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@ Need accurate dispersive model: Boussinesg-type systems

@ Boundary conditions are difficult to deal with
Recently: Perfectly Matched Layer, source function method — costly
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@ Need accurate dispersive model: Boussinesg-type systems

@ Boundary conditions are difficult to deal with
Recently: Perfectly Matched Layer, source function method — costly

— We propose a new and efficient method for boundary conditions.
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Boussinesqg-Abbott: dispersive model over flat bottom

Consider the Boussinesg-Abbott system

0l +0xq=0
b in (0,¢) (BA)
(1 = K°05%,)0tq + OxInsw({, ) = 0
with generating boundary conditions
L(t,0) = go(t),  &(t,4) = ge(l), (1)
where gy, g, € C(0, T) and
O TR VO S e

ht

—Hyg
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Problematic

How to account for boundary conditions? How to recover q,_ ,?
@ Hyperbolic case (x = 0) : Riemann invariants
@ Dispersive case (« > 0) : need to invert (1 — ¥292,) — requires knowledge on 0tQcor
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Problematic

How to account for boundary conditions? How to recover q,_ ,?
@ Hyperbolic case (x = 0) : Riemann invariants
@ Dispersive case (« > 0) : need to invert (1 — ¥292,) — requires knowledge on 0tQcor

Lannes and Weynans 2020

Equivalent writing of Boussinesq-Abbott
with flat bottom over (0, o)

@ substitute (1 — «%62,) for nonlocal flux
& dispersive boundary layer

@ ODEon g,
@ local existence and unicity
@ 1st order scheme
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Problematic

How to account for boundary conditions? How to recover q,_ ,?

@ Hyperbolic case (x = 0) : Riemann invariants

@ Dispersive case (« > 0) : need to invert (1 — ¥292,) — requires knowledge on 0tQcor

Lannes and Weynans 2020
Equivalent writing of Boussinesq-Abbott
with flat bottom over (0, o)

@ substitute (1 — «%62,) for nonlocal flux
& dispersive boundary layer

@ ODEon g,
@ local existence and unicity
@ 1st order scheme

Lannes and Beck 2022

Extension to wave-structure interactions
@ transmission problem — ODE
@ 2nd order scheme
@ flat bottom and unbounded domain
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Problematic

How to account for boundary conditions? How to recover q,_ ,?
@ Hyperbolic case (x = 0) : Riemann invariants
@ Dispersive case (« > 0) : need to invert (1 — ¥292,) — requires knowledge on 0tQcor

Lannes and Weynans 2020 Lannes and Beck 2022

Equivalent writing of Boussinesqg-Abbott | | Extension to wave-structure interactions

with flat bottom over (0, o) @ transmission problem — ODE
@ substitute (1 — «%62,) for nonlocal flux ® 2nd order scheme

4 ElEpEEle SOV EEr @ flat bottom and unbounded domain

@ ODEon g,

@ local existence and unicity Qutline of the talk

@ 1st order scheme

@ Reformulation over bounded domain

@ General boundary cond. & scheme
@ Varying bathymetry
© Some perspectives
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Reformulation of the model (flat bottom)

Recall the discharge equation:

(1 - x285,)0:q + dxfxsw({. Q) = 0 in (0, ¢)

Fix 0 < t < T, then y(x) = d:q(t, x) satisfies an ODE of the form
y = y" = ¢(x)
y(©0) =g, y()=4q,

yn—12yy =0
¥n(0) = G,

Equivalently: y =y, +y, with . and
yh(f) = q\[

\.

