General boundary conditions for the Boussinesq-Abbott model with varying bathymetry

David Lannes¹, Mathieu Rigal¹

¹Institut de Mathématiques de Bordeaux

Bordeaux – March 21, 2024

Séminaire CSM

Until november 2023: postdoc supported by IMPT \rightarrow ANR Bourgeons

Supervision : David Lannes and Philippe Bonneton

Long term goal: study extreme waves in littoral area

Objectives

- Need accurate dispersive model: Boussinesq-type systems
- Boundary conditions are difficult to deal with Recently: Perfectly Matched Layer, source function method → costly

Objectives

- Need accurate dispersive model: Boussinesq-type systems
- Boundary conditions are difficult to deal with Recently: Perfectly Matched Layer, source function method → costly
- \rightarrow We propose a new and efficient method for boundary conditions.

Consider the Boussinesq-Abbott system

$$\partial_t \zeta + \partial_x q = 0$$
 in (0, ℓ) (BA)
(1 - $\kappa^2 \partial_{xx}^2) \partial_t q + \partial_x f_{\text{NSW}}(\zeta, q) = 0$

with generating boundary conditions

$$\zeta(t,0) = g_0(t), \qquad \zeta(t,\ell) = g_\ell(t),$$
 (1)

where $g_0, g_\ell \in C(0, T)$ and

$$\kappa^2 = H_0^2/3, \qquad f_{\rm NSW}(\zeta, q) = \frac{q^2}{h} + \frac{g}{2}h^2$$

How to account for boundary conditions? How to recover $q_{|_{x=0,\ell}}$?

- Hyperbolic case ($\kappa = 0$) : Riemann invariants
- Dispersive case ($\kappa > 0$) : need to invert $(1 \kappa^2 \partial_{xx}^2) \rightarrow$ requires knowledge on $\partial_t q_{|_{x=0,\ell}}$

How to account for boundary conditions? How to recover $q_{|_{x=0,\ell}}$?

- Hyperbolic case ($\kappa = 0$) : Riemann invariants
- Dispersive case ($\kappa > 0$) : need to invert $(1 \kappa^2 \partial_{xx}^2) \rightarrow$ requires knowledge on $\partial_t q_{|_{x=0,\ell}}$

Lannes and Weynans 2020

Equivalent writing of Boussinesq-Abbott with flat bottom over $(0,\infty)$

• substitute $(1 - \kappa^2 \partial_{xx}^2)$ for nonlocal flux & dispersive boundary layer

• ODE on $q_{|_{x=0}}$

- local existence and unicity
- Ist order scheme

How to account for boundary conditions? How to recover $q_{|_{x=0,\ell}}$?

- Hyperbolic case ($\kappa = 0$) : Riemann invariants
- Dispersive case ($\kappa > 0$) : need to invert $(1 \kappa^2 \partial_{xx}^2) \rightarrow$ requires knowledge on $\partial_t q_{|_{x=0,\ell}}$

Lannes and Weynans 2020

Equivalent writing of Boussinesq-Abbott with flat bottom over $(0, \infty)$

• substitute $(1 - \kappa^2 \partial_{xx}^2)$ for nonlocal flux & dispersive boundary layer

ODE on q<sub>I_{x=0}
</sub>

- local existence and unicity
- Ist order scheme

Lannes and Beck 2022

Extension to wave-structure interactions

- transmission problem \rightarrow ODE
- 2nd order scheme
- flat bottom and unbounded domain

How to account for boundary conditions? How to recover $q_{|_{x=0,\ell}}$?

- Hyperbolic case ($\kappa = 0$) : Riemann invariants
- Dispersive case ($\kappa > 0$) : need to invert $(1 \kappa^2 \partial_{xx}^2) \rightarrow$ requires knowledge on $\partial_t q_{|_{x=0,\ell}}$

Lannes and Weynans 2020

Equivalent writing of Boussinesq-Abbott with flat bottom over $(0,\infty)$

- substitute $(1 \kappa^2 \partial_{xx}^2)$ for nonlocal flux & dispersive boundary layer
- ODE on $q_{|_{x=0}}$
- local existence and unicity
- Ist order scheme

Lannes and Beck 2022

Extension to wave-structure interactions

- transmission problem \rightarrow ODE
- 2nd order scheme
- flat bottom and unbounded domain

Outline of the talk

- Reformulation over bounded domain
- eneral boundary cond. & scheme
- Varying bathymetry
- Some perspectives

Recall the discharge equation:

$$(1 - \kappa^2 \partial_{xx}^2) \partial_t q + \partial_x f_{\text{NSW}}(\zeta, q) = 0 \qquad \text{in } (0, \ell)$$

Fix $0 \le t \le T$, then $y(x) = \partial_t q(t, x)$ satisfies an ODE of the form $\begin{cases} y - \kappa^2 y'' = \phi(x) \\ y(0) = \dot{q}_{|_0}, \quad y(\ell) = \dot{q}_{|_\ell} \end{cases}$ Equivalently: $y = y_h + y_b$ with $\begin{cases} y_h - \kappa^2 y''_h = 0 \\ y_h(0) = \dot{q}_{|_0}, \quad y_h(\ell) = \dot{q}_{|_\ell} \end{cases}$ and $\begin{cases} y_b - \kappa^2 y''_b = \phi(x) \\ y_b(0) = y_b(\ell) = 0 \end{cases}$ Recall the discharge equation:

$$(1 - \kappa^2 \partial_{xx}^2) \partial_t q + \partial_x f_{\text{NSW}}(\zeta, q) = 0 \qquad \text{in } (0, \ell)$$

