 − κ2∂2
xx ) for nonlocal flux

& dispersive boundary layer

ODE on q|x=0

local existence and unicity

1st order scheme

Lannes and Beck 2022

Extension to wave-structure interactions

transmission problem→ ODE

2nd order scheme

flat bottom and unbounded domain

Outline of the talk

1 Reformulation over bounded domain
2 General boundary cond. & scheme
3 Varying bathymetry
4 Some perspectives
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Reformulation of the model (flat bottom)

Recall the discharge equation:

(1 − κ2∂2
xx )∂t q + ∂x fNSW(ζ, q) = 0 in (0, `)

Fix 0 ≤ t ≤ T , then y(x) = ∂t q(t , x) satisfies an ODE of the formy − κ2y ′′ = φ(x)
y(0) = q̇|0 , y(`) = q̇|`

Equivalently: y = yh + yb with

yh − κ
2y ′′h = 0

yh(0) = q̇|0 , yh(`) = q̇|`
and

yb − κ
2y ′′b = φ(x)

yb (0) = yb (`) = 0

Define R0 as the inverse of (1 − κ2∂2
xx ) with homogeneous Dirichlet conditions at x = 0, `

⇒ ∂t q = −R0∂x fNSW︸       ︷︷       ︸
yb

+ s(0)q̇|0 + s(`)q̇|`︸           ︷︷           ︸
yh

where
{

(1 − κ2∂2
xx )s(0) = 0

s(0)(0) = 1, s(0)(`) = 0
and

{
(1 − κ2∂2

xx )s(`) = 0
s(`)(0) = 0, s(`)(`) = 1

. (2)
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Reformulation of the model (flat bottom)

Note R1 the inverse of (1 − κ2∂2
xx ) with homogeneous Neumann conditions at x = 0, `

Proposition 1 (D. Lannes, R.)

Let (ζ, q) initially equal to (ζ in, qin). The two assertions are equivalent:
1 The pair (ζ, q) satisfies (BA) with generating conditions ζ(·, 0) = g0 and ζ(·, `) = g`
2 The pair (ζ, q) satisfies∂tζ + ∂xq = 0

∂t q + ∂x (R1fNSW) = s(0)q̇|0 + s(`)q̇|`
in (0, `), (3)

with the trace ODEs(
s′(0)(0) s′(`)(0)
s′(0)(`) s′(`)(`)

) (
q̇|0
q̇|`

)
=

1
κ2

(
(R1 − id)|0 fNSW

(R1 − id)|` fNSW

)
−

(
g̈0

g̈`

)
(4)

Sketch of the proof:
To get (3), check that R0∂x = ∂xR1.
Apply ∂x to the discharge eq. from (3); take the trace at x = 0, ` to get (4).

∂2
xt q︸︷︷︸
−∂2tt ζ

+ (∂xxR1fNSW)︸        ︷︷        ︸
1
κ2

(R1−id)fNSW

= s′(0)q̇0 + s′(`)q̇`
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Reformulation of the model (flat bottom)

Advantages of the reformulated model

Furnishes evolution equation on (q|0 , q|` )

Under some assumptions† and denoting S = Hn(0, `) × Hn+1(0, `) for n ≥ 1:
If (ζin, qin) ∈ S, reformulated model can be seen as an ODE on (ζ, q, q|0 , q|` )(t) ∈ S × R

2

Local existence and uniqueness by Cauchy-Lipschitz theorem

†Assumptions for well-posedness:

h|t=0 > 0; g0, g` ∈ C∞(R+);

ζ|t=0 (0) = g0(0),
ġ0(0) + ∂xqin(0) = 0

and

ζ|t=0 (`) = g`(0),
ġ`(0) + ∂xqin(`) = 0
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More general boundary conditions

Possibility to enforce general boundary conditions

ξ+0 (ζ|0 , q|0 )(t) = g0(t), ξ−` (ζ|` , q|` )(t) = g`(t). (5)

For instance, ξ± given by q or Saint-Venant Riemann invariants

R±(U) = u ± 2
√

gh

Adapt trace ODE in terms of missing data (outgoing information ξ−0 and ξ+` )

