Low Froude regime and implicit kinetic schemes for the Saint-Venant system

Mathieu Rigal

Supervisors: Nina Aguillon, Nathalie Ayi, Jacques Sainte-Marie

Amiens - October 10, 2022

- water management (quality, availability);
- forecast natural disasters, mitigate their consequences;
- understand interplay between ocean dynamics and
 - \rightarrow the weather;
 - → climate change;
 - → coastline erosion;
 - \rightarrow natural resources (marine energy, seafood);

The 2D Saint-Venant system reads:

$$\begin{cases} \frac{\partial h}{\partial t} + \nabla \cdot (hV) = 0\\ \frac{\partial}{\partial t} (hV) + \nabla \cdot (hV \otimes V) + \nabla \left(\frac{g}{2}h^2\right) = -gh\nabla z \end{cases}$$
(SV)

Important properties

- hyperbolicity;
- positivity of the water height;
- conservation of the water height (and discharge if $\nabla z = 0$);
- existence of non trivial steady states;
- entropy inequality $\partial_t \eta(U, z) + \nabla \cdot G(U, z) \le 0 \rightarrow$ energy dissipation;
- as surface waves travel faster, solutions become incompressible;

Interest of implicit methods \rightarrow better stability?

"ability to preserve approximation in some domain of physical validity"

IMEX methods for the low Froude regime

Dimensionless form

Reference Froude number:
$$Fr \approx \frac{|V|}{\sqrt{gh}} = \frac{\text{particles velocity}}{\text{surface waves velocity}}$$

Rescaling the quantities of interest, a dimensionless writting for (SV) is

$$\begin{cases} \frac{\partial h}{\partial t} + \nabla \cdot (hV) = 0 \\ \frac{\partial}{\partial t}(hV) + \nabla \cdot (hV \otimes V) + \frac{1}{Fr^2} \nabla \left(\frac{h^2}{2}\right) = -\frac{1}{Fr^2} h \nabla z \end{cases}$$
 (\mathcal{P}_{Fr})

- Projecting along $n \in S^2$, eigenvalues are $\lambda(U; n) = V \cdot n \pm \sqrt{h}/Fr$.
- Usual explicit CFL reads $\Delta t \approx \delta/(2\lambda_{max}) = O(Fr\delta)$, with δ the mesh res.
- In coastal flows, we consistently have $Fr \approx 10^{-2}$.

\rightarrow We need asymptotic stability ($\Delta t = O(\delta)$).

Mathieu Rigal

Split (\mathcal{P}_{Fr}) into slow and fast dynamics: $\partial_t U + \nabla \cdot H(U, z) + L(U, z) = 0$

Ideally we would like

- $U = (h, hV)^T$ is the vector of conserved variables;
- both operators $\nabla \cdot H$ and L should be hyperbolic;
- $\nabla \cdot H$ will be treated explicitly and should have bounded eigenvalues;
- L will be treated implicitly and should be linear;
- Hydrostatic equilibrium should be in the kernel of $\nabla \cdot H$ and L;
- Positivity;
- \rightarrow difficult to satisfy everything at once

Linear wave splitting

Use same splitting as

Bispen et al. 2014 "IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows."

Set *L* such that $\partial_t U + L(U, z) = 0$ is the linearized of (\mathcal{P}_{Fr}) around $(-z, 0)^T$, then define *H* such that $\nabla \cdot H(U, z) = \nabla \cdot F(U) - S(U, z) - L(U, z)$

$$L(U,z) = \begin{pmatrix} \nabla \cdot (hV) \\ \frac{-z}{\mathsf{Fr}^2} \nabla (h+z) \end{pmatrix}, \quad H(U,z) = \begin{pmatrix} 0 \\ hV \otimes V + \frac{1}{2\mathsf{Fr}^2} (h+z)^2 \mathbf{I}_2 \end{pmatrix}$$

Eigenvalues are given by

$$\forall n \in \mathbb{S}^2, \quad \begin{cases} \lambda_H^j(U;n) = j(V \cdot n), & j \in \{0,1,2\} \\ \\ \lambda_L^k(U;n) = k \sqrt{-z}/\mathsf{Fr}, & k \in \{-1,0,1\} \end{cases}$$

Implicit-Explicit Runge-Kutta methods

Time discretization: Implicit-Explicit Runge-Kutta

$$\frac{U^{(j)} - U^0}{\Delta t} + \sum_{k=1}^{j-1} \tilde{a}_{jk} \nabla \cdot H(U^{(k)}, z) + \sum_{k=1}^j a_{jk} L(U^{(k)}, z) = 0 \qquad \forall 1 \le j \le s$$

$$\frac{U^1 - U^0}{\Delta t} + \sum_{k=1}^{s} \tilde{b}_k \nabla \cdot H(U^{(k)}, z) + \sum_{k=1}^{s} b_k L(U^{(k)}, z) = 0$$