Yo — K2Yy = ¢(X)
¥b(0) = ¥(€) = 0
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Reformulation of the model (flat bottom)

Recall the discharge equation:

(1= 22)0,q + Oufnsw((.q) =0 in (0,0)

Fix 0 < t < T, then y(x) = d:q(t, x) satisfies an ODE of the form

y—K2y" = ¢(x)
y(0) =4, y)=4q,

_ 2y = O - _
Equivalently: y=ys+y, with {77 < and oK $(x)
¥n(0) = Gy,  Ya(f) =4, ¥b(0) = ¥(€) = 0

Define R° as the inverse of (1 — x?62,) with homogeneous Dirichlet conditions at x = 0, ¢

= 0:q = —R%xfusw + 508y + 504,
—_—

Yb Yh

(1 - K2(92 )5(0) =0 { (1 - ch')z )S([) =0
where X and ” . 2
{ 50)(0) =1, s(f) =0 50(0) =0, s(6) =1 @
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Reformulation of the model (flat bottom)

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions at x = 0, ¢
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Reformulation of the model (flat bottom)

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions at x = 0, ¢

Proposition 1 (D. Lannes, R.)

Let (¢, q) initially equal to (£, ™). The two assertions are equivalent:
@ The pair (¢, q) satisfies (BA) with generating conditions £(-,0) = go and (-, £) = g,
@ The pair (£, q) satisfies

{a,; +dxq =0

1 , _ in(.0), 3)
0:q + 9x(R" fnsw) = 508 + 509,

with the trace ODEs

(5{0)(0) SEK)(O)) (('f]k]) _ 1 ((R1 —id);, stw) _ (Qo) )
o) sp0)\a,) K \(R" —id), fsw) \8e
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Reformulation of the model (flat bottom)

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions at x = 0, ¢

Proposition 1 (D. Lannes, R.)

Let (¢, q) initially equal to (£, ™). The two assertions are equivalent:
@ The pair (¢, q) satisfies (BA) with generating conditions £(-,0) = go and (-, £) = g,
@ The pair (£, q) satisfies

{a,; +dxq =0

1 , _ in(.0), 3)
0:q + 9x(R" fnsw) = 508 + 509,

with the trace ODEs
(Szo)(o) sE[)(O)) (‘?lo) _1 ((R1 = !d)\o stw) _ (go) )
o) sp0)\a,) K \(R" —id), fsw) \8e
Sketch of the proof:

@ To get (3), check that R%9, = 0,R".
@ Apply 9, to the discharge eq. from (3); take the trace at x = 0, ¢ to get (4).

aitq + (0 R fyusw) = 520)('70 + 5((,)('75
- L(R'-id)sw
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Reformulation of the model (flat bottom)

Advantages of the reformulated model

@ Furnishes evolution equation on (qy, q;,)

@ Under some assumptions’ and denoting S = H"(0, £) x H™(0, ¢) for n > 1:
o If (", ¢™") € S, reformulated model can be seen as an ODE on (£, g, g, g, )(t) € S x R2
o Local existence and uniqueness by Cauchy-Lipschitz theorem

TAssumptions for well-posedness:

o >0 0,00 € CO(R.); {4r—o<°>=90<°)’ and {ar-o(f)=ge(0>,

9(0) +9x9™(0) = 0 9:(0) + 9xq"(0) = 0
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More general boundary conditions

Possibility to enforce general boundary conditions

é‘a(éo’ Q|0)(t) = gO(t)» ftj(é/l(v q\/)(t) = g{’(t) (5)

For instance, £* given by g or Saint-Venant Riemann invariants

R.(U) = u+2+/gh
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More general boundary conditions

Possibility to enforce general boundary conditions
&0 (o> o)) = Go(t), &7 (g, a1 )(D) = ge(D). (5)
For instance, £* given by g or Saint-Venant Riemann invariants

R.(U) = u+2+/gh

Adapt trace ODE in terms of missing data (outgoing information &, and &;)

(sgo)(O) sgg)(0>) d (q(fa,fa))z 1 ((R' —id)|0stw)_ & (4(53,55))
2

S0 s,(0) dt\a.&)) T @\(R' —id), hew) ~ A \¢(E7. )

& & & &
—_— — —_— —
| |
0 4
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More general boundary conditions

Ho(£5(£, 0.4, ) = (£, 9)
He(£:(¢.9).£;(¢.9) = €. 9)
Use chain rule to rewrite trace ODEs in term of (¢;,£7):

