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3D Reconstruction from Multiple Views 
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Image segmentation: 

Optimization in Computer Vision 

Geman, Geman ’84,  Blake, Zisserman ‘87,  Kass et al. ’88,   

Mumford, Shah ’89,  Caselles et al. ‘95,  Kichenassamy et al. ‘95,  

Paragios, Deriche ’99,  Chan, Vese ‘01, Tsai et al. ‘01, … 

 
Multiview  stereo reconstruction: 

Faugeras, Keriven ’98,  Duan et al. ‘04,  Yezzi, Soatto ‘03,   

Seitz et al. ‘06,  Hernandez et al. ‘07,  Labatut et al. ’07, … 

 Optical flow estimation: 

Horn, Schunck ‘81,  Nagel, Enkelmann ‘86,  Black, Anandan ‘93, 

Alvarez et al. ‘99,  Brox et al. ‘04,  Baker et al. ‘07,  Zach et al. ‘07,  

Sun et al. ‘08,  Wedel et al. ’09, … 

Non-convex energies 
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Non-convex energy Convex energy 

Non-convex versus Convex Energies 

Some related work:  Brakke ‘95,  Alberti et al. ‘01,  Chambolle ‘01,  

Attouch et al. ‘06,  Nikolova et al. ‘06,  Cremers et al. ‘06,  Bresson et al. ‘07,  

Lellmann et al. ‘08,  Zach et al. ‘08,  Chambolle et al. ’08,  Pock et al. ‘09,  

Zach et al. ’09,  Brown et al. ’10,  Bae et al. ‘10,  Yuan et al. ‘10,… 
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Overview 

Multiview reconstruction 

Stereo reconstruction 

Super-res.textures 

Manifold-valued functions Segmentation 

4D reconstruction 
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Overview 

Multiview reconstruction 

Stereo reconstruction 

Super-res.textures 

Manifold-valued functions Segmentation 

4D reconstruction 
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Optimal solution is the empty set: 

Resort: Local optimization:  Faugeras, Keriven  TIP ’98  

Generative object/background modeling: Yezzi, Soatto ’03,… 

Constrain search space:  Vogiatsis, Torr, Cipolla  CVPR ’05  

Intelligent ballooning:  Boykov, Lempitsky  BMVC ’06  

Segmentation:  Kichenassamy et al. ’95,   Caselles et al. ’95  

3D Reconstruction:  Faugeras, Keriven ’98,   Duan et al. ’04 

Stereo-weighted Minimal Surfaces 



8 Daniel Cremers Convex Relaxation Methods for Computer Vision 

Silhouette Consistent Reconstructions 

Kolev et al., IJCV 2009,  Cremers, Kolev, PAMI 2011 
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Proposition: The set     of silhouette-consistent solutions is convex. 

Σ= 

Silhouette Consistent Reconstructions 

Kolev et al., IJCV 2009,  Cremers, Kolev, PAMI 2011 
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Image data courtesy of Yasutaka Furukawa. 

Reconstruction of Fine-scale Structures 
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Overview 

Multiview reconstruction 

Stereo reconstruction 

Super-res.textures 

Manifold-valued functions Segmentation 

4D reconstruction 
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Surface Evolution to Optimum 
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Super-Resolution Texture Map 

Given all images                           determine the surface color 

back-projection blur & downsample 

* Best Paper 

Award  Goldlücke, Cremers, ICCV ’09, DAGM ’09*, IJCV ‘13 
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Goldlücke, Cremers, ICCV ’09, DAGM ’09*, IJCV ‘13 

Super-Resolution Texture Map 

* Best Paper 

Award  
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Closeup of input image Super-resolution texture 

Super-Resolution Texture Map 

Goldlücke, Cremers, ICCV ’09, DAGM ’09*, IJCV ‘13 
* Best Paper 

Award  
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Kolev, Cremers, ECCV ’08, PAMI 2011 

Reconstructing the Niobids Statues 
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Overview 

Multiview reconstruction 

Stereo reconstruction 

Super-res.textures 

Manifold-valued functions Segmentation 

4D reconstruction 
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Action Reconstruction 

Oswald, Cremers,  ICCV  ‘13  4DMoD Workshop 
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Action Reconstruction 

Oswald, Cremers,  ICCV  ‘13  4DMoD Workshop 
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Action Reconstruction 
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Action Reconstruction 
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Overview 

Multiview reconstruction 

Stereo reconstruction 

Super-res.textures 

Manifold-valued functions Segmentation 

4D reconstruction 
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Example: Stereo 

From Binary to Multilabel Optimization 



24 Daniel Cremers Convex Relaxation Methods for Computer Vision 

Cartesian Currents and Relaxation 

nonconvex data term label regularity 

Pock , Schoenemann, Graber, Bischof, Cremers  ECCV ’08 



25 Daniel Cremers Convex Relaxation Methods for Computer Vision 

Cartesian Currents and Relaxation 

Pock , Schoenemann, Graber, Bischof, Cremers  ECCV ’08 
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convex functional 

Solve          in relaxed space  (                           )  and threshold 

to obtain a globally optimal solution. 