Mathieu Rigal

Low Froude regime and implicit kinetic schemes for the Saint-Venant system

Low Froude regime and IMEX methods ^{L²-stability}

Set $z \equiv \text{Cst}$ and focus on the surface waves system $(\partial_t + L)U = 0$. Assuming periodic boundary conditions, we conserve the energy

$$E[U](t) = \frac{1}{2} ||h||_{L^2(\mathbb{T}^2)}^2 + \frac{1}{2c^2} ||hV||_{L^2(\mathbb{T}^2)}^2, \quad c = \sqrt{-z}/\mathrm{Fr}.$$

What about the numerical approximation?

Definition 1 (Modified PDE, Warming and Hyett 1974)

"A modified PDE aims at describing the qualitative behaviour of a scheme by incorporating some of its truncation error into the original PDE."

More precisely, if U solves the p-th order modified PDE we have

$$\|\widetilde{U}(\Delta t, \cdot) - U_{\text{discrete}}^{1}\| \le C\Delta t^{p+2}$$

 L^2 -stability criteria: $E[\widetilde{U}]' < 0$.

Proposition 1 (Runge-Kutta modified PDE and L²-stability)

When discretized in time by a p-th order RK scheme (\mathbf{A} , b), the surface waves system admits the following (p + 1)-th order modified PDE

$$(\partial_t + L)U = \varphi_p \Delta t^p (-L)^{p+1} U + (\varphi_{p+1} - \varphi_p) \Delta t^{p+1} (-L)^{p+2} U$$
(1)

with
$$\varphi_p = b^T \mathbf{A}^p \mathbb{1} - 1/(p+1)!$$
.

The energy E is strictly dissipated by (1) if either one of the below holds

• p is even and
$$(-1)^{p/2}[\varphi_{p+1} - \varphi_p] > 0;$$

• *p* is odd and $(-1)^{(p+1)/2}\varphi_p < 0$;

Sketch of the proof: perform $U \cdot (1)$ and use integration by parts to find

$$(U, L^{2k+1}U)_{L^2} = 0, \quad (U, L^{2k+2}U)_{L^2}$$
 has the sign of $(-1)^{k+1}$

Low Froude regime and IMEX methods *L*²-stability

Name	Туре	Order	L ² -stability
Forward Euler	Explicit	1	No
Heun	Explicit	2	No
Midpoint	Explicit	2	No
Backward Euler	Implicit	1	Yes
Crank-Nicolson	Implicit	2	Inconclusive
Implicit ARS-(2,2,2)	Implicit	2	Yes
Implicit JIN-(2,2,2)	Implicit	2	Yes

Table: Applying various Runge-Kutta schemes to the surface waves equation.

Asymptotic consistency and limiting system

Asymptotic consistency: a scheme $\mathcal{P}_{\delta,Fr}$ should remain consistent in the vanishing limit.

- \rightarrow Consistency error needs to stay bounded.
- \rightarrow Mimic qualitative behavior of solutions.

Limiting system derived formally through the asymptotic expansion:

$$f(t, x, y; \mathsf{Fr}) = f_{(0)}(t, x, y) + \mathsf{Fr} f_{(1)}(t, x, y) + \mathsf{Fr}^2 f_{(2)}(t, x, y) + O(\mathsf{Fr}^3) , \quad f = h, V$$

Plug into (\mathcal{P}_{Fr}) and isolate terms with same Froude powers

- **1** Start with the momentum equation to obtain $\nabla(h_{(0)} + z) = \nabla h_{(1)} = 0$
- 3 For periodic boundary cond., the mass equation yields $\nabla \cdot (hV)_{(0)} = 0$
- 3 The momentum equation gives $\partial_t V_{(0)} + (V_{(0)} \cdot \nabla) V_{(0)} + \nabla h_{(2)} = 0$

Asymptotic consistency and limiting system

Defining
$$\mathbb{W} \stackrel{\text{def}}{=} \{(h, V) : \mathbb{T}^2 \to \mathbb{R}^3, \ \nabla(h+z) = 0, \ \nabla \cdot (hV) = 0\}, \text{ we have}$$

$$\begin{cases} \forall t > 0, \ (h(t, \cdot), V(t, \cdot)) \in \mathbb{W} \\\\ \partial_t V + (V \cdot \nabla) V + \nabla \Pi = 0 \end{cases}$$
 (\mathcal{P}_0)

Remark 1 (Incompressible-like space)

When $\nabla z = 0$, \mathbb{W} becomes the space of incompressible states.

