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The mathematical problem

1. Signal of interest f ∈Cd (=CN×N )

2. Measurement operator A :Cd →Cm (m ¿ d)

3. Measurements y =A f +ξ
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4. Problem: Reconstruct signal f from measurements y



Sparsity

Measurements y =A f +ξ.
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Assume f is sparse:

G In the coordinate basis: ‖ f ‖0
def= |supp( f )| ≤ s ¿ d

G In orthonormal basis: f = B x where ‖x‖0 ≤ s ¿ d

In practice, we encounter compressible signals.
F fs is the best s-sparse approximation to f



Many applications...

G Radar, Error Correction

G Computational Biology, Geophysical Data Analysis

G Data Mining, classification

G Neuroscience

G Imaging

G Sparse channel estimation, sparse initial state estimation

G Topology identification of interconnected systems

G ...



Sparsity...

Sparsity in coordinate basis: f=x



Reconstructing the signal f from
measurements y

F `1-minimization [Candès-Romberg-Tao]

Let A satisfy the Restricted Isometry Property and set:

f̂ = argmin
g

‖g‖1 such that ‖A f − y‖2 ≤ ε,

where ‖ξ‖2 ≤ ε. Then we can stably recover the signal f :

‖ f − f̂ ‖2 . ε+ ‖x −xs‖1p
s

.

This error bound is optimal.



Restricted Isometry Property

G A satisfies the Restricted Isometry Property (RIP) when there is δ< c

such that

(1−δ)‖ f ‖2 ≤ ‖A f ‖2 ≤ (1+δ)‖ f ‖2 whenever ‖ f ‖0 ≤ s.

G m ×d Gaussian or Bernoulli measurement matrices satisfy the RIP with
high probability when

m & s logd .

G Random Fourier and others with fast multiply have similar property:
m & s log4 d .



Sparsity...

In orthonormal basis: f = B x



Natural Images

Images are compressible in Wavelet bases.

f =
N∑

j ,k=1

x j ,k H j ,k, x j ,k =
〈

f , H j ,k

〉
, ‖ f ‖2 = ‖x‖2,

Figure 1: Haar basis functions

Wavelet transform is orthonormal and multi-scale. Sparsity level of image
is higher on detail coefficients.



Sparsity in orthonormal basis B

F L1-minimization Method

For orthonormal basis B , f = B x with x sparse, one may solve the
`1-minimization program:

f̂ = argmin
f̃ ∈Cn

‖B−1 f̃ ‖1 subject to ‖A f̃ − y‖2 ≤ ε.

Same results hold.



Sparsity...

In arbitrary dictionary: f = Dx



The CS Process



Example: Oversampled DFT

G n ×n DFT: dk(t ) = 1p
n

e−2πi kt/n

G Sparse in the DFT → superpositions of sinusoids with frequencies in
the lattice.

G Instead, use the oversampled DFT :

G Then D is an overcomplete frame with highly coherent columns →
conventional CS does not apply .



Example: Gabor frames

G Gabor frame: Gk(t ) = g (t −k2a)e2πi k1bt

G Radar, sonar, and imaging system applications use Gabor frames and
wish to recover signals in this basis.

G Then D is an overcomplete frame with possibly highly coherent columns
→ conventional CS does not apply .



Example: Curvelet frames

G A Curvelet frame has some properties of an ONB but is overcomplete.

G Curvelets approximate well the curved singularities in images and are
thus used widely in image processing.

G Again, this means D is an overcomplete dictionary → conventional CS
does not apply .



Example: UWT

G The undecimated wavelet transform has a translation invariance
property that is missing in the DWT.

G The UWT is overcomplete and this redundancy has been found to be
helpful in image processing.

G Again, this means D is a redundant dictionary → conventional CS does
not apply .



`1-Synthesis Method

F For arbitrary tight frame D, one may solve the `1-synthesis program:

f̂ = D

(
argmin

x̃∈Cn
‖x̃‖1 subject to ‖A Dx̃ − y‖2 ≤ ε

)
.

Some work on this method [Candès et.al., Rauhut et.al., Elad et.al.,...]

F To do: Understand the `1-synthesis problem, necessary assumptions,
recovery guarantees.



`1-Analysis Method

F For arbitrary tight frame D, one may solve the `1-analysis program:

f̂ = argmin
f̃ ∈Cn

‖D∗ f̃ ‖1 subject to ‖A f̃ − y‖2 ≤ ε.



Condition on A?

F D-RIP

We say that the measurement matrix A obeys the restricted isometry
property adapted to D (D-RIP) if there is δ< c such that

(1−δ)‖Dx‖2
2 ≤ ‖A Dx‖2

2 ≤ (1+δ)‖Dx‖2
2

holds for all s-sparse x.
F Similarly to the RIP, many classes of m ×d random matrices satisfy the
D-RIP with m ≈ s log(d/s).



