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Tomography with sources on a curve

Data: Measurements of the divergent beam transform

Df(y,θ) =

∫ ∞

0
f(y + tθ) dt.

y(s) = source curve.
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Example 1: 2D fan-beam tomography

R
α

s

Θ

 y(s)

y(s) = R(cos(s), sin(s)), Df(y(s),Θ(s,α)) = g(s,α)

(s,α) = "curved detector coordinates".
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Example 2: 3D Helical Tomography

x

w

x̄

y(s)

Source Curve: y(s) =

[

R cos(s), R sin(s),
P

2π
s

]

Let S denote the interior of the helix cylinder. supp(f) ⊂ S.
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Example 2: 3D Helical Tomography

x

w

x̄

y(s)

Which source positions are needed for reconstruction at a
point x?
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π-line and π-interval

x

w

Iπ(x)

y(st)

y(sb) y(s)

A so-called π-line through x intersects the source curve
twice within one turn.
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π-line and π-interval

x

w

Iπ(x)

y(st)

y(sb) y(s)

A so-called π-line through x intersects the source curve
twice within one turn.
For the helix there is a unique π-line through x.
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π-line and π-interval

x

w

Iπ(x)

y(st)

y(sb) y(s)

A π-line through x gives rise to the π-interval
Iπ(x) = [sb(x), st(x)].
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π-line and π-interval

x

w

Iπ(x)

y(st)

y(sb) y(s)

A π-line through x gives rise to the π-interval
Iπ(x) = [sb(x), st(x)].
Sources y(s) with s ∈ Iπ(x) lie on the green arc.
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π-line reconstruction formulas

Definition 1 A π-line reconstruction formula uses for
reconstruction at a point x only data from sources within the
π-interval of x.

x

w

Iπ(x)

y(st)

y(sb) y(s)
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Example: Backprojection-filtration

Define the Hilbert transform of f in direction θ ∈ Sn−1 as

Hθf(x) =
1

π

∫

R

f(x − tθ)

t
dt.

Then

−1

2π

∫

Iπ(x)

1

|x − y(s)|

∂

∂q
Df(y(q),β(s,x))

∣

∣

∣

∣

q=s

ds = Hβ(sb(x),x)f(x)

β(s,x) = unit vector pointing from y(s) to x.

Right-hand side is Hilbert transform along the π-line of x.

Originally due to Gel’fand and Graev (1991). Basis for
backprojection-filtration algorithm (Zou and Pan (2004)).
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Example: Filtered backprojection

f(x) =
−1

2π2

∫

Iπ(x)

1

|x − y(s)|

∫ 2π

0

∂

∂q
Df(y(q),Θ(s,x, γ))

∣

∣

∣

∣

q=s

dγ ds

sin γ

Θ(s,x, γ) = cos(γ)β(s,x) + sin(γ)β⊥(s,x).

β(s,x) = unit vector pointing from y(s) to x.
(Katsevich 02, 04, Katsevich & Kapralov 07)
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Example: Filtered backprojection

f(x) =
−1

2π2

∫

Iπ(x)

1

|x − y(s)|

∫ 2π

0

∂

∂q
Df(y(q),Θ(s,x, γ))

∣

∣

∣

∣

q=s

dγ ds

sin γ

Θ(s,x, γ) = cos(γ)β(s,x) + sin(γ)β⊥(s,x).

β(s,x) = unit vector pointing from y(s) to x.
(Katsevich 02, 04, Katsevich & Kapralov 07)

Both formulas hold in dimensions 2 and 3 for a large family
of source curves.

In dimension 3, β⊥ has to be carefully chosen (Katsevich
02, 04).
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κ-Plane and Katsevich’s formula

x

w

x̄

y(s)
β(s,x)

β⊥(s,x)

κ− plane

f(x) =
−1

2π2

∫

Iπ(x)

1

|x − y(s)|

∫ 2π

0

∂

∂q
Df(y(q),Θ(s,x, γ))

∣

∣

∣

∣

q=s

dγ ds

sin γ

Θ(s,x, γ) = cos(γ)β(s,x) + sin(γ)β⊥(s,x).

