Compact operators that commute with a contraction

K. Kellay and M. Zarrabi

Abstract. Let T be a C_0 -contraction on a separable Hilbert space. We assume that $I_H - T^*T$ is compact. For a function f holomorphic in the unit disk \mathbb{D} and continuous on $\overline{\mathbb{D}}$, we show that f(T) is compact if and only if f vanishes on $\sigma(T) \cap \mathbb{T}$, where $\sigma(T)$ is the spectrum of T and \mathbb{T} the unit circle. If f is just a bounded holomorphic function on \mathbb{D} , we prove that f(T) is compact if and only if $\lim_{n\to\infty} ||T^n f(T)|| = 0.$

Mathematics Subject Classification (2000). Primary 47B05; Secondary 30H05. Keywords. Compact operators, essentially unitary, commutant.

1. Introduction

Let H be a separable Hilbert space, and $\mathcal{L}(H)$ the space of all bounded operators on H. For $T \in \mathcal{L}(H)$, we denote by $\sigma(T)$ the spectrum of T. The Hardy space H^{∞} is the set of all bounded and holomorphic functions on \mathbb{D} .

A contraction T on H is called a C_0 -contraction (or in class C_0) if it is completely nonunitary and there exists a nonzero function $\theta \in \mathrm{H}^{\infty}$ such that $\theta(T) = 0$. A contraction T is said essentially unitary if $I_H - T^*T$ is compact, where I_H is the identity map on H.

Let T be a C_0 -contraction on H, and let $\mathrm{H}^{\infty}(T) = \{f(T) : f \in \mathrm{H}^{\infty}\}$ be the subspace of the commutant $\{T\}' = \{A \in \mathcal{L}(H) : AT = TA\}$ obtained from the Nagy-Foias functional calculus. In this note we study the question of when $\mathrm{H}^{\infty}(T)$ contains a nonzero compact operator. B. Sz-Nagy [12] proved that $\{T\}'$ contains always a nonzero compact operator, but there exists a C_0 -contraction T such that zero is the unique compact operator contained in $\mathrm{H}^{\infty}(T)$. Nordgreen [15] proved that if T is an essentially unitary C_0 -contraction then $\mathrm{H}^{\infty}(T)$ contains a nonzero compact operator. There are also results about the existence of smooth operators (finite rank, Schatten-von Neuman operators) in $\mathrm{H}^{\infty}(T)$ (see [17]). It is also shown

The research of the authors was supported in part by ANR-Dynop and ANR-Frab.

in Atzmon's paper [2], that if T is a cyclic completely nonunitary contraction such that $\sigma(T) = \{1\}$ and

$$\log \|T^{-n}\| = O(\sqrt{n}), \ n \to \infty, \tag{1}$$

then $T - I_H$ is compact.

Let $\mathcal{A}(\mathbb{D})$ be the usual disc algebra, i.e. the space of all functions which are holomorphic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$. In section 2 we study the compactness of f(T) when f is in the disk algebra. We show (Corollary 2.3), that, if $f \in \mathcal{A}(\mathbb{D})$ and if T is a C_0 -contraction which is essentially unitary, then f(T) is compact if and only if f vanishes on $\sigma(T) \cap \mathbb{T}$. The main tool used in the proof of this result is the Beurling-Rudin theorem about the characterization of the closed ideals of $\mathcal{A}(\mathbb{D})$. We show also for a large class of C_0 -contractions that the condition "Tis essentially unitary" is necessary in the above result (Proposition 2.5). As a consequence, we obtain that if T is a contraction that is annihilated by a nonzero function in $\mathcal{A}(\mathbb{D})$ and if T is cyclic (or, more generally, of finite multiplicity) then f(T) is compact whenever $f \in \mathcal{A}(\mathbb{D})$ and f vanishes on $\sigma(T) \cap \mathbb{T}$. We notice that an invertible contraction with spectrum reduced to a single point and satisfying condition (1) is necessarily annihilated by a nonzero function in $\mathcal{A}(\mathbb{D})$ (see [1]).