E (q\o) - E (WO,Z(go’ga)) i (é]g) - i (WOJ (gO, fa))
dt\q,) dt\Hea(&7,90))° d2\¢,)  d2 \He1(&7, 9)

Introduce smooth reconstruction maps Ho, H;: {
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More general boundary conditions

Ho(£5(£, 0.4, ) = (£, 9)
He(£:(¢.9).£;(¢.9) = €. 9)
Use chain rule to rewrite trace ODEs in term of (§7,&7):

d (%) _ d ((Ho,z(go’fa)) i (Qg) _ i (7{0,1 (go,fg))
dt\q,) dt\Hea(&7,90))° d2\¢,)  d2 \He1(&7, 9)

Introduce smooth reconstruction maps Hoy, H;: {

Three cases considered here:
@ Elevation enforced

&WQ =¢a=¢ &Ea=¢Eaq=q
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More general boundary conditions

Ho(£5(£, 0.4, ) = (£, 9)
He(£:(¢.9).£;(¢.9) = €. 9)
Use chain rule to rewrite trace ODEs in term of (§7,&7):

d (%) _ d ((Ho,z(go’fa)) i (Qg) _ i (7{0,1 (go,fg))
dt\q,) dt\Hea(&7,90))° d2\¢,)  d2 \He1(&7, 9)

Introduce smooth reconstruction maps Hoy, H;: {

Three cases considered here:
@ Elevation enforced

&9 =&9=4  &Ea=¢(l.q=q
@ Discharge enforced

&WQ =¢Ca=a &9 =¢K9 =
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More general boundary conditions

Ho(£5(£, 0.4, ) = (£, 9)
He(£:(¢.9).£;(¢.9) = €. 9)
Use chain rule to rewrite trace ODEs in term of (§7,&7):

d (%) _ d ((Ho,z(go’fa)) i (Qg) _ i (7{0,1 (go,fg))
dt\q,) dt\Hea(&7,90))° d2\¢,)  d2 \He1(&7, 9)

Introduce smooth reconstruction maps Hoy, H;: {

Three cases considered here:
@ Elevation enforced

&9 =&9=4  &Ea=¢(l.q=q
@ Discharge enforced

&WQ =¢Ca=a &9 =¢K9 =

@ Incoming Riemann invariant enforced

&L Q =€l a =u+24gh, &9 =¢(Lq) =u-2+gh
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Numerical schemes for the reformulated system

Discretize (0, ¢) as follows:

X1 X2 XN-1 XN
0 Ax - Ax V4
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Numerical schemes for the reformulated system

Discretize (0, ¢) as follows:

I B B I T S B
0 Ax - Ax V4
Xi1/2
Note U" = (£, q")" the approximation of — (g) (1", s)ds.
Xi-1/2
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Numerical schemes for the reformulated system

Discretize (0, ¢) as follows:

1 Xi+1/2
Note U" = (£, q")" the approximation of — (g“

Ax q) (t", s)ds.

Xi-1/2

Time stepping procedure

Step 1: Define R' 7, as the vector v € R satisfying

2 Vi1 — 2V + Vi
Ax?
Vo — Vy VN — VN-1

= =0
Ax Ax

= stw(Ui") for ZSIS N-1

i —

Similar definition for boundary layer functions s and s.
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Numerical schemes for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions (£;)™", (,g—“;)"+1
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Numerical schemes for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions (£;)™", (7)™

Step 3: Recover border elevation and discharge from reconstruction maps

( 1n+1 , q?+1) _ Ho(ggﬂ , (§6)n+1); ( Ir\1l+1 , qlr\1’+1) _ Wg((fz)nﬂ , g;;+1)
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Numerical schemes for the reformulated system

Time stepping procedure

Step 2: Approx. trace ODEs using FD scheme to update output functions (£;)™", (7)™

Step 3: Recover border elevation and discharge from reconstruction maps

( n+1 , q?+1) 7_{0( n+1 , (§6)n+1); (é«n+1 , qlr\1’+1) _ Z((g;)nn , g;+1)