Fix $0 \le t \le T$, then $y(x) = \partial_t q(t, x)$ satisfies an ODE of the form $\begin{cases} y - \kappa^2 y'' = \phi(x) \\ y(0) = \dot{q}_{|_0}, \quad y(\ell) = \dot{q}_{|_\ell} \end{cases}$ Equivalently: $y = y_h + y_b$ with $\begin{cases} y_h - \kappa^2 y''_h = 0 \\ y_h(0) = \dot{q}_{|_0}, \quad y_h(\ell) = \dot{q}_{|_\ell} \end{cases}$ and $\begin{cases} y_b - \kappa^2 y''_b = \phi(x) \\ y_b(0) = y_b(\ell) = 0 \end{cases}$

Define R^0 as the inverse of $(1 - \kappa^2 \partial_{xx}^2)$ with **homogeneous Dirichlet** conditions at $x = 0, \ell$

$$\Rightarrow \partial_{t}q = \underbrace{-R^{0}\partial_{x}f_{NSW}}_{y_{b}} + \underbrace{\mathfrak{S}_{(0)}\dot{q}_{l_{0}} + \mathfrak{S}_{(\ell)}\dot{q}_{l_{\ell}}}_{y_{h}}$$
where
$$\begin{cases} (1 - \kappa^{2}\partial_{xx}^{2})\mathfrak{S}_{(0)} = 0\\ \mathfrak{S}_{(0)}(0) = 1, \quad \mathfrak{S}_{(0)}(\ell) = 0 \end{cases} \text{ and } \begin{cases} (1 - \kappa^{2}\partial_{xx}^{2})\mathfrak{S}_{(\ell)} = 0\\ \mathfrak{S}_{(\ell)}(0) = 0, \quad \mathfrak{S}_{(\ell)}(\ell) = 1 \end{cases} .$$
(2)

Note R^1 the inverse of $(1 - \kappa^2 \partial_{xx}^2)$ with **homogeneous Neumann** conditions at $x = 0, \ell$

Reformulation of the model (flat bottom)

Note R^1 the inverse of $(1 - \kappa^2 \partial_{xx}^2)$ with **homogeneous Neumann** conditions at $x = 0, \ell$

Proposition 1 (D. Lannes, R.)

Let (ζ, q) initially equal to (ζ^{in}, q^{in}) . The two assertions are equivalent:

- The pair (ζ , q) satisfies (BA) with generating conditions $\zeta(\cdot, 0) = g_0$ and $\zeta(\cdot, \ell) = g_\ell$
- **2** The pair (ζ, q) satisfies

with the trace ODEs

Reformulation of the model (flat bottom)

Note R^1 the inverse of $(1 - \kappa^2 \partial_{xx}^2)$ with homogeneous Neumann conditions at $x = 0, \ell$

Proposition 1 (D. Lannes, R.)

Let (ζ, q) initially equal to (ζ^{in}, q^{in}) . The two assertions are equivalent:

- The pair (ζ , q) satisfies (BA) with generating conditions $\zeta(\cdot, 0) = g_0$ and $\zeta(\cdot, \ell) = g_\ell$
- **2** The pair (ζ, q) satisfies

$$\begin{aligned} \partial_t \zeta &+ \partial_x q = 0 \\ \partial_t q &+ \partial_x (R^1 f_{\text{NSW}}) = \mathfrak{s}_{(0)} \dot{q}_{|_0} + \mathfrak{s}_{(\ell)} \dot{q}_{|_{\ell}} \end{aligned} \qquad \text{in } (0, \ell), \end{aligned}$$

with the trace ODEs

Sketch of the proof:

- To get (3), check that $R^0 \partial_x = \partial_x R^1$.
- Apply ∂_x to the discharge eq. from (3); take the trace at $x = 0, \ell$ to get (4).

$$\frac{\partial_{xt}^{2} q}{-\partial_{tt}^{2} \zeta} + \underbrace{(\partial_{xx} R^{1} f_{\text{NSW}})}_{\frac{1}{k^{2}} (R^{1} - \text{id}) f_{\text{NSW}}} = \mathfrak{s}_{(0)}^{\prime} \dot{q}_{0} + \mathfrak{s}_{(\ell)}^{\prime} \dot{q}_{\ell}$$

Advantages of the reformulated model

- Furnishes evolution equation on (q₀, q₁)
- Under some assumptions[†] and denoting $S = H^n(0, \ell) \times H^{n+1}(0, \ell)$ for $n \ge 1$:
 - If $(\zeta^{\text{in}}, q^{\text{in}}) \in S$, reformulated model can be seen as an ODE on $(\zeta, q, q_{|_0}, q_{|_\ell})(t) \in S \times \mathbb{R}^2$
 - · Local existence and uniqueness by Cauchy-Lipschitz theorem

[†]Assumptions for well-posedness:

$$h_{|_{l=0}} > 0; \qquad g_0, g_\ell \in C^{\infty}(\mathbb{R}_+); \qquad \begin{cases} \zeta_{|_{l=0}}(0) = g_0(0), \\ \dot{g}_0(0) + \partial_x q^{\mathrm{in}}(0) = 0 \end{cases} \quad \text{and} \quad \begin{cases} \zeta_{|_{l=0}}(\ell) = g_\ell(0), \\ \dot{g}_\ell(0) + \partial_x q^{\mathrm{in}}(\ell) = 0 \end{cases}$$

Possibility to enforce general boundary conditions $\xi_{0}^{+}(\zeta_{l_{0}}, q_{l_{0}})(t) = g_{0}(t), \qquad \xi_{\ell}^{-}(\zeta_{l_{\ell}}, q_{l_{\ell}})(t) = g_{\ell}(t). \tag{5}$ For instance, ξ^{\pm} given by q or Saint-Venant Riemann invariants $\mathcal{R}_{\pm}(U) = u \pm 2\sqrt{gh}$ Possibility to enforce general boundary conditions $\xi_0^+(\zeta_{|_0}, q_{|_0})(t) = g_0(t), \qquad \xi_\ell^-(\zeta_{|_\ell}, q_{|_\ell})(t) = g_\ell(t). \tag{5}$ For instance, ξ^{\pm} given by q or Saint-Venant Riemann invariants $\mathcal{R}_{\pm}(U) = u \pm 2\sqrt{gh}$