In section 3, we are interested in the compactness of f(T) when $f \in \mathrm{H}^{\infty}$. With the help of the corona theorem, we show (Theorem 3.4) that if T is an essentially unitary C_0 -contraction, then f(T) ($f \in \mathrm{H}^{\infty}$) is compact if and only if $\lim_{n\to\infty} ||T^n f(T)|| = 0$. We obtain in particular that if $\lim_{r\to 1^-} f(rz) = 0$ for every $z \in \sigma(T) \cap \mathbb{T}$, then f(T) is compact.

2. Compactness of f(T) with f in the disk algebra

Let T be a contraction on H. We will introduce some definitions and results we will need later. We call $\lambda \in \sigma(T)$ a normal eigenvalue if it is an isolated point of $\sigma(T)$ and if the corresponding Riesz projection has finite rank. We denote by $\sigma_{np}(T)$ the set of all normal eigenvalues of T. The weakly continuous spectrum of T is defined by $\sigma_{wc}(T) = \sigma(T) \setminus \sigma_{np}(T)$ (see [14], p. 113). Let us suppose that T is essentially unitary and $\mathbb{D} \setminus \sigma(T) \neq \emptyset$. There exists a unitary operator U and a compact operator K such that T = U + K and then we have $\sigma_{wc}(T) = \sigma_{wc}(U) \subset \mathbb{T}$ (see [5], [7] Theorem 5.3, p. 23 and [14] p. 115). It follows from the above observation that if $\mathbb{D} \setminus \sigma(T) \neq \emptyset$ then T is essentially unitary if and only if T^* is essentially unitary too.

Let \mathcal{I} be a closed ideal of $\mathcal{A}(\mathbb{D})$. We denote by $S_{\mathcal{I}}$ the inner factor of \mathcal{I} , that is the greatest inner common divisor of all nonzero functions in \mathcal{I} (see [8] p. 85). We set $Z(\mathcal{I}) = \bigcap_{f \in \mathcal{I}} \{\zeta \in \mathbb{T} : f(\zeta) = 0\}$ and $\mathcal{J}(E) = \{f \in \mathcal{A}(\mathbb{D}) : f_{|E} = 0\}$, for $E \subset \mathbb{T}$. We shall need the Beurling-Rudin theorem [16] (see also [8] p. 85)

about the structure of closed ideals of $\mathcal{A}(\mathbb{D})$, which states that every closed ideal $\mathcal{I} \subset \mathcal{A}(\mathbb{D})$ has the form

$$\mathcal{I} = S_{\mathcal{I}} \mathrm{H}^{\infty} \cap \mathcal{J} \big(Z(\mathcal{I}) \big).$$

Theorem 2.1. Let T be essentially unitary and $\mathbb{D} \setminus \sigma(T) \neq \emptyset$. If $f \in \mathcal{A}(\mathbb{D})$ and f = 0 on $\sigma(T) \cap \mathbb{T}$ then f(T) is compact.

For the proof of this theorem we need the following lemma.

Lemma 2.2. Let T_1, T_2 be two contractions on H such that $T_1 - T_2$ is compact and $f \in \mathcal{A}(\mathbb{D})$. Then $f(T_1)$ is compact if and only if $f(T_2)$ is compact too.

Proof. There exists a sequence $(P_n)_n$ of polynomials such that $||f - P_n||_{\infty} \to 0$, where $||\cdot||_{\infty}$ is the supremum norm on \mathbb{T} . For every n, $P_n(T_2) - P_n(T_1)$ is compact. By the von Neumann inequality, we have $||(f - P_n)(T_i)|| \le ||f - P_n||_{\infty}$, i = 1 or 2. So $||(f - P_n)(T_i)|| \to 0$ and

$$f(T_2) - f(T_1) = \lim_{n \to +\infty} (P_n(T_2) - P_n(T_1))$$

Thus $f(T_2) - f(T_1)$ is compact.

