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Introduction

Why are we interested in geophysical flows?

@ water management (quality, availability);
o forecast natural disasters, mitigate their consequences;
@ understand interplay between ocean dynamics and

— the weather;
— climate change;
— coastline erosion;

— natural resources (marine energy, seafood);
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Introduction

A "simple" nonlinear model: the Saint-Venant system

The 2D Saint-Venant system reads:

% +V-(hV) =0
s g (SV)
S(V) £V (V@ V) + V(§h2) — —ghVz

Cref

Rigid bottom
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Introduction

A "simple" nonlinear model: the Saint-Venant system

Important properties

hyperbolicity;
positivity of the water height;
conservation of the water height (and discharge if Vz = 0);

°
°

@ existence of non trivial steady states;

@ entropy inequality d:n(U, z) + V - G(U, z) < 0 — energy dissipation;
o

as surface waves travel faster, solutions become incompressible;

Interest of implicit methods — better stability?

"ability to preserve approximation in some domain of physical validity"
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IMEX methods for the low Froude regime



Low Froude regime and IMEX methods
Dimensionless form

V]| particles velocity
Reference Froude number: Fr ~

Jah ~ surface waves velocity

Rescaling the quantities of interest, a dimensionless writting for (SV) is

oh
(PFr)

O hv)+V- (Ve V)+lv(h—2)——lhw
ot Fe \2/) Fp2

@ Projecting along n € S2, eigenvalues are A(U;n) = V - n+ Vh/Fr.
@ Usual explicit CFL reads At ~ §/(24max) = O(Frd), with 6 the mesh res.
@ In coastal flows, we consistently have Fr ~ 1072,

— We need asymptotic stability (At = O(9)).
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Low Froude regime and IMEX methods
Linear wave splitting

Split (Pr) into slow and fast dynamics: ;U + V- H(U,z) + L(U,z) =0

Ideally we would like
@ U= (h,hV)T is the vector of conserved variables;
@ both operators V - H and L should be hyperbolic;
@ V. Hwill be treated explicitly and should have bounded eigenvalues;
@ L will be treated implicitly and should be linear;
@ Hydrostatic equilibrium should be in the kernel of V- Hand L;
@ Positivity;

— difficult to satisfy everything at once
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Low Froude regime and IMEX methods
Linear wave splitting

Use same splitting as
Bispen et al. 2014 “IMEX Large Time Step Finite Volume Methods for Low Froude Number

Shallow Water Flows.”

Set L such that ;U + L(U, z) = 0 is the linearized of (P ) around (-z,0),
then define Hsuchthat V- H(U,z) =V - F(U) - S(U,z) - L(U, z2)

V- (hV) 0

L(U’Z)=(;—;V(h+z))’ HU.2) = (hV@ V+2F—2(h+z)2I2)

Eigenvalues are given by
AUsn)=j(V-n), je{0,1,2)
Vne§?
A (U;n) = kv=z/Fr, ke{-1,0,1}
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Low Froude regime and IMEX methods

Implicit-Explicit Runge-Kutta methods

Time discretization: Implicit-Explicit Runge-Kutta

51 0 Cq{ | a1

Colan O Co | @21 a2

Cs|8s1 82 -+ 0 Cs | ds1  @as2 ass
by b bs by b bs
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Low Froude regime and IMEX methods
L2-stability

Set z = Cst and focus on the surface waves system (9; + L)U = 0.

Assuming periodic boundary conditions, we conserve the energy

E[U](t) ”h”Lz T2 ||hV”L2 T2 C= \/__Z/Fr-

What about the numerical approximation?

Definition 1 (Modified PDE, Warming and Hyett 1974)

"A modified PDE aims at describing the qualitative behaviour of a scheme
by incorporating some of its truncation error into the original PDE."

More precisely, if U solves the p-th order modified PDE we have

10(At, ) - | < CAtP*2

dlscrete

L2-stability criteria: E[U]’ < O.
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Low Froude regime and IMEX methods
L2-stability

Proposition 1 (Runge-Kutta modified PDE and L 2-stability)

When discretized in time by a p-th order RK scheme (A, b), the surface
waves system admits the following (p + 1)-th order modified PDE

(@ + L)U = opAP(~LYP U + (ppt — AP (-LIPPU (1)

with p = bTAPT — 1/(p + 1)L.
The energy E is strictly dissipated by (1) if either one of the below holds

@ piseven and (—1)P/?[gps1 — @p] > O;
@ pisodd and (-1)P*/2p, < 0;