Adapt trace ODE in terms of missing data (outgoing information ξ_0^- and ξ_ℓ^+)

$$\begin{pmatrix} s'_{(0)}(0) & s'_{(\ell)}(0) \\ s'_{(0)}(\ell) & s'_{(\ell)}(\ell) \end{pmatrix} \frac{d}{dt} \begin{pmatrix} q(\xi_0^+, \xi_0^-) \\ q(\xi_\ell^+, \xi_\ell^-) \end{pmatrix} = \frac{1}{\kappa^2} \begin{pmatrix} (R^1 - id)_{|_0} f_{NSW} \\ (R^1 - id)_{|_\ell} f_{NSW} \end{pmatrix} - \frac{d^2}{dt^2} \begin{pmatrix} \zeta(\xi_0^+, \xi_0^-) \\ \zeta(\xi_\ell^+, \xi_\ell^-) \end{pmatrix}$$

Introduce smooth reconstruction maps $\mathcal{H}_0, \mathcal{H}_\ell :$

$$\begin{aligned} \left(\mathcal{H}_0\left(\xi_0^+(\zeta,q),\xi_0^-(\zeta,q)\right) &= (\zeta,q) \\ \mathcal{H}_\ell\left(\xi_\ell^+(\zeta,q),\xi_\ell^-(\zeta,q)\right) &= (\zeta,q) \end{aligned} \right) \end{aligned}$$

Use chain rule to rewrite trace ODEs in term of (ξ_0^-, ξ_ℓ^+) :

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \mathsf{q}_{|_0} \\ \mathsf{q}_{|_\ell} \end{pmatrix} = \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \mathcal{H}_{0,2}(g_0,\xi_0^-) \\ \mathcal{H}_{\ell,2}(\xi_\ell^+,g_\ell) \end{pmatrix}, \qquad \frac{\mathrm{d}^2}{\mathrm{d}t^2} \begin{pmatrix} \zeta_{|_0} \\ \zeta_{|_\ell} \end{pmatrix} = \frac{\mathrm{d}^2}{\mathrm{d}t^2} \begin{pmatrix} \mathcal{H}_{0,1}(g_0,\xi_0^-) \\ \mathcal{H}_{\ell,1}(\xi_\ell^+,g_\ell) \end{pmatrix}$$

Introduce smooth reconstruction maps $\mathcal{H}_0, \mathcal{H}_\ell {:}$

$$\begin{aligned} \left(\mathcal{H}_0 \Big(\xi_0^+(\zeta, q), \xi_0^-(\zeta, q) \Big) &= (\zeta, q) \\ \mathcal{H}_\ell \Big(\xi_\ell^+(\zeta, q), \xi_\ell^-(\zeta, q) \Big) &= (\zeta, q) \end{aligned} \right) \end{aligned}$$

Use chain rule to rewrite trace ODEs in term of (ξ_0^-, ξ_ℓ^+) :

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} q_{|_0} \\ q_{|_\ell} \end{pmatrix} = \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \mathcal{H}_{0,2}(g_0,\xi_0^-) \\ \mathcal{H}_{\ell,2}(\xi_\ell^+,g_\ell) \end{pmatrix}, \qquad \frac{\mathrm{d}^2}{\mathrm{d}t^2} \begin{pmatrix} \zeta_{|_0} \\ \zeta_{|_\ell} \end{pmatrix} = \frac{\mathrm{d}^2}{\mathrm{d}t^2} \begin{pmatrix} \mathcal{H}_{0,1}(g_0,\xi_0^-) \\ \mathcal{H}_{\ell,1}(\xi_\ell^+,g_\ell) \end{pmatrix}$$

Three cases considered here:

Elevation enforced

$$\xi_0^+(\zeta,q)=\xi_\ell^-(\zeta,q)=\zeta,\qquad \xi_0^-(\zeta,q)=\xi_\ell^+(\zeta,q)=q.$$

Introduce smooth reconstruction maps $\mathcal{H}_0, \mathcal{H}_\ell {:}$

$$\begin{aligned} \left(\mathcal{H}_0 \Big(\xi_0^+(\zeta, q), \xi_0^-(\zeta, q) \Big) &= (\zeta, q) \\ \mathcal{H}_\ell \Big(\xi_\ell^+(\zeta, q), \xi_\ell^-(\zeta, q) \Big) &= (\zeta, q) \end{aligned} \right) \end{aligned}$$

Use chain rule to rewrite trace ODEs in term of (ξ_0^-, ξ_ℓ^+) :

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} q_{|_0} \\ q_{|_\ell} \end{pmatrix} = \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \mathcal{H}_{0,2}(g_0,\xi_0^-) \\ \mathcal{H}_{\ell,2}(\xi_\ell^+,g_\ell) \end{pmatrix}, \qquad \frac{\mathrm{d}^2}{\mathrm{d}t^2} \begin{pmatrix} \zeta_{|_0} \\ \zeta_{|_\ell} \end{pmatrix} = \frac{\mathrm{d}^2}{\mathrm{d}t^2} \begin{pmatrix} \mathcal{H}_{0,1}(g_0,\xi_0^-) \\ \mathcal{H}_{\ell,1}(\xi_\ell^+,g_\ell) \end{pmatrix}$$

Three cases considered here:

Elevation enforced

$$\xi_0^+(\zeta,q) = \xi_\ell^-(\zeta,q) = \zeta, \qquad \xi_0^-(\zeta,q) = \xi_\ell^+(\zeta,q) = q.$$