Definition 2 (Space of well prepared data)

$$\mathbb{W}_{\rho} \stackrel{\text{\tiny def}}{=} \left\{ \sum_{k \in \mathbb{N}} \operatorname{Fr}^{k} \begin{pmatrix} h_{(k)} \\ V_{(k)} \end{pmatrix} : \mathbb{T}^{2} \to \mathbb{R}^{3}, \begin{pmatrix} h_{(0)} \\ V_{(0)} \end{pmatrix} \in \mathbb{W}, \ \nabla h_{(1)} = 0 \right\}$$
(2)

The limit $(\mathcal{P}_{Fr}) \rightarrow (\mathcal{P}_0)$ has been proved rigorously for well prepared data Klainerman and Majda 1982 "Compressible and Incompressible Fluids"

Mathieu Rigal

Low Froude regime and implicit kinetic schemes for the Saint-Venant system

Limiting system and low Froude accuracy

Theorem 1 (Schochet 1994, "Fast singular limits of hyperbolic PDEs.")

Let $z \equiv \text{Cst.}$ The distance in $(L^2(\mathbb{T}^2))^3$ between a solution of $(\mathcal{P}_{\text{Fr}})$ and that of (\mathcal{P}_0) remains a O(Fr) if it is so at initial time.

Similar result obtained when linearizing (\mathcal{P}_{Fr}) around ($-z, V^*$)

$$\partial_t \begin{bmatrix} h \\ V \end{bmatrix} + (V^* \cdot \nabla) \begin{bmatrix} h \\ V \end{bmatrix} + \begin{pmatrix} -z\nabla \cdot V \\ Fr^{-2}\nabla h \end{pmatrix} = 0$$
(3)

Hodge decomposition: $(L^2(\mathbb{T}^2))^3 = \mathcal{E} \oplus \mathcal{E}^\perp$ with $\mathcal{E} = (L^2(\mathbb{T}^2))^3 \cap \mathbb{W}$

Theorem 2 (Dellacherie 2010)

Let U be a solution of (3) in $(L^2(\mathbb{T}^2))^3$, and denote by $U_{\mathcal{E}}$ its orthogonal projection onto \mathcal{E} . Then $\partial_t U_{\mathcal{E}} + (V^* \cdot \nabla) U_{\mathcal{E}} = 0$ and the compressible energy $E_{\mathcal{E}^\perp} = \operatorname{Fr}^{-2} ||h - h_{\mathcal{E}}||_{L^2}^2 + ||V - V_{\mathcal{E}}||_{L^2}^2$ is constant in time.

Limiting system and low Froude accuracy

Define characteristic γ : $(t, x, y) \mapsto (x - tV_x^*, y - tV_y^*)$. Theorem 2 implies

$$\begin{cases} \|h^0 - h^0_{\mathcal{E}}\|_{L^2} = O(\mathsf{Fr}^2) \\ \|V^0 - V^0_{\mathcal{E}}\|_{L^2} = O(\mathsf{Fr}) \end{cases} \Rightarrow \begin{cases} \|h - h^0_{\mathcal{E}} \circ \gamma\|_{L^2}(t > 0) = O(\mathsf{Fr}^2) \\ \|V - V^0_{\mathcal{E}} \circ \gamma\|_{L^2}(t > 0) = O(\mathsf{Fr}) \end{cases}$$

We want the scheme to mimic this behavior \rightarrow study its modified PDE.

Theorem 3 (Refinement of Dellacherie's criteria)

Let the linear PDE $\partial_t U + \mathcal{F}U = 0$ be well-posed on $(L^2(\mathbb{T}^2))^3$. To have

$$\forall U^0 \in (L^2(\mathbb{T}^2))^3, \quad \|U^0 - U^0_{\mathcal{E}}\|_{L^2} = O(\mathsf{Fr}) \Rightarrow \|U - U^0_{\mathcal{E}} \circ \gamma\|_{L^2} = O(\mathsf{Fr})$$

it is sufficient to check that $U^0 \in \mathcal{E} \Rightarrow ||U - U^0 \circ \gamma||_{L^2} = O(Fr)$.