Sketch of the proof: perform U - (1) and use integration by parts to find

(U,L2*'U)2 =0, (U, L2*2U), 2 has the sign of (—1)%*!
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Low Froude regime and IMEX methods

L2-stability
Name Type | Order | L2-stability
Forward Euler Explicit 1 No
Heun Explicit 2 No
Midpoint Explicit 2 No
Backward Euler Implicit 1 Yes
Crank-Nicolson Implicit 2 Inconclusive
Implicit ARS-(2,2,2) | Implicit 2 Yes
Implicit JIN-(2,2,2) Implicit 2 Yes

Table: Applying various Runge-Kutta schemes to the surface waves equation.
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Low Froude regime and IMEX methods

Asymptotic consistency and limiting system

Asymptotic consistency: a scheme P should Py —— 5 P,

. . . L L . F 0
remain consistent in the vanishing limit. - T -
. T T
— Consistency error needs to stay bounded. S w
. o . . F 0
— Mimic qualitative behavior of solutions. Psrr ————— Pso

Limiting system derived formally through the asymptotic expansion:
f(t, X, y; Fr) = fioy(t, X, ¥) + Fr (8, x, y) + Fr? fio) (£, x, ) + O(Fr®) , f=h,V
Plug into (Prr) and isolate terms with same Froude powers

@ Start with the momentum equation to obtain V(h) + z) = Vhi1) = 0
@ For periodic boundary cond., the mass equation yields V - (hV) ) = 0
© The momentum equation gives d; Vo) + (Vo) - V) V(o) + Vhz) = 0
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Low Froude regime and IMEX methods

Asymptotic consistency and limiting system

Defining W < {(h, V) : T2 - R®, V(h +2) =0, V- (hV) = 0}, we have

vt >0, (h(t,-), V(t,)) e W
(Po)
V+(V-V)V+VN=0
Remark 1 (Incompressible-like space)
When Vz = 0, W becomes the space of incompressible states.

Definition 2 (Space of well prepared data)

h h
W, £ Frk( (k)) :T? > R®, ( (0)) €W, Vhy) = o} 2
° {Z Vio) " T Vo v @

keN

The limit (Pr) — (Po) has been proved rigorously for well prepared data
Klainerman and Majda 1982 “Compressible and Incompressible Fluids”
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Low Froude regime and IMEX methods

Limiting system and low Froude accuracy

Theorem 1 (Schochet 1994, “Fast singular limits of hyperbolic PDEs.”)

Let z = Cst. The distance in (L?(T?))® between a solution of (Pr;) and that
of (Po) remains a O(Fr) if it is so at initial time.

Similar result obtained when linearizing (Pr;) around (—-z, V*)

h . hl (-zV-V
atMJr(v .V)[V}Jr(l:r_gw) =0 3)
Hodge decomposition: (L?(T?))% = & &+ with & = (L3(T?))° n'W
Theorem 2 ( Dellacherie 2010)

Let U be a solution of (3) in (L?(T?))%, and denote by Us its orthogonal
projection onto &. Then 0;:Ug + (V* - V)Ug = 0 and the compressible
energy Eg: = Fr?|lh — hgll?, + |V - Vgll2, is constant in time.
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Low Froude regime and IMEX methods

Limiting system and low Froude accuracy

Define characteristic y : (t, x, y) = (x — tVy,y — tV}). Theorem 2 implies
Ih° = hglle = O(Fr®) - [ 1Ih = hg o ll2(t > 0) = O(FF?)
VO = VIl = O(Fr) IV = V2 o ¥liLa(t > 0) = O(FF)

We want the scheme to mimic this behavior — study its modified PDE.

Theorem 3 (Refinement of Dellacherie’s criteria)
Let the linear PDE ;U + ¥ U = 0 be well-posed on (L?(T?))3. To have

VU e (L3(T?))%,  |IU° - WllL2 = O(Fr) = |IU = U2 o yll.2 = O(FF)

it is sufficient to check that U° € & = ||U — U° o y|,2 = O(F).