Oischarge enforced

$$\xi_0^+(\zeta,q)=\xi_\ell^-(\zeta,q)=q,\qquad \xi_0^-(\zeta,q)=\xi_\ell^+(\zeta,q)=\zeta.$$

Introduce smooth reconstruction maps $\mathcal{H}_0, \mathcal{H}_\ell {:}$

$$\begin{pmatrix} \mathcal{H}_0(\xi_0^+(\zeta, q), \xi_0^-(\zeta, q)) = (\zeta, q) \\ \mathcal{H}_\ell(\xi_\ell^+(\zeta, q), \xi_\ell^-(\zeta, q)) = (\zeta, q) \end{cases}$$

Use chain rule to rewrite trace ODEs in term of (ξ_0^-, ξ_ℓ^+) :

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} q_{|_0} \\ q_{|_\ell} \end{pmatrix} = \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \mathcal{H}_{0,2}(g_0,\xi_0^-) \\ \mathcal{H}_{\ell,2}(\xi_\ell^+,g_\ell) \end{pmatrix}, \qquad \frac{\mathrm{d}^2}{\mathrm{d}t^2} \begin{pmatrix} \zeta_{|_0} \\ \zeta_{|_\ell} \end{pmatrix} = \frac{\mathrm{d}^2}{\mathrm{d}t^2} \begin{pmatrix} \mathcal{H}_{0,1}(g_0,\xi_0^-) \\ \mathcal{H}_{\ell,1}(\xi_\ell^+,g_\ell) \end{pmatrix}$$

Three cases considered here:

Elevation enforced

$$\xi_0^+(\zeta, q) = \xi_\ell^-(\zeta, q) = \zeta, \qquad \xi_0^-(\zeta, q) = \xi_\ell^+(\zeta, q) = q.$$

Oischarge enforced

$$\xi_0^+(\zeta,q)=\xi_\ell^-(\zeta,q)=q,\qquad \xi_0^-(\zeta,q)=\xi_\ell^+(\zeta,q)=\zeta.$$

Incoming Riemann invariant enforced

$$\xi_0^+(\zeta,q) = \xi_\ell^+(\zeta,q) = u + 2\sqrt{gh}, \qquad \xi_0^-(\zeta,q) = \xi_\ell^-(\zeta,q) = u - 2\sqrt{gh}.$$

Discretize $(0, \ell)$ as follows:

Numerical schemes for the reformulated system

Discretize $(0, \ell)$ as follows:

Numerical schemes for the reformulated system

Discretize $(0, \ell)$ as follows:

ote
$$U_i^n = (\zeta_i^n, q_i^n)^T$$
 the approximation of $\frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \begin{pmatrix} \zeta \\ q \end{pmatrix} (t^n, s) \, ds.$

Time stepping procedure

N

Step 1: Define $\underline{R}^1 f_{\text{NSW}}^n$ as the vector $v \in \mathbb{R}^N$ satisfying

$$v_{i} - \kappa^{2} \frac{v_{i+1} - 2v_{i} + v_{i-1}}{\Delta x^{2}} = f_{\text{NSW}}(U_{i}^{n}) \text{ for } 2 \le i \le N - 1$$
$$\frac{v_{2} - v_{1}}{\Delta x} = \frac{v_{N} - v_{N-1}}{\Delta x} = 0$$

Similar definition for boundary layer functions $\underline{s}_{(0)}$ and $\underline{s}_{(\ell)}$.

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions $(\xi_0^-)^{n+1}, (\xi_\ell^+)^{n+1}$

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions $(\xi_0^-)^{n+1}, (\xi_\ell^+)^{n+1}$

Step 3: Recover border elevation and discharge from reconstruction maps

$$(\zeta_1^{n+1}, q_1^{n+1}) = \mathcal{H}_0(g_0^{n+1}, (\xi_0^{-})^{n+1}); \qquad (\zeta_N^{n+1}, q_N^{n+1}) = \mathcal{H}_\ell((\xi_\ell^{+})^{n+1}, g_\ell^{n+1})$$

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions $(\xi_0^-)^{n+1}, (\xi_\ell^+)^{n+1}$

Step 3: Recover border elevation and discharge from reconstruction maps

$$(\zeta_1^{n+1}, q_1^{n+1}) = \mathcal{H}_0(g_0^{n+1}, (\xi_0^{-})^{n+1}); \qquad (\zeta_N^{n+1}, q_N^{n+1}) = \mathcal{H}_\ell((\xi_\ell^{+})^{n+1}, g_\ell^{n+1})$$

Step 4: For $2 \le i \le N$, finite volumes update with Lax-Friedrichs numerical flux

$$\left\{ \begin{array}{l} \frac{\zeta_{i}^{n+1} - \zeta_{i}^{n}}{\Delta t} + \frac{1}{\Delta x} \left(q_{i+1/2}^{n} - q_{i-1/2}^{n} \right) = 0 \\ \frac{q_{i}^{n+1} - q_{i}^{n}}{\Delta t} + \frac{1}{\Delta x} \left((\underline{R}^{1} f_{\text{NSW}}^{n})_{i+1/2} - (\underline{R}^{1} f_{\text{NSW}}^{n})_{i-1/2} \right) = (\mathfrak{s}_{(0)})_{i} \delta_{t} q_{1}^{n} + (\mathfrak{s}_{(\ell)})_{i} \delta_{t} q_{N}^{n}$$

Second order extension: MacCormack prediction-correction method

Beck, Lannes, Weynans (preprint 2023)

- left upwinding during prediction
- right upwinding during correction
- final stage: average prediction and correction (similar to Heun)