Step 4: For 2 < i < N, finite volumes update with Lax-Friedrichs numerical flux

§n+1 (n 1
A E(Qﬁwz - qln—1/2) =0
qI_n+1 _ qln 1

ar * H((E Nsw)iv1/2 — (B’ fﬁsw)i-uz) = (3(0))i0¢q] + (3(9)i0:q

Mathieu Rigal General boundary conditions for the Boussinesg-Abbott model with varying bathymetry 11/26



Numerical schemes for the reformulated system

Second order extension: MacCormack prediction-correction method

Beck, Lannes, Weynans (preprint 2023)

@ left upwinding during prediction

@ right upwinding during correction

@ final stage: average prediction and correction (similar to Heun)
Adapt to finite domain (0, £) + general boundary conditions

\.
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Numerical schemes for the reformulated system

Second order extension: MacCormack prediction-correction method

Beck, Lannes, Weynans (preprint 2023)

@ left upwinding during prediction

@ right upwinding during correction

@ final stage: average prediction and correction (similar to Heun)
Adapt to finite domain (0, £) + general boundary conditions

\.

Solitary wave testcase: wave travelling without deforming

Z(tx) =Z(x o). qt.x) =Glx - ct)

Compare different boundary conditions in two settings:
@ Generation of an incoming solitary wave
@ Evacuation of a solitary wave initially in the domain

— no sponge layer shall be used
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Solitary wave testcase

Mathieu Rigal

Figure: Top: incoming solitary wave, bottom:

outgoing solitary wave
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Solitary wave testcase

Ax | ¢ enforced \ q enforced \ R* enforced
L2-error  Order L2-error  Order L2-error  Order
6.25E-02 | 3.263E-03 - 3.484E-03 - 3.312E-03 -

4.42E-02 | 2.387E-03  0.90 | 2.589E-03  0.91 2.420E-03  0.91
3.12E-02 | 1.727E-08 0.93 | 1.833E-03 0.94 | 1.750E-03  0.93
2.21E-02 | 1.244E-08 0.95 | 1.318E-03 0.95 | 1.260E-03  0.95
1.56E-02 | 8.906E-04 097 | 9.411E-04 0.97 | 9.015E-04  0.97

Table: Lax-Friedrichs scheme for the incoming solitary wave
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Solitary wave testcase

Ax | ¢ enforced \ q enforced \ R* enforced

L2-error  Order L2-error  Order L2-error  Order
6.25E-02 | 3.263E-03 - 3.484E-03 - 3.312E-03 -
4.42E-02 | 2.387E-03 0.90 2.539E-03 0.91 2.420E-03 0.91
3.12E-02 | 1.727E-03 0.93 1.833E-03 0.94 1.750E-03 0.93
2.21E-02 | 1.244E-03 0.95 1.318E-03 0.95 1.260E-03 0.95
1.56E-02 | 8.906E-04 0.97 9.411E-04 0.97 9.015E-04 0.97

Table: Lax-Friedrichs scheme for the incoming solitary wave

Ax | ¢ enforced \ q enforced \ R* enforced

L2-error Order L2-error  Order L2-error Order
4.42E-02 1.785E-03 - 2.031E-03 — 1.070E-04 —
3.12E-02 | 1.322E-03 0.87 1.514E-03 0.85 8.401E-05 0.70
2.21E-02 | 9.725E-04 0.89 1.119E-03 0.87 6.503E-05 0.74
1.56E-02 | 7.053E-04 0.93 8.145E-04 0.92 4.939E-05 0.79
1.11E-02 | 5.098E-04 0.94 5.903E-04 0.93 3.711E-05 0.83

Table: Lax-Friedrichs scheme for the outgoing solitary wave.
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Solitary wave testcase

