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Coupled Physics Imaging: Sunlights Laughter

Figure: Photophone: Graham Bell, as early as 1880: Conversion of light

into sound waves. Bell’s main interest was in wireless

telecommunication.



Photoacoustic Imaging – “Lightning and Thunder”

(L.H. Wang)

I Specimen is uniformly illuminated by a short/pulsed

electromagnetic pulse (visible or near infrared light -

Photoacoustics, microwaves - Thermoacoustics).

I Two-step conversion process: Absorbed EM energy is

converted into heat ⇒ Material reacts with expansion ⇒
Expansion produces pressure waves.

I Imaging: Pressure waves are detected at the boundary of

the object (over time) and are used for reconstruction of

conversion parameter (EM energy into expansion/ waves).



(Potential) Applications

1. Breast Screening [Kruger 1995], [Manohar 2005, The

Twente Photoacoustic Mammoscope]

2. Brain Imaging (small animals) [L.H. Wang], [P. Beard]

3. Prostate Imaging: EU Project ADONIS, [M. Frenz et al]

4. Gen-Research: Different penetration depth than fluorescence

imaging [Razansky et al]

5. ...



Setups: Microscopic and Tomographic

Figure: Microscopic - Tomographic.



Basic Equation of Forward Model

Wave equation for the pressure (Thunder)

1

v2s = 1

∂2p

∂t2
(x , t)− ∆p(x , t) =

dj

dt
(t)
µabs(x)β(x)J(x)

cp(x)︸ ︷︷ ︸
=:f (x)

Parameters and Functions:

I Material-parameters: cp specific heat capacity, µabs
absorption coefficient, β thermal expansion coefficient, J

spatial density distribution, vs speed of sound

I j(t) ≈ δ-impulse (Lightning)

I Alternative: Standard formulation as homogeneous wave

equation with initial values p(x , 0) = f (x), pt(x , 0) = 0



Measurement Devices

I Small piezo crystals [Kruger, Wang,...]: Reconstruction from

spherical means (small detectors are considered as points):

[Agranovsky, Finch, Kuchment, Kunyansky, Quinto,

Uhlmann, ...]

I Area detectors [Haltmeier et al]: Measure the averaged

pressure over large areas

I Line detectors [Paltauf et al]: E.g. optical sensors, measure

the averaged pressure over a long line

Figure: Tomograph with line and planar detectors



Inverse Problem of Photoacoustic Tomography

I Given: p(x , t) for x ∈ S (or averaged - Integrating

Detectors), S measurement region on the boundary of the

probe contained in Ω

I Reconstruction of f (x)



Equivalent Mathematical Reconstructions

I Reconstructions from spherical means in R3

I Reconstruction from circular means and inversion of Abel

transform in R2

I Integrating detectors require additional inversion of planar or

linear Radon transformation



A Unified Backprojection Formula for a Sphere

Wave equation and Helmholtz equation:

∂2p

∂t2
(x , t)− ∆p(x , t) = 0 , ∀t

⇔
k2p̂(x , k) + ∆p̂(x , k) = 0 , ∀k



Explicit Inversion Formulas Using Scattering Results

[Kunyansky’07]

I Green’s function of Helmholtz Equation (single-frequency

case)

Φ = Φk(x , y) :=


exp(ik |x − y |

4π|x − y | for n = 3 ,

i

4
H

(1)
0 (k |x − y |) for n = 2 ,

x 6= y

I J Bessel function



Explicit Inversion Formulas Using Scattering Results

[Kunyansky’07]

S = ∂Ω (ball)

J(k |y − x |) =

∫
∂Ω

J(k |z − x |)
∂

∂nz
Φ(x , y , k)

− Φ(x , y , k)
∂

∂nz
J(k |z − x |) ds(z)

(2π)n/2f (y) =

∫
R+

∫
Ω

f (x)J(k |y − x |)kn−1dx dk

Idea: Using (1) in (2) gives a boundary integral, and after some

calculations inversion formulas



Exact Reconstruction Formulae

Measurement Geometry is a

I Sphere, Cylinder, Plane [Xu, Wang, 2002]

I Circle [Finch, Haltmeier, Rakesh, 2007]

I Universal Backprojection [Wang et al, 2005] in R3.
Natterer’12 shows that it is exact for ellipsoids



Modeling Aspects

Standard Photoacoustics does not model variable sound speed,

attenuation, variable illumination and does not recover physical

parameters

I Quantitative Photoacoustics (components of f ) [Bal,

Scotland, Arridge,...]