Adapt to finite domain $(0, \ell)$ + general boundary conditions

Solitary wave testcase: wave travelling without deforming

$$\zeta(t,x) = \widetilde{\zeta}(x-ct), \quad q(t,x) = \widetilde{q}(x-ct)$$

Compare different boundary conditions in two settings:

- Generation of an incoming solitary wave
- e Evacuation of a solitary wave initially in the domain

 \rightarrow no sponge layer shall be used

Mathieu Rigal

General boundary conditions for the Boussinesq-Abbott model with varying bathymetry

Δx	ζ enforced		q enforced		R^{\pm} enforced	
	L ² -error	Order	L ² -error	Order	L ² -error	Order
6.25E-02	3.263E-03	_	3.484E-03	_	3.312E-03	_
4.42E-02	2.387E-03	0.90	2.539E-03	0.91	2.420E-03	0.91
3.12E-02	1.727E-03	0.93	1.833E-03	0.94	1.750E-03	0.93
2.21E-02	1.244E-03	0.95	1.318E-03	0.95	1.260E-03	0.95
1.56E-02	8.906E-04	0.97	9.411E-04	0.97	9.015E-04	0.97

Table: Lax-Friedrichs scheme for the incoming solitary wave

Δx	ζ enforced		q enforced		R^{\pm} enforced	
	L ² -error	Order	L ² -error	Order	L ² -error	Order
6.25E-02	3.263E-03	-	3.484E-03	_	3.312E-03	_
4.42E-02	2.387E-03	0.90	2.539E-03	0.91	2.420E-03	0.91
3.12E-02	1.727E-03	0.93	1.833E-03	0.94	1.750E-03	0.93
2.21E-02	1.244E-03	0.95	1.318E-03	0.95	1.260E-03	0.95
1.56E-02	8.906E-04	0.97	9.411E-04	0.97	9.015E-04	0.97

Table: Lax-Friedrichs scheme for the incoming solitary wave

Δx	ζ enforced		q enforced		R^{\pm} enforced	
	L ² -error	Order	L ² -error	Order	L ² -error	Order
4.42E-02	1.785E-03	-	2.031E-03	_	1.070E-04	-
3.12E-02	1.322E-03	0.87	1.514E-03	0.85	8.401E-05	0.70
2.21E-02	9.725E-04	0.89	1.119E-03	0.87	6.503E-05	0.74
1.56E-02	7.053E-04	0.93	8.145E-04	0.92	4.939E-05	0.79
1.11E-02	5.098E-04	0.94	5.903E-04	0.93	3.711E-05	0.83

Table: Lax-Friedrichs scheme for the outgoing solitary wave.

Mathieu Rigal

General boundary conditions for the Boussinesq-Abbott model with varying bathymetry

Solitary wave testcase

Δx	ζ enforced		q enforced		R^{\pm} enforced	
	L ² -error	Order	L ² -error	Order	L ² -error	Order
5.00E-01	2.473E-03	-	3.789E-03	_	2.783E-03	_
2.50E-01	6.670E-04	1.89	1.026E-03	1.89	7.199E-04	1.95
1.25E-01	1.696E-04	1.98	2.662E-04	1.95	1.832E-04	1.97
6.25E-02	4.312E-05	1.98	6.804E-05	1.97	4.624E-05	1.99
3.12E-02	1.107E-05	1.96	1.731E-05	1.97	1.162E-05	1.99

Table: MacCormack scheme for the incoming solitary wave.

Solitary wave testcase

Δx	ζ enforced		q enforced		R^{\pm} enforced	
	L ² -error	Order	L ² -error	Order	L ² -error	Order
5.00E-01	2.473E-03	-	3.789E-03	_	2.783E-03	-
2.50E-01	6.670E-04	1.89	1.026E-03	1.89	7.199E-04	1.95
1.25E-01	1.696E-04	1.98	2.662E-04	1.95	1.832E-04	1.97
6.25E-02	4.312E-05	1.98	6.804E-05	1.97	4.624E-05	1.99
3.12E-02	1.107E-05	1.96	1.731E-05	1.97	1.162E-05	1.99

Table: MacCormack scheme for the incoming solitary wave.

Δx	ζ enforced		q enforced		R^{\pm} enforced	
	L ² -error	Order	L ² -error	Order	L ² -error	Order
5.00E-01	1.885E-03	-	4.437E-03	-	1.993E-03	_
2.50E-01	5.568E-04	1.76	1.257E-03	1.82	5.607E-04	1.83
1.25E-01	1.459E-04	1.93	3.252E-04	1.95	1.318E-04	2.09
6.25E-02	3.674E-05	1.99	8.223E-05	1.98	2.826E-05	2.22
3.12E-02	9.162E-06	2.00	2.067E-05	1.99	7.085E-06	2.00

Table: MacCormack scheme for the outgoing solitary wave.

Mathieu Rigal

The Boussinesq-Abbott system now reads

$$\begin{cases} \partial_t \zeta + \partial_x q = 0\\ (1 + h_b \mathcal{T}_b) \partial_t q + \partial_x f_{\text{NSW}} = -gh\partial_x b \end{cases} \quad \text{in } (0, \ell) , \tag{BA}$$

under generating boundary conditions

$$\zeta(t,0) = g_0(t), \qquad \zeta(t,\ell) = g_\ell(t),$$

with $h_b = H_0 - b$ (depth at rest) and

$$\mathcal{T}_{b}(\cdot) = -\frac{1}{3h_{b}}\partial_{x}\left(h_{b}^{3}\partial_{x}\frac{(\cdot)}{h_{b}}\right) + \frac{(\cdot)}{2}\partial_{xx}^{2}b,$$
(6)

Recall of the main problematic

To invert $(1 + h_b \mathcal{T}_b)$, we need knowledge on $(\dot{q}_{l_0}, \dot{q}_{l_\ell})$