Simple proof using the triangle inequality

$$\|U - U_{\mathcal{E}}^{0} \circ \gamma\|_{L^{2}} \le \|U - U^{*}\|_{L^{2}} + \|U^{*} - U_{\mathcal{E}}^{0} \circ \gamma\|_{L^{2}}, \quad \begin{cases} \partial_{t} U^{*} + \mathcal{F} U^{*} = 0\\ U^{*}(t = 0) = U_{\mathcal{E}}^{0} \end{cases}$$

Limiting system and low Froude accuracy

To summarize, when $V^* \equiv 0$ and $\gamma(t, \cdot) = id$:

- Near incompressible states (e.g. well prepared data) should behave as near steady states;
- It is sufficient to check that the linear modified PDE keeps any incompressible data constant in time up to a O(Fr);
- We will apply this criteria in (*h*, *hV*)-coordinates instead of (*h*, *V*);

In practice we work with Fourier coefficients, remarking that

$$U \in \mathcal{E} \Leftrightarrow \widehat{U} \in \widehat{\mathcal{E}} \stackrel{\text{def}}{=} \left\{ \left(\widehat{h} \\ \widehat{hV} \right) \in \ell^2(\mathbb{Z}^2; \mathbb{C}^3), \ \widehat{h}(k \neq 0) = 0 \text{ and } k \cdot \widehat{hV} = 0 \right\}$$

 \rightarrow The modified PDE becomes an ODE $\partial_t \widehat{U}(t,k) = A(k)\widehat{U}(t,k)$.

 $\rightarrow U \in \mathcal{E}$ is a steady state if $\forall k \ \widehat{U}(k) \in \ker A(k)$.

Mathieu Rigal

A first order scheme

First consider the following first order discretization over a cartesian mesh

- In time: IMEX Euler;
- In space: HLL for $\nabla \cdot H$, Rusanov for L;

$$\mathcal{L}_{i,j}^{\text{Rusanov}} = \begin{pmatrix} \mu_x \overline{\partial}_x (hV_x) + \mu_y \overline{\partial}_y (hV_y) \\ c^2 \mu_x \overline{\partial}_x (h+z) \\ c^2 \mu_y \overline{\partial}_y (h+z) \end{pmatrix}_{i,j} - \frac{\delta c_{\text{max}}}{2} \begin{pmatrix} [(\overline{\partial}_x)^2 + (\overline{\partial}_y)^2](h+z) \\ (\overline{\partial}_x)^2 (hV_x) \\ (\overline{\partial}_y)^2 (hV_y) \end{pmatrix}_{i,j}$$
(4)

Modified PDE for the surface waves discretization:

$$\begin{cases} \frac{\partial h}{\partial t} + \nabla \cdot \mathbf{Q} = c \left[\frac{\Delta x}{2} \frac{\partial^2}{\partial x^2} + \frac{\Delta y}{2} \frac{\partial^2}{\partial y^2} + c \Delta t \varphi_1 \Delta \right] h \\ \frac{\partial Q}{\partial t} + c^2 \nabla h = c \left[\operatorname{diag} \left(\frac{\Delta x}{2} \frac{\partial^2}{\partial x^2}, \frac{\Delta y}{2} \frac{\partial^2}{\partial y^2} \right) + c \Delta t \varphi_1 \nabla \otimes \nabla \right] Q \end{cases}$$

$$(5)$$

If $(h, hV)^T \in \mathcal{E} + O(Fr)$, in blue = $O(Fr^{-1})$, in red = O(Fr).

A first order scheme

Proposition 2

Neglecting $\nabla \cdot Q$ in (5), the resulting system admits solutions satisfying

 $U^0 \in \mathcal{E} \Rightarrow \|U - U_{\mathcal{E}}\|_{L^2} = O(\mathsf{Fr}) \quad and \quad \lim_{\mathsf{Fr} \to 0} (\|\partial_x Q_x\|_{L^2} + \|\partial_y Q_y\|_{L^2})(\tau) = 0$

for $\Delta t, \tau$ scale independent. The near steady condition isn't verified.

Figure: Steady vortex over non flat bottom, 100×100 mesh, Fr = 10^{-2} .

Mathieu Rigal

Low Froude regime and implicit kinetic schemes for the Saint-Venant system

A first order scheme

Proposition 3

Consider a modified PDE $(\partial_t + L)U = (R_{\Delta t} + R_{\delta})U$, with $R_{\Delta t}$, R_{δ} the time and spatial errors of the scheme. We always have $\mathcal{E} \subset \ker R_{\Delta t}$.

 \Rightarrow Any lack of near steady property is due to the spatial error.

Simple fix: increase order in space so that $R_{\delta} \ll R_{\Delta t}$.

