## Parameter estimation in regularization models for Poisson data

L. Zanni<br>Department of Physics, Computer Science and Mathematics,<br>University of Modena and Reggio Emilia, Italy

## First French-German Mathematical Image Analysis Conference

Paris, 13-15 January 2014

Joint work with:
M. Bertero, University of Genova, Italy
V. Ruggiero, University of Ferrara, Italy

## Outline

(1) Poisson data and the MAP optimization problem
(2) Regularization parameter estimation

- A possible discrepancy principle
(3) Solving the discrepancy equation
- Gradient-based methods for differentiable problems
- Updating the steplength parameter
- Updating the scaling matrix
- Secant-based root finding solver

4) Solving a constrained model

- ADMM as optimization solver
(5) Numerical considerations
(6) Conclusions


## Poisson data

- Consider imaging processes where image intensity is measured via the counting of incident particles
> Fluctuations in the emission-counting process can be described by modeling the data as realizations of Poisson random variables
- The probability of receiving $n$ particles is given by

$$
p(n)=\frac{e^{-\lambda} \lambda^{n}}{n!}, \quad n=0,1,2, \ldots
$$

where $\lambda$ is the expected value of the counts

- A statistical model appropriate for describing data in different imaging applications
(emission tomography, fluorescence microscopy, optical/infrared astronomy, etc.)


## Poisson noisy image restoration: problem setting

$\boldsymbol{>} \boldsymbol{x}^{*} \in \mathbb{R}^{n} \quad \longrightarrow$ the unknown true image; $x_{i}^{*} \geq 0$
$>A \in \mathbb{R}^{n \times n} \longrightarrow$ the imaging matrix representing the blurring phenomenon ( $A=I$ in denoising)
$>b \in \mathbb{R} \quad \longrightarrow$ the nonnegative background radiation
> $\left(A \boldsymbol{x}^{*}+b\right) \longrightarrow$ the image that would be recorded in absence of noise
$\boldsymbol{>} \in \mathbb{R}^{n} \quad \longrightarrow$ the observed blurred noisy image; $y_{i} \geq 0$


Given $A, b, \boldsymbol{y}$, determine an estimate of the true image $\boldsymbol{x}^{*}$

## Poisson noisy image restoration: the optimization problem

Following the maximum a posteriori (MAP) approach, an estimate $\boldsymbol{x}_{\beta}^{*}$ of the unknown image can be obtained by solving

## The MAP constrained optimization problem

$$
\min _{\boldsymbol{x} \geq \mathbf{0}} f_{0}(\boldsymbol{x})+\beta f_{1}(\boldsymbol{x}), \quad \beta>0
$$

- $f_{0}(\boldsymbol{x})$ data-fidelity function (generalized Kullback-Leibler divergence)

$$
f_{0}(\boldsymbol{x})=D_{K L}(\boldsymbol{y}, \boldsymbol{x})=\sum_{i=1}^{n}\left\{y_{i} \log \frac{y_{i}}{(A \boldsymbol{x}+b)_{i}}+(A \boldsymbol{x}+b)_{i}-y_{i}\right\}
$$

- $f_{1}(\boldsymbol{x})=f(L \boldsymbol{x})$ regularization term ( $L$ linear operator)

$$
f_{1}(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{x}\|_{2}^{2}, \quad f_{1}(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}, \quad f_{1}(\boldsymbol{x})=\|\mid \nabla \boldsymbol{x}\|_{1}
$$