- Extend nonlocal reformulation to varying bottoms
- Obtain trace ODEs for missing data (q₁₀, q_{1ℓ})

Recall of the main problematic

To invert $(1 + h_b \mathcal{T}_b)$, we need knowledge on $(\dot{q}_{l_0}, \dot{q}_{l_\ell})$

- Extend nonlocal reformulation to varying bottoms
- Obtain trace ODEs for missing data (q₁₀, q_{1ℓ})

Version adapted to well-balancedness

Lake at rest $(\zeta, q) = (0, 0)$ is a steady state $\Rightarrow \partial_x f_{\text{NSW}}(0, 0) = -gh_b \partial_x b$

$$(\mathsf{BA}) \Leftrightarrow \begin{cases} \partial_t \zeta + \partial_x q = 0\\ (1+h_b \mathcal{T}_b) \partial_t q + \partial_x \Big(\underbrace{f_{\mathsf{NSW}}(\zeta, q) - f_{\mathsf{NSW}}(0, 0)}_{\widetilde{f}_{\mathsf{NSW}}(\zeta, q) = \frac{q^2}{h} + \frac{g}{2}(\zeta^2 + 2H_0\zeta) & \zeta \end{cases} \quad \text{in } (0, \ell) ,$$

• we have $\widetilde{f}_{NSW}(\zeta, q) = -g\zeta\partial_x b = 0$ if $(\zeta, q) = (0, 0)$

- easy to preserve at discrete level \rightarrow scheme naturally well-balanced
- advantage: can be generalized to other steady states

Nonlocal reformulation

Note R_b^0 the inverse of $(1 + h_b T_b)$ with **homogeneous Dirichlet** conditions at $x = 0, \ell$

$$\Rightarrow \partial_t q = -R_b^0 \partial_x \tilde{f}_{\text{NSW}} + R_b^0 (-g\zeta \partial_x b) + \mathfrak{s}_{(b,0)} \dot{q}_{|_0} + \mathfrak{s}_{(b,\ell)} \dot{q}_{|_\ell}$$
(7)

where {

$$(1 + h_b \mathcal{T}_b) \mathfrak{s}_{(b,0)} = 0 \\ \mathfrak{s}_{(b,0)}(0) = 1, \quad \mathfrak{s}_{(b,0)}(\ell) = 0$$
 and
$$\begin{cases} (1 + h_b \mathcal{T}_b) \mathfrak{s}_{(b,\ell)} = 0 \\ \mathfrak{s}_{(b,\ell)}(0) = 0, \quad \mathfrak{s}_{(b,\ell)}(\ell) = 1 \end{cases}$$

Nonlocal reformulation

Note R_b^0 the inverse of $(1 + h_b T_b)$ with homogeneous Dirichlet conditions at $x = 0, \ell$

$$\Rightarrow \partial_t q = -R_b^0 \partial_x \tilde{f}_{\text{NSW}} + R_b^0 (-g\zeta \partial_x b) + \mathfrak{s}_{(b,0)} \dot{q}_{|_0} + \mathfrak{s}_{(b,\ell)} \dot{q}_{|_\ell}$$
(7)

where

$$\begin{cases} (1+h_b\mathcal{T}_b)\mathfrak{s}_{(b,0)} = 0\\ \mathfrak{s}_{(b,0)}(0) = 1, \quad \mathfrak{s}_{(b,0)}(\ell) = 0 \end{cases} \text{ and } \begin{cases} (1+h_b\mathcal{T}_b)\mathfrak{s}_{(b,\ell)} = 0\\ \mathfrak{s}_{(b,\ell)}(0) = 0, \quad \mathfrak{s}_{(b,\ell)}(\ell) = 1 \end{cases}$$

Lemma 1 (generalization of $R^0 \partial_x = \partial_x R^1$)

We can construct a nonlocal operator R_b^1 such that

$$R_{b}^{0}\partial_{x}(\cdot) = \left(\partial_{x} + \beta + \frac{\partial_{x}\alpha}{\alpha}\right) \left[\frac{h_{b}^{2}}{\alpha}R_{b}^{1}\left(\frac{(\cdot)}{h_{b}^{2}}\right)\right] - R_{b}^{0}\left((\cdot)\beta\right) \quad \text{with} \quad \begin{cases} h_{b} = H_{0} - b\\ \alpha = 1 + \frac{1}{4}(\partial_{x}b)^{2}\\ \beta = \frac{3}{2}h_{b}^{-1}\partial_{x}b \end{cases}$$

Nonlocal reformulation

Note R_b^0 the inverse of $(1 + h_b T_b)$ with homogeneous Dirichlet conditions at $x = 0, \ell$

$$\Rightarrow \partial_t q = -R_b^0 \partial_x \tilde{f}_{\text{NSW}} + R_b^0 (-g\zeta \partial_x b) + \mathfrak{s}_{(b,0)} \dot{q}_{|_0} + \mathfrak{s}_{(b,\ell)} \dot{q}_{|_\ell}$$
(7)

where

$$\begin{cases} (1+h_b\mathcal{T}_b)\mathfrak{s}_{(b,0)} = 0\\ \mathfrak{s}_{(b,0)}(0) = 1, \quad \mathfrak{s}_{(b,0)}(\ell) = 0 \end{cases} \text{ and } \begin{cases} (1+h_b\mathcal{T}_b)\mathfrak{s}_{(b,\ell)} = 0\\ \mathfrak{s}_{(b,\ell)}(0) = 0, \quad \mathfrak{s}_{(b,\ell)}(\ell) = 1 \end{cases}$$

Lemma 1 (generalization of $R^0 \partial_x = \partial_x R^1$)