Figure: Improved results when replacing $L^{Rusanov}$ by second order centered differences L^*

Mathieu Rigal

Low Froude regime and implicit kinetic schemes for the Saint-Venant system

Comparing second order schemes

Finally we compare second order schemes

- In time: ARS-(2,2,2);
- For $\nabla \cdot H$: HLL + MUSCL;
- For L we compare between: centered 2nd order L^{*}, modified 2nd order L^b, centered 4th order L[#];

 R_{δ}^{\star} not negligible compared to $R_{\Delta t}^{\text{ARS}}$. Nevertheless, the near steady condition is satisfied for Δt scale independent.

$$U^0 \in \mathcal{E} \Rightarrow ||U - U^0||_{L^2} = O(\mathsf{Fr})$$

The modified PDEs for L^{\flat} , L^{\sharp} satisfy the exact steady condition

$$U^0 \in \mathcal{E} \Rightarrow \|U - U^0\|_{L^2} = 0.$$

Comparing second order schemes

Mathieu Rigal

Low Froude regime and implicit kinetic schemes for the Saint-Venant system

Implicit kinetic schemes

In collaboration with Chourouk El Hassanieh and Jacques Sainte-Marie

Preliminary contribution from Antonin Leprevost

We turn to 1D Saint-Venant system

$$\begin{cases} \partial_t h + \partial_x h u = 0 \\ \partial_t h u + \partial_x (h u^2 + \frac{g}{2} h^2) = -ghz' \end{cases}$$
(SV)

Convenient vector notation $\partial_t U + \partial_x F(U) = S(U, z)$ with $U = (h, hu)^T$.

- Positivity of the water height $h(t, \cdot) \ge 0 \forall t$;
- Stationary state $h + z \equiv \text{Cst}, u \equiv 0$;
- Entropy-entropy flux pair (η, G) defined by

$$\eta(U,z) = \frac{hu^2}{2} + \frac{gh^2}{2} + ghz, \quad G(U,z) = \left(\eta(U,z) + \frac{gh^2}{2}\right)u$$

and satisfying the **entropy inequality** $\partial_t \eta(U, z) + \partial_x G(U, z) \le 0$;

Goal: satisfy these properties at the discrete level

Mathieu Rigal

Low Froude regime and implicit kinetic schemes for the Saint-Venant system

Idea: work at finer scale by introducing the particle distribution $f(t, x, \xi)$.

- \rightarrow Particles velocity $\xi \in \mathbb{R}$ as a new variable
- \rightarrow Macroscopic quantities of interest recovered by integration

$$U_f(t,x) = \int_{\mathbb{R}} {\binom{1}{\xi}} f(t,x,\xi) \, \mathrm{d}\xi$$

Boltzmann-like kinetic equation: $\underbrace{\partial_t f + \xi \partial_x f}_{\text{linear transport}} = \underbrace{Q[f](t, x, \xi)/\varepsilon}_{\text{collision operator}}$

Gibbs equilibrium: $f \in \ker Q \Leftrightarrow f = M(U_f, \xi) \stackrel{\text{def}}{=} \frac{1}{g\pi} \sqrt{(2gh - (\xi - u)^2)_+)}$

The Maxwellian $M(U,\xi)$ satisfies the **moment relations**

$$\int_{\mathbb{R}} {\binom{1}{\xi}} M(U,\xi) \, \mathrm{d}\xi = U, \quad \int_{\mathbb{R}} \xi {\binom{1}{\xi}} M(U,\xi) \, \mathrm{d}\xi = F(U) \tag{M}$$

Kinetic formalism

Lemma 1 (Audusse et al. 2016)

U is a weak solution of (SV) iff $M(U,\xi)$ verifies

$$\partial_t M + \xi \partial_x M - g z' \partial_\xi M = \mu(t, x, \xi) \tag{KR}$$

with $\int_{\mathbb{R}} (1,\xi)^T \mu(t, x, \xi) d\xi = 0$ for a.e. (t, x).

Kinetic representation (KR) obtained from Boltzman eq. in the limit $\varepsilon \to 0$. Introduce BGK operator $Q[f] = M(U_f, \xi) - f$ and replace (KR) with BGK splitting

$$\begin{cases} \partial_t f = (M(U_f, \xi) - f)/\varepsilon & \xrightarrow{\varepsilon \to 0} \\ \partial_t f + \xi \partial_x f = 0 & \xrightarrow{\varepsilon \to 0} & \text{Solve} & \begin{cases} \partial_t f + \xi \partial_x f = 0 \\ f^0 = M(U_f^0(x), \xi) \end{cases} \end{cases}$$

First we consider a flat bottom ($z \equiv Cst$).

Piecewise constant approximation $f_i^n(\xi) \approx \frac{1}{\Delta x} \int_{C_i} f(t^n, x, \xi) d\xi$, $1 \le i \le N$.