Proof of Theorem 2.1. Without loss of generality, we may assume that $\sigma(T) \cap \mathbb{T}$ is of Lebesgue measure zero. We set $\mathcal{I} = \{f \in \mathcal{A}(\mathbb{D}) : f(T) \text{ compact}\}$; \mathcal{I} is a closed ideal of $\mathcal{A}(\mathbb{D})$. We have to prove that $S_{\mathcal{I}} = 1$ and $Z(\mathcal{I}) \subset \sigma(T) \cap \mathbb{T}$. As observed above, we have T = U + K, where U is unitary and K is compact. Moreover, we have $\sigma_{wc}(U) = \sigma_{wc}(T) \subset \sigma(T) \cap \mathbb{T}$ ([14] p. 115), and since $\sigma_{np}(U)$ is countable, we see that $\sigma(U)$ is a subset of \mathbb{T} of Lebesgue measure zero. By Fatou theorem ([8] p. 80), there exists a nonzero outer function $f \in \mathcal{A}(\mathbb{D})$ which vanishes exactly on $\sigma(U)$. Since U is unitary we have f(U) = 0. By Lemma 2.2, f(T) is compact. This shows that $S_{\mathcal{I}} = 1$ and $Z(\mathcal{I}) \subset \sigma(U)$. We shall now show that $Z(\mathcal{I}) \subset \sigma_{wc}(U)$. Let $\lambda \in \sigma_{np}(U)$; λ is an isolated point in $\sigma(U)$ and $\operatorname{Ker}(U - \lambda I_H)$ is of finite dimension. There exists $f \in \mathcal{A}(\mathbb{D})$ with $f(\lambda) \neq 0$ and $f_{|\sigma(U) \setminus \{\lambda\}} = 0$. Since $(z - \lambda)f(z) = 0$ for every $z \in \sigma(U)$, and since U is unitary, $(U - \lambda I_H)f(U) = 0$ and $f(U)(H) \subset \operatorname{Ker}(U - \lambda I_H)$. So f(U) is of finite rank, thus f(U) is compact and by Lemma 2.2, f(T) is compact. Hence $\lambda \notin Z(\mathcal{I})$. We deduce that $Z(\mathcal{I}) \subset \sigma_{wc}(U) \subset \sigma(T) \cap \mathbb{T}$, which finishes the proof.

Corollary 2.3. Let T be an essentially unitary C_0 -contraction and let $f \in \mathcal{A}(\mathbb{D})$. Then f(T) is compact if and only if f = 0 on $\sigma(T) \cap \mathbb{T}$.

Proof. It follows from Theorem 2.1 that if f vanishes on $\sigma(T) \cap \mathbb{T}$ then f(T) is compact. Let now $f \in \mathcal{A}(\mathbb{D})$ such that f(T) be compact. Let \mathcal{B}_T denote a maximal commutative Banach algebra that contains I_H and T. We have $\sigma(T) = \sigma_{\mathcal{B}_T}(T)$, where $\sigma_{\mathcal{B}_T}(T)$ is the spectrum of T in \mathcal{B}_T . Let $\lambda \in \sigma(T) \cap \mathbb{T}$. There exists a character χ_{λ} on \mathcal{B}_T such that $\chi_{\lambda}(T) = \lambda$ and have

$$|f(\lambda)| = |\lambda^n f(\lambda)| = |\chi_\lambda(T^n f(T))| \le ||T^n f(T)||.$$
(2)

Since T is in class C_0 , $T^n x \to 0$ whenever $x \in H$, (see [11] Proposition III.4.1). Thus for every compact set $C \subset H$,

$$\lim_{n \to \infty} \sup_{x \in C} \|T^n x\| = 0.$$

For $C = \overline{f(T)(\mathbb{B})}$, where $\mathbb{B} = \{x \in H : ||x|| \le 1\}$, we get $\lim_{n \to \infty} ||T^n f(T)|| = 0$. Then it follows from (2) that $f(\lambda) = 0$.

Let $T \in \mathcal{L}(H)$. The spectral multiplicity of T is the cardinal number given by the formula

$$\mu_T = \inf \text{ card } L,$$

where card L is the cardinal of L and where the infimum is taken over all nonempty sets $L \subset H$ such that span $\{T^nL; n \ge 0\}$ is dense in H. Notice that $\mu_T = 1$ means that T is cyclic.