- $\beta$ is the regularization parameter


## Regularization parameter estimation

- Look for estimations of a regularization parameter $\beta$ suitable for balancing the data fidelity with the regularity of the solution [Engl-Hanke-Neubauer,1996], [Bertero-Boccacci,1998]
- Focus on ideas based on the discrepancy principle: a suitable $\beta$ is such that a measure of the discrepancy $D_{\boldsymbol{y}}(\beta)$ between the corrupted data $\boldsymbol{y}$ and the reconstruction $\boldsymbol{x}_{\beta}^{*}$ equals some known error $\tau$ :

$$
D_{\boldsymbol{y}}(\beta)=\tau
$$

- We consider

$$
\begin{gathered}
D_{\boldsymbol{y}}(\beta)=D_{K L}\left(\boldsymbol{y}, \boldsymbol{x}_{\beta}^{*}\right)=\sum_{i=1}^{n}\left\{y_{i} \log \frac{y_{i}}{\left(A \boldsymbol{x}_{\beta}^{*}+b\right)_{i}}+\left(A \boldsymbol{x}_{\beta}^{*}+b\right)_{i}-y_{i}\right\} \\
A_{i, j} \geq 0, \quad \sum_{i} A_{i, j}=1, \quad \sum_{j} A_{i, j}>0, \quad \forall i, j, \quad b>0
\end{gathered}
$$

[Bardsley-Goldes,2009], [Bertero et al., 2010], [Carlavan, Blanc-Féraud, 2011,2012],
[Teuber-Steidl-Chan, 2013]

## Following the discrepancy principle: what is necessary?

$$
D_{\boldsymbol{y}}(\beta)=\sum_{i=1}^{n}\left\{y_{i} \log \frac{y_{i}}{\left(A \boldsymbol{x}_{\beta}^{*}+b\right)_{i}}+\left(A \boldsymbol{x}_{\beta}^{*}+b\right)_{i}-y_{i}\right\}=\tau
$$

> Find a suitable value for the constant $\tau$, given the Poisson data assumption and the above discrepancy function.

- Exploit effective algorithms for finding $\beta$ such that $\quad D_{\boldsymbol{y}}(\beta)=\tau$. Alternative approaches:
- Determine $\beta$ by solving directly the nonlinear equation [Zanella-Boccacci-Z.-Bertero 2009], [Bertero et al., 2010]
- Determine $\beta$ by solving the constrained minimization problem

$$
\min _{\boldsymbol{x} \geq \mathbf{0}}\left\{f_{1}(\boldsymbol{x}) \quad \text { sub. to } \quad D_{\boldsymbol{y}}(\beta) \leq \tau\right\}
$$

[Carlavan, Blanc-Féraud, 2011,2012], [Teuber-Steidl-Chan, 2013]

## A possible setting for the constant $\tau$

Lemma ( [Zanella et al., Inverse Problems 2009, 2013] )
Let $Y_{\lambda}$ be a Poisson r.v. with expected value $\lambda$ and consider

$$
F\left(Y_{\lambda}\right)=2\left\{Y_{\lambda} \ln \left(\frac{Y_{\lambda}}{\lambda}\right)+\lambda-Y_{\lambda}\right\} .
$$

Then the expected value of $F\left(Y_{\lambda}\right)$ satisfies

$$
E\left\{F\left(Y_{\lambda}\right)\right\}=1+O\left(\frac{1}{\lambda}\right), \quad \lambda \rightarrow+\infty .
$$

The asymptotic estimate of the expected value of $D_{\boldsymbol{y}}(\beta)$ is $\frac{n}{2}$. Then

$$
\tau=\frac{n}{2}
$$

In [Carlavan, Blanc-Féraud, IEEE T. Image Proc. 2011] $\tau=\frac{m}{2}, m=\#\left\{y_{i}, y_{i}>0\right\}$

