

#### From images to descriptors and back again Patrick Pérez



## Visual search

- Searching in image and video databases
- One scenario: query-by-example
  - Input: one query image
  - Output
    - Ranked list of "relevant" visual content
    - Information on object/scene visible in query
- Some existing systems
  - Google Image and Goggles / Amazon Flow / Kooaba (Qualcom)









### Large scale image comparison

- Raw images can't be compared pixel-wise
  - Relevant information is lost in clutter and changes place
  - No invariance or robustness
- Meaningful and robust representation
  - Global statistics
  - Local descriptors aggregated in a global signature
- Efficient approximate comparisons



## Local descriptors

- Select/detect image fragments, normalize and describe them
  - Robust to some geometric and photometric changes
  - Most popular: SIFT  $\in \mathbb{R}^{128}$



- Precise image comparison: match fragments based on descriptors
  - Works very well ... but way too expensive on a large scale

[Mikolajczyk , Schmid. IJCV 2004] [Lowe. IJCV 2004]



# Bag of "Visual Words" pipeline



- Forget about precise descriptors
  - Vector-quantization using a dictionary of k "visual words" learned off-line
- Forget about fragment location
  - Counting visual words
- BoW: sparse fixed size signature by aggregation of a variable number of quantized local descriptors

[Sivic, Zisserman. ICCV 2003][Csurca et al. 2004]



# Bag of "Visual Words" pipeline



image short-list





6

# Bag of "Visual Words" pipeline



## Limitations and contributions

- Precise search requires large dictionary ( $k \sim 20,000-200,000$  words)
  - Difficult to learn
  - Costly to compute (k distances per descriptor) on database
  - Memory footprint still too large (~10KB per image)
    - With 40GB RAM, search 10M images in 2s
    - Does not scale up to web-scale ( $\propto 10^{11}$  images)
- Contribution\*
  - Novel aggregation of local descriptors into image signature
  - Combined with efficient indexing
    - Low memory footprint (20B per image, 200MB RAM for 10M images)
    - Fast search (50ms to search within 10M images on laptop)

#### \*[Jégou, Douze, Schmid, Pérez. CVPR 2010]



# Beyond cell counting

- Vector of Locally Aggregated Descriptors (VLAD)
  - Very coarse visual dictionary (e.g., k = 64):  $\mathcal{C} = \{c_1, \cdots c_k\} \in \mathbb{R}^{128}$
  - But characterize distribution in each cell



**VLAD** 

• Vectors of size  $D = 128 \times k$ , k SIFT-like blocks















technicolor



## Fisher interpretation

- Given parametric family of pdfs  $\{p_{\theta}, \theta \in \Theta \subset \mathbb{R}^u\}$ 
  - Fisher information matrix (size *u*)

$$F_{\theta} = \mathbb{E}_{p_{\theta}} [\nabla_{\theta} \ln p_{\theta} \nabla_{\theta}^{T} \ln p_{\theta}]$$

• Log-likelihood gradient of sample  $\{\mathbf{x}_n\}_{n=1\cdots N}$ 

$$G_{\theta}(\{\mathbf{x}_n\}) = \frac{1}{N} \sum_{j=n}^{N} \nabla_{\theta} \ln p_{\theta}(\mathbf{x}_n)$$

• Fisher kernel: given  $\theta$ , compare two samples

$$K_{\theta}(\{\mathbf{x}_{m}\},\{\mathbf{y}_{n}\}) = G_{\theta}(\{\mathbf{y}_{m}\})^{\top} F_{\theta}^{-1} G_{\theta}(\{\mathbf{x}_{n}\})$$
$$= \langle F_{\theta}^{-\frac{1}{2}} G_{\theta}(\{\mathbf{y}_{m}\}), \underbrace{F_{\theta}^{-\frac{1}{2}} G_{\theta}(\{\mathbf{x}_{n}\})}_{\mathcal{G}_{\theta}(\{\mathbf{x}_{n}\})} \rangle$$

Dot product of Fisher vectors (FV)

[Jaakkola, Haussler. NIPS 1998][Perronnin et al. CVPR 2011]