Explicit first order upwind scheme

$$\frac{f_i^{n+1} - f_i^n}{\Delta t} + \frac{\xi}{\Delta x} \left(\mathbbm{1}_{\xi < 0} \left(f_{i+1}^n - f_i^n \right) + \mathbbm{1}_{\xi > 0} \left(f_i^n - f_{i-1}^n \right) \right) = 0$$
(6)

with initialization $f_i^n = M(U_i^n, \xi)$.

Macroscopic rewritting by integrating (6) against $(1,\xi)^T$

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} + \frac{1}{\Delta x} \left(F(U_i^n, U_{i+1}^n) - F(U_{i-1}^n, U_i^n) \right) = 0$$

with kinetic flux $F(U_L, U_R) = \int_{\xi < 0} \xi \begin{pmatrix} 1 \\ \xi \end{pmatrix} M(U_R, \xi) d\xi + \int_{\xi > 0} \xi \begin{pmatrix} 1 \\ \xi \end{pmatrix} M(U_L, \xi) d\xi.$

We study the implicit version of the previous scheme.

$$\frac{f_i^{n+1} - f_i^n}{\Delta t} + \frac{\xi}{\Delta x} \left(\mathbbm{1}_{\xi < 0} \left(f_{i+1}^{n+1} - f_i^{n+1} \right) + \mathbbm{1}_{\xi > 0} \left(f_i^{n+1} - f_{i-1}^{n+1} \right) \right) = 0$$
(7)

Define the vector $f^n = (f_1^n, f_2^n, \dots, f_N^n)^T \in (\mathbb{R}_+)^N$ and $\sigma = \Delta t / \Delta x$. Then (7) $\Leftrightarrow (\mathbf{I} + \sigma \mathbf{L}) f^{n+1} = f^n + \sigma B^{n+1}$ with

$$\mathbf{L} = |\xi| \begin{pmatrix} 1 & -\mathbb{1}_{\xi < 0} & & 0 \\ -\mathbb{1}_{\xi > 0} & 1 & -\mathbb{1}_{\xi < 0} & & \\ & \ddots & \ddots & \ddots & \\ & & -\mathbb{1}_{\xi > 0} & 1 & -\mathbb{1}_{\xi < 0} \\ 0 & & & -\mathbb{1}_{\xi > 0} & 1 \end{pmatrix}_{N \times N} , \quad B^{n+1} = |\xi| \begin{pmatrix} M_0^{n+1} \,\mathbb{1}_{\xi > 0} \\ 0 \\ \vdots \\ 0 \\ M_{N+1}^{n+1} \,\mathbb{1}_{\xi < 0} \end{pmatrix}_N$$

In practice, ghost cell contribution B^{n+1} unknown \rightarrow substitute it by B^n .

Mathieu Rigal

Discrete entropy inequality and positivity

Do we satisfy a discrete counterpart to $\partial_t \eta + \partial_x G \leq 0$?

Kinetic entropy $H(f, z, \xi) = \frac{\xi^2}{2}f + \frac{g^2\pi^2}{6}f^3 + gzf$

Lemma 2 (Perthame and Simeoni 2001)

 $\begin{array}{ll} \forall U, & \int_{\mathbb{R}} H(M(U,\xi),z,\xi) \, \mathrm{d}\xi = \eta(U,z), & \int_{\mathbb{R}} \xi H(M(U,\xi),z,\xi) \, \mathrm{d}\xi = G(U,z). \\ \text{Besides } M(U,\cdot) \text{ minimizes } f \mapsto \int_{\mathbb{R}} H(f(\xi),z,\xi) \, \mathrm{d}\xi \text{ under constraint } U_f = U. \end{array}$

Proposition 1 (Audusse et al. 2016)

Under the CFL $\sigma|\xi| \le 1$, the explicit kinetic scheme (6) satisfies $h_i^{n+1} \ge 0$ together with an inequality of the form $\eta(U_i^{n+1}) \le \eta(U_i^n) - \sigma(G_{i+1/2}^n - G_{i-1/2}^n)$.

Proof: rewrite (6) as $f_i^{n+1} = (1 - \sigma |\xi|)M_i^n + \sigma |\xi|M_{i\pm 1}^n$ (convex combination)

Also $\eta_i^{n+1} = \int_{\mathbb{R}} H(M_i^{n+1},\xi) \, \mathrm{d}\xi \leq \int_{\mathbb{R}} H(f_i^{n+1},\xi) \, \mathrm{d}\xi \leq \int_{\mathbb{R}} (1-\sigma|\xi|) H_i^n + \sigma|\xi| H_{i\pm 1}^n \, \mathrm{d}\xi$

Compare with implicit scheme:

Proposition 2

 $\forall \Delta t > 0$, the implicit kinetic scheme (7) satisfies $h_i^{n+1} \ge 0$ together with an equality of the form $\eta(U_i^{n+1}) = \eta(U_i^n) - \sigma(\widetilde{G}_{i+1/2}^{n+1} - \widetilde{G}_{i-1/2}^{n+1}) + D_i$ with $D_i \le 0$.