On π-line reconstruction formulas in tomography – p. 9/59



Characteristics of π-line formulas

Flexibility in choosing π-lines in 2D.
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Non-uniqueness of π-lines in 2D

In 2 dimensions we lack uniqueness of π-lines. Any line
through x may be chosen as the π-line of x, denoted by
Lπ(x).

x

y(st(x))

y(sb(x))

Iπ(x) may be chosen to correspond to either of the two arcs.
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Example: Orthogonal-long π-lines

Lπ(x) is orthogonal to x and Iπ(x) = [sb(x), st(x)]
corresponds to the longer arc.

y(sb)

y(st)

x

Superior performance for R close to 1!
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Comparison for R=1.01

PI−M5 orthogonal−long

Relerr = 0.094041

 R
 =

 1
.0
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3
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1
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P 
= 
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3,

 Q
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 3
18
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1
Std. Shepp−Logan
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0
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Characteristics of π-line formulas

Flexibility in choosing π-lines in 2D.
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Characteristics of π-line formulas

Flexibility in choosing π-lines in 2D.

Region of Backprojection not equal to S.
RBP(s) = set of all points where data from source y(s)
is used for reconstruction = {x : s ∈ Iπ(x)}.
RBP(s) depends on the family of π-lines.
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Orthogonal-long π-lines

y(sb)

y(st)

x

No two points have the same π-interval. The set RBP (s)
and its boundary are not immediately obvious.
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RBP for orth.-long π-lines

For orthogonal-long π-lines, RBP (s) contains all points
outside the disk D(s) = {x : |x − y(s)/2| < |y(s)/2|}.

D(s)
y(s)

Hass-F., SIAM J. Imag Sci., (2012)
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Sources close to object

The numerically most challenging parts of the
reconstructions are those where data from an x-ray source
contribute to the image at points very close to the source.
But most of such points are not in the RBP for orthogonal
long π-lines. So the most challenging parts are avoided!
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Characteristics of π-line formulas

Flexibility in choosing π-lines in 2D.
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Characteristics of π-line formulas

Flexibility in choosing π-lines in 2D.

Region of Backprojection not equal to S.
RBP(s) = set of all points where data from source y(s)
is used for reconstruction = {x : s ∈ Iπ(x)}.
RBP(s) depends on the family of π-lines.
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Characteristics of π-line formulas

Flexibility in choosing π-lines in 2D.

Region of Backprojection not equal to S.
RBP(s) = set of all points where data from source y(s)
is used for reconstruction = {x : s ∈ Iπ(x)}.
RBP(s) depends on the family of π-lines.

Comet tail artifacts.
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Comet tail artifacts

Reconstructions from real data. The reconstruction from
the π-line filtered backprojection formula (left) shows a large
comet tail artifact that is not present in a standard
reconstruction (right).
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Comet tail artifacts

Reconstructions from real data. The reconstruction from
the π-line filtered backprojection formula (left) shows a large
comet tail artifact that is not present in a standard
reconstruction (right).
In this case most of the artifact is due to a previously
undetected data misalignment in the fan angle. The π-line
formula is much more sensitive to such misalignments.
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Finding the correct alignment

shift

TV
-N

or
m

-1 -0.5 0 0.5 1

The correct alignment (about 0.19 detector widths)
corresponds here to a minimum of the total variation
TV (f) =

∫

|∇f(x)| dx ( here of a subregion of the image).
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Reconstruction with corrected alignment

The comet tail artifact is much reduced.
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Numerical implementation in 2D

The general FBP formula written in curved detector
coordinates (γ = α∗ − α):

f(x) =
−1

2π2

∫

Iπ(x)

1

|x − y(s)|

∫ 2π

0

∂

∂q
Df(y(q),Θ(s,x, γ))

∣

∣

∣

∣

q=s

dγ ds

sin γ

=
−1

2π2

∫

Iπ(x)

1

|x − y(s)|

∫ 2π

0

∂

∂q
Df(y(q),Θ(s,α))

∣

∣

∣

∣

q=s

dα ds

sin(α∗ − α)

=
1

2π2

∫

Iπ(x)

1

|x − y(s)|

∫ 2π

0

(

∂g

∂s
+

∂g

∂α

)

(s,α)
dα ds

sin(α∗ − α)

α∗ = α∗(s,x) corresponds to line through y(s) and x.
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Numerical implementation ...