## VLAD and Fisher vector

- Example: spherical GMM with parameters  $\theta = (\{\pi_i, \mu_i, \sigma_i\})_{i=1\cdots k}$ 
  - Approximate FV on mean vectors only

$$\mathcal{G}_{\boldsymbol{\mu}_i}(\{\mathbf{x}_n\}) = \frac{1}{N\sqrt{\pi_i}} \sum_{n=1}^N \kappa_n(i) \sigma_i^{-1}(\mathbf{x}_n - \boldsymbol{\mu}_i), \ i = 1 \cdots k$$

with soft assignments  $\kappa_n(i)$ . FV of size  $D = d \times k$ 

■ If equal weights and variances, hard assignment to code-words, FV = VLAD

$$\mathcal{G}_{\boldsymbol{\mu}_i}(\{\mathbf{x}_n\}) \propto \mathbf{v}_i(\{\mathbf{x}_n\}), \ i = 1 \cdots k$$



## Additional tricks

- Power-law<sup>1</sup>  $v_j \leftarrow \operatorname{sign}(v_j) |v_j|^{\alpha}, \ j = 1 \cdots D, \ \alpha \in (0, 1)$
- Residue normalization ("RN")<sup>2</sup>

$$\mathbf{v}_i = \sum_{\mathbf{x} \in \text{cell } i} \frac{\mathbf{x} - c_i}{\|\mathbf{x} - c_i\|_2}, \ i = 1 \cdots k$$

Intra-cell PCA local coordinate system ("LCS")<sup>2</sup>

$$\mathbf{v}_i = R_i \sum_{\mathbf{x} \in \text{cell } i} \frac{\mathbf{x} - c_i}{\|\mathbf{x} - c_i\|_2}, \ i = 1 \cdots k$$

• RootSift (" $\sqrt{SIFT}$ ")<sup>3</sup>



### Exhaustive search

• Comparisons to BoW on Holidays (1500 images with relevance GT)

| Image signature  | dim     | mAP (%) |
|------------------|---------|---------|
| BoW-20K          | 20,000  | 43.7    |
| BoW-200K         | 200,000 | 54.0    |
| VLAD-64          | 8192    | 51.8    |
| $+ \alpha = 0.2$ |         | 54.9    |
| $+\sqrt{SIFT}$   |         | 57.3    |
| + RN             |         | 63.1    |
| + LCS            |         | 65.8    |
| + dense SIFTs    |         | 76.6    |



# Getting short and compact

- Towards large scale search
  - PCA reduction of image signature to D' = 128
  - Very fine quantization with Product Quantizer (PQ)\*
  - Results on Oxford105K and Holydays+1M Flickr distractors

| Image signature         | Ox105K | Hol+1M |
|-------------------------|--------|--------|
| Best VLAD-64 (8192 dim) | 45.6   | _      |
| Reduced (128 dim)       | 26.6   | 39.2   |
| Quantized (16 bytes)    | 22.2   | 32.3   |

\*[Jégou, Douze, Schmid. PAMI 2010]



# Quantized signatures

- Vector quantization on  $k_f$  values  $\mathbf{w} \approx q(\mathbf{w})$
- For good approximation, large codes
  - e.g., 128 bits  $(k_f = 2^{128})$
- Practical with product quantizer\*

$$\mathbf{w} = \begin{bmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_m \end{bmatrix}, \ q(\mathbf{w}) = \begin{bmatrix} q_1(\mathbf{w}_1) \\ \vdots \\ q_m(\mathbf{w}_m) \end{bmatrix}$$

with  $k_r$  values per sub-quantizer

• yields  $k_f = (k_r)^m$  with complexity  $k_r \times m$ 



\*[Jégou, Douze, Schmid. PAMI 2010]





$$D' = 128$$
  
 $m = 16$   
 $k_r = 2^8$   
 $k_f = 2^{128}$ 



# Asymmetric Distance Computation (ADC)

 Given query signature v, distance to a basis signature w:

$$\|\mathbf{v} - \mathbf{w}\|^2 \approx \sum_{i=1}^m \frac{\|\mathbf{v}_i - q_i(\mathbf{w}_i)\|^2}{k_r \text{ possible values}}$$