Simple proof using the triangle inequality

HU +FU =0

IU = U oylle < 11U~ U'llgz + IU" = Ug o ¥l 2, { U'(t=0) = U2
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Low Froude regime and IMEX methods

Limiting system and low Froude accuracy

To summarize, when V* = 0 and y(t, ) = id:

@ Near incompressible states (e.g. well prepared data) should behave
as near steady states;

@ ltis sufficient to check that the linear modified PDE keeps any
incompressible data constant in time up to a O(Fr);

@ We will apply this criteria in (h, hV)-coordinates instead of (h, V);

In practice we work with Fourier coefficients, remarking that

UesoUes ¥ {(,%)ezﬁ(z?;@), F(k¢0)=0andk.hA\/=o}

— The modified PDE becomes an ODE §;U Ult, k) = Ak )U(t, k).
— U € Eis a steady state if Yk U(k) € ker A(k).
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Low Froude regime and IMEX methods
A first order scheme

First consider the following first order discretization over a cartesian mesh
@ Intime: IMEX Euler;
@ In space: HLL for V - H, Rusanov for L;

uxdx(hV) +1yy (V) 5 ([@Bx) +(@y))(h +2)
I Pusanov 2y dy(h +2) - ;"‘X (0x)2(hVy) (4)
uydyh+z) ), @)*(hVy)

Modified PDE for the surface waves discretization:

oh Ax & Dy &

4V — Atp1Alh

itV a=clT et ay2 TR | -
o , . Ax P Ay &

S +C°Vh= C[dlag(?ﬁ, > ay2)+ cAte1V e V]Q

If (h, V)T € & + O(Fr), in blue = O(Fr™"), in red = O(F).
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Low Froude regime and IMEX methods

A first order scheme

Proposition 2
Neglecting V - Q in (5), the resulting system admits solutions satisfying

U e&= U= Ugll2 = OFr) and Aim (110x Qxllcz + 119y Qylli2)(7) = O

for At, T scale independent. The near steady condition isn’t verified.

Discharge y-component

‘ ’ i

° ° ° °
1 0 1/2 1 0 1/2 1 0 1/2

Discharge z-component

1/2
0
1/2
0
1/2
1/2

Figure: Steady vortex over non flat bottom, 100 x 100 mesh, Fr = 1072,
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Low Froude regime and IMEX methods

A first order scheme

Proposition 3

Consider a modified PDE (0; + L)U = (Rat + Rs)U, with Rat, Rs the time
and spatial errors of the scheme. We always have & C ker Rp;.

= Any lack of near steady property is due to the spatial error.
Simple fix: increase order in space so that Rs < Ra:.

Discharge z-component Discharge y-component
o o
) ) . . . . . .
= s £ s £ s £ o
o T o T
o s - ) -
0 1/2 1 0 1/2 1 0 1/2 1 0 1/2 1

Figure: Improved results when replacing LRUS2°V by second order centered
differences L*
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Low Froude regime and IMEX methods
Comparing second order schemes

Finally we compare second order schemes
@ Intime: ARS-(2,2,2);
@ ForV.H: HLL + MUSCL;

@ For L we compare between:
centered 2" order L*, modified 2" order L", centered 4" order L¥;

R} not negligible compared to RAT. Nevertheless, the near steady
condition is satisfied for At scale independent.

We&=||U- U2 =O(Fr)
The modified PDEs for L°, L* satisfy the exact steady condition

Wes=|U-U2=0.
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Low Froude regime and IMEX methods

Comparing second order schemes

Experimental order of convergence CPU time = f(||h — hexactll.?)
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Implicit kinetic schemes

In collaboration with Chourouk El Hassanieh and Jacques Sainte-Marie

Preliminary contribution from Antonin Leprevost



Implicit kinetic schemes
Recall of important properties

We turn to 1D Saint-Venant system

dth +dxhu =0
(SV)

dthu + dx(hu? + $h?) = —ghz’

Convenient vector notation d;U + dxF(U) = S(U, z) with U = (h, hu).

@ Positivity of the water height h(t,) > 0 Vt;
@ Stationary state h + z = Cst, u = 0;
@ Entropy-entropy flux pair (r, G) defined by

hu?  gh? gh?
n(U.2) = -+ = +ghz. G(U.2) = (n(U. 2) + T)u
and satisfying the entropy inequality o;n(U, z) + 0xG(U, z) < 0;

Goal: satisfy these properties at the discrete level
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Implicit kinetic schemes
Kinetic formalism

Idea: work at finer scale by introducing the particle distribution f(t, x, &).
— Particles velocity £ € R as a new variable

— Macroscopic quantities of interest recovered by integration

Uf(t,x)=L(;) f(t, x, &) dé

Boltzmann-like kinetic equation: 0;f + £0xf = Q[f](t, x,&)/e
———— ————

linear transport  collision operator

Gibbs equilibrium: f € ker Q & f = M(Ur,¢) £ & L J(2gh - - u)2)+

The Maxwellian M(U, &) satisfies the moment relatlons

f(f) W(L.&a; = U, f() (U,8)de = F(U) (M)

Mathieu Rigal Low Froude regime and implicit kinetic schemes for the Saint-Venant system



Implicit kinetic schemes
Kinetic formalism

Lemma 1 (Audusse et al. 2016)

U is a weak solution of (SV) iff M(U, &) verifies
M + E0xM — gz’ 0:M = pu(t, x, €) (KR)

with [ (1,€)"u(t, x,£)dé = 0 for a.e. (t, x).

