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Prelude

(P) minimize
x∈Ω

f0(x) ⇐⇒ minimize
x∈E

f (x) := f0(x) + ιΩ(x)

where

ιΩ(x) =

{
0 if x ∈ Ω

+∞ else.

Nonsmooth Fermat’s rule
If a proper, subdifferentially regular function f : E→ (−∞,+∞]
has a local minimum at x , then

0 ∈ ∂f (x) := {v ∈ E | 〈v , x − x〉 ≤ f (x)− f (x) + o(|x − x |)}

If f is convex, this is also sufficient for global optimality.



Prelude

Optimization with Sparsity
Given a linear map A : Rn → Rm full-rank with 0 < m < n,
solve

(P`0)
minimize

x∈Rn
‖x‖0

subject to Ax = b

where ‖x‖0 :=
∑

j |sign(xj)| with sign (0) := 0.

Every point is a critical point:

0 ∈ ∂‖x‖0 ∀x ∈ Rn

So first order optimality conditions are not informative.



Prelude

Optimization with Sparsity (Candes-Tao, ’05)
If there exists 0 ≤ δ ≤ 1 such that

(RIP) (1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2 ∀x ∈ S

then

argmin {Ax=b} ‖x‖0 = argmin {Ax=b} ‖x‖1 = {x},

that is

argmin {Ax=b} ‖x‖0 =
{

x
∣∣0 ∈ ∂‖x‖1 + A∗N{b}(Ax)

}
= {x}



Prelude

Phase retrieval
Given
I |(Ax)j |2 = bj for bj ∈ R+ (j = 1,2, . . . ,m) given by

I some qualitative constraint (x ∈ Rn
+ or supp x ⊂ D (or

|xj | = 1).)
Find

(L. 2012)



Prelude

Conic programming:

|(Ax)j |2 = Tr (|
〈
aj·, x

〉
|2) = Tr (x∗a∗·,jaj·x) = Tr (a∗·,jaj·xx∗)

so

x ∈
{

x ∈ R2n
∣∣ |(Ax)j |2 = bj , j = 1,2, . . . ,m

}
⇐⇒

X ∈
{

X ∈ R2n×2n
∣∣AjX = bj , j = 1,2, . . . ,m

}
∩ {X | rank(X ) = 1}



Prelude

Phase-Lift (Candés, Eldar, Strohmer, Voroninski - 2013)
For some convex qualitative constraint O1 ⊂ R2n×2n solve

argmin {AX=B}∩O1
rank(X )

?
= argmin {AX=B}∩O1

‖X‖1 ⊂ R2n×2n

Conventional formulation

minimize
x∈R2n

f1(x) + f2(x)

where
fj = ιΩj or 1

2dist(x ,Ωj)
2 (j = 1,2)

for Ω1 = {qualitative constraint} and
Ω2 :=

{
x ∈ R2n

∣∣ |(Ax)j | = bj , j = 1, . . . ,m
}
.



Prelude

The generalized Fermat’s Rule conventional formulation =⇒

solve 0 ∈ ∂f1(x) + ∂f2(x)

=

{
(Id−PΩ1)(x) + (Id−PΩ2)(x) if fj = 1

2dist(x ,Ωj)
2

NΩ1(x) + NΩ2(x) if fj = ιΩj .



Prelude

Solve the phase problem via the method of alternating
projections (AP):

x2k+1 = PΩ1x2k , x2k = PΩ2x2k−1.

(L. 2012)

CPU times on the order of seconds. Convergence theory...
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Goals

(P) minimize
x∈E

f (x) := f1(x) + f2(x)

I #1. Nonsmooth nonconvex optimality criteria

If f1 and f2 satisfy ? then 0 ∈ ∂f (x) is sufficient for global
optimality of x .

I #2. Convergence (with rates and radii) of nonmonotone
fixed point iterations

Algorithm xk+1 ∈ T2xk converges to Fix T2 and there is
some mapping Π such that Π(Fix T2) ⊂ ∂f .