Ax | ¢ enforced \ g enforced | R*enforced

L2-error  Order L2-error  Order L2-error  Order
5.00E-01 2.473E-03 - 3.789E-03 - 2.783E-03 -
2.50E-01 6.670E-04 1.89 1.026E-03 1.89 7.199E-04 1.95
1.25E-01 1.696E-04 1.98 2.662E-04 1.95 1.832E-04 1.97
6.25E-02 | 4.312E-05 1.98 6.804E-05 1.97 4.624E-05 1.99
3.12E-02 | 1.107E-05 1.96 1.731E-05 1.97 1.162E-05 1.99

Table: MacCormack scheme for the incoming solitary wave.
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Solitary wave testcase

Ax | ¢ enforced \ g enforced | R*enforced
L2-error  Order | L2-error  Order | L2-error  Order
5.00E-01 | 2.473E-03 - 3.789E-03 - 2.783E-03 -
2.50E-01 | 6.670E-04 1.89 1.026E-03 1.89 7.199E-04 1.95
1.25E-01 1.696E-04 1.98 2.662E-04 1.95 1.832E-04 1.97
6.25E-02 | 4.312E-05 1.98 6.804E-05 1.97 4.624E-05 1.99
3.12E-02 | 1.107E-05 1.96 1.731E-05 1.97 1.162E-05 1.99
Table: MacCormack scheme for the incoming solitary wave.
Ax | ¢ enforced \ q enforced \ R* enforced
L2-error  Order L2-error  Order L2-error  Order
5.00E-01 1.885E-03 - 4.437E-03 - 1.993E-03 -
2.50E-01 5.568E-04 1.76 1.257E-03 1.82 5.607E-04 1.83
1.25E-01 1.459E-04 1.93 3.252E-04 1.95 1.318E-04 2.09
6.25E-02 | 3.674E-05 1.99 8.223E-05 1.98 2.826E-05 2.22
3.12E-02 | 9.162E-06 2.00 2.067E-05 1.99 7.085E-06 2.00

Mathieu Rigal

Table: MacCormack scheme for the outgoing solitary wave.
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Boussinesq-Abbott system with varying bottom

The Boussinesg-Abbott system now reads

6t{ + 6xq =0 )
{ (1 + hyT5)0:q + Oxfnsw = —ghdxb in (0.9)., (BA)

under generating boundary conditions
£(t,0) = go(t),  4(t,0) = ge(t),
with h, = Hy — b (depth at rest) and

¢ ) ¢ &b, ()

xh—b +E

1 3
To() = _3_hbax(hba

Rigid bottom
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Boussinesq-Abbott system with varying bottom

Recall of the main problematic

To invert (1 + h,7}), we need knowledge on (g, g,)
@ Extend nonlocal reformulation to varying bottoms
@ Obtain trace ODEs for missing data (qy,, q,)
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Boussinesq-Abbott system with varying bottom

To invert (1 + h,7}), we need knowledge on (g, g,)

@ Extend nonlocal reformulation to varying bottoms
@ Obtain trace ODEs for missing data (qy,, q,)

Version adapted to well-balancedness

Lake atrest (£,q) = (0,0) is a steady state = 9xfusw(0,0) = —ghpdxb

(BA) o A= in (0,¢)
(1+hsT5)0:q + x( fusw(¢ ) = fusw(0,0) ) = =g(h = hp)db o
2
Rowl.@) = T+ 2@ +2H0) ¢

® we have fxsw(¢, q) = ~g¢d:b = 0if (£,) = (0,0)
@ easy to preserve at discrete level — scheme naturally well-balanced
@ advantage: can be generalized to other steady states
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Nonlocal reformulation

Note RY the inverse of (1 + h,73) with homogeneous Dirichlet conditions at x = 0, ¢

= 9.9 = ~R29:hsw + RY(~9g¢dxb) + 56,08l + S.04, (7)
(1+hpTb)s(b0) =0 { (1+hoTb)s, =0
where ’ and ’
{ 56,0(0) =1, sp0(0) =0 50.0(0) =0, spa(f) =1

Mathieu Rigal General boundary conditions for the Boussinesg-Abbott model with varying bathymetry 18/26