Exhaustive search among N<sub>b</sub> basis images

 $mk_r$  distances +  $(m-1)N_b$  sums



technicolor

## ADC with Inverted Files (IVF-ADC)

- Two-level quantization of signatures
  - Coarse quantization (e.g.,  $k_c = 2^8$  values)
  - One inverted list per code-vector
  - Compare only within lists of w nearest code-vectors to query
  - Fine PQ quantization of *residual* signatures (e.g.,  $k_f = 2^{128}$ )
- Search among N<sub>b</sub> basis images

$$mk_r$$
 distances +  $w(m-1)N_bk_c^{-1}$  sums

 $w = 16, m = 16, k_r = k_c = 256 \Rightarrow$  one sum only per image with almost no accuracy change!



## Performance w.r.t. memory footprint



## Large scale experiments

Holidays + up to 10M distractors from Flickr



### Larger scale experiments

#### Copydays + up to 100M distractors from Exalead



# Beyond Euclidean distance

- Kernel-based similarities
  - Other better but costly kernels
  - For histogram-like signatures: Chi2, histogram intersection (HIK)
- Explicit embedding recently proposed for learning<sup>1</sup>
  - Given PSD kernel function  $K(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$
  - Find an *explicit finite dim*. approximation of implicit feature map

$$K(\mathbf{x},\mathbf{y}) \approx \langle \tilde{\phi}(\mathbf{x}), \tilde{\phi}(\mathbf{y}) \rangle$$

- Learn linear SVM in this new explicit feature space
- KCPA<sup>2</sup>: a flexible data-driven explicit embedding

$$K(\mathbf{x}_i, \mathbf{x}_j)] = U \Lambda U^{\top} \approx U_{[E]} \operatorname{diag}(\lambda_1, \cdots, \lambda_E) U_{[E]}^{\top}, \ E < N$$

What about search?

<sup>1</sup>[Vedaldi, Zisserman. CVPR 2010][Perronnin *et al*. CVPR 2010] <sup>2</sup>[Schölkopf *et al*. ICANN 1997]



## Approximate search with short codes

- Simple proposed approach\* ("KPCA+PQ")
  - Embed database vectors with learned KPCA
  - Efficient Euclidean ANN with PQ coding
  - Kernel-based re-ranking in original space
- Competitors: binary search in implicit space
  - Kernelised Locally Sensitive Hashing (KLSH) [Kulis, Grauman. ICCV09]
  - Random Maximum Margin Hashing (RMMH) [Joly, Buisson. CVPR11]
- Experiments
  - Data: 1.2M images from ImageNet with BoW signatures
  - Chi2 similarity measure
  - Tested also: "KPCA+LSH" (binary search in explicit space)

\*[Bourrier, Perronnin, Gribonval, Pérez, Jégou. TR 2012]



### Results averaged over 10 runs





## Reconstructing an image from descriptors

If sparse local descriptors only are known



Better insight into what local descriptors capture, with multiple applications



## Reconstructing an image from descriptors

#### Possible to some extent





#### [Weinzaepfel, Jégou, Pérez. CVPR'2011]



## Inverting local description

- Local description, severely lossy by construction
  - Color, absolute intensity, spatial arrangement in each cell are lost
  - Non-invertible many-to-one map
  - Example-based regularization: use key-points from arbitrary images



Patch collection must be large and diverse enough (e.g., 6M)



## Inverting local description



# Assembling recovered patches

#### Progressive collage

Dead-leaf procedure, largest patches first





- Seamless cloning\*
  - Harmonic correction: smooth change to remove boundary discrepancies
- Final hole filling
  - Harmonic interpolation

#### \*[Pérez, Gangnet, Blake. Siggraph 2003]



### Reconstruction





### Reconstruction





### Reconstruction







## Outlook

#### New: reconstruction from dense local features







- Human-understandable images can be reconstructed
  - Visual insight into information exploited by detectors and classifiers
  - Visual information leakage in image indexing systems: privacy?
- <sup>1</sup> [D'Angelo, Alahi, P. Vandergheynst. ICPR 2012]
  <sup>2</sup> [Vondrick, Khosla, Malisiewicz, Torralba. ICCV 2013]

technicolor