Two discretizations need to be implemented carefully: The
convolution with respect to α and the discretization of the
view dependent derivative

Df(y(q),Θ(s,α))

∣

∣

∣

∣

q=s

=

(

∂g

∂s
+

∂g

∂α

)

(s,α) = g′(s,α)

In this talk we focus on the latter. For the former, see F.,
Hass, Solmon (2008). Recall g(s,α) = Df(y(s),Θ(s,α)).
Data measured for (sk,αl), sk = k∆s, αl = l∆α.
Sampling theory: ∆s ≥ (1 + R)∆α.
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Direct scheme.

Note: Θ(s,α) = Θ(s + u,α + u).
Let sk+ 1

2
= sk + ∆s/2

g′(sk+ 1

2
,αl) =

∂

∂q
Df(y(q),Θ(sk+ 1

2
,αl))

∣

∣

∣

∣

q=s
k+1

2

&
1

∆s

(

Df(y(sk+1),Θ(sk+ 1

2
,αl)) − Df(y(sk),Θ(sk+ 1

2
,αl))

)

= (∆s)−1 (g(sk+1,αl + ∆s/2) − g(sk,αl − ∆s/2))

Use linear interpolation in α for g(sk+1,αl + ∆s/2),
g(sk,αl − ∆s/2).

On π-line reconstruction formulas in tomography – p. 24/59



Unified framework

Unified framework for comparison: Write all schemes as
approximations for

(

∂g
∂s + ∂g

∂α

)

(s,α).
Direct scheme: g′(sk+ 1

2
,αl) &

1

2∆s
[g(sk+1,αl + ∆s/2) − g(sk,αl + ∆s/2)

+ g(sk+1,αl − ∆s/2) − g(sk,αl − ∆s/2)]

+
1

2∆s
[g(sk+1,αl + ∆s/2) − g(sk+1,αl − ∆s/2)

+ g(sk,αl + ∆s/2) − g(sk,αl − ∆s/2)]

Stepsize ∆s >> ∆α too large in approximation of ∂g
∂α !
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Noo-Pack-Heuscher (NPH) scheme (’03)

Let gk,l = g(sk,αl), etc.

g′(sk+ 1

2
,αl+ 1

2
) &

1

2∆s

[

(gk+1,l+1 − gk,l+1) + (gk+1,l − gk,l)
]

+
1

2∆α

[

(gk+1,l+1 − gk+1,l) + (gk,l+1 − gk,l)
]

Now ∂g
∂α is approximated with stepsize ∆α. Much better

results than direct scheme, but non-isotropic resolution!

On π-line reconstruction formulas in tomography – p. 26/59



Non-isotropic resolution of NPH

 Original 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
 NHP 

P = 101, Q = 600
−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

The radial resolution is better than the tangential resolution.
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Noo et al (NHDLH) scheme (’07)

Let 0 < ε ≤ 1 be a free parameter and Θ = Θ(sk,αl+ 1

2
).

g′(sk,αl+ 1

2
) &

Df(y(sk + ε∆s),Θ) − Df(y(s − ε∆s),Θ)

2ε∆s

Interpolation needed. Approximate

Df(y(sk + ε∆s),Θ) & (1 − ε)g(sk, ν+) + εg(sk+1, µ+)

Df(y(sk − ε∆s),Θ) & (1 − ε)g(sk, ν−) + εg(sk−1, µ−)

and then use linear interpolation in α for the g(sk, ν+), . . ..
The ν±, µ± come from the following diagram.
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Interpolation step in NHDLH scheme

y(s)
y(s + ε∆s)

y(s − ε∆s)

y(s + ∆s)

y(s − ∆s)
b(y(s − ε∆s),θ)

b(y(s + ε∆s),θ)
θ

θ

θ

θ⊥

Figure 1: b(t,Θ) = y(t) − (y(t) · Θ)Θ. The dashed
lines represent g(s, ν±), g(s + ∆s, µ+), g(s−∆s, µ−).
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NHDLH scheme in unified framework

Proposition 1 Let ε be sufficiently small, such that all
ν±, µ± ∈ [αl,αl+1] and let c = (µ+ − αl)/∆α. Then the
NDHLH scheme reads : g′(sk,αl+ 1

2
) &

g′(sk,αl+ 1

2
) &

(

(1 − c)
gk+1,l − gk−1,l

2∆s
+ c

gk+1,l+1 − gk−1,l+1

2∆s

)

+

(

(1 − ε)
ν+ − ν−

2ε∆s

gk,l+1 − gk,l

∆α
+ ε

µ+ − µ−

2ε∆s

gk−1,l+1 − gk−1,l

∆α

)

c =
1

2
+ ε

∆s

∆α
+ O(∆s tanαl),

ν+ − ν−
2ε∆s

= 1 + O((ε∆s)2)

µ+ − µ−

2ε∆s
= 1 + O

(

(secαl(1 − ε)∆s)2/ε
)
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Is there a simpler way?

What is the cause of the non-isotropic resolution in NHP?

g′(sk+ 1

2
,αl+ 1

2
) &

1

2∆s

[

(gk+1,l+1 − gk,l+1) + (gk+1,l − gk,l)
]

+
1

2∆α

[

(gk+1,l+1 − gk+1,l) + (gk,l+1 − gk,l)
]

Answer: The averaging in the derivative with respect to α.
Each of the two parts by itself leads to a slightly rotated
image.
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Cause of NHP non-isotropy
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FHS scheme (F.-Hass-Solmon (’08))

g′(sk,αl+ 1

2
) &

(gk+1,l − gk−1,l) + (gk+1,l+1 − gk−1,l+1)

4∆s

+
gk,l+1 − gk,l

∆α

Removes the drawbacks of the NPH scheme, is simpler
than NHDLH and performs on par with NHDLH for a circular
source curve.
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K scheme (Katsevich ’11)

g′(sk,αl+ 1

2
) & ε

(gk+1,l+1 − gk,l+1) + (gk,l − gk−1,l)

2∆s

+ (1 − ε)
(gk+1,l − gk,l) + (gk,l+1 − gk−1,l+1)

2∆s

+
gk,l+1 − gk,l

∆α

Katsevich found ε = 1/2 to be a good tradeoff between
stability and accuracy. For ε = 1/2 this scheme simplifies to
the FHS scheme.
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Leading error terms

FHS: (∆α)2
(gααα

24
+

gsαα

8

)

+ (∆s)2
gsss

6

NPH: (∆α)2
(gααα

24
+

gsαα

8

)

+ (∆s)2
(

1

4

gsss

6
+

gssα

8

)

K: (∆α)2
(gααα

24
+

gsαα

8

)

+ (∆s)2
gsss

6
+ ∆s∆α(1 − 2ε)

gssα

4

NHDLH: (∆α)2
(gααα

24
+

gsαα

8

)

+ (∆s)2
gsss

6

+ (∆s)2
(

d(ε,α)gα −
(1 − ε)2

2
tanα gsα +

ε

2
gssα

)

d(ε,α) = O((1 − ε)2 sec2 α)
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Effect of extra error term in NPH
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The extra term (∆s)2 gssα

8 appears to be largely responsible
for the non-isotropic resolution.
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Summary

Error analysis consistent with numerical experience.
FHS, K, and NHDLH perform equally well for a circular
source curve.
NHDLH has error terms that will become large for α
very close to π/2. This can only occur when source is
very close to object.
Similar numerical results for elliptical source curve and
curved detectors and flat detectors aligned
perpendicular to y(s).
However, for elliptical source curves NHDLH works also
well for flat detectors aligned parallel to y′(s) while the
analogues of the other methods do not (yet).
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