Corollary 2.4. Let T be a contraction on H with $\mu_T < +\infty$. Assume that there exists a nonzero function $\varphi \in \mathcal{A}(\mathbb{D})$ such that $\varphi(T) = 0$. Then f(T) is compact for every function $f \in \mathcal{A}(\mathbb{D})$ that vanishes on $\sigma(T) \cap \mathbb{T}$.

Proof. There exists two orthogonal Hilbert subspaces H_u and H_0 that are invariant by T, such that $H = H_u \oplus H_0$, $T_u = T_{|H_u}$ is unitary and $T_0 = T_{|H_0}$ is completely nonunitary (see [11], Theorem 3.2, p. 9 or [13], p. 7). Then T_0 is clearly in class C_0 and we have $\mu_{T_0} < +\infty$. By Proposition 4.3 of [4], $I_{H_0} - T_0^* T_0$ is compact. Let $f \in \mathcal{A}(\mathbb{D})$, with $f_{|\sigma(T)\cap\mathbb{T}} = 0$. Since $\sigma(T_0) \subset \sigma(T)$, it follows from Theorem 2.1 that $f(T_0)$ is compact. Now, since T_u is unitary and $\sigma(T_u) \subset \sigma(T) \cap \mathbb{T}$, we get $f(T_u) = 0$. Thus f(T) is compact.

Remark. Let T be a cyclic contraction satisfying condition (1) and with finite spectrum, $\sigma(T) = \{\lambda_1, \dots, \lambda_n\} \subset \mathbb{T}$. By Theorem 2 of [1], there exists analytic function $f = \sum_{n\geq 0} a_n z^n$, $f \neq 0$, such that $\sum_n |a_n| < +\infty$ and f(T) = 0. Then, it follows from Corollary 2.4 that $(T - \lambda_1 I_H) \cdots (T - \lambda_n I_H)$ is compact. Thus we obtain a new proof Corollary 4.3 of [2], mentioned in the introduction.

Now we conclude this section by showing that the hypothesis "essentially unitary" in Theorem 2.1 and Corollary 2.3 is necessary for a large class of contractions. Let us first make some observations. An operator $T \in \mathcal{L}(H)$ is called essentially normal if $TT^* - T^*T$ is compact, see [5]. Notice that if T is a C_0 contraction which is essentially unitary then T^* is essentially unitary too. Hence T is essentially normal since $I_H - T^*T$ and $I_H - TT^*$ are both compacts.

Proposition 2.5. Let $T \in \mathcal{L}(H)$ be a C_0 -contraction which is essentially normal and such that $\sigma(T) \cap \mathbb{T}$ is of Lebesgue measure zero. Assume that f(T) is compact for every $f \in \mathcal{A}(\mathbb{D})$ vanishing on $\sigma(T) \cap \mathbb{T}$. Then T is essentially unitary.

Proof. Let $\mathcal{K}(H)$ be the ideal of compact operators on H and $\pi : \mathcal{L}(H) \to \mathcal{L}(H)/\mathcal{K}(H)$ be the canonical surjection. The essential spectrum $\sigma_{ess}(T)$ of T is defined as the spectrum of $\pi(T)$ in the Banach algebra $\mathcal{L}(H)/\mathcal{K}(H)$. By Fatou theorem [8], there exists a non zero outer function $f \in \mathcal{A}(\mathbb{D})$ such that $f_{|\sigma(T)\cap\mathbb{T}} = 0$. By hypothesis f(T) is compact. Let $\lambda \in \mathbb{D}$, the functions $z - \lambda$ and f have no common zero in $\overline{\mathbb{D}}$. So there exists two functions g_1 and g_2 in $\mathcal{A}(\mathbb{D})$ such that $(z - \lambda)g_1 + fg_2 = 1$. Thus $(T - \lambda I_H)g_1(T) + f(T)g_2(T) = I_H$, which shows that $\pi(T) - \lambda \pi(I_H)$ is invertible in $\mathcal{L}(H)/\mathcal{K}(H)$. Hence $\sigma_{ess}(T) \subset \sigma(T) \cap \mathbb{T}$. By Rudin-Carleson-Bishop theorem (see [8] p. 81), there exists a function $h \in \mathcal{A}(\mathbb{D})$ such that $\overline{z} = h(z), \ z \in \sigma(T) \cap \mathbb{T}$. Since $\pi(T)$ is a normal element in the C^* -algebra $\mathcal{L}(H)/\mathcal{K}(H)$, we get $\pi(T)^* = h(\pi(T))$. On the other hand we have 1 - h(z)z = 0 on $\sigma(T) \cap \mathbb{T}$, which implies that $\pi(I_H) - \pi(T)^*\pi(T) = \pi(I_H) - h(\pi(T))\pi(T) = 0$. Therefore $I_H - T^*T$ is compact.