## Find $\bar{\beta}$ such that $D_{y}(\bar{\beta})=\tau$

Consider the nonlinear equation

$$
D_{\boldsymbol{y}}(\beta)-\tau=\sum_{i=1}^{n}\left\{y_{i} \log \frac{y_{i}}{\left(A \boldsymbol{x}_{\beta}^{*}+b\right)_{i}}+\left(A \boldsymbol{x}_{\beta}^{*}+b\right)_{i}-y_{i}\right\}-\tau=0
$$

where

$$
\boldsymbol{x}_{\beta}^{*}=\underset{\boldsymbol{x} \geq 0}{\operatorname{argmin}} f_{\beta}(\boldsymbol{x})=f_{0}(\boldsymbol{x})+\beta f_{1}(\boldsymbol{x})
$$

and $f_{0}(\boldsymbol{x})$ is nonnegative, convex and coercive on $\mathbb{R}_{\geq 0}^{n}$. Assume
$f_{1}(\boldsymbol{x})$ differentiable, nonnegative, convex and such that

$$
\mathcal{N}\left[\nabla^{2} f_{0}(\boldsymbol{x})\right] \cap \mathcal{N}\left[\nabla^{2} f_{1}(\boldsymbol{x})\right]=\{0\}
$$

- $f_{\beta}(\boldsymbol{x})$ is coercive and strictly convex $\Rightarrow D_{\boldsymbol{y}}(\beta)$ is well-defined
- $D_{\boldsymbol{y}}(\beta)$ is an increasing function of $\beta \Rightarrow$ if $\bar{\beta}$ exists, it is unique


## Look at an example: edge preserving regularization

$$
f_{1}(\boldsymbol{x})=\sum_{k=1}^{n} \sqrt{\Delta_{k}}
$$

$$
\Delta_{k}=\left(x_{i+1, j}-x_{i, j}\right)^{2}+\left(x_{i, j+1}-x_{i, j}\right)^{2}+\delta^{2}=\left\|L_{k} \boldsymbol{x}\right\|^{2}+\delta^{2}
$$

- $\left(L_{k}\right)_{2 \times n}, \quad L=\left[L_{1}^{T}, \ldots, L_{n}^{T}\right]^{T}, \quad E(\boldsymbol{x}$
- $F(\boldsymbol{x})=\operatorname{diag}\left(I_{2}-\frac{1}{\Delta_{k}} A_{k} \boldsymbol{x} \boldsymbol{x}^{T} A_{k}^{T}\right)_{k=1, \ldots, n}$

$$
\nabla f_{1}(\boldsymbol{x})=L^{T} E(\boldsymbol{x}) L \boldsymbol{x}, \quad \nabla^{2} f_{1}(\boldsymbol{x})=L^{T} E(\boldsymbol{x})^{-1} F(\boldsymbol{x}) L
$$

$$
\mathcal{N}\left[\nabla^{2} f_{1}(\boldsymbol{x})\right]=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{x}=c \mathbf{1}_{n}, c \in \mathbb{R}^{n}\right\}
$$

## Look at an example: edge preserving regularization

Recall that

\[

\]

$>f_{\beta}(\boldsymbol{x})$ is strictly convex and $D_{\boldsymbol{y}}(\beta)$ is an increasing function of $\beta$

Edge preserving regularization: existence of $\bar{\beta}$ such that $D_{y}(\bar{\beta})=\tau$
Let $\quad f_{1}(\boldsymbol{x})=\sum_{k=1}^{n} \sqrt{\Delta_{k}}$
(i) $\lim _{\beta \rightarrow 0} \boldsymbol{x}_{\beta}^{*}=\boldsymbol{x}^{*}, \quad \boldsymbol{x}^{*}=\underset{\boldsymbol{x}^{*} \geq 0}{\operatorname{argmin}} f_{0}(\boldsymbol{x})$
(ii) If $\frac{1}{n} \sum_{j=1}^{n}\left(A^{T} \boldsymbol{y}\right)_{j}>b$ then

$$
\begin{aligned}
& \lim _{\beta \rightarrow \infty} \boldsymbol{x}_{\beta}^{*}=\bar{c} \mathbf{1}_{n}, \quad \bar{c}: \sum_{i \in \mathcal{I}_{1}} \frac{\mathcal{A}_{i} y_{i}}{\mathcal{A}_{i} \bar{c}+b}=n, \quad \mathcal{A}_{i}=\sum_{j=1}^{n} A_{i, j} \\
& \text { If } \frac{1}{n} \sum_{j=1}^{n}\left(A^{T} \boldsymbol{y}\right)_{j}>b, \quad f_{0}\left(\boldsymbol{x}^{*}\right)<\frac{n}{2}, \quad f_{0}\left(\bar{c} \mathbf{1}_{n}\right)>\frac{n}{2}, \\
& \text { then } \bar{\beta} \text { such that } \quad D_{\boldsymbol{y}}(\bar{\beta})=\tau \quad \text { exists and is unique }
\end{aligned}
$$