I Sound speed variations [Hristova, Kuchment, Stefanov,

Uhlmann,...]

I Attenuation [Anastasio, Patch, Riviere, Burgholzer, Kowar,

S, Ammari, Wahab, ...]

I Dispersion

I Measurements have a finite band-width [Haltmeier, Zangerl,

S.]

I



Hybrid, Quantitative Imaging - Terminology

I Can be used as synonyms for coupled physics imaging

(conversion).

I Hybrid is also a term for fusion and alignment of images from

different modalities. Not, what is meant here ⇒ Computer

Vision

I Hybrid itself is a phrase for quantitative imaging, where

information on common physical/diagnostical parameters are

reconstructed from the conversion parameters. Common

diagnostic parameters of interest are diffusion or scattering

parameters [Ammari, Bal, Kuchment, Uhlmann...]

I Quantitative imaging: Synonym for inverse problems with

internal measurements



Quantitative Photoacoustic Imaging

I Requires modeling of illumination (optical, near infrared,

microwave,...)

I With Photoacoustics disposed energy (f = κ|∇u|2 and/or

f = µ|u|) are recorded

I Inverse Problem: Recover κ and/or µ in

−∇ · (κ∇u) + µu = 0

[Ammari, Kang, Bal, Capdebosque, Uhlmann, Wang, ...]



Mathematical Problems in Quantitative Photoacoustic

Imaging

I Uniqueness, typically requires at least two experiments:

κ |∇pi |2, i = 1, 2, to recover κ [Bal et al, Kuchment,

Steinhauer]

I Alternative investigations [Ammari, Capdebosque,..]

κ < ∇pi ,∇pj > measured

I With a single measurement. Edges can be rediscovered

[Naetar, S‘14]. Numerical solution by edge detection

I Older/Sophisticated Techniques with MRI



Photoacoustic Sectional Imaging

I No uniform illumination

I Illumination is controlled to a plane (ideally)

I It is less harmless to the body because the experiment

requires less laser energy

I Disadvantage: Out-of-Focus blur



Sectional Imaging (Elbau, S., Schulze)

Illumination is focused to slices/planes:

Figure: Focusing Line Detectors

I Realization with (acoustic) lenses for recording (ultrasound

transducers) and focused illumination

I Physical experiments: [Razansky et al, Gratt et al]



Illustration

The object has to be shifted in z−direction 

is therefore illuminated for each horizontal line.

Illumination Region

Ideal Illumination

Figure: Out-of-Blur Illustration and the probe



Results With an Heuristic Method

Figure: Results with horizontal integrating line detectors. Data courtesy

of S. Gratt, R. Nuster and G. Paltauf (University Graz)



Sectional Imaging - Mathematical Model

Absorption density is of the

f (ξ, z) = f̃ (ξ)δ(z) for all ξ ∈ R2, z ∈ R

Wave equation with initial conditions

∂ttp(ξ, z ; t)−∆ξ,zp(ξ, z ; t) = 0 ,

p(ξ, z ; 0) = f (ξ, z) = f̃ (ξ)δ(z) , ∂tp(ξ, z ; 0) = 0

2D Imaging Problem: Recover f from certain measurements.

However: Data in 3D



Sectional Imaging - A Technical Slide

I S1 ⊆ R2 denotes the unit circle.

I Ω ⊂ R2 is convex and smooth. ∂Ω is parameterized:
I 0 ∈ Ω and
I for every θ ∈ S1, ζ(θ) ∈ ∂Ω is the point of tangency:

∂Ω ζ(θ)
.

ϑ

Figure: Definition of the point ζ(θ), θ = (cosϑ, sinϑ).

I Tangent in the point ζ(θ) T (θ), tangential plane P(θ) of the

cylinder Ω× {z} at (ζ(θ), 0)



Sectional Imaging - Measurements

Vertical Line Detectors: m1(θ; t) :=
∫
R p(ζ(θ), z ; t)dz measure

the overall pressure along a line orthogonal to the

illumination plane.

Vertical Plane Detectors: m2(θ; t) :=
∫
P(θ) p(x ; t)ds(x). Planar

detectors, which are moved tangentially around the

object.