Kinetic representation (KR) obtained from Boltzman eq. in the limit € — O.
Introduce BGK operator Q[f] = M(U;, &) — f and replace (KR) with BGK
splitting

of = (M(Up&) ~Nle oo it +£0xf =0
——  Solve
Oif +E0xf =0 fO = M(LP(x), &)
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Implicit kinetic schemes
Explicit kinetic scheme

First we consider a flat bottom (z = Cst).
Piecewise constant approximation f(£) ~ 2~ fci f(t", x,£)dé, 1 < i < N.

Explicit first order upwind scheme

L

i

T+ (el = 1) + Leso(f7 = 174)) = 0 ©)
with initialization 7 = M(U, &).
Macroscopic rewritting by integrating (6) against (1,¢)7

Uin+1 _ Un 1
At Ax

(F(UP. UZ,) - F(UL,, UD)) = 0

with kinetic flux F(U, Ug) = [, , & ( ) (Up. &) dé + [, o & ( )M(UL,f)df-
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Implicit kinetic schemes

Implicit kinetic scheme

We study the implicit version of the previous scheme.

fin+1 B fin ‘f n+1 n+1 fn+1 fn+1 7
—Qr * Ao (Leco(5" = 1171 + Lo (£~ £257)) = 0 (7)
Define the vector " = (f, f,..., f7)" € (R,)N and o = At/Ax.

Then (7) & (1+ oL)f™! = 7 + oB™" with

1 -l 0 ME+ 1o
“lso 1 —leco 0
L = 4] . B™ =4
—leso 1 —Ie<o 0
0 —Leso T s MRI:11 le<o)y

In practice, ghost cell contribution B™' unknown — substitute it by B".
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Implicit kinetic schemes

Discrete entropy inequality and positivity

Do we satisfy a discrete counterpart to din7 + 9xG < 07?

Kinetic entropy H(f, z,£) = %zf + %ﬁ + gzf

Lemma 2 (Perthame and Simeoni 2001)

YU, [ HIM(U,¢), 2.£) dé = n(U, 2), &fH (U, &), z,&)dé = G(U, 2).
Besides M(U, -) minimizes f +— ﬁQ H(f(&), z, £) A€ under constraint Ur = U.

A

Proposition 1 (Audusse et al. 2016)

Under the CFL o|é| < 1, the explicit kinetic scheme (6) satisfies hi”+1 >0

together with an inequality of the form n(U™') < n(UP) - (G, 2~ G, 12)-

Proof: rewrite (6) as f“” (1 = aleNM? + orléIM?., (convex combination)

Also ™! = [ HM™M', &) dé < [ H(f™!,£)dé < [ (1 - olé)HP + oléHLL, dé
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Implicit kinetic schemes

Discrete entropy inequality and positivity

Compare with implicit scheme:

Proposition 2

VAt > 0, the implicit kinetic scheme (7) satisfies h,.”+1 > 0 together with an
equality of the form n(U*') = n(U]) — o(G[}}}}, — GI!,,) + Di with D; < 0.

Proof:
@ Matrix (I + L) is monotone and RHS has positive components.
@ Regarding the entropy dissipation, multiply (7) by 94 H(fi””,f) and use

9271'2
d1H(b,£)(b - a) = H(b,£) - H(a,£) + =—(2b + a)(b - a)*
to obtain
H+1 — D —~
IA—tI + é(Hﬁrﬂ/z - Hf—+11/2) =Di(6) <0
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Implicit kinetic schemes

Practical implementation and numerical results

We know (I+oL)™", but cannot compute [, (;) (I + oL)~"Mdé& where

1
MU, &) = — [(2gh — (€ — u)?
(U,) gﬂ\/( gh— (¢ - u)?),
Substitute M with a simpler Maxwellian satisfying the moment relations (M)

h
oo Jon

_ h
=—71 =
M( U, é‘:) 2 \/§C lE-ul< \/509 >

— Unlike M, M doesn’t minimize & H(-, &) d¢;
— as a consequence, we loose the discrete entropy inequality...