(iii) If $\mathcal{A}_{i}=1$ then $\bar{c}=\bar{y}-b, \quad \bar{y}=\frac{1}{n} \sum_{i \in \mathcal{I}_{1}} y_{i}$

$$
f_{0}\left(\bar{c} \mathbf{1}_{n}\right)>\frac{n}{2} \quad \Leftrightarrow \quad \frac{1}{n} \sum_{i \in \mathcal{I}_{1}} y_{i} \ln y_{i}>\frac{1}{2}+\bar{y} \ln \bar{y}
$$

## Blurred images corrupted by Poisson noise: two test problems

Test environment: Matlab 7.14 .0 on a processor Intel Core i7 CPU Q720 1.60 GHz , 4GB RAM
Test problems: Cameraman $(256 \times 256)$, Spacecraft $(256 \times 256)$

Original Image


Observed Image



## Edge preserving regularization: cameraman test problem

$$
\begin{gathered}
n=256^{2}, \quad \bar{c}=1407.84 \\
f_{0}\left(\boldsymbol{x}^{*}\right)=16403.5<32768=\frac{n}{2}<14879957.3=f_{0}\left(\bar{c} \mathbf{1}_{n}\right)
\end{gathered}
$$

Behaviour of

$$
F(\beta)=\frac{2}{n} D_{\boldsymbol{y}}(\beta)-1
$$



## Edge preserving regularization: spacecraft test problem

$$
\begin{gathered}
n=256^{2}, \quad \bar{c}=154.22 \\
f_{0}\left(\boldsymbol{x}^{*}\right)=32399.6<32768=\frac{n}{2}<8022676.7=f_{0}\left(\bar{c} \mathbf{1}_{n}\right)
\end{gathered}
$$

Behaviour of

$$
F(\beta)=\frac{2}{n} D_{\boldsymbol{y}}(\beta)-1
$$



## Solving $D_{\boldsymbol{y}}(\bar{\beta})=\tau$ : the optimization solver

- effective constrained optimization solvers for

$$
\boldsymbol{x}_{\beta}^{*}=\underset{\boldsymbol{x} \geq 0}{\operatorname{argmin}} f_{\beta}(\boldsymbol{x})=f_{0}(\boldsymbol{x})+\beta f_{1}(\boldsymbol{x})
$$

- suitable for nonnegative constraints
- efficient for progressive stopping tolerance and warm starting
- robust for different values of $\beta$
- limited memory requirements
- Assuming $f_{1}(\boldsymbol{x})$ differentiable, recent accelerated gradient projection methods can be exploited


## Scaled Gradient Projection (SGP) methods

$$
\begin{gathered}
\min _{\boldsymbol{x} \geq \mathbf{0}} f(\boldsymbol{x}) \\
\boldsymbol{x}^{(0)} \geq \mathbf{0}, \quad \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\lambda_{k} \boldsymbol{d}^{(k)}, \quad k=0,1, \ldots
\end{gathered}
$$

- $\boldsymbol{d}^{(k)}$ feasible descent direction

$$
\boldsymbol{d}^{(k)}=P_{+}\left(\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right)-\boldsymbol{x}^{(k)}
$$