Nonlocal reformulation

Note RY the inverse of (1 + h,73) with homogeneous Dirichlet conditions at x = 0, ¢

= 8,q = ~R29xfsw + RI(=gL0xb) + 5.0/Fy + Sb.00 (7)
(1+ hbTb)S(b 0=0 { (1+ hbTb)S(b n=0
where ’ and ’
{ sp.0)(0) =1, spo(f) =0 5p,0(0) =0, spg(l) =1

Lemma 1 (generalization of R%3, = dxR")

We can construct a nonlocal operator R} such that

, o = Ho— b

RO, () = (ax e %’)[%R},(%)} - Rg((-)ﬁ) with o =1+ 1(9,b)2
b B=2h1a,b
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Nonlocal reformulation
Note RY the inverse of (1 + h,73) with homogeneous Dirichlet conditions at x = 0, ¢
= 0= —Rgﬁx?Nsw + RJ(=940xb) + 56,0/ + 56,004

where { (1 + hbTb)S(b,O) =0 and { (1 + hbTb)S(b,I) =0

56,0(0) =1, sp0(0) =0 50.0(0) =0, spa(f) =1

Lemma 1 (generalization of R%9, = 0,R")

We can construct a nonlocal operator R} such that

0 Oxa hg 0] 0 : o = Ho 1_ ° 2
RE0M) = (0. +B+ 7)[;&,(?)] - Rb((-)ﬁ) with {a =1+ 1(3,b)
b B=2h;'osb

Definition 1 (Nonlocal flux and source terms)

h2 1 ~ 0
- Ba(Ren) - AY(- gnaub - gon) - (54 22
1o hg a
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Nonlocal reformulation

Proposition 2 (D. Lannes, R.)

Let (¢, q) initially equal to (£, g") € H"(0, £) x H™1(0, ). The two assertions are equivalent:
@ The pair (£, q) satisfies (BA) with generating conditions (-,0) = go and (-, €) = g,
@ The pair (£, q) satisfies
0l +0xq =0,
€0 @0 ®)
019 + 0xf(¢, 9) = B(L, 9) + 56.0) Gl + 6.0

and the trace equations

(Szb,o)(o) g’zb,é’)(o)) E (qlo) — (7:0({’ q, go’ qo)) _ d_2 (glo) (9)
Szb,o)([) Szb,g) ([) dt a, ﬁ({, q, {\[’ qlz) dt? gl[

where Fo, F; : H(0, €) x H™'(0,£) x R — R are known.
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Nonlocal reformulation

Proposition 2 (D. Lannes, R.)

Let (¢, q) initially equal to (£, g") € H"(0, £) x H™1(0, ). The two assertions are equivalent:
@ The pair (£, q) satisfies (BA) with generating conditions (-,0) = go and (-, €) = g,
@ The pair (£, q) satisfies
0l +0xq =0,
€0 @0 ®)
019 + 0xf(¢, 9) = B(L, 9) + 56.0) Gl + 6.0

and the trace equations

(Szb,o)(o) g’zb,é’)(o)) E (qlo) — (7:0(4’ q, go’ qo)) _ d_2 (Qo) (9)
Szb,o)([) Szb,l) (f) dt a, ﬁ({, q, {\[’ qlz) dt? §|[

where Fo, F; : H(0, €) x H™'(0,£) x R — R are known.

@ Can be adapted to general boundary conditions (£3,&;) = (9o, 9¢)
@ Local existence and unicity by Cauchy-Lipschitz
@ Numerical discretization same as before
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Numerical validation

Setup:
@ Reference solution on (—¢, 2¢) with periodic conditions (very fine mesh)
@ Generate boundary conditions for small domain (0, ¢)
@ Compare simulations in (0, €) with reference solution