— ... but the nonlinear implicit update can be rewritten explicitly;
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Implicit kinetic schemes

Hydrostatic reconstruction

oth+0xhu= 0

Discretize source term in (SV) { dihu + O (i + ghz) - _ghz'

Problem: how to preserve lakes at rest h + z = Cst, u = 0?
@ Upwinding introduces diffusion on h: Fu(U;, Ujs1) — Fr(Ui=1,U)) # 0

@ Pressure variation should balance with source term: 9,($h?) = —ghz’

Hydrostatic reconstruction

Ziy1/2 = Max(zj, Zj,1)
hi histjo— | | Bis1j2s hiv1j2- = (hi + Zi — Zjs1)2)+

A hisq

hivty2+ = (Bist + Zist = Ziv1/2)+

1 1\ — 1
I } i _=h; _ , . = h;
L Uis1/2 i+1/2 (Ui) Uis1/2+ = Div1/2+ (Ui+1)

Interface i+ 1/2
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Implicit kinetic schemes
Hydrostatic reconstruction
The numerical flux is modified as follows

Firtj2- = F(Uis1/2=, Uis1)24) +

N Q@

0
2 =120 ()
0
=122

Over lakes at rest, Ui,1/2- = Uiy1 /2. — no more diffusion on h.

Fitj2e = F(Ui-1j2—, Ui_1/2.) +

N |Q

Kinetic interpretation:

0 —
L(;) (& = )M = Misa/2-) dé = (g(hl? —h2 ))’ Mii1/2- = M(Up1/2-,€)

i+1/2—

1 0 -
fR(f) (& — u)(M; = Mi_q2,) d& = (g(hiz _p2 )), Mi-1 /2. = M(Uj-1/2+,€)

i-1/2+

Mathieu Rigal
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Implicit kinetic schemes

Hydrostatic reconstruction

Interfacial Maxwellian M, 1/2 = M(Ui,1/2:, &) 1<o + M(Ui1/2-, €) Lgso.

Explicit kinetic scheme with hydrostatic reconstruction reads

f’_n+1 —fn f

I

’
Tar T ax M = Mlye) + 7 (€ UM o, = My o 120 (8)

Proposition 3 (Audusse et al. 2016)
Scheme (8) admits the discrete entropy inequality

n(U™") < p(UP) = o(Gly ;o = GILy o) + Diy D120

where the error term D; can be positive.
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Implicit kinetic schemes

Hydrostatic reconstruction

Improve the stability by considering implicit version

frel g 1

# + E(Mﬂrﬂ/z - Min—+11/2) + E(f - U:"7+1)[Min—+11/2+ - iT11/2—] =0 (9)
Issue: nonlinear implicit update which cannot be computed exactly.
Instead we approximate f,.”+1 by the iterative process

(1+ a)fik+1 =1+ a’fik - Uf(Mile/z - M:k—1/2) +o(é - uf‘)[l\/l,-’:”? - M;i1/2+]

(10)

Proposition 4

We have hf*! > 0 assuming ol¢| < a + M? /MK holds for any ¢ € supp M.
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Implicit kinetic schemes
Hydrostatic reconstruction

Proposition 5
The iterative process (10) satisfies the macroscopic entropy inequality

(U, z) < p(U, zi) = (G 1 — G4 5) + D,

where D;‘ becomes negative from some rank assuming (10) converges.

Proposition 6

Assume (10) keeps U1 in{(h,hu)T, & < h < K1, |ul < Kz} for all k.
There exists C(Ky, Ko, 1/6) such that o < C implies the convergence of
(f&)ka to ™1 solution of (9).
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Implicit kinetic schemes

Numerical tests

Total energy fQ ndx shoud decrease in time due to entropy inequality.

le—3 Total energy dissipation
0.5
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Implicit kinetic schemes

Numerical tests

Free surface elevation Discharge
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Conclusion and perspectives

IMEX Runge-Kutta schemes for the low Froude regime
@ Stability analysis;
@ Refined criteria to ensure near steady updates for surface waves eq.;
@ Standard 2™ order discretization leads to good results;

Perspectives: go beyond 2" order, study dispersion error...

Implicit kinetic schemes

@ Without bathymetry, positivity and entropy inequality obtained
unconditionally;

@ Kinetic interpretation of the hydrostatic reconstruction requires
iterative strategy;

@ Positivity and entropy inequality hold under CFL;

Perspectives: improve convergence proof? 2D version of implicit scheme?
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