3. The case of f(T) for $f \in H^{\infty}$

In this section we are interested in the compactness of f(T) when $f \in H^{\infty}$. The spectrum of an inner function θ is defined by

$$\sigma(\theta) = \operatorname{clos} \theta^{-1}(0) \cup \operatorname{supp} \mu,$$

where μ is the singular measure associated to the singular part of θ and $\operatorname{supp} \mu$ is the closed support of μ (see [13], p. 63). Notice that for a C_0 -contraction T on H, there exists a minimal inner function m_T that annihilates T, i.e $m_T(T) = 0$, and we have $\sigma(T) = \sigma(m_T)$, (see [11, 13]). As a consequence of Corollary 2.3 we prove the following result which was first established by Moore–Nordgren in [9], Theorem 1. The proof given in [9] uses a result of Muhly [10]. We give here a simple proof.

Lemma 3.1. Let T be an essentially unitary C_0 -contraction on H, and let θ be an inner function that divides m_T (i.e $m_T/\theta \in H^\infty$) and such that $\sigma(\theta) \cap \mathbb{T}$ is of Lebesgue measure zero. Let $\psi \in \mathcal{A}(\mathbb{D})$ be such that $\psi_{|\sigma(\theta)\cap\mathbb{T}} = 0$. If $\phi = \psi m_T/\theta$, then $\phi(T)$ is compact.

In particular the commutant $\{T\}'$ contains a nonzero compact operator.

Proof. Let $\Theta = m_T/\theta$ and $T_1 = T|_{H_1}$ be the restriction of T to $H_1 := \overline{\Theta(T)H}$; T_1 is a C_0 -contraction with $m_{T_1} = \theta$. Moreover $I_{H_1} - T_1^*T_1 = P_{H_1}(I_H - T^*T)|_{H_1}$ is compact, where P_{H_1} is the orthogonal projection from H onto H_1 . By Corollary 2.3, $\psi(T_1)$ is compact and thus $\phi(T) = \psi(T)\Theta(T) = \psi(T_1)\Theta(T)$ is also compact.

Lemma 3.2. Let T be an essentially unitary C_0 -contraction on H, and let θ be an inner function that divides m_T and such that $\sigma(\theta) \cap \mathbb{T}$ is of Lebesgue measure zero. Let $f \in H^\infty$ be such that $\lim_{n \to +\infty} T^n f(T) = 0$. If $\phi = fm_T/\theta$, then $\phi(T)$ is compact.

Proof. By the Rudin-Carleson-Bishop theorem, for every nonnegative integers n, there exists $h_n \in \mathcal{A}(\mathbb{D})$ such that $\overline{z}^n = h_n(z), z \in \sigma(\theta) \cap \mathbb{T}$ and $||h_n||_{\infty} = 1$, where $||.||_{\infty}$ is the supremum norm on \mathbb{T} (see [8] p. 81). We have, for every n, $1 - z^n h_n(z) = 0, z \in \sigma(\theta) \cap \mathbb{T}$, then by Lemma 3.1, $(I_H - T^n h_n(T))(m_T/\theta)(T)$ is compact. So $\phi(T) - T^n f(T)h_n(T)(m_T/\theta)(T)$ is also compact. Since

$$||T^n f(T)h_n(T)(m_T/\theta)(T)|| \le ||T^n f(T)|| \longrightarrow 0,$$

we deduce that $\phi(T)$ is compact.