T T 0.04 T
02t Isni(ia‘: zond\tion |
""" mall domain
—— Bathymetry 0.02 \ n 7
[ T —— ~ \ A\ [\
E 0™ £\ /~\ I\ |
- T \—7 / I\ y
c \ |
- I\ /
2 02t g \/ \
s 0.02 N \ [ \\ / A
2 \ / \ /
[ L 4
8 04 0.04 \ / \ .
< L v
@
/ \
$ 06 1 \
5] L 1
T 0.06 y, -
0.8 4 r L Reference 1
0.08 Lax-Friedrichs
— - MacCormack
-1 L L -0.1 L
L 0 L 2L 0 L2 L
x position (L =25 [m]) x position (L = 25 [m], Ax = 2.30E-02 [m])

Figure: Gaussian over bump (left: initial time, right: t = 15 [s])
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Numerical validation

Question: starting from a wrong initial condition, can we recover the reference solution by
enforcing appropriate boundary conditions?

0.5

Free surface elevation Z [m]

L 0 L 2L
x position (L = 25 [m], Ax = 3.26E-02 [m])

Figure: Sine over bump (shallowness (27Hp)2/A2 = 1)
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Numerical validation

Question: starting from a wrong initial condition, can we recover the reference solution by
enforcing appropriate boundary conditions?

. . 025 [ . . . . T
05t : ‘

_ 0.2

E o

~

§ E

R 1~ 015 g

G L

2 <]

§ . 18

; o~ 0.1 Bl

(]

st —— Reference | 1

O Enforcing R*
0.05

Enforcing - —— Enforcing R*
2r Enforcingq | q Enforcing {
Bathymetry Enforcing g
. . 0 . . . .

-L 0 L 2L 5 10 15 20
x position (L = 25 [m], Ax = 3.26E-02 [m]) Time [s]

Figure: Sine over bump (shallowness (27Hp)? /A2 = 1)
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Numerical validation

Question: starting from a wrong initial condition, can we recover the reference solution by
enforcing appropriate boundary conditions?

H

_ 0.025
E
~

0 1 =
5 E o002
g i~
© £
o S 0.015
& 5
S 01f 1«
@ T}
@ 0.01
[

Refere.nce N 0.005
o2t /N | Enforcing R*| |
Bathymetry
. . 0 . . .
-L 0 L 2L 20 40 60
x position (L = 25 [m], Ax = 3.26E-02 [m]) Time [s]

Figure: Sine over bump (shallowness (2rHg)?/A% = 1072)
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Perspectives: coupling with the shallow water model

Motivation: wave breaking with dispersive models — non physical oscillations.

NSW

Structure-preserving schemes (entropy stable, well-balanced)
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Perspectives: coupling with the shallow water model

Motivation: wave breaking with dispersive models — non physical oscillations.

NSW

Structure-preserving schemes (entropy stable, well-balanced)

0L +0xq. =0

Oqu + 0xT(4L, QL) = B(LL, QL) + 5(0)ALieo + S(e1) Aier,
O0tlr+0xqr =0

01qr + Oxfusw(Ur) = —ghrdxb

in (0, ¢4)
in (€1 5 [2)
Coupling conditions: &7 (Ury,,) = &, (U, ). &,(Uy,) =&, (Ur,)

L | o
(I)' Boussinesg-Abbott (|1 NSW ;2
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Perspectives: coupling with the shallow water model

Preliminary observations and ideas

@ Weird artifacts near coupling interface
@ Much improved with a spatial overlapping...
@ ... but difficult to interpret at continuous level

L oo 1 ___-___--__--_fl
(|)‘ Boussinesg-Abbott g|; £ J+ € NSW A
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Perspectives: coupling with the shallow water model

Preliminary observations and ideas

@ Weird artifacts near coupling interface
@ Much improved with a spatial overlapping...
@ ... but difficult to interpret at continuous level

L oo 1 ___-___--__--_fl
(|)‘ Boussinesg-Abbott g|; £ J+ € NSW A

@ Approx. U with FV scheme + hydrostatic reconstruction; R.(Ur);,, = R.(U),

=R_(Ur)

@ Convex combination in overlapping area: U*' = p(x)U[;! + (1 = p(x)) Ug'.