Point Detectors: m3(θ; t) := p(ζ(θ), 0; t). Measure the pressure

on the boundary of ∂Ω over time. [Razansky et al]

Horizontal Line Detectors: m4(θ; t) :=
∫
T (θ) p(ξ, 0; t)ds(ξ).

[Gratt et al]



Measurements with Vertical Line Detectors I

p̃(ξ; t) =

∫ ∞
−∞
p(ξ, z ; t)dz , ξ ∈ R2, t > 0

satisfies the two-dimensional wave equation

∂tt p̃(ξ; t) = ∆ξp̃(ξ; t) for all ξ ∈ R2, t > 0

with the initial conditions

p̃(ξ; 0) = f̃ (ξ) , ∂t p̃(ξ; 0) = 0

2D Imaging Problem: Recover f̃ (ξ) from

m1(θ; t) = p̃(ζ(θ); t), θ ∈ S1, t > 0



Measurements with Vertical Line Detectors II

Analytical reconstruction formulas for 2D problem for special

geometries:

I Halfspace

I Circle

I Ellipsis [Palmadov, Elbau]



Measurements with Vertical Planar Detectors

p̃θ(r ; t) =

∫
P(r ,θ)

p(x ; t)ds(x) ,

where P(r , θ) denotes the plane surrounding the object, solves

∂rr p̃θ(r ; t) = ∂tt p̃θ(r ; t)

with the initial conditions

p̃θ(0; t) = m2(θ; t), , ∂t p̃θ(r ; 0) = 0

Reconstruction in 2 steps:
I d’Alembert’s formula (m2 → p̃θ)

p̃θ(r ; t) = m2(θ;−t − r) +m2(θ; t − r)

I and Inverse Radon transform R ( p̃θ → f̃ )

p̃θ(r ; 0) = R[f̃ ](r + 〈ζ(θ), θ〉 , θ)

2 step algorithm is exact for every convex 2D measurement

geometry



Parallel Estimation (Variable Sound Speed) with A.

Kirsch (Karlsruhe)

Sectional Imaging with focusing to all planar slices

1
c2(x)∂ttp −∆p = 0 ,

p(x , 0) = f (x)δr ,θ(x) , ∂tp(x , 0) = 0

Problem: Reconstruct c and f from measurements of p on S



Born Approximation

p ≈ u + v and q := 1/c2 − 1 (Contrast function)

u = ur ,θ is the solution of the wave equation

∂ttu −∆u = 0 ,

u(x , 0) = f (x) δr ,θ(x) , ∂tu(x , 0) = 0

and v = v r ,θ solves

∂ttv − ∆v = −q(x) ∂ttu ,

v(x , 0) = 0 , ∂tv(x , 0) = 0

Modified goal: Reconstruct q and f from measurements of

mr ,θ(x , t) = m(x , t) = u(x , t) + v(x , t) , (x , t) ∈ S × (0,T )



Reconstruction Formula

After some calculations:

m̂(r ,θ)(x , k) = −ik
∫
z∈E(r ,θ)

f (z)[
k2
∫
Rn
q(y)Φk(y , z)Φk(x , y) dy + (q(z) + 1)Φk(x , z)

]
ds(z)

Thus

m̂(r ,θ)(x , k) = R
[
(f (·)L(x , ·, k))

]
(r , θ)

where

I R[f ](r , θ) is the (n − 1)-dimensional Radon transform of f in

direction (r , θ)

I L Volterra Integral operator



Reconstruction Procedure

1. Invert Radon transform to get the product f (z)L(x , z , k) for

all x ∈ S , z ∈ Ω, k ∈ R
2. Take into account the structure of L. Inversion of an

ellipsoidal mean operator.



Some Curious Things

I The problem of reconstruction of f and c is unstable in any

scale of Sobolev spaces [Stefanov and Uhlmann’13]

I Sectional Imaging seems to stabilize the problem



Open Questions

1. Actually the Born approximation does not hold and model

assumption results in blurring. How much?

2. Reconstructions without Born. Nonlinear inverse problem

3. Taking into account semi cylindrical detectors

4. How much data is really needed? Cylindrical sampling would

be great, but is unlikely

5. My favorite model: Spiral tomography approach



Thank you for your attention