(
s′(0)(0) s′(`)(0)
s′(0)(`) s′(`)(`)

)
d

dt

(
q(ξ+0 , ξ

−
0 )

q(ξ+` , ξ
−
` )

)
=

1

κ2

(
(R1 − id)|0 fNSW

(R1 − id)|` fNSW

)
−

d2

dt2

(
ζ(ξ+0 , ξ

−
0 )

ζ(ξ+` , ξ
−
` )

)

0 `

ξ+0 ξ−0 ξ+` ξ−`
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More general boundary conditions

Introduce smooth reconstruction maps H0,H`:

H0

(
ξ+0 (ζ, q), ξ−0 (ζ, q)

)
= (ζ, q)

H`

(
ξ+` (ζ, q), ξ−` (ζ, q)

)
= (ζ, q)

Use chain rule to rewrite trace ODEs in term of (ξ−0 , ξ
+
` ):

d
dt

(
q|0
q|`

)
=

d
dt

(
H0,2(g0, ξ

−
0 )

H`,2(ξ+` , g`)

)
,

d2

dt2

(
ζ|0
ζ|`

)
=

d2

dt2

(
H0,1(g0, ξ

−
0 )

H`,1(ξ+` , g`)

)

Three cases considered here:

1 Elevation enforced

ξ+0 (ζ, q) = ξ−` (ζ, q) = ζ, ξ−0 (ζ, q) = ξ+` (ζ, q) = q.

2 Discharge enforced

ξ+0 (ζ, q) = ξ−` (ζ, q) = q, ξ−0 (ζ, q) = ξ+` (ζ, q) = ζ.

3 Incoming Riemann invariant enforced

ξ+0 (ζ, q) = ξ+` (ζ, q) = u + 2
√

gh, ξ−0 (ζ, q) = ξ−` (ζ, q) = u − 2
√

gh.
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Numerical schemes for the reformulated system

Discretize (0, `) as follows:

•
0

x1
•
∆x

x2
• • •

` − ∆x

xN−1
•
`

xN

Note Un
i = (ζn

i , q
n
i )T the approximation of

1
∆x

∫ xi+1/2

xi−1/2

(
ζ
q

)
(tn, s) ds.

Time stepping procedure

Step 1: Define R1fn
NSW as the vector v ∈ RN satisfying
vi − κ

2 vi+1 − 2vi + vi−1

∆x2
= fNSW(Un

i ) for 2 ≤ i ≤ N − 1

v2 − v1

∆x
=

vN − vN−1

∆x
= 0

.

Similar definition for boundary layer functions s(0) and s(`).
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Numerical schemes for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions (ξ−0 )n+1, (ξ+` )
n+1
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Numerical schemes for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions (ξ−0 )n+1, (ξ+` )
n+1

Step 3: Recover border elevation and discharge from reconstruction maps

(ζn+1
1 , q

n+1
1 ) = H0

(
gn+1

0 , (ξ
−
0 )n+1

)
; (ζn+1

N , q
n+1
N ) = H`

(
(ξ+` )

n+1, gn+1
`

)
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gn+1

0 , (ξ
−
0 )n+1

)
; (ζn+1

N , q
n+1
N ) = H`

(
(ξ+` )

n+1, gn+1
`

)
Step 4: For 2 ≤ i ≤ N, finite volumes update with Lax-Friedrichs numerical flux

ζn+1
i − ζn

i

∆t
+

1
∆x

(
qn

i+1/2 − qn
i−1/2

)
= 0

qn+1
i − qn

i

∆t
+

1
∆x

(
(R1fn

NSW)i+1/2 − (R1fn
NSW)i−1/2

)
= (s(0))iδt qn

1 + (s(`))iδt qn
N

.
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Numerical schemes for the reformulated system

Second order extension: MacCormack prediction-correction method

Beck, Lannes, Weynans (preprint 2023)

left upwinding during prediction

right upwinding during correction

final stage: average prediction and correction (similar to Heun)

Adapt to finite domain (0, `) + general boundary conditions

Solitary wave testcase: wave travelling without deforming

ζ(t , x) = ζ̃(x − ct), q(t , x) = q̃(x − ct)