Proof:

- Matrix (I + σL) is monotone and RHS has positive components.
- Regarding the entropy dissipation, multiply (7) by $\partial_1 H(f_i^{n+1},\xi)$ and use

$$\partial_1 H(b,\xi)(b-a) = H(b,\xi) - H(a,\xi) + \frac{g^2 \pi^2}{6} (2b+a)(b-a)^2$$

to obtain

$$\frac{H_{i}^{n+1}-H_{i}^{n}}{\Delta t}+\frac{\xi}{\Delta x}(H_{i+1/2}^{n+1}-H_{i-1/2}^{n+1})=\widetilde{D}_{i}(\xi)\leq 0$$

Implicit kinetic schemes

Practical implementation and numerical results

We know $(\mathbf{I} + \sigma \mathbf{L})^{-1}$, but cannot compute $\int_{\mathbb{R}} {\binom{1}{\xi}} (\mathbf{I} + \sigma \mathbf{L})^{-1} M d\xi$ where

$$M(U,\xi)=\frac{1}{g\pi}\sqrt{\left(2gh-(\xi-u)^2\right)_+}$$

Substitute M with a simpler Maxwellian satisfying the moment relations (M)

$$\widetilde{M}(U,\xi) = \frac{h}{2\sqrt{3}c} \mathbb{1}_{|\xi-u| \le \sqrt{3}c}, \quad c = \sqrt{\frac{gh}{2}}$$

 \rightarrow Unlike *M*, \widetilde{M} doesn't minimize $\int_{\mathbb{R}} H(\cdot, \xi) d\xi$;

 \rightarrow as a consequence, we loose the discrete entropy inequality...

 \rightarrow ... but the nonlinear implicit update can be rewritten explicitly;

Mathieu Rigal

Hydrostatic reconstruction

Discretize source term in (SV)
$$\begin{cases} \partial_t h + \partial_x hu = 0\\ \partial_t hu + \partial_x (hu^2 + \frac{g}{2}h^2) = -ghz \end{cases}$$

Problem: how to preserve lakes at rest $h + z \equiv \text{Cst}$, $u \equiv 0$?

- Upwinding introduces diffusion on h: $F_h(U_j, U_{j+1}) F_h(U_{j-1}, U_j) \neq 0$
- Pressure variation should balance with source term: $\partial_x \left(\frac{g}{2}h^2\right) = -ghz'$

Hydrostatic reconstruction

$$h_{i} = h_{i+1/2-} + h_{i+1/2+} + h_{i+1/2+} + h_{i+1/2-} = (h_{i} + Z_{i} - Z_{i+1/2})_{+} + h_{i+1/2+} = (h_{i+1} + Z_{i+1} - Z_{i+1/2})_{+} + h_{i+1/2+} = (h_{i+1} + Z_{i+1} - Z_{i+1/2})_{+} + \widetilde{U}_{i+1/2-} = h_{i+1/2-} \begin{pmatrix} 1 \\ u_{i} \end{pmatrix}, \quad \widetilde{U}_{i+1/2+} = h_{i+1/2+} \begin{pmatrix} 1 \\ u_{i+1} \end{pmatrix}$$

Hydrostatic reconstruction

The numerical flux is modified as follows

$$\begin{aligned} \mathcal{F}_{i+1/2-} &= F(\widetilde{U}_{i+1/2-},\widetilde{U}_{i+1/2+}) + \frac{g}{2}(h_i^2 - h_{i+1/2-}^2) \begin{pmatrix} 0\\1 \end{pmatrix} \\ \mathcal{F}_{i-1/2+} &= F(\widetilde{U}_{i-1/2-},\widetilde{U}_{i-1/2+}) + \frac{g}{2}(h_i^2 - h_{i-1/2+}^2) \begin{pmatrix} 0\\1 \end{pmatrix} \end{aligned}$$