@ Approx. U™" with Lax-Friedrichs scheme + trace equations; R_(Uy)

leg e leg +e
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Experimental testcase: LEGI

Figure: Initial condition

0.05 T T T T T T T
E @ .
v
S -0.05 - ~
s
£
< 011 .
°
]
= -0.15 7
7 Boussinesq-Abbott
g NSW
= -0.2 - Bathymetry T
Gauge
-0.25 b L I L L |
-25 -20 -15 -10 -5 0 5
x position [m]
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Experimental testcase: LEGI

Figure: Time t = 18.5 [s]

0.05 T
.......... Conax
Boussinesq-Abbott
0.04 - NSwW il
Bathymetry
E O  Gauge
~0.03 - =
=]
2
=
5
=< 0.02 - O =
8 @
tﬁ
]
@ 0.01 1o} =
[
© @
=
0k 4
-0.01 I I I I I I I I
0 1 2 3 4 5 6 7 8 9

x position [m] (Az = 0.025 [m])
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Perspectives: improve shoaling description

Filippini, Bellec, Colin, Ricchiuto 2014

Boussinesq models can be written in (£, g) or (¢, v) form
@ in the 1st case, shoaling is underestimated,;
@ in the 2nd case, shoaling is overestimated;

0.16
Gauge 2
G Issue: risk of bias when predicting ex
D o auge 5
R . treme waves

Possible fix: try mixing the (£,q) and
(¢, v) formulations

320 340 360 380 400 420
= t(g/ag)*

Figure: Predicted elevation for LEGI experiment
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Conclusion

Over a flat bottom:

@ Reformulation of Boussinesg-Abbott in bounded domain
@ Generalized boundary conditions
@ Efficient 1st and 2nd order schemes
Over a varying bottom:
@ Similar reformulation
@ Numerical validation & asymptotic stability
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@ Generalized boundary conditions
o Efficient 1st and 2nd order schemes

Over a varying bottom:
@ Similar reformulation
@ Numerical validation & asymptotic stability

\. J

7~

Perspectives:
@ Coupling with shallow water model
@ Improve shoaling description
@ Statistics of extreme waves: impact of bathymetry
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Conclusion

Over a flat bottom:

@ Reformulation of Boussinesg-Abbott in bounded domain
@ Generalized boundary conditions
o Efficient 1st and 2nd order schemes

Over a varying bottom:
@ Similar reformulation
@ Numerical validation & asymptotic stability

\. J

7~

Perspectives:
@ Coupling with shallow water model
@ Improve shoaling description
@ Statistics of extreme waves: impact of bathymetry

Thank you for your attention!
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Constructing nonlocal operator Rg

Write dispersive operator (1 + hy7}) as ap + hy S*(hy S(+)), where

V3 dsb
2 h

ap =1+ %(Bxb)z, S() = ——ax(h;b)

Definition 2

R} :feL?0,€) — ue H*(0,¢) sit. {[1 * S(a(_b(hbs)*)]“ =f

(hpS)*u(0) = (hyS)"u(f) = 0

Lemma 3 (Commutation)

h f
v e L20,0, RSN = (huS) (RY(7)
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Approximate transparent boundary conditions

Use coupling as a sponge layer to evacuate waves.

15

15
1 1r
0.5 0.5
0 0
0.5 L L L L L
40 60 80 100 120 140
15
1k
05F /I
0 4
05 L L L L L L L L L L
40 60 80 100 120 140 40 60 80 100 120 140

Figure: Outgoing soliton at times t = 0, 9.46, 14.19, and 23.16 [s]. Green domain corresponds to NSW.
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Perspectives: statistics of extreme waves

Goal: study impact of bathymetry on extreme waves formation.
@ Complex waves: different scales (swell/infragravity waves), two-ways propagation
@ Need to randomly generate input data (£5,&;)
@ Probability distribution for incoming waves: Fuhrman, Klahn and Zhai 2023

1

——e (14 158(43 -30)) + O(&), {S = skewness parameter

€ = wave steepness

p() = NCr

@ Efficient code required: implement new methods in UHAINA
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