Compare different boundary conditions in two settings:
1 Generation of an incoming solitary wave
2 Evacuation of a solitary wave initially in the domain

→ no sponge layer shall be used
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Solitary wave testcase

Figure: Top: incoming solitary wave, bottom: outgoing solitary wave
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Solitary wave testcase

∆x ζ enforced q enforced R± enforced

L2-error Order L2-error Order L2-error Order
6.25E-02 3.263E-03 – 3.484E-03 – 3.312E-03 –
4.42E-02 2.387E-03 0.90 2.539E-03 0.91 2.420E-03 0.91
3.12E-02 1.727E-03 0.93 1.833E-03 0.94 1.750E-03 0.93
2.21E-02 1.244E-03 0.95 1.318E-03 0.95 1.260E-03 0.95
1.56E-02 8.906E-04 0.97 9.411E-04 0.97 9.015E-04 0.97

Table: Lax-Friedrichs scheme for the incoming solitary wave

∆x ζ enforced q enforced R± enforced

L2-error Order L2-error Order L2-error Order
4.42E-02 1.785E-03 – 2.031E-03 – 1.070E-04 –
3.12E-02 1.322E-03 0.87 1.514E-03 0.85 8.401E-05 0.70
2.21E-02 9.725E-04 0.89 1.119E-03 0.87 6.503E-05 0.74
1.56E-02 7.053E-04 0.93 8.145E-04 0.92 4.939E-05 0.79
1.11E-02 5.098E-04 0.94 5.903E-04 0.93 3.711E-05 0.83

Table: Lax-Friedrichs scheme for the outgoing solitary wave.
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Solitary wave testcase

∆x ζ enforced q enforced R± enforced

L2-error Order L2-error Order L2-error Order
5.00E-01 2.473E-03 – 3.789E-03 – 2.783E-03 –
2.50E-01 6.670E-04 1.89 1.026E-03 1.89 7.199E-04 1.95
1.25E-01 1.696E-04 1.98 2.662E-04 1.95 1.832E-04 1.97
6.25E-02 4.312E-05 1.98 6.804E-05 1.97 4.624E-05 1.99
3.12E-02 1.107E-05 1.96 1.731E-05 1.97 1.162E-05 1.99

Table: MacCormack scheme for the incoming solitary wave.

∆x ζ enforced q enforced R± enforced

L2-error Order L2-error Order L2-error Order
5.00E-01 1.885E-03 – 4.437E-03 – 1.993E-03 –
2.50E-01 5.568E-04 1.76 1.257E-03 1.82 5.607E-04 1.83
1.25E-01 1.459E-04 1.93 3.252E-04 1.95 1.318E-04 2.09
6.25E-02 3.674E-05 1.99 8.223E-05 1.98 2.826E-05 2.22
3.12E-02 9.162E-06 2.00 2.067E-05 1.99 7.085E-06 2.00

Table: MacCormack scheme for the outgoing solitary wave.
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Boussinesq-Abbott system with varying bottom

The Boussinesq-Abbott system now reads{
∂tζ + ∂xq = 0
(1 + hbTb )∂t q + ∂x fNSW = −gh∂xb in (0, `) , (BA)

under generating boundary conditions

ζ(t , 0) = g0(t), ζ(t , `) = g`(t),

with hb = H0 − b (depth at rest) and

Tb (·) = −
1

3hb
∂x

(
h3

b∂x
(·)
hb

)
+

(·)
2
∂2

xxb , (6)

z

Free surface

Rigid bottom

h(t, x) = H0 + ζ − bu(t, x)

−H0

0

ζ(t, x)

b(x)
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Boussinesq-Abbott system with varying bottom

Recall of the main problematic

To invert (1 + hbTb ), we need knowledge on (q̇|0 , q̇|` )

Extend nonlocal reformulation to varying bottoms

Obtain trace ODEs for missing data (q|0 , q|` )

Version adapted to well-balancedness

Lake at rest (ζ, q) = (0, 0) is a steady state ⇒ ∂x fNSW(0, 0) = −ghb∂xb

(BA) ⇔

 ∂tζ + ∂xq = 0
(1 + hbTb )∂t q + ∂x

(
fNSW(ζ, q) − fNSW(0, 0)︸                      ︷︷                      ︸

f̃NSW(ζ, q) =
q2

h
+

g
2

(ζ2 + 2H0ζ)