Over lakes at rest, $\widetilde{U}_{i+1/2-} = \widetilde{U}_{i+1/2+} \rightarrow$ no more diffusion on *h*. Kinetic interpretation:

$$\begin{split} &\int_{\mathbb{R}} \begin{pmatrix} 1\\ \xi \end{pmatrix} (\xi - u_i) (M_i - M_{i+1/2-}) \, \mathrm{d}\xi = \begin{pmatrix} 0\\ \frac{g}{2} (h_i^2 - h_{i+1/2-}^2) \end{pmatrix}, \quad M_{i+1/2-} = M(\widetilde{U}_{i+1/2-}, \xi) \\ &\int_{\mathbb{R}} \begin{pmatrix} 1\\ \xi \end{pmatrix} (\xi - u_i) (M_i - M_{i-1/2+}) \, \mathrm{d}\xi = \begin{pmatrix} 0\\ \frac{g}{2} (h_i^2 - h_{i-1/2+}^2) \end{pmatrix}, \quad M_{i-1/2+} = M(\widetilde{U}_{i-1/2+}, \xi) \end{split}$$

Implicit kinetic schemes

Hydrostatic reconstruction

Interfacial Maxwellian $M_{i+1/2} = M(\widetilde{U}_{i+1/2+},\xi)\mathbb{1}_{\xi<0} + M(\widetilde{U}_{i+1/2-},\xi)\mathbb{1}_{\xi>0}.$

Explicit kinetic scheme with hydrostatic reconstruction reads

$$\frac{f_i^{n+1} - f_i^n}{\Delta t} + \frac{\xi}{\Delta x} (M_{i+1/2}^n - M_{i-1/2}^n) + \frac{1}{\Delta x} (\xi - u_i^n) [M_{i-1/2+}^n - M_{i+1/2-}^n] = 0$$
(8)

Proposition 3 (Audusse et al. 2016)

Scheme (8) admits the discrete entropy inequality

$$\eta(U_i^{n+1}) \leq \eta(U_i^n) - \sigma(\widetilde{G}_{i+1/2}^n - \widetilde{G}_{i-1/2}^n) + D_i, \quad D_i \geq 0$$

where the error term D_i can be positive.

Hydrostatic reconstruction

Improve the stability by considering implicit version

$$\frac{f_i^{n+1} - f_i^n}{\Delta t} + \frac{\xi}{\Delta x} (M_{i+1/2}^{n+1} - M_{i-1/2}^{n+1}) + \frac{1}{\Delta x} (\xi - u_i^{n+1}) [M_{i-1/2+}^{n+1} - M_{i+1/2-}^{n+1}] = 0 \quad (9)$$

Issue: nonlinear implicit update which cannot be computed exactly. Instead we approximate f_i^{n+1} by the iterative process

$$(1+\alpha)f_i^{k+1} = f_i^n + \alpha f_i^k - \sigma \xi (M_{i+1/2}^k - M_{i-1/2}^k) + \sigma (\xi - u_i^k)[M_{i+1/2}^k - M_{i-1/2+}^k]$$
(10)

Proposition 4

We have $h_i^{k+1} \ge 0$ assuming $\sigma |\xi| \le \alpha + M_i^0 / M_i^k$ holds for any $\xi \in \text{supp } M^k$.

Hydrostatic reconstruction

Proposition 5

The iterative process (10) satisfies the macroscopic entropy inequality

$$\eta(U_i^{k+1}, z_i) \leq \eta(U_i^n, z_i) - \sigma(\widetilde{G}_{i+1/2}^k - \widetilde{G}_{i-1/2}^k) + D_i^k,$$

where D_i^k becomes negative from some rank assuming (10) converges.

Proposition 6

Assume (10) keeps U_i^{k+1} in $\{(h, hu)^T, \delta \le h \le K_1, |u| \le K_2\}$ for all k. There exists $C(K_1, K_2, 1/\delta)$ such that $\sigma \le C$ implies the convergence of $(f_i^k)_{k\in\mathbb{N}}$ to f_i^{n+1} solution of (9). Numerical tests

Total energy $\int_{\Omega} \eta \, dx$ shoud decrease in time due to **entropy inequality**.

Mathieu Rigal

Low Froude regime and implicit kinetic schemes for the Saint-Venant system

Implicit kinetic schemes

Numerical tests

Mathieu Rigal

Low Froude regime and implicit kinetic schemes for the Saint-Venant system

Conclusion and perspectives

IMEX Runge-Kutta schemes for the low Froude regime

- Stability analysis;
- Refined criteria to ensure near steady updates for surface waves eq.;
- Standard 2nd order discretization leads to good results;

Perspectives: go beyond 2nd order, study dispersion error...

Implicit kinetic schemes

- Without bathymetry, positivity and entropy inequality obtained unconditionally;
- Kinetic interpretation of the hydrostatic reconstruction requires iterative strategy;
- Positivity and entropy inequality hold under CFL;

Perspectives: improve convergence proof? 2D version of implicit scheme?

Mathieu Rigal