- $\mathcal{D}_{k}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right), \quad \frac{1}{\rho} \leq d_{i} \leq \rho, \quad$ diagonal scaling matrix
- $\alpha_{k} \in\left[\alpha_{\min }, \alpha_{\max }\right] \quad$ step-length parameter
- $\lambda_{k} \in(0,1]$ line-search parameter to ensure (via backtracking)

$$
f\left(\boldsymbol{x}^{(k)}+\lambda_{k} \boldsymbol{d}^{(k)}\right) \leq f_{r e f}^{(k)}+\gamma \lambda_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)^{T} \boldsymbol{d}^{(k)}, \quad \gamma \in(0,1)
$$

## A basic convergence property

Assume that $\Omega_{0}=\left\{\boldsymbol{x} \geq \mathbf{0}: f(\boldsymbol{x}) \leq f\left(\boldsymbol{x}^{(0)}\right)\right\}$ is bounded. Every accumulation point $\boldsymbol{x}^{*}$ of the sequence $\left\{\boldsymbol{x}^{(k)}\right\}$ generated by SGP is a constrained stationary point:

$$
\nabla f\left(\boldsymbol{x}^{*}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right) \geq 0 \quad \forall \boldsymbol{x} \geq \mathbf{0}
$$

- E. G. Birgin, J. M. Martínez, and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim. 10:4 (2000)
- E. G. Birgin, J. M. Martínez, and M. Raydan, Inexact spectral projected gradient methods on convex sets, IMA J. Numer. Anal. 23 (2003)
- S. Bonettini, R. Zanella, and L. Zanni, A scaled gradient projection method for constrained image deblurring, Inverse Problems 25 (2009), 015002
- Liu-Dai, JOTA $2001 \rightarrow$ R-linear convergence (unconstrained case)
- Hager-Mair-Zhang, Math. Program. (2009) $\rightarrow$ R-linear convergence (constrained case)


## The step-length selections: different rules but similar derivation

Suppose to have defined the diagonal scaling matrix $\mathcal{D}_{k}$.
Look for effective selection rules for the step-length $\alpha_{k}$ :

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\lambda_{k}\left(P_{+}\left(\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right)-\boldsymbol{x}^{(k)}\right)
$$

like selection rules [Barzilai-Borwein 1988]
Widely studied and successfully used in many applications in the last years. Essentially based on the information from the last two iterations

$$
\boldsymbol{x}^{(k)}, \quad \boldsymbol{x}^{(k-1)}, \quad \nabla f\left(\boldsymbol{x}^{(k)}\right), \quad \nabla f\left(\boldsymbol{x}^{(k-1)}\right)
$$

## Selection rules based on the

[Fletcher 2012]
Recently proposed for limited memory steepest descent methods. The gradients of the last $m$ it. are exploited ( $m$ small, $m=3,4,5$ ):

$$
\nabla f\left(\boldsymbol{x}^{(k)}\right), \ldots, \nabla f\left(\boldsymbol{x}^{(k-m+1)}\right)
$$

## Derivation of the step-length selection strategies

- Consider the gradient method for the unconst. problem $\min f(\boldsymbol{x})$ :

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{g}^{(k)}, \quad \boldsymbol{g}^{(k)}=\nabla f\left(\boldsymbol{x}^{(k)}\right), \quad k=0,1, \ldots
$$

- $f(x)=\frac{1}{2} x^{T} A x-b^{T} x \quad A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right), \quad 0<\lambda_{1}<\cdots<\lambda_{n}$


$$
g_{i}^{(k+1)}=\left(1-\alpha_{k} \lambda_{i}\right) g_{i}^{(k)} \quad i=1, \ldots, n
$$

$-\alpha_{k}=\frac{1}{\lambda_{i}} \quad \Rightarrow \quad g_{i}^{(k+1)}=0 \quad \Rightarrow \quad g_{i}^{(k+j)}=0, \quad j=2,3 \ldots$

- $\alpha_{k+i-1}=\frac{1}{\lambda_{i}}, \quad i=1, \ldots, N \Rightarrow \quad \boldsymbol{g}^{(k+N)}=0 \quad$ (Finite Termination)
$\alpha_{k}$ must aim at approximating the inverse of the eigenvalues of $A$


## Step-length selection: exploiting the BB rules

$\alpha_{k}^{\mathrm{BB} 1}=\frac{\boldsymbol{s}^{(k-1)^{T}} \boldsymbol{s}^{(k-1)}}{\boldsymbol{s}^{(k-1)^{T}} \boldsymbol{z}^{(k-1)}}, \quad \alpha_{k}^{\mathrm{BB} 2}=\frac{\boldsymbol{s}^{(k-1)^{T}} \boldsymbol{z}^{(k-1)}}{\boldsymbol{z}^{(k-1)^{T}} \boldsymbol{z}^{(k-1)}} \quad \begin{aligned} & \boldsymbol{s}^{(k-1)}=\boldsymbol{x}^{(k)}-\boldsymbol{x}^{(k-1)} \\ & \boldsymbol{z}^{(k-1)}=\boldsymbol{g}^{(k)}-\boldsymbol{g}^{(k-1)}\end{aligned}$

## Alternate Barzilai-Borwein selection rule [Zhou-Gao-Dai (2006)]

$$
\alpha_{k}^{A B B}=\left\{\begin{array}{lll}
\alpha_{k}^{B B 2} & \text { if } \frac{\alpha_{k}^{B B 2}}{\alpha_{k}^{B B 1}}<\tau, & \tau \in(0,1) \\
\alpha_{k}^{B B 1} & & \text { otherwise }
\end{array}\right.
$$

## $\mathrm{ABB}_{\text {min }}$ rule [Frassoldati-Zanghirati-Zanni (2008)]

$\alpha_{k}^{A B B_{\min }}=\left\{\begin{array}{lr}\min \left\{\alpha_{j}^{B B 2} \mid j=\max \left\{1, k-M_{\alpha}\right\}, \ldots, k\right\} & \text { if } \alpha_{k}^{B B 2} / \alpha_{k}^{B B 1}<\tau \\ \alpha_{k}^{B B 1} & \text { otherwise }\end{array}\right.$
where $M_{\alpha}>0$ is a parameter.

## Behaviour of the BB adaptive alternation

## Example

$$
\begin{array}{ll}
f(x)=\frac{1}{2} x^{T} A x-b^{T} x & \text { • } A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{10}\right), \quad \lambda_{i}=111 i-110 \\
\text { • } b \text { random vector; } b_{i} \in[-10,10]
\end{array}
$$

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{g}^{(k)}
$$

$$
\text { Error }=\left\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right\| /\left\|\boldsymbol{x}^{*}\right\|
$$

- Cauchy Steepest Descent (CSD) $\alpha_{k}=\operatorname{argmin}_{\alpha>0} f\left(\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{g}^{(k)}\right)$
- BB1 $\quad \rightarrow \quad \alpha_{k}=\alpha_{k}^{B B 1}$
- $\mathrm{BB} 2 \quad \rightarrow \quad \alpha_{k}=\alpha_{k}^{B B 2}$
- $\mathrm{ABB} \rightarrow$ alternation
- $\mathrm{ABB}_{\text {min }} \rightarrow$ modified alternation



## The distribution of the steplengths w.r.t. $\frac{1}{\lambda_{i}}, i=1, \ldots, n$






## Step-length selection: exploiting the Ritz Values

Unconstr. problem: $\quad \min f(\boldsymbol{x}), \quad f(x)=\frac{1}{2} x^{T} A x-b^{T} x, \quad \boldsymbol{g}(\boldsymbol{x})=\nabla f(\boldsymbol{x})$

## Basic properties

Consider the Krylov sequence: $\left\{\boldsymbol{g}^{(k-m)}, A \boldsymbol{g}^{(k-m)}, \ldots, A^{m-1} \boldsymbol{g}^{(k-m)}\right\}$

- Lanczos iterative process, starting from $\boldsymbol{q}_{1}=\frac{\boldsymbol{g}^{(k-m)}}{\left\|\boldsymbol{g}^{(k-m)}\right\|}$, generates orthonormal basis vectors for the Krylov sequence:

$$
Q_{n \times m}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right]
$$

- The eigenvalues (Ritz Values) of the tridiagonal matrix

$$
T_{m \times m}=Q^{T} A Q
$$

are estimates of the eigenvalues $\lambda_{i}$ of $A$

## Step-length selection: exploiting the Ritz Values

## Goal [Fletcher, Math. Program. 2012]

- Define $T$ starting from

$$
G=\left[\boldsymbol{g}^{(k-m)}, \ldots, \boldsymbol{g}^{(k-1)}\right] \quad(m \text { small } ; m=3,4,5)
$$

without explicit use of $Q$ and $A$

- Compute the Ritz Values $\theta_{i}, i=1, \ldots, m$
(eigenvalues of the $m \times m$ tridiagonal matrix $T$ )
- Exploit $\alpha_{k-1+i}=\frac{1}{\theta_{i}}, i=1, \ldots, m$ for $m$ iterations of the gradient methods

$$
\boldsymbol{x}^{(k+i)}=\boldsymbol{x}^{(k-1+i)}-\alpha_{k-1+i} \boldsymbol{g}^{(k-1+i)}, \quad i=1, \ldots, m
$$

## Behaviour of the Ritz values

## Example

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x
$$

- $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{10}\right), \quad \lambda_{i}=111 i-110$
- $b$ random vector; $b_{i} \in[-10,10]$.

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \boldsymbol{g}^{(k)}
$$

$$
\text { Error }=\left\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}\right\| /\left\|\boldsymbol{x}^{*}\right\|
$$

- $\quad \mathrm{ABB}_{\text {min }} \rightarrow \mathrm{BB}$ adaptive alternation
-     -         -             - Ritz with $m=3$
-     -         - . Ritz with $m=5$
- —— Ritz with $m=7$


## The distribution of the steplengths w.r.t. $\quad \frac{1}{\lambda_{i}}, \quad i=1, \ldots, N$




Ritz, m=5



## The step-lengths in Scaled Gradient Methods: the BB case

Consider the scaled gradient method: $\quad \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \boldsymbol{g}^{(k)}$

## The step-lengths in Scaled Gradient Methods: the BB case

Consider the scaled gradient method: $\quad \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \boldsymbol{g}^{(k)}$
Recall the derivation of the BB rules without scaling $\left(\mathcal{D}_{k}=I\right)$ :
Regard $B\left(\alpha_{k}\right)=\left(\alpha_{k} I\right)^{-1}$ as an approximation of the Hessian $\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right)$

## The step-lengths in Scaled Gradient Methods: the BB case

Consider the scaled gradient method: $\quad \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \boldsymbol{g}^{(k)}$

## Recall the derivation of the BB rules without scaling $\left(\mathcal{D}_{k}=I\right)$ :

Regard $B\left(\alpha_{k}\right)=\left(\alpha_{k} I\right)^{-1}$ as an approximation of the Hessian $\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right)$

Determine $\alpha_{k}$ by forcing a quasi-Newton property on $B\left(\alpha_{k}\right)$ :

$$
\begin{gathered}
\alpha_{k}^{\mathrm{BB} 1}=\underset{\alpha \in \mathbb{R}}{\operatorname{argmin}}\left\|B(\alpha) \boldsymbol{s}^{(k-1)}-\boldsymbol{z}^{(k-1)}\right\|=\frac{\boldsymbol{s}^{(k-1)^{T}} \boldsymbol{s}^{(k-1)}}{\boldsymbol{s}^{(k-1)^{T}} \boldsymbol{z}^{(k-1)}} \\
\quad \text { or } \\
\alpha_{k}^{\mathrm{BB} 2}=\underset{\alpha \in \mathbb{R}}{\operatorname{argmin}}\left\|\boldsymbol{s}^{(k-1)}-B(\alpha)^{-1} \boldsymbol{z}^{(k-1)}\right\|=\frac{\boldsymbol{s}^{(k-1)^{T}} \boldsymbol{z}^{(k-1)}}{\boldsymbol{z}^{(k-1)^{T}} \boldsymbol{z}^{(k-1)}} \\
\text { where } \boldsymbol{s}^{(k-1)}=\left(\boldsymbol{x}^{(k)}-\boldsymbol{x}^{(k-1)}\right) \text { and } \boldsymbol{z}^{(k-1)}=\left(\boldsymbol{g}^{(k)}-\boldsymbol{g}^{(k-1)}\right)
\end{gathered}
$$

## The step-lengths in Scaled Gradient Methods: the BB case

Consider the scaled gradient method: $\quad \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \boldsymbol{g}^{(k)}$

## The step-lengths in Scaled Gradient Methods: the BB case

Consider the scaled gradient method: $\quad \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \boldsymbol{g}^{(k)}$

## Derivation of the $B B$ rules with scaling:

Regard $B\left(\alpha_{k}\right)=\left(\alpha_{k} \mathcal{D}_{k}\right)^{-1}$ as an approximation of $\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right)$

## The step-lengths in Scaled Gradient Methods: the BB case

Consider the scaled gradient method: $\quad \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \boldsymbol{g}^{(k)}$

## Derivation of the $B B$ rules with scaling:

Regard $B\left(\alpha_{k}\right)=\left(\alpha_{k} \mathcal{D}_{k}\right)^{-1}$ as an approximation of $\nabla^{2} f\left(\boldsymbol{x}^{(k)}\right)$
Determine $\alpha_{k}$ by forcing a quasi-Newton property on $B\left(\alpha_{k}\right)$ :

$$
\begin{aligned}
& \alpha_{k}^{\mathrm{BB} 1}= \frac{\boldsymbol{s}^{(k-1)^{T}} \mathcal{D}_{k}^{-1} \mathcal{D}_{k}^{-1} \boldsymbol{s}^{(k-1)}}{\boldsymbol{s}^{(k-1)^{T}} \mathcal{D}_{k}^{-1} \boldsymbol{z}^{(k-1)}} \\
& \alpha_{k}^{\mathrm{Or}}
\end{aligned}
$$

where $\boldsymbol{s}^{(k-1)}=\left(\boldsymbol{x}^{(k)}-\boldsymbol{x}^{(k-1)}\right)$ and $\boldsymbol{z}^{(k-1)}=\left(\boldsymbol{g}^{(k)}-\boldsymbol{g}^{(k-1)}\right)$.

## The Ritz values in Scaled Gradient Methods

Consider the scaled gradient method: $\quad \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \boldsymbol{g}^{(k)}$

## The Ritz values in Scaled Gradient Methods

Consider the scaled gradient method: $\quad \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \boldsymbol{g}^{(k)}$

## Recall the quadratic case: $\min f(x)=\frac{1}{2} x^{T} A x-b^{T} x$

- consider the problem $\tilde{f}(\boldsymbol{y})=\frac{1}{2} \boldsymbol{y}^{T} \mathcal{D}^{\frac{1}{2}} A \mathcal{D}^{\frac{1}{2}} \boldsymbol{y}-b^{T} \mathcal{D}^{\frac{1}{2}} \boldsymbol{y}$ and

$$
\boldsymbol{y}^{(k+1)}=\boldsymbol{y}^{(k)}-\alpha_{k} \tilde{\boldsymbol{g}}^{(k)}, \quad \tilde{\boldsymbol{g}}^{(k)}=\nabla \tilde{f}\left(\boldsymbol{y}^{(k)}\right)
$$

- Let $\boldsymbol{y}^{(k)}=\mathcal{D}^{-\frac{1}{2}} \boldsymbol{x}^{(k)} ; \quad$ we have $\quad \tilde{\boldