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Abstract. Let T be a C0–contraction on a separable Hilbert space. We assume
that IH − T ∗T is compact. For a function f holomorphic in the unit disk D
and continuous on D, we show that f(T ) is compact if and only if f vanishes
on σ(T ) ∩ T, where σ(T ) is the spectrum of T and T the unit circle. If f is
just a bounded holomorphic function on D, we prove that f(T ) is compact if
and only if lim

n→∞
‖Tnf(T )‖ = 0.
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1. Introduction

Let H be a separable Hilbert space, and L(H) the space of all bounded operators
on H. For T ∈ L(H), we denote by σ(T ) the spectrum of T . The Hardy space H∞

is the set of all bounded and holomorphic functions on D.
A contraction T on H is called a C0–contraction (or in class C0) if it is

completely nonunitary and there exists a nonzero function θ ∈ H∞ such that
θ(T ) = 0. A contraction T is said essentially unitary if IH − T ∗T is compact,
where IH is the identity map on H.

Let T be a C0–contraction on H, and let H∞(T ) = {f(T ) : f ∈ H∞} be the
subspace of the commutant {T}′ = {A ∈ L(H) : AT = TA} obtained from the
Nagy–Foias functional calculus. In this note we study the question of when H∞(T )
contains a nonzero compact operator. B. Sz–Nagy [12] proved that {T}′ contains
always a nonzero compact operator, but there exists a C0–contraction T such that
zero is the unique compact operator contained in H∞(T ). Nordgreen [15] proved
that if T is an essentially unitary C0–contraction then H∞(T ) contains a nonzero
compact operator. There are also results about the existence of smooth operators
(finite rank, Schatten–von Neuman operators) in H∞(T ) (see [17]). It is also shown

The research of the authors was supported in part by ANR–Dynop and ANR–Frab.



2 K.Kellay and M.Zarrabi

in Atzmon’s paper [2], that if T is a cyclic completely nonunitary contraction such
that σ(T ) = {1} and

log ‖T−n‖ = O(
√
n), n→∞, (1)

then T − IH is compact.
Let A(D) be the usual disc algebra, i.e. the space of all functions which are

holomorphic on D and continuous on D. In section 2 we study the compactness of
f(T ) when f is in the disk algebra. We show (Corollary 2.3), that, if f ∈ A(D)
and if T is a C0–contraction which is essentially unitary, then f(T ) is compact if
and only if f vanishes on σ(T ) ∩ T. The main tool used in the proof of this result
is the Beurling-Rudin theorem about the characterization of the closed ideals of
A(D) . We show also for a large class of C0–contractions that the condition “ T
is essentially unitary” is necessary in the above result (Proposition 2.5) . As a
consequence, we obtain that if T is a contraction that is annihilated by a nonzero
function in A(D) and if T is cyclic (or, more generally, of finite multiplicity) then
f(T ) is compact whenever f ∈ A(D) and f vanishes on σ(T ) ∩ T. We notice that
an invertible contraction with spectrum reduced to a single point and satisfying
condition (1) is necessarily annihilated by a nonzero function in A(D) (see [1]).

In section 3, we are interested in the compactness of f(T ) when f ∈ H∞.
With the help of the corona theorem, we show (Theorem 3.4) that if T is an
essentially unitary C0-contraction, then f(T ) (f ∈ H∞) is compact if and only
if lim
n→∞

‖Tnf(T )‖ = 0. We obtain in particular that if lim
r→1−

f(rz) = 0 for every

z ∈ σ(T ) ∩ T, then f(T ) is compact.

2. Compactness of f(T ) with f in the disk algebra

Let T be a contraction on H. We will introduce some definitions and results we will
need later. We call λ ∈ σ(T ) a normal eigenvalue if it is an isolated point of σ(T )
and if the corresponding Riesz projection has finite rank. We denote by σnp(T ) the
set of all normal eigenvalues of T . The weakly continuous spectrum of T is defined
by σwc(T ) = σ(T ) \ σnp(T ) (see [14], p. 113). Let us suppose that T is essentially
unitary and D \ σ(T ) 6= ∅. There exists a unitary operator U and a compact
operator K such that T = U + K and then we have σwc(T ) = σwc(U) ⊂ T (see
[5], [7] Theorem 5.3, p. 23 and [14] p. 115). It follows from the above observation
that if D \ σ(T ) 6= ∅ then T is essentially unitary if and only if T ∗ is essentially
unitary too.

Let I be a closed ideal of A(D) . We denote by SI the inner factor of I,
that is the greatest inner common divisor of all nonzero functions in I (see [8] p.
85). We set Z(I) =

⋂
f∈I
{ζ ∈ T : f(ζ) = 0} and J (E) = {f ∈ A(D) : f|E = 0},

for E ⊂ T. We shall need the Beurling-Rudin theorem [16] (see also [8] p. 85)
about the structure of closed ideals of A(D) , which states that every closed ideal
I ⊂ A(D) has the form

I = SIH∞ ∩ J
(
Z(I)

)
.
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Theorem 2.1. Let T be essentially unitary and D \ σ(T ) 6= ∅. If f ∈ A(D) and
f = 0 on σ(T ) ∩ T then f(T ) is compact.

For the proof of this theorem we need the following lemma.

Lemma 2.2. Let T1, T2 be two contractions on H such that T1−T2 is compact and
f ∈ A(D) . Then f(T1) is compact if and only if f(T2) is compact too.

Proof. There exists a sequence (Pn)n of polynomials such that ‖f − Pn‖∞ → 0,
where ‖·‖∞ is the supremum norm on T. For every n, Pn(T2)−Pn(T1) is compact.
By the von Neumann inequality, we have ‖(f −Pn)(Ti)‖ ≤ ‖f −Pn‖∞ , i = 1 or 2.
So ‖(f − Pn)(Ti)‖ → 0 and

f(T2)− f(T1) = lim
n→+∞

(
Pn(T2)− Pn(T1)

)
.

Thus f(T2)− f(T1) is compact. �

Proof of Theorem 2.1. Without loss of generality, we may assume that σ(T ) ∩ T
is of Lebesgue measure zero. We set I = {f ∈ A(D) : f(T ) compact}; I is a
closed ideal of A(D) . We have to prove that SI = 1 and Z(I) ⊂ σ(T ) ∩ T. As
observed above, we have T = U + K, where U is unitary and K is compact.
Moreover, we have σwc(U) = σwc(T ) ⊂ σ(T ) ∩ T ([14] p. 115), and since σnp(U)
is countable, we see that σ(U) is a subset of T of Lebesgue measure zero. By
Fatou theorem ([8] p. 80), there exists a nonzero outer function f ∈ A(D) which
vanishes exactly on σ(U). Since U is unitary we have f(U) = 0. By Lemma
2.2, f(T ) is compact. This shows that SI = 1 and Z(I) ⊂ σ(U). We shall now
show that Z(I) ⊂ σwc(U). Let λ ∈ σnp(U); λ is an isolated point in σ(U) and
Ker (U − λIH) is of finite dimension. There exists f ∈ A(D) with f(λ) 6= 0 and
f|σ(U)\{λ} = 0. Since (z − λ)f(z) = 0 for every z ∈ σ(U), and since U is unitary,
(U −λIH)f(U) = 0 and f(U)(H) ⊂ Ker (U −λIH). So f(U) is of finite rank, thus
f(U) is compact and by Lemma 2.2, f(T ) is compact. Hence λ 6∈ Z(I). We deduce
that Z(I) ⊂ σwc(U) ⊂ σ(T ) ∩ T, which finishes the proof.

Corollary 2.3. Let T be an essentially unitary C0–contraction and let f ∈ A(D) .
Then f(T ) is compact if and only if f = 0 on σ(T ) ∩ T.