)
= −g(h − hb︸ ︷︷ ︸

ζ

)∂xb
in (0, `) ,

we have f̃NSW(ζ, q) = −gζ∂xb = 0 if (ζ, q) = (0, 0)

easy to preserve at discrete level→ scheme naturally well-balanced

advantage: can be generalized to other steady states
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Nonlocal reformulation

Note R0
b the inverse of (1 + hbTb ) with homogeneous Dirichlet conditions at x = 0, `

⇒ ∂t q = −R0
b∂x f̃NSW + R0

b (−gζ∂xb) + s(b ,0)q̇|0 + s(b ,`)q̇|` (7)

where
{

(1 + hbTb )s(b ,0) = 0
s(b ,0)(0) = 1, s(b ,0)(`) = 0

and
{

(1 + hbTb )s(b ,`) = 0
s(b ,`)(0) = 0, s(b ,`)(`) = 1

.

Lemma 1 (generalization of R0∂x = ∂xR1)

We can construct a nonlocal operator R1
b such that

R0
b∂x (·) =

(
∂x + β +

∂xα

α

) [h2
b

α
R1

b

( (·)
h2

b

)]
− R0

b

(
(·)β

)
with


hb = H0 − b
α = 1 + 1

4 (∂xb)2

β = 3
2 h−1

b ∂xb

Definition 1 (Nonlocal flux and source terms)

f =
h2

b

α
R1

b

( f̃NSW

h2
b

)
, B = R0

b

(
− gh∂xb + β̃fNSW

)
−

(
β +
∂xα

α

)
f
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Nonlocal reformulation

Proposition 2 (D. Lannes, R.)

Let (ζ, q) initially equal to (ζ in, qin) ∈ Hn(0, `) × Hn+1(0, `). The two assertions are equivalent:
1 The pair (ζ, q) satisfies (BA) with generating conditions ζ(·, 0) = g0 and ζ(·, `) = g`
2 The pair (ζ, q) satisfies ∂tζ + ∂xq = 0,

∂t q + ∂x f(ζ, q) = B(ζ, q) + s(b ,0)q̇|0 + s(b ,`)q̇|`
in (0, `) (8)

and the trace equations(
s′(b ,0)(0) s′(b ,`)(0)
s′(b ,0)(`) s′(b ,`)(`)

)
d
dt

(
q|0
q|`

)
=

(
F0(ζ, q, ζ|0 , q|0 )
F`(ζ, q, ζ|` , q|` )

)
−

d2

dt2

(
ζ|0
ζ|`

)
(9)

where F0,F` : Hn(0, `) × Hn+1(0, `) × R2 → R are known.

Can be adapted to general boundary conditions (ξ+0 , ξ
−
` ) = (g0, g`)

Local existence and unicity by Cauchy-Lipschitz

Numerical discretization same as before
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Numerical validation

Setup:
Reference solution on (−`, 2`) with periodic conditions (very fine mesh)
Generate boundary conditions for small domain (0, `)
Compare simulations in (0, `) with reference solution
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Figure: Gaussian over bump (left: initial time, right: t = 15 [s])
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Numerical validation

Question: starting from a wrong initial condition, can we recover the reference solution by
enforcing appropriate boundary conditions?
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Numerical validation

Question: starting from a wrong initial condition, can we recover the reference solution by
enforcing appropriate boundary conditions?

-L 0 L 2L

-0.2

-0.1

0

0.1

F
re

e 
su

rf
ac

e 
el

ev
at

io
n 

ζ 
[m

]

x position (L = 25 [m], ∆x = 3.26E-02 [m])

Reference
Enforcing R±

Bathymetry

20 40 60
0

0.005

0.01

0.015

0.02

0.025

0.03

Time [s]

L2  e
rr

or
 fo

r 
ζ 

[m
]

Enforcing R±

Figure: Sine over bump (shallowness (2πH0)2/λ2 = 10−2)

Mathieu Rigal General boundary conditions for the Boussinesq-Abbott model with varying bathymetry 21 / 26



Perspectives: coupling with the shallow water model

Motivation: wave breaking with dispersive models→ non physical oscillations.