K.Kellay and M.Zarrabi

We need the following lemma about inner functions, which is actually contained in the proof of the main result of [15]. For the completeness we include here its proof.

Lemma 3.3. Let Θ be an inner function. There exists a sequence $(\theta_n)_n$ of inner functions such that for each n, θ_n divides Θ , $\sigma(\theta_n) \cap \mathbb{T}$ is of Lebesgue measure zero and for every $z \in \mathbb{D}$, $\lim_{n \to +\infty} \theta_n(z) = \Theta(z)$.

Proof. Let B_n be the Blaschke product constructed with the zeros of Θ contained in the disk $\{|z| \leq 1 - 1/n\}$, each zero of Θ repeated according to its multiplicity. Let ν be the singular measure defining the singular part of Θ . There exists $F \subset \mathbb{T}$ of Lebesgue measure zero such that $\nu(F) = \nu(\mathbb{T})$. There exists a sequence $(K_n)_n$ of compact subsets of F such that $\lim_{n\to\infty} \nu(K_n) = \nu(F)$. For every n, let ν_n be the measure on \mathbb{T} defined by $\nu_n(E) = \nu(E \cap K_n)$. Denote by S_n the singular inner function associated to the measure ν_n . We only need now to take $\theta_n = B_n S_n$. \Box

We are now able to prove the main result of this section.

Theorem 3.4. Let T be an essentially unitary C_0 -contraction on H. Let $f \in H^{\infty}$. Then the following assertions are equivalent.

- (1) $\lim_{n \to \infty} ||T^n f(T)|| = 0,$ (2) f(T) is compact.

Proof. (1) \Rightarrow (2) : Let $\Theta = m_T$ and let $(\theta_n)_n$ be the sequence of inner functions given by Lemma 3.3. For every n, we set $\varphi_n = m_T/\theta_n$. Since $(\varphi_n)_n$ is a bounded sequence in H^{∞} and $\varphi_n(z) \longrightarrow 1$ $(z \in \mathbb{D}), (\varphi_n)_n$ converges to 1 uniformly on compact subsets of \mathbb{D} . Then, for every k, there exists a nonnegative integer n_k such that $|\varphi_{n_k}(z)| \ge e^{-1}$ for $|z| \le k/(k+1)$. Clearly the sequence $(n_k)_k$ may be chosen to be strictly increasing. Moreover for $|z| \ge k/(k+1)$, we have $|z^k| \ge e^{-1}$. So

$$e^{-1} \le |z^k| + |\varphi_{n_k}(z)| \le 2, \ z \in \mathbb{D}.$$

By he corona theorem ([13], p. 66), there exists two functions $h_{1,k}$ and $h_{2,k}$ in H^{∞} such that

$$z^k h_{1,k} + \varphi_{n_k} h_{2,k} = 1$$
 and $|h_{1,k}|, |h_{2,k}| \le C$,

where C is an absolute constant. Thus we get

$$T^{k}f(T)h_{1,k}(T) + f(T)\varphi_{n_{k}}(T)h_{2,k}(T) = f(T),$$

and

$$||T^k f(T)h_{1,k}(T)|| \le C ||T^k f(T)|| \longrightarrow 0.$$

Consequently, $f(T) = \lim_{k \to \infty} f(T)\varphi_{n_k}(T)h_{2,k}(T)$ in the $\mathcal{L}(H)$ norm. Finally f(T) is compact since by Lemma 3.2, for every k, $f(T)\varphi_{n_k}(T)h_{2,k}(T)$ is compact.

 $(2) \Rightarrow (1)$: see the proof of Corollary 2.3.

As in Corollary 2.4, Theorem 3.4 holds for a C_0 -contraction with $\mu_T < +\infty$.