Proof. It follows from Theorem 2.1 that if f vanishes on σ(T ) ∩ T then f(T ) is
compact. Let now f ∈ A(D) such that f(T ) be compact. Let BT denote a maximal
commutative Banach algebra that contains IH and T . We have σ(T ) = σBT

(T ),
where σBT

(T ) is the spectrum of T in BT . Let λ ∈ σ(T ) ∩ T. There exists a
character χλ on BT such that χλ(T ) = λ and have

|f(λ)| = |λnf(λ)| = |χλ(Tnf(T ))| ≤ ‖Tnf(T )‖. (2)

Since T is in class C0, Tnx → 0 whenever x ∈ H, (see [11] Proposition III.4.1).
Thus for every compact set C ⊂ H,

lim
n→∞

sup
x∈C
‖Tnx‖ = 0.



4 K.Kellay and M.Zarrabi

For C = f(T )(B), where B = {x ∈ H : ‖x‖ ≤ 1}, we get lim
n→∞

‖Tnf(T )‖ = 0.

Then it follows from (2) that f(λ) = 0. �

Let T ∈ L(H). The spectral multiplicity of T is the cardinal number given
by the formula

µT = inf card L,

where card L is the cardinal of L and where the infimum is taken over all nonempty
sets L ⊂ H such that span{TnL; n ≥ 0} is dense in H. Notice that µT = 1 means
that T is cyclic.

Corollary 2.4. Let T be a contraction on H with µT < +∞. Assume that there
exists a nonzero function ϕ ∈ A(D) such that ϕ(T ) = 0. Then f(T ) is compact
for every function f ∈ A(D) that vanishes on σ(T ) ∩ T.

Proof. There exists two orthogonal Hilbert subspaces Hu and H0 that are invariant
by T , such that H = Hu ⊕H0, Tu = T|Hu

is unitary and T0 = T|H0 is completely
nonunitary (see [11], Theorem 3.2, p. 9 or [13], p. 7). Then T0 is clearly in class
C0 and we have µT0 < +∞. By Proposition 4.3 of [4], IH0 − T ∗0 T0 is compact. Let
f ∈ A(D) , with f|σ(T )∩T = 0. Since σ(T0) ⊂ σ(T ), it follows from Theorem 2.1
that f(T0) is compact. Now, since Tu is unitary and σ(Tu) ⊂ σ(T ) ∩ T, we get
f(Tu) = 0. Thus f(T ) is compact. �

Remark. Let T be a cyclic contraction satisfying condition (1) and with finite
spectrum, σ(T ) = {λ1, · · · , λn} ⊂ T. By Theorem 2 of [1], there exists analytic
function f =

∑
n≥0 anz

n, f 6= 0, such that
∑
n |an| < +∞ and f(T ) = 0. Then,

it follows from Corollary 2.4 that (T − λ1IH) · · · (T − λnIH) is compact. Thus we
obtain a new proof Corollary 4.3 of [2], mentioned in the introduction.

Now we conclude this section by showing that the hypothesis ”essentially
unitary“ in Theorem 2.1 and Corollary 2.3 is necessary for a large class of con-
tractions. Let us first make some observations. An operator T ∈ L(H) is called
essentially normal if TT ∗ − T ∗T is compact, see [5]. Notice that if T is a C0–
contraction which is essentially unitary then T ∗ is essentially unitary too. Hence
T is essentially normal since IH − T ∗T and IH − TT ∗ are both compacts.

Proposition 2.5. Let T ∈ L(H) be a C0–contraction which is essentially normal
and such that σ(T )∩T is of Lebesgue measure zero. Assume that f(T ) is compact
for every f ∈ A(D) vanishing on σ(T ) ∩ T. Then T is essentially unitary.