We can construct a nonlocal operator R_b^1 such that

$$\mathbf{R}_{b}^{0}\partial_{x}(\cdot) = \left(\partial_{x} + \beta + \frac{\partial_{x}\alpha}{\alpha}\right) \left[\frac{h_{b}^{2}}{\alpha}\mathbf{R}_{b}^{1}\left(\frac{(\cdot)}{h_{b}^{2}}\right)\right] - \mathbf{R}_{b}^{0}\left((\cdot)\beta\right) \quad \text{with} \quad \begin{cases} h_{b} = H_{0} - b\\ \alpha = 1 + \frac{1}{4}(\partial_{x}b)^{2}\\ \beta = \frac{3}{2}h_{b}^{-1}\partial_{x}b \end{cases}$$

Definition 1 (Nonlocal flux and source terms)

$$\mathfrak{f} = \frac{h_b^2}{\alpha} R_b^1 \Big(\frac{\widetilde{f}_{\mathsf{NSW}}}{h_b^2} \Big), \qquad \mathfrak{B} = R_b^0 \Big(-gh\partial_x b + \beta \widetilde{f}_{\mathsf{NSW}} \Big) - \Big(\beta + \frac{\partial_x \alpha}{\alpha} \Big) \mathfrak{f}$$

Mathieu Rigal

Proposition 2 (D. Lannes, R.)

Let (ζ, q) initially equal to $(\zeta^{in}, q^{in}) \in H^n(0, \ell) \times H^{n+1}(0, \ell)$. The two assertions are equivalent:

- The pair (ζ , q) satisfies (BA) with generating conditions $\zeta(\cdot, 0) = g_0$ and $\zeta(\cdot, \ell) = g_\ell$
- 2 The pair (ζ, q) satisfies

and the trace equations

$$\begin{pmatrix} \hat{\mathbf{s}}_{(b,0)}'(0) & \hat{\mathbf{s}}_{(b,\ell)}'(0) \\ \hat{\mathbf{s}}_{(b,0)}'(\ell) & \hat{\mathbf{s}}_{(b,\ell)}'(\ell) \end{pmatrix} \frac{d}{dt} \begin{pmatrix} q_{|_0} \\ q_{|_\ell} \end{pmatrix} = \begin{pmatrix} \mathcal{F}_0(\zeta, q, \zeta_{|_0}, q_{|_0}) \\ \mathcal{F}_\ell(\zeta, q, \zeta_{|_\ell}, q_{|_\ell}) \end{pmatrix} - \frac{d^2}{dt^2} \begin{pmatrix} \zeta_{|_0} \\ \zeta_{|_\ell} \end{pmatrix}$$
(9)

where $\mathcal{F}_0, \mathcal{F}_\ell : H^n(0, \ell) \times H^{n+1}(0, \ell) \times \mathbb{R}^2 \to \mathbb{R}$ are known.

Proposition 2 (D. Lannes, R.)

Let (ζ, q) initially equal to $(\zeta^{in}, q^{in}) \in H^n(0, \ell) \times H^{n+1}(0, \ell)$. The two assertions are equivalent:

- The pair (ζ , q) satisfies (BA) with generating conditions $\zeta(\cdot, 0) = g_0$ and $\zeta(\cdot, \ell) = g_\ell$
- 2 The pair (ζ, q) satisfies

and the trace equations

$$\begin{pmatrix} \mathfrak{s}_{(b,0)}'(0) & \mathfrak{s}_{(b,\ell)}'(0) \\ \mathfrak{s}_{(b,0)}'(\ell) & \mathfrak{s}_{(b,\ell)}'(\ell) \end{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} q_{|_0} \\ q_{|_\ell} \end{pmatrix} = \begin{pmatrix} \mathcal{F}_0(\zeta, q, \zeta_{|_0}, q_{|_0}) \\ \mathcal{F}_\ell(\zeta, q, \zeta_{|_\ell}, q_{|_\ell}) \end{pmatrix} - \frac{\mathrm{d}^2}{\mathrm{d}t^2} \begin{pmatrix} \zeta_{|_0} \\ \zeta_{|_\ell} \end{pmatrix}$$
(9)

where $\mathcal{F}_0, \mathcal{F}_\ell : H^n(0, \ell) \times H^{n+1}(0, \ell) \times \mathbb{R}^2 \to \mathbb{R}$ are known.

- Can be adapted to general boundary conditions $(\xi_0^+, \xi_\ell^-) = (g_0, g_\ell)$
- Local existence and unicity by Cauchy-Lipschitz
- Numerical discretization same as before

Setup:

- Reference solution on $(-\ell, 2\ell)$ with periodic conditions (very fine mesh)
- Generate boundary conditions for small domain $(0, \ell)$
- Compare simulations in $(0, \ell)$ with reference solution

Figure: Gaussian over bump (left: initial time, right: t = 15 [s])

Question: starting from a wrong initial condition, can we recover the reference solution by enforcing appropriate boundary conditions?

Figure: Sine over bump (shallowness $(2\pi H_0)^2/\lambda^2 = 1$)

Question: starting from a wrong initial condition, can we recover the reference solution by enforcing appropriate boundary conditions?

Figure: Sine over bump (shallowness $(2\pi H_0)^2/\lambda^2 = 1$)

Question: starting from a wrong initial condition, can we recover the reference solution by enforcing appropriate boundary conditions?

Figure: Sine over bump (shallowness $(2\pi H_0)^2/\lambda^2 = 10^{-2}$)

Perspectives: coupling with the shallow water model

Motivation: wave breaking with dispersive models \rightarrow non physical oscillations.

Structure-preserving schemes (entropy stable, well-balanced)

Perspectives: coupling with the shallow water model

Motivation: wave breaking with dispersive models \rightarrow non physical oscillations.