Let T be a contraction on H. It is shown by Esterle, Strouse and Zouakia in [6], that if $f \in \mathcal{A}(\mathbb{D})$, then $\lim_{n \to \infty} ||T^n f(T)|| = 0$ if and only if f vanishes on $\sigma(T) \cap \mathbb{T}$. So Theorem 3.4 implies Corollary 2.3. Now, if T is completely non unitary, Bercovici showed in [3] that if $f \in \mathbb{H}^{\infty}$ and $\lim_{r \to 1^-} f(rz) = 0$, for every $z \in \sigma(T) \cap \mathbb{T}$, then $\lim_{n \to \infty} ||T^n f(T)|| = 0$. So it follows immediately from this fact and Theorem 3.4 the following result.

Corollary 3.5. Let T be an essentially unitary C_0 -contraction on H. Let $f \in \mathrm{H}^{\infty}$. If for every $z \in \sigma(T) \cap \mathbb{T}$, $\lim_{r \to 1^-} f(rz) = 0$, then f(T) is compact.

References

- A. Atzmon, Operators which are annihilated by analytic functions and invariant subspaces, Acta Math. 144 (1980), 27–63.
- [2] A. Atzmon, Unicellular and nonunicellular dissipative operators. Acta Sci. Math. (Szeged) 57 (1993), no. 1-4, 45–54.
- [3] H. Bercovici, On the iterates of a completely nonunitary contraction, in: Topics in Operator Theory: Ernest D. Hellinger memorial volume, Operator Theory Adv. Appl. 48, Birkhäusser, Basel, (1990), 185–188.
- [4] H. Bercovici; D. Voiculescu, Tensor operations on characteristic functions of C_0 contractions. Acta Sci. Math. (Szeged) 39 (1977), no. 3-4, 205–231
- [5] L. G. Brown; R. G. Douglas; P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C^{*}-algebras. Proceedings of a Conference on Operator Theory, 58–128. Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973.
- [6] J. Esterle; E. Strouse; F. Zouakia, Theorems of Katznelson-Tzafriri type for contractions. J. Funct. Anal. 94 (1990), no. 2, 273–287.
- [7] I.C. Gohberg; M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, American Mathematical Society, 1969.
- [8] K. Hoffman, Banach spaces of analytic functions. Prentice-Hall, Inc., Englewood Cliffs, N. J. 1962
- [9] B. Moore; E. Nordgren, On transitive algebras containing C₀ operators. Indiana Univ. Math. J. 24 (1974/75), 777–784.
- [10] P. Muhly, Compact operators in the commutant of a contraction, J. Funct. Anal. 8 (1971) 197–224
- [11] B. Sz.-Nagy; C. Foias, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson, 1967.
- [12] B. Sz.-Nagy, On a property of operators of class C_0 , Acta Sci. Math. (Szeged) 36 (1974), 219-220.
- [13] N. K. Nikolski, Treatise on the Shift Operator, Springer, Heidelberg, 1986.
- [14] N. K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 2. Model operators and systems. Mathematical Surveys and Monographs, 93. American Mathematical Society, Providence, RI, 2002.

K.Kellay and M.Zarrabi

- [15] E. A. Nordgren, Compact operators in the algebra generated by essentially unitary C_0 operators, Proc. Amer. Math. Soc. 51 (1975), 159–162.
- [16] W. Rudin, The closed ideals in an algebra of analytic functions, Canadian J. Math., 9 (1957), 426-434.
- [17] P. Vitse, Smooth operators in the commutant of a contraction. Studia Math. 155 (2003), no. 3, 241–263.

K. Kellay

CMI LATP UMR-CNRS 6632 Université de Provence 39, rue F. Joliot-Curie. 13453 Marseille cedex 13. France e-mail: kellay@cmi.univ-mrs.fr

M. Zarrabi

IMB UMR-CNRS 5352 Université de Bordeaux 351, cours de la Libération. F-33405 Talence cedex. France e-mail: Mohamed.Zarrabi@math.u-bordeaux1.fr