Proof. Let K(H) be the ideal of compact operators on H and π : L(H) →
L(H)/K(H) be the canonical surjection. The essential spectrum σess(T ) of T is
defined as the spectrum of π(T ) in the Banach algebra L(H)/K(H). By Fatou the-
orem [8], there exists a non zero outer function f ∈ A(D) such that f|σ(T )∩T = 0.
By hypothesis f(T ) is compact. Let λ ∈ D, the functions z − λ and f have no
common zero in D. So there exists two functions g1 and g2 in A(D) such that
(z − λ)g1 + fg2 = 1. Thus (T − λIH)g1(T ) + f(T )g2(T ) = IH , which shows that
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π(T )−λπ(IH) is invertible in L(H)/K(H). Hence σess(T ) ⊂ σ(T )∩T. By Rudin-
Carleson-Bishop theorem (see [8] p. 81), there exists a function h ∈ A(D) such
that z = h(z), z ∈ σ(T ) ∩ T. Since π(T ) is a normal element in the C∗–algebra
L(H)/K(H), we get π(T )∗ = h(π(T )). On the other hand we have 1− h(z)z = 0
on σ(T ) ∩ T, which implies that π(IH)− π(T )∗π(T ) = π(IH)− h(π(T ))π(T ) = 0.
Therefore IH − T ∗T is compact. �

3. The case of f(T ) for f ∈ H∞

In this section we are interested in the compactness of f(T ) when f ∈ H∞. The
spectrum of an inner function θ is defined by

σ(θ) = clos θ−1(0) ∪ suppµ,

where µ is the singular measure associated to the singular part of θ and suppµ
is the closed support of µ (see [13], p. 63). Notice that for a C0–contraction T on
H, there exists a minimal inner function mT that annihilates T , i.e mT (T ) = 0,
and we have σ(T ) = σ(mT ), (see [11, 13]). As a consequence of Corollary 2.3 we
prove the following result which was first established by Moore–Nordgren in [9],
Theorem 1. The proof given in [9] uses a result of Muhly [10]. We give here a
simple proof.

Lemma 3.1. Let T be an essentially unitary C0–contraction on H, and let θ be
an inner function that divides mT (i.e mT /θ ∈ H∞) and such that σ(θ) ∩ T is of
Lebesgue measure zero. Let ψ ∈ A(D) be such that ψ|σ(θ)∩T = 0. If φ = ψmT /θ,
then φ(T ) is compact.

In particular the commutant {T}′ contains a nonzero compact operator.

Proof. Let Θ = mT /θ and T1 = T |H1 be the restriction of T to H1 := Θ(T )H; T1

is a C0–contraction with mT1 = θ. Moreover IH1 − T ∗1 T1 = PH1(IH − T ∗T )|H1 is
compact, where PH1 is the orthogonal projection from H onto H1. By Corollary
2.3, ψ(T1) is compact and thus φ(T ) = ψ(T )Θ(T ) = ψ(T1)Θ(T ) is also compact.

�

Lemma 3.2. Let T be an essentially unitary C0–contraction on H, and let θ be an
inner function that divides mT and such that σ(θ)∩T is of Lebesgue measure zero.
Let f ∈ H∞ be such that lim

n→+∞
Tnf(T ) = 0. If φ = fmT /θ, then φ(T ) is compact.

Proof. By the Rudin-Carleson-Bishop theorem, for every nonnegative integers n,
there exists hn ∈ A(D) such that zn = hn(z), z ∈ σ(θ) ∩ T and ‖hn‖∞ = 1,
where ‖.‖∞ is the supremum norm on T (see [8] p. 81). We have, for every n,
1− znhn(z) = 0, z ∈ σ(θ)∩T, then by Lemma 3.1, (IH − Tnhn(T ))

(
mT /θ

)
(T ) is

compact. So φ(T )− Tnf(T )hn(T )
(
mT /θ

)
(T ) is also compact. Since

‖Tnf(T )hn(T )
(
mT /θ

)
(T )‖ ≤ ‖Tnf(T )‖ −→ 0,

we deduce that φ(T ) is compact. �
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We need the following lemma about inner functions, which is actually con-
tained in the proof of the main result of [15]. For the completeness we include here
its proof.