Theorem:    Minimizing        is equivalent to minimizing  

Cartesian Currents and Relaxation 

nonconvex functional 

Pock , Schoenemann, Graber, Bischof, Cremers  ECCV ’08 
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Pock, Cremers, Bischof, Chambolle, SIAM J. on Imaging Sciences ’10  

Let 

be continuous in             and    , and convex in  

Theorem: 

For any function                                we have: 

where     is constrained to the convex set 

Global Optima for Convex Regularizers 
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Pock, Cremers, Bischof, Chambolle, SIAM J. on Imaging Sciences ’10  

The functional            can be minimized by solving the relaxed  

saddle point problem 

Theorem: 

The functional     fulfills a generalized coarea formula: 

As a consequence, we have a thresholding theorem assuring that 

we can globally minimize the functional  

Global Optima for Convex Regularizers 
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Pock, Cremers, Bischof, Chambolle, ICCV ‘09,  Chambolle, Pock ‘10  

Given the saddle point problem 

with close convex sets      and      and linear operator     of norm  

An Efficient Saddle Point Solver 

converges with rate                   to a saddle point for 

The iterative algorithm 
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Evolution to Global Minimum 
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One of two input images 
Depth reconstruction 

Courtesy of Microsoft 

Reconstruction from Aerial Images 
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Reconstruction from Aerial Images 
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Overview 

Multiview reconstruction 

Stereo reconstruction 

Super-res.textures 

Manifold-valued functions Segmentation 

4D reconstruction 
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Potts ’52,   Blake, Zisserman ’87,   Mumford-Shah ’89,   Vese, Chan ’02 

Proposition: With                  , this is equivalent to 

The Minimal Partition Problem 

Chambolle, Cremers, Pock ’08, SIIMS ‘12,  Pock et al. CVPR ’09  

where 
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Input image Lellmann et al. ’08 Zach et al. ’08 our approach 

Proposition:   The proposed relaxation strictly dominates alternative relaxations. 

Test Case: The Triple Junction 

Chambolle, Cremers, Pock ’08, SIIMS ‘12,  Pock et al. CVPR ’09  
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3D min partition inpainting Photograph of a soap film 

Minimal Surfaces in 3D 

Chambolle, Cremers, Pock ’08, SIIMS ‘12,  Pock et al. CVPR ’09  
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Input color image 10 label segmentation 

The Minimal Partition Problem 

Chambolle, Cremers, Pock ’08, SIIMS ‘12,  Pock et al. CVPR ’09  
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Segmentation with Proportion Priors 

Nieuwenhuis, Strekalovskiy, Cremers  ICCV ’13  
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Segmentation with Proportion Priors 

Nieuwenhuis, Strekalovskiy, Cremers  ICCV ’13  

Idea:  Impose a prior on the relative size of object parts 
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Segmentation with Proportion Priors 

Nieuwenhuis, Strekalovskiy, Cremers  ICCV ’13  

with length regularity with proportion prior 
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For                                                           can be written as 

with a convex set 

Mumford, Shah ’89  

Piecewise Smooth Approximation 

Alberti, Bouchitte, Dal Maso ’04 
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piecewise constant piecewise smooth Input image 

Piecewise Smooth Approximation 

Pock, Cremers, Bischof, Chambolle  ICCV ’09  
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inpainted crack tip surface plot fixed boundary values 

The Crack Tip & Open Boundaries 

Pock, Cremers, Bischof, Chambolle  ICCV ’09  
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Strekalovskiy, Chambolle, Cremers, CVPR ‘12 

The Vectorial Mumford-Shah Problem 

with the convex set: 

For                                , we consider the functional 

Proposition:    For                                                    , we have: 
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TV denoised Vectorial Mumford-Shah Input image 

The Vectorial Mumford-Shah Problem 

Strekalovskiy, Chambolle, Cremers, CVPR ‘12 
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Channelwise MS Vectorial MS Input image 

Channelwise versus Vectorial 

Jump set Jump set 
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Channelwise MS Vectorial MS Input image 

Channelwise versus Vectorial 

Strekalovskiy, Chambolle, Cremers, CVPR ‘12 
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Overview 

Multiview reconstruction 

Stereo reconstruction 

Super-res.textures 

Manifold-valued functions Segmentation 

4D reconstruction 
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color image processing 

Functions with Values in a Manifold 

optical flow estimation normal field inpainting 

Cremers, Strekalovskiy, Siims ‘12 

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV ‘13 
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Vectorial Total Variation (                )      

Separate directions, uncoupled (Blomgren, Chan, TIP '98): 

Separate directions, coupled (Sapiro, Ringach, TIP '96): 

Shared direction, coupled (Goldlücke et al., SIIMS '12): 



51 Daniel Cremers Convex Relaxation Methods for Computer Vision 

with a Riemannian manifold      . 

Cremers, Strekalovskiy, Siims ‘12 

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV ‘13 

Total Variation for Functions 

with Values in a Manifold 

Consider the problem 

geodesic distance  

on the manifold 
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Lellmann, Strekalovskiy, Kötter, Cremers, ICCV ‘13 

Total Variation for Functions 

with Values in a Manifold 

Continuous labeling problem with all points of      : 

Proposition:  The pairwise constraints        are equivalent to   

with spectral norm 

linear number of constraints,   respects manifold structure 
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Total Variation for Functions 

with Values in a Manifold 

no orientation bias 

sub-label accuracy  / no grid bias  

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV ‘13 
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Total Variation for Functions 

with Values in a Manifold 

flow with finite labeling flow with continuous labeling 

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV ‘13 
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Total Variation for Functions 

with Values in a Manifold 

noisy normal field  - denoised 

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV ‘13 
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Total Variation for Functions 

with Values in a Manifold 

shading with noisy normal field shading with denoised normals 

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV ‘13 
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Total Variation for Functions 

with Values in a Manifold 

normals on the boundary - inpainted normal field 

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV ‘13 
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Conclusion 

We can express image analysis problems in terms 

of convex functionals. 

We can minimize these functionals using provably 

convergent primal-dual algorithms. 

We can define relaxations for functions with 

values in a manifold using continuous labeling. 

Solutions are independent of initialization and 

either optimal or within a bound of the optimum. 