I #3. Some useful/practical results along the way.
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Basics

Building blocks

I Prox operator: for a regular function f : X → R , define

proxηf (x) := argmin y f (y) +
1
2η
‖y − x‖2

I Proximal reflector: Rηf := 2 proxηf − Id
I Projector: if f = ιΩ for Ω ⊂ X closed and nonempty, then

proxηf (x) = PΩx where

PΩx := {x ∈ Ω | ‖x − x‖ = dist(x ,Ω)}
dist(x ,Ω) := inf

y∈Ω
‖x − y‖.

I Reflector: if f = ιΩ for some closed, nonempty set Ω ⊂ X ,
then RΩ := 2PΩ − Id



General algorithms

Fixed point iterations
Given x0 ∈ X generate the sequence (xn)n∈N by

xn+1∈(1− λn)xn + λn (Txn + εn)

Examples: λn = 1 for all n ∈ N and define
f (x) := αϕ(x) + Fb ◦ A(x),
I TAProx = proxη1f1 ◦proxη2f2

(Alternating prox)
I TFB = proxη1f1 (Id − η2∂f2)

(proximal gradients/forward-backward)
I TDRλ = λ

2

(
Rη1f1Rη2f2 + Id

)
+ (1− λ) proxη2f2

(Relaxed Averaged Alternating Proximal operators)



Global convergence - Optimization with sparsity

Scaled restricted Isometry (Blumensath-Davies, 2009;
Beck-Teboulle 2011 )
Let E and Y be Euclidean spaces with
dim(E) = n > m = dim(Y). Define the set
Ss := {x ∈ E | ‖x‖0 ≤ s} where ‖x‖0 is either the rank function
or the function that counts the number of nonzero elements in
x . The mapping A : E→ Y satisfies the scaled restricted
isometry property (SRIP) of order (s, α), if for α > 1 there exist
νs, µs > 0 with 1 ≤ µs

νs
< α such that

(SRIP) νs ‖x‖2 ≤ ‖Ax‖22 ≤ µs ‖x‖2 ∀x ∈ Ss.



Global convergence - Optimization with sparsity

find x ∈ argminSs
‖Ax − b‖2 . (1)

Forward-Backward: Sparse Projected Gradient/Iterative
Hard Thresholding
Given a set S ⊂ E, a continuously differentiable function
f : E→ R and a positive real number τ , we call the mapping

TPG(x ; τ) = PSs

(
x − 1

τ
∇f (x)

)
the projected gradient operator for the problem (1). We call PG
the iteration: given x0

xk+1 ∈ TPG(xk ; τk ) = PSs

(
xk − 1

τk
∇f (xk )

)
, k = 0,1,2, . . .



Global convergence - Optimization with sparsity

Global convergence of PG (Blumensath-Davies, 2009;
Beck-Teboulle, 2011)
If A satisfies SRIP of order (2s,2), then the function values of
PG with f (x) = 1

2 ‖Ax − b‖22 converge linearly to the globally
optimal value of (1) with linear rate constant given by∥∥∥Axk+1 − b

∥∥∥2

2
≤
(
τk

ν2s
− 1
)∥∥∥Axk − b

∥∥∥2

2

where τk ∈ [µ2s,2ν2s).

Corollary: global convergence of AP (Hesse-L.-Neumann,
submitted)
Let the matrix A satisfy SRIP of order (2s,2) with µ2s = 1 and
AA> = Id. The function values of the iterates of the AP
algorithm converge linearly to zero for every initial point x0.



Global convergence - Optimization with sparsity

Define Ω := {x ∈ E | Ax = b}.

find x ∈ argminSs

1
2

dist(x ,Ω)2. (2)

Relaxed Alternating Projections, APλ
For two sets Ω,Ss ⊂ E we call the mapping

TAPλx := PSs (x − λ(I − PΩ)x)

the relaxed alternating projections (APλ) operator for the
problem (2). The APλ algorithm is the iteration: given x0, for
k = 0,1,2, . . . compute xk+1 ∈ TAPλ

xk .



Global convergence - Optimization with sparsity

Global convergence of APλ (Hesse-L.-Neumann,
submitted)
Suppose that S1 ∩ Ω 6= Ø and that the matrix A in the definition
of the set Ω satisfies

(RIP†) (1− δ2s)‖v‖2 ≤ ‖A†Av‖2 ≤ (1 + δ2s)‖v‖2

with δ2s < 0.453975 for all vectors v of sparsity 2s. Then there
exists a relaxation parameter λ > 0 such that the sequence
(xk )k∈N generated by APλ for any initial value x0 ∈ E converges
to S1 ∩ Ω with at least linear rate ρ(δ2s, λ) defined by

ρ(δ2s, λ) :=

(
1

(1− δ2s)
+ λ(λ− 2)

)
< 1.



Application: phase retrieval

Recall

Phase-Lift
For some convex qualitative constraint O1 ⊂ R2n×2n solve

argmin {AX=B}∩O1
rank(X )

?
= argmin {AX=B}∩O1

‖X‖1 ⊂ R2n×2n

Reformulate this on S2n×2n as

(PPL) find X ∈ argmin O1∩S1
1
2dist(X ,Ω)2

where Ω := {X | AX = B }. If O1 is a subspace then we can
absorb this constraint into the affine set Ω and we have

(P ′PL) find X ∈ argmin S1⊂S2n×2n
1
2dist(X ,Ω)2.



Application: phase retrieval

(P ′PL) find X ∈ argmin S1
1
2dist(X ,Ω)2 ⊂ S2n×2n

Local solutions X to (P ′PL) satisfy 0 ∈ (Id−PΩ)X + NS1(X ).

If, in addition, S1 ∩ Ω 6= Ø and A in the definition of the set Ω
satisfies

(RIP†) (1− δ2)‖v‖2 ≤ ‖A†Av‖2 ≤ (1 + δ2)‖v‖2

with δ2 < 0.453975 for all vectors v of sparsity 2, then the
subdifferential inclusion is sufficient for global optimality.

Moreover,
X k → S1 ∩ Ω

where X k+1 ∈ TAPλX k for any X 0 and λ appropriately chosen.



Application: phase retrieval

The global convergence result for either AP or APλ applies
immediately to (P ′PL), as long as S1 ∩ Ω 6= Ø and the
SRIP/RIP† condition can be verified to hold.

No need for the convex relaxation. Is there a need for lifting?



Application: phase retrieval

Let Ω′ :=
{

x ∈ R2n
∣∣ |(Ax)j |2 = bj , j = 1, . . . ,m′

}
.

argmin S1⊂S2n×2n
1
2dist(X ,Ω)2 ↔ argmin R2n

1
2dist(x ,Ω′)2

l ↑

X k+1 ∈ TAPλX k ⊂ S2n×2n ↔ xk+1 ∈ T2xk ⊂ R2n

In other words, there is a nonconvex algorithm on Rn that is
guaranteed to converge globally linearly to a globally optimal
solution =⇒ no need for lifting.



Application: phase retrieval

To do:
I What are weaker conditions to guarantee that solutions to

the subdifferential inclusion are global solutions to the
nonconvex problem?

I Given your favorite algorithm T2 for phase retrieval in R2n

what is the corresponding algorithm in the lifted space?
I How to guarantee that the lifted analog converges

(globally) points from which solutions to the subdifferential
inclusion can be computed easily?

I What if the set Ω in (PL′) is a cone or polyhedral instead of
a subspace?

I If S1 ∩ Ω = ∅?
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Local convergence analysis

(C, ε)-(firmly-)nonexpansive mappings (Hesse-L. 2013)
Let C ⊂ D ⊂ E be nonempty and let T be a (multi-valued)
mapping from D to E.

i) T is called (C, ε)-nonexpansive on D if

‖x+ − x+‖ ≤
√

1 + ε ‖x − x‖
∀x ∈ D, ∀x ∈ C, ∀x+ ∈ Tx , ∀x+ ∈ Tx .

(3)

If (3) holds with ε = 0 then we say that T is
C-nonexpansive on D.



Local convergence analysis

(C, ε)-(firmly-)nonexpansive mappings (Hesse-L. 2013)

ii) T is called (C, ε)-firmly nonexpansive on D if

‖x+ − x+‖2 + ‖(x − x+)− (x − x+)‖2 ≤ (1 + ε) ‖x − x‖2

∀x ∈ D, ∀x ∈ C, ∀x+ ∈ Tx , ∀x+ ∈ Tx .
(4)

If (4) holds with ε = 0 then we say that T is C-firmly
nonexpansive on D.

Special case: C = Fix T , mappings satisfying (3) or (4) are
called quasi-(firmly-)nonexpansive.

The classical (firmly) nonexpansive operator on D is
(D,0)-(firmly) nonexpansive on D.



Local convergence analysis

Noncontractive fixed point iterations (Hesse-L., 2013)
Let D ⊂ E, T : D ⇒ E, C ⊂ Fix T and U ⊂ D. If
(a) T is (C, ε)-firmly nonexpansive on U and
(b) for some λ > 0, T satisfies the coercivity condition

‖x − x+‖ ≥ λdist(x ,C) ∀ x+ ∈ Tx , ∀x ∈ U, (5)

then

dist(x+,C) ≤
√

(1 + ε− λ2)dist(x ,C) ∀ x+ ∈ Tx ,∀x ∈ U. (6)



General Notions

Proof. Choose any x+ ∈ Tx and x+ ∈ T x . Combine inequalities
(5) and (4) to get

‖x+ − x+‖2 + (λ ‖x − x‖)2 ≤ (7)

‖x+ − x+‖2 + ‖x − x+ − (x − x+)‖2 ≤(1 + ε) ‖x − x‖2 (8)

for all x ∈ U, which immediately yields (6).



Convergence of AP/DR: ingredient #1, set
regularity

(ε, δ)-(sub)regularity of underlying sets =⇒ regularity of
the corresponding fixed-point operator

i) A nonempty set Ω ⊂ E is (ε, δ)-subregular at x with respect
to C ⊂ E, if there exists ε > 0, δ > 0, and

〈v , z − y〉 ≤ ε ‖v‖ ‖z − y‖ (9)

holds for all y ∈ Bδ(x) ∩ Ω, z ∈ C ∩ Bδ(x), v ∈ NΩ(y). We
simply say Ω is (ε, δ)-subregular at x if C = {x}.

ii) If C = Ω in i) then we say that the set Ω is (ε, δ)-regular at
x .

iii) If for all ε > 0 there exists a δ > 0 such that (9) holds for all
y , z ∈ Bδ(x) ∩ Ω and v ∈ NΩ(y), then Ω is said to be
super-regular.



Convergence of AP/DR: ingredient #1, set
regularity

I (ε, δ)-regularity was introduced in
(Bauschke-L.-Phan-Wang, 2012).

I super-regularity was introduced in (Lewis-L.Malick, 2009)

Relations

I Prox-regularity =⇒ super-regularity =⇒
Clarke-regularity.

I super-regularity =⇒ (ε, δ)-regularity
I (ε, δ)-regularity ; Clarke regularity
I (0, δ)-regularity is local convexity



First Results

Projectors and reflectors onto (ε, δ)-subregular sets
Let Ω ⊂ E be nonempty closed and (ε, δ)-subregular at each
point x ∈ C ⊂ Ω.

(i) The projector is (C, ε̃1)-nonexpansive on Bδ(C) where
ε̃1 := 2ε+ ε2.

(ii) The projector is (C, ε̃2)-firmly nonexpansive on Bδ(C),
where ε̃2 := 2ε+ 2ε2.

(iii) The reflector RΩ is (C, ε̃3)-nonexpansive on Bδ(C), where
ε̃3 := 4ε+ 4ε2.



Convergence of AP/DR: ingredient #2, regularity of
the intersection

Linear regularity
A collection of closed, nonempty sets Ω1,Ω2, . . . ,Ωm is locally
linearly regular at x ∈ ∩m

j=1Ωj if there exists a κ > 0 and a δ > 0
such that

dist
(

x ,∩m
j=1Ωj

)
≤ κ max

i=1,...,m
dist (x ,Ωi) , ∀x ∈ Bδ(x). (10)

If (10) holds for any δ > 0 the collection is called linearly
regular. The infimum over all κ such that (10) holds is called
regularity modulus.

What we call local linear regularity at x has appeared in various
forms elsewhere. See for Ioffe (2000), Ngai-Thera (2001), and
Kruger (2006). This is a localization of (bounded) linear
regularity defined in Bauschke-Borwein (1996).
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Results: AP

Local Linear convergence of AP (Hesse-L., 2013)
Let A,B be closed nonempty subsets of E that are locally
linearly regular with modulus κ at x ∈ C := A ∩ B. For any
x0 ∈ Bδ(x), generate the sequence {xn}n∈N by
x2n+1 ∈ PAx2n and x2n+2 ∈ PBx2n+1 (∀n = 0,1,2, . . . ).
(a) If A and B are (ε, δ)−subregular w.r.t. C, then

dist (x2n+2,C) ≤ (1− 1
κ2 + ε)dist (x2n,C) .

(b) If A is (ε, δ)−subregular w.r.t. C and B is convex, then

dist (x2n+2,C) ≤
√

1− 1
κ2 + ε

√
1− 1

κ2 dist (x2n,C) .

(c) If A and B are convex, then

dist (x2n+2,C) ≤ (1− 1
κ2 )dist (x2n,C) .



Results: DR

Recall
TDRλ = λ

2 (RΩ1RΩ2 + Id) + (1− λ)PΩ2 .

Denote TDR := TDR1.

(C, ε̃)-firm nonexpansiveness of TDR

Let A,B ⊂ E be closed and nonempty. Let A and B be (εA, δ)-
and (εB, δ)-subregular respectively at each x ∈ C ⊂ A ∩ B. The
DR operator TDR : E⇒ E is (C, ε̃)-firm nonexpansive on Bδ(C)
where

ε̃ = 2εA(1 + εA) + 2εB(1 + εB) + 8εA(1 + εA)εB(1 + εB).



Results: Douglas-Rachford

Douglas-Rachford for an affine subspace and a
superregular set (Hesse-L., 2013)
Assume B ⊂ E is a subspace and that A ⊂ E is closed and
(ε, δ)-super-regular at x ∈ C := A ∩ B. If the collection {A,B} is
linearly regular on C with modulus κ, then there is a δ > 0 with
δ ≤ δ and a c ∈ [0,1) such that, (1−c)

κ2 > 2ε+ 2ε2 and hence

dist (x+,C) ≤ c̃ dist (x ,C) ∀ x+ ∈ TDRx , (11)

with c̃ =
√

1 + 2ε+ 2ε2 − (1−c)
κ2 < 1 for all

x ∈
(

P−1
C x

)
∩ B δ

1+ε
(x).



Application to sparse affine feasibility

Local linear convergence of AP/DR: affine sparse
feasibility (Hesse-L.-Neumann, 2013)
Let Ω := {x ∈ Rn |Ax = b} and Ss = {x ∈ Rn | ‖x‖0 ≤ s} with
nonempty intersection and let x ∈ Ω ∩ Ss. Choose
0 < δ < min

{
|x j |

∣∣ j ∈ I(x)
}

and x0 ∈ Bδ/2(x).
I The AP iterates converge linearly to the intersection Ω ∩ Ss

with rate
(
1− 1

κ2

)
where κ is the modulus of regularity of

the intersection.
I If ‖x‖0 = s, then the DR iterates converge linearly to

Fix TDR. Moreover, for any x̂ ∈ Fix TDR ∩ Bδ/2(x), we have
PΩx̂ ∈ Ss ∩ Ω.



Application to sparse affine feasibility

I For AP, if there is a solution x ∈ Ω ∩ Ss, then ‖x‖0 can be
smaller than s.

I If Ω is a subspace, the point 0 is trivially a solution. The set
Ss is not convex on any neighborhood of 0, however the
assumptions of the theorem hold, and AP indeed
converges locally linearly to 0, regardless of the size of the
parameter s.

I DR does not appear to be sensitive to the parameter s in
practice, but our proof does not establish this.



Application: phase retrieval

Recall



Linear convergence to fattened sets I

Approximately noncontractive fixed point iterations (L.,
2013)
Let D ⊂ E, T : D ⇒ E and S ⊂ Fix T ⊂ int D. For 0 < δ < δ
fixed, define Sδ := δB + S where δ is such that Sδ ⊂ D. If
(a’) T is (S, εδ)-firmly nonexpansive on Sδ and
(b’) there exists a λδ such that T satisfies

‖x − x+‖ ≥ λδdist(x ,S) ∀ x+ ∈ Tx , ∀ x ∈ Sδ \ Sδ, (12)

then T is ({x}, εδ − λ
2
δ)-nonexpansive on Sδ \ Sδ: for

all x+ ∈ Tx , for all x ∈ Sδ \ Sδ,

dist(x+,S) ≤
√

(1 + εδ − λ2
δ)dist(x ,S). (13)



Phat AP



Linear convergence to approximate solutions

L. (2013)
Let D ⊂ E, T : D ⇒ E and S ⊂ Fix T closed and nonempty. If
for all δ > 0 small enough there is a γ > 1 and a triplet

(ε, δ, λ) ∈ R+ × [0, γδ]× (
√
ε,
√

1 + ε]

such that (a’) and (b’) are satisfied, then for any x (0) close
enough to S the sequence (x (k))k∈N defined by x (k+1) ∈ T (xk )
converges to S (and in particular converges in finitely many
steps to Sδ′ for any fixed δ′ ∈ (0,dist(x (0),S)]).



Thanks for your attention.



Outline

Prelude

Global analysis

Down the Rabbit Hole: convergence of algorithms

Harvest Time

References



References I

F. A. Artacho and J. Borwein.
Global convergence of a nonconvex Douglas-Rachford
iteration.
J. of Global Optim., 2012.

H. H. Bauschke and J. M. Borwein.
On projection algorithms for solving convex feasibility
problems.
SIAM Rev., 38(3):367–426, 1996.

H.H. Bauschke, D.R. Luke, H.M. Phan, and X. Wang,
Restricted normal cones and the method of alternating
projections: theory,
Set-Valued and Variational Analysis (2013)



References II

H.H. Bauschke, D.R. Luke, H.M. Phan, and X. Wang,
Restricted normal cones and the method of alternating
projections: applications,
Set-Valued and Variational Analysis (2013)

H.H. Bauschke, D.R. Luke, H.M. Phan, and X. Wang,
Restricted normal cones and sparsity optimization with
affine constraints,
Foundations of Computational Mathematics (2013)

J. M. Borwein and B. Sims.
The Douglas-Rachford algorithm in the absence of
convexity.
Fixed-Point Algorithms for Inverse Problems in Science and
Engineering, Springer Optimization and its Applications,
49:93–109, 2011.



References III

F. Deutsch and H. Hundal.
The rate of convergence for the cyclic projections algorithm
III: Regularity of convex sets.
J. Approx. Theory, 155(1):155–184, 2008.

R. Hesse and D. R. Luke,
Nonconvex notions of regularity and convergence of
fundamental algorithms for feasibility problems,
SIAM J. Optimization, 23(4):2397–2419 (2013).

R. Hesse, D. R. Luke and P. Neumann
Projection Methods for Sparse Affine Feasibility: Results
and Counterexamples,
submitted.



References IV

A. Y. Kruger.
Weak stationarity: Eliminating the gap between necessary
and sufficient conditions.
Optimization, 53:147–164, 2004.

A.S. Lewis, D.R. Luke, and J. Malick,
Local linear convergence for alternating and averaged
nonconvex projections,
Foundations of Computational Mathematics 9 (2009),
485–513.

A.S. Lewis and J. Malick,
Alternating projection on manifolds,
Mathematics of Operations Research 33 (2008), 216–234.



References V

B. Mordukhovich.
Variational Analysis and Generalized Differentiation, I:
Basic Theory; II: Applications.
Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, New York, 2006.


	Main Part
	Prelude
	Global analysis
	Down the Rabbit Hole: convergence of algorithms
	Harvest Time
	References