Lemma 3.3. Let Θ be an inner function. There exists a sequence (θn)n of inner
functions such that for each n, θn divides Θ, σ(θn)∩T is of Lebesgue measure zero
and for every z ∈ D, lim

n→+∞
θn(z) = Θ(z).

Proof. Let Bn be the Blaschke product constructed with the zeros of Θ contained
in the disk {|z| ≤ 1− 1/n}, each zero of Θ repeated according to its multiplicity.
Let ν be the singular measure defining the singular part of Θ. There exists F ⊂ T
of Lebesgue measure zero such that ν(F ) = ν(T). There exists a sequence (Kn)n
of compact subsets of F such that lim

n→∞
ν(Kn) = ν(F ). For every n, let νn be the

measure on T defined by νn(E) = ν(E ∩ Kn). Denote by Sn the singular inner
function associated to the measure νn. We only need now to take θn = BnSn. �

We are now able to prove the main result of this section.

Theorem 3.4. Let T be an essentially unitary C0–contraction on H. Let f ∈ H∞.
Then the following assertions are equivalent.

(1) lim
n→∞

‖Tnf(T )‖ = 0,

(2) f(T ) is compact.

Proof. (1) ⇒ (2) : Let Θ = mT and let (θn)n be the sequence of inner functions
given by Lemma 3.3. For every n, we set ϕn = mT /θn. Since (ϕn)n is a bounded
sequence in H∞ and ϕn(z) −→ 1 (z ∈ D), (ϕn)n converges to 1 uniformly on
compact subsets of D. Then, for every k, there exists a nonnegative integer nk
such that |ϕnk

(z)| ≥ e−1 for |z| ≤ k/(k + 1). Clearly the sequence (nk)k may be
chosen to be strictly increasing. Moreover for |z| ≥ k/(k + 1), we have |zk| ≥ e−1.
So

e−1 ≤ |zk|+ |ϕnk
(z)| ≤ 2, z ∈ D.

By he corona theorem ([13], p. 66), there exists two functions h1,k and h2,k in H∞

such that
zkh1,k + ϕnk

h2,k = 1 and |h1,k|, |h2,k| ≤ C,
where C is an absolute constant. Thus we get

T kf(T )h1,k(T ) + f(T )ϕnk
(T )h2,k(T ) = f(T ),

and
‖T kf(T )h1,k(T )‖ ≤ C‖T kf(T )‖ −→ 0.

Consequently, f(T ) = lim
k→∞

f(T )ϕnk
(T )h2,k(T ) in the L(H) norm. Finally f(T ) is

compact since by Lemma 3.2, for every k, f(T )ϕnk
(T )h2,k(T ) is compact.

(2)⇒ (1) : see the proof of Corollary 2.3. �
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As in Corollary 2.4, Theorem 3.4 holds for a C0-contraction with µT < +∞.

Let T be a contraction on H. It is shown by Esterle, Strouse and Zouakia
in [6], that if f ∈ A(D) , then lim

n→∞
‖Tnf(T )‖ = 0 if and only if f vanishes on

σ(T ) ∩ T. So Theorem 3.4 implies Corollary 2.3. Now, if T is completely non
unitary, Bercovici showed in [3] that if f ∈ H∞ and lim

r→1−
f(rz) = 0, for every

z ∈ σ(T ) ∩ T, then lim
n→∞

‖Tnf(T )‖ = 0. So it follows immediately from this fact
and Theorem 3.4 the following result.

Corollary 3.5. Let T be an essentially unitary C0–contraction on H. Let f ∈ H∞.
If for every z ∈ σ(T ) ∩ T, lim

r→1−
f(rz) = 0, then f(T ) is compact.
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