Structure-preserving schemes (entropy stable, well-balanced)

 $\begin{cases} \partial_{t}\zeta_{L} + \partial_{x}q_{L} = 0 & \text{in } (0, \ell_{1}) \\ \partial_{t}q_{L} + \partial_{x}i(\zeta_{L}, q_{L}) = \mathfrak{B}(\zeta_{L}, q_{L}) + \mathfrak{s}_{(0)}\dot{q}_{L|_{x=0}} + \mathfrak{s}_{(\ell_{1})}\dot{q}_{L|_{x=\ell_{1}}} \\ \partial_{t}\zeta_{R} + \partial_{x}q_{R} = 0 & \text{in } (\ell_{1}, \ell_{2}) \\ \partial_{t}q_{R} + \partial_{x}f_{NSW}(U_{R}) = -gh_{R}\partial_{x}b & \text{in } (\ell_{1}, \ell_{2}) \end{cases}$ Coupling conditions: $\xi_{\ell_{1}}^{+}(U_{R|_{\ell_{1}}}) = \xi_{\ell_{1}}^{+}(U_{L|_{\ell_{1}}}), \quad \xi_{\ell_{1}}^{-}(U_{L|_{\ell_{1}}}) = \xi_{\ell_{1}}^{-}(U_{R|_{\ell_{1}}})$ $\begin{bmatrix} & & & \\ & & & & \\ &$

Preliminary observations and ideas Weird artifacts near coupling interface Much improved with a spatial overlapping... ... but difficult to interpret at continuous level

Preliminary observations and ideas Weird artifacts near coupling interface Much improved with a spatial overlapping... ... but difficult to interpret at continuous level

• Approx. U_{R}^{n+1} with FV scheme + hydrostatic reconstruction; $\mathcal{R}_{+}(U_{R})|_{\ell_{1}} = \mathcal{R}_{+}(U_{L})|_{\ell_{1}}$ • Approx. U_{L}^{n+1} with Lax-Friedrichs scheme + trace equations; $\mathcal{R}_{-}(U_{L})|_{\ell_{1}+\epsilon} = \mathcal{R}_{-}(U_{R})|_{\ell_{1}+\epsilon}$

• Convex combination in overlapping area: $U_i^{n+1} = \rho(x_i)U_{L,i}^{n+1} + (1 - \rho(x_i))U_{R,i}^{n+1}$.

Figure: Time *t* = 18.5 [s]

Filippini, Bellec, Colin, Ricchiuto 2014

Boussinesq models can be written in (ζ, q) or (ζ, v) form

- in the 1st case, shoaling is underestimated;
- in the 2nd case, shoaling is overestimated;

Issue: risk of bias when predicting extreme waves

Possible fix: try mixing the (ζ, q) and (ζ, v) formulations

Figure: Predicted elevation for LEGI experiment

Conclusion

Over a flat bottom:

- Reformulation of Boussinesq-Abbott in bounded domain
- Generalized boundary conditions
- Efficient 1st and 2nd order schemes

Over a varying bottom:

- Similar reformulation
- Numerical validation & asymptotic stability

Conclusion

Over a flat bottom:

- Reformulation of Boussinesq-Abbott in bounded domain
- Generalized boundary conditions
- Efficient 1st and 2nd order schemes

Over a varying bottom:

- Similar reformulation
- Numerical validation & asymptotic stability

Perspectives:

- Coupling with shallow water model
- Improve shoaling description
- Statistics of extreme waves: impact of bathymetry

Conclusion

Over a flat bottom:

- Reformulation of Boussinesq-Abbott in bounded domain
- Generalized boundary conditions
- Efficient 1st and 2nd order schemes

Over a varying bottom:

- Similar reformulation
- Numerical validation & asymptotic stability

Perspectives:

- Coupling with shallow water model
- Improve shoaling description
- Statistics of extreme waves: impact of bathymetry

Thank you for your attention!

Constructing nonlocal operator R_b^1

Write dispersive operator $(1 + h_b T_b)$ as $\alpha_b + h_b S^*(h_b S(\cdot))$, where

$$\alpha_b = 1 + \frac{1}{4} (\partial_x b)^2, \qquad S(\cdot) = -\frac{h_b}{\sqrt{3}} \partial_x \left(\frac{\cdot}{h_b}\right) + \frac{\sqrt{3}}{2} \frac{\partial_x b}{h_b}$$

Definition 2

$$R_{b}^{1}: f \in L^{2}(0, \ell) \longmapsto u \in H^{2}(0, \ell) \text{ s.t. } \begin{cases} \left[1 + S\left(\frac{h_{b}}{\alpha_{b}}(h_{b}S)^{*}\right)\right] u = f \\ (h_{b}S)^{*}u(0) = (h_{b}S)^{*}u(\ell) = 0 \end{cases}$$

Lemma 3 (Commutation)

$$\forall f \in L^2(0,\ell), \ R^0_b(h_b S^* f) = \frac{h_b}{\alpha_b}(h_b S)^* \left(R^1_b \left(\frac{f}{h_b}\right)\right)$$

Approximate transparent boundary conditions

Use coupling as a sponge layer to evacuate waves.

Figure: Outgoing soliton at times t = 0, 9.46, 14.19, and 23.16 [s]. Green domain corresponds to NSW.

Goal: study impact of bathymetry on extreme waves formation.

- Complex waves: different scales (swell/infragravity waves), two-ways propagation
- Need to randomly generate input data (ξ_0^+, ξ_ℓ^-)
- Probability distribution for incoming waves: Fuhrman, Klahn and Zhai 2023

$$\mathcal{D}(\zeta) = \frac{1}{\sqrt{2\pi}} e^{-\zeta^2/2} \left(1 + \frac{1}{6}S(\zeta^3 - 3\zeta)\right) + O(\epsilon^2), \qquad \begin{cases} \mathcal{S} = \text{skewness parameter} \\ \epsilon = \text{wave steepness} \end{cases}$$

• Efficient code required: implement new methods in UHAINA