CS with tight frame dictionaries

F Theorem [Candès-Eldar-N-Randall]

Let D be an arbitrary tight frame and let A be a measurement matrix
satisfying D-RIP. Then the solution f̂ to `1-analysis satisfies

‖ f̂ − f ‖2 . ε+ ‖D∗ f − (D∗ f )s‖1p
s

.

F In other words, This result says that `1-analysis is very accurate when
D∗ f has rapidly decaying coefficients and D is a tight frame.



`1-analysis: Experimental Setup

n = 8192,m = 400,d = 491,520

A: m ×n Gaussian, D: n ×d Gabor



`1-analysis: Experimental Setup

n = 8192,m = 400,d = 491,520

A: m ×n Gaussian, D: n ×d Gabor



`1-analysis: Experimental Results



Other algorithms

F `1-analysis is very accurate when D∗ f has rapidly decaying
coefficients and D is a tight frame. This is precisely because this method
operates in “analysis” space.

F To do: analysis methods for non-tight frames, without decaying
analysis coefficients (concatenations), other models

F What about operating in signal or coefficient space?



Is it really a pipe?

(Thanks to M. Davenport for this clever analogy.)



CoSaMP

COSAMP (N-Tropp)

input: Sampling operator A, measurements y , sparsity level s
initialize: Set x0 = 0, i = 0.
repeat

signal proxy: Set p = A∗(y − Ax i ), Ω= supp(p2s), T =Ω∪ supp(x i ).
signal estimation: Using least-squares, set b|T = A†

T y and b|T c = 0.
prune and update: Increment i and to obtain the next approximation,
set x i = bs.
output: s-sparse reconstructed vector x̂ = x i



Signal Space CoSaMP

SIGNAL SPACE COSAMP (Davenport-N-Wakin)

input: A, D, y, s, stopping criterion
initialize: r =y, x0 = 0, `= 0, Γ=;
repeat

proxy: h=A∗r
identify: Ω=SD(h,2s)
merge: T =Ω∪Γ
update: x̃= argminz ‖y−Az‖2 s.t. z ∈R(DT )

Γ=SD(x̃, s)
x`+1 =PΓx̃

r =y−Ax`+1

`= `+1
output: x̂=x`



Signal Space CoSaMP

F Here we must contend with

Λopt(z, s) := argmin
Λ:|Λ|=s

‖z−PΛz‖2 , PΛ :Cn →R(DΛ).

F Estimate by SD(z, s) with |SD(z, s)| = s, that satisfies

∥∥PΛopt(z,s)z−PSD(z,s)z
∥∥

2
≤ min

(
ε1

∥∥PΛopt(z,s)z
∥∥

2
,ε2

∥∥z−PΛopt(z,s)z
∥∥

2

)
for some constants ε1,ε2 ≥ 0.



Approximate Projection

F Practical choices for SD(z, s) :

G Any sparse recovery algorithm!

G OMP

G CoSaMP

G `1-minimization followed by hard thresholding



Signal Space CoSaMP

F Theorem [Davenport-N-Wakin] Let D be an arbitrary tight frame, A be a
measurement matrix satisfying D-RIP, and f a sparse signal with respect
to D. Then the solution f̂ from Signal Space CoSaMP satisfies

‖ f̂ − f ‖2 . ε.

(And similar results for approximate sparsity, depending on the
approximation method used for Λopt(z, s).)

F To do: Design approximation methods that satisfy necessary recovery
bounds (sparse approximation).



Signal Space CoSaMP: Experimental Results

Figure 2: Performance in recovering signals having a s = 8 sparse representation in a
dictionary D with orthogonal, but not normalized, columns.



Signal Space CoSaMP: Experimental Results

(a) (b)

Figure 3: Results with s = 8 sparse representation in a 4× overcomplete DFT dictionary:
(a) well-separated coefficients, (b) clustered coefficients.



Signal Space CoSaMP: Recent improvements

F Recently improved results [Giryes-N and Hegde-Indyk-Schmidt] which
relax the assumptions on the approximate projections.

F These results show that at least for RIP/incoherent dictionaries,
standard algorithms like CoSaMP/OMP/IHT suffice for the approximate
projections.

To do:
F The interesting/challenging case is when the dictionary does not satisfy
such a condition. Are there methods which provide these approximate
projections? Or are they not even necessary?



Natural images

Sparse...

256×256 “Boats" image



Natural images

Sparse wavelet representation...



Natural images

Images are compressible in discrete gradient.



Natural images

Images are compressible in discrete gradient.

The discrete directional derivatives of an image f ∈CN×N are

fx :CN×N →C(N−1)×N , ( fx) j ,k = f j ,k − f j−1,k,

fy :CN×N →CN×(N−1), ( fy) j ,k = f j ,k − f j ,k−1,

the discrete gradient operator is

∇[ f ] = ( fx, fy)



Sparsity in gradient

F CS Theory

The gradient operator ∇ is not an orthonormal basis or a tight frame. In
fact, it is extremely ill-conditioned!