ζ
Boussinesq model

ζ
NSW

Structure-preserving schemes (entropy stable, well-balanced)


∂tζL + ∂xqL = 0
∂t qL + ∂x f(ζL, qL) = B(ζL, qL) + s(0)q̇L|x=0 + s(`1)q̇L|x=`1

in (0, `1)

∂tζR + ∂xqR = 0
∂t qR + ∂x fNSW(UR) = −ghR∂xb

in (`1, `2)

Coupling conditions: ξ+`1 (UR|`1
) = ξ+`1 (UL|`1

), ξ−`1 (UL|`1
) = ξ−`1 (UR|`1

)

0 `1 `2Boussinesq-Abbott NSW
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Perspectives: coupling with the shallow water model

Preliminary observations and ideas

Weird artifacts near coupling interface

Much improved with a spatial overlapping...

... but difficult to interpret at continuous level

0 `1 `1 + ε `2Boussinesq-Abbott NSW

1 Approx. Un+1
R with FV scheme + hydrostatic reconstruction; R+(UR)|`1 = R+(UL)|`1

2 Approx. Un+1
L with Lax-Friedrichs scheme + trace equations; R−(UL)|`1+ε = R−(UR)|`1+ε

3 Convex combination in overlapping area: Un+1
i = ρ(xi)Un+1

L,i + (1 − ρ(xi))Un+1
R,i .
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Experimental testcase: LEGI

Figure: Initial condition
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Experimental testcase: LEGI

Figure: Time t = 18.5 [s]
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Perspectives: improve shoaling description

Filippini, Bellec, Colin, Ricchiuto 2014

Boussinesq models can be written in (ζ, q) or (ζ, v) form

in the 1st case, shoaling is underestimated;

in the 2nd case, shoaling is overestimated;

Figure: Predicted elevation for LEGI experiment

Issue: risk of bias when predicting ex-
treme waves

Possible fix: try mixing the (ζ, q) and
(ζ, v) formulations
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Conclusion

Over a flat bottom:

Reformulation of Boussinesq-Abbott in bounded domain

Generalized boundary conditions

Efficient 1st and 2nd order schemes

Over a varying bottom:

Similar reformulation

Numerical validation & asymptotic stability

Perspectives:

Coupling with shallow water model

Improve shoaling description

Statistics of extreme waves: impact of bathymetry

Thank you for your attention!
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Constructing nonlocal operator R1
b

Write dispersive operator (1 + hbTb ) as αb + hbS∗(hbS(·)), where

αb = 1 +
1
4

(∂xb)2, S(·) = −
hb
√

3
∂x

( ·
hb

)
+

√
3

2
∂xb
hb

Definition 2

R1
b : f ∈ L2(0, `) 7−→ u ∈ H2(0, `) s.t.


[
1 + S

(
hb
αb

(hbS)∗
)]

u = f

(hbS)∗u(0) = (hbS)∗u(`) = 0

Lemma 3 (Commutation)

∀f ∈ L2(0, `), R0
b (hbS∗f ) =

hb

αb
(hbS)∗

(
R1

b

( f

hb

))
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Approximate transparent boundary conditions

Use coupling as a sponge layer to evacuate waves.
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Figure: Outgoing soliton at times t = 0, 9.46, 14.19, and 23.16 [s]. Green domain corresponds to NSW.
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Perspectives: statistics of extreme waves

Goal: study impact of bathymetry on extreme waves formation.

Complex waves: different scales (swell/infragravity waves), two-ways propagation

Need to randomly generate input data (ξ+0 , ξ
−
` )

Probability distribution for incoming waves: Fuhrman, Klahn and Zhai 2023

p(ζ) =
1
√

2π
e−ζ

2/2
(
1 +

1
6
S(ζ3 − 3ζ)

)
+ O(ε2),

S = skewness parameter
ε = wave steepness

Efficient code required: implement new methods in UHAINA

Mathieu Rigal General boundary conditions for the Boussinesq-Abbott model with varying bathymetry 3 / 3


	Appendix