Comparison of two compressed sensing
reconstruction algorithms

F Haar-minimization (L1-Haar)

f̂H aar = argmin‖H(Z )‖1 subject to ‖A Z − y‖2 ≤ ε

F Total Variation minimization (TV)

f̂T V = argmin‖∇[Z ]‖1 subject to ‖A Z − y‖2 ≤ ε, where ‖Z‖T V = ‖∇[Z ]‖1

is the total-variation norm.



Imaging via compressed sensing

(a) Original

(b) TV (c) L1-Haar

Figure 4: Reconstruction using m = .2N 2



Imaging via compressed sensing

(a) Original

(b) TV (c) L1-Haar

Figure 5: Reconstruction using m = .2N 2 measurements



Imaging via compressed sensing

(a) Original

(b) TV (c) L1-Haar

Figure 6: Reconstruction using m = .2N 2 measurements.



Imaging via compressed sensing

(a) (Quantization)

(b) TV (c) L1-Haar

Figure 7: Reconstruction using m = .2N 2 measurements



Imaging via compressed sensing

InView (Austin TX)

Figure 8: SWIR Reconstruction using m = .5N 2 measurements



Imaging via compressed sensing

InView (Austin TX)

Figure 9: InView SWIR camera



Empirical → Theoretical?

F TV Works

Empirically, it has been well known that

f̂T V = argmin‖Z‖T V subject to ‖A Z − y‖2 ≤ ε, (T V )

provides quality, stable image recovery.

F No provable stability guarantees.



Stable signal recovery using total-variation
minimization

Theorem 1. [N-Ward] From m & s log(N ) linear RIP measurements, for
any f ∈CN×N ,

f̂ = argmin‖Z‖T V such that ‖A (Z )− y‖2 ≤ ε,

satisfies
‖ f − f̂ ‖T V . ‖∇[ f ]−∇[ f ]s‖1+

p
sε (gradient error)

and
‖ f − f̂ ‖2 . log(N ) ·

[‖∇[ f ]−∇[ f ]s‖1p
s

+ε
]

(signal error)

This error guarantee is optimal up to the log(N ) factor



Higher dimensional objects

Movies, higher dimensional objects?

Theorem 2. [N-Ward] From m & s log(N d ) linear RIP measurements, for
any f ∈CN d

,

f̂ = argmin‖Z‖T V such that ‖A (Z )− y‖2 ≤ ε,

satisfies
‖ f − f̂ ‖T V . ‖∇[ f ]−∇[ f ]s‖1+

p
sε (gradient error)

and
‖ f − f̂ ‖2 . log(N d /s) ·

[‖∇[ f ]−∇[ f ]s‖1p
s

+ε
]

(signal error)

This error guarantee is optimal up to the log(N d /s) factor



Stable signal recovery using total-variation
minimization

Method of proof:

G First prove stable gradient recovery

G Translate stable gradient recovery to stable signal recovery using the
strengthened Sobolev inequality.

To do:
F Remove logarithmic factors, design more efficient measurement
schemes.

F Incorporate wavelets, Laplacian, etc. for optimal performance.

F Prove for 1-d signals!



1-bit compressive sensing

G Measurements: y = sign(A f ) (extreme quantization)

G Noise: Random or adversarial bit flips

G Assumption: signal f lies in some (convex) set K

G f̂ = maxx〈y, Ax〉 s.t. x ∈ K

G (Plan-Vershynin): ‖ f̂ − f ‖2 . w(K )/
p

m

G Greedy methods for accurate recovery from optimal number of (e.g.
Gaussian) measurements [Baraniuk et al.]



1-bit compressive sensing

F In general, results are of the form:

‖ f̂ − f ‖2 .λ−c ,

where λ= m
s log(n/s) is the oversampling factor.

F New results [Baraniuk-Foucart-N-Plan-Wootters]: Provide a
reconstruction method to obtain

‖ f̂ − f ‖2 . exp(−λ),

(in preparation).



1-bit compressive sensing

F To do:

G Optimal greedy methods for recovery (what is optimal?)

G Methods for recovery when sparsity is w.r.t. aribtrary dictionary D

G Mixed models of quantization – unified framework for all precision



Adaptive measurement schemes

F Design measurement operator on the fly

G Fundamental limitations on improved recovery [Candès-Davenport]

G However, improvements still possible (such as reduced number of
measurements needed) [Aldroubi et al., Iwen-Tewfik, Indyk et al.]

G Adaptive measurement schemes for fixed sampling structures, total
variation, sparsity in dictionaries, average case results, ...



Adaptive measurement schemes

F Sampling from constrained measurements

G Certain constrained settings don’t afford improvements via adaptivity
(Davenport-N)

G Identify geometric properties of constraints that offer adaptive
improvements

G Design adaptive measurement schemes and recovery algorithms for
those that do



Thank you!

E-mail:
G dneedell@cmc.edu

Web:
G www.cmc.edu/pages/faculty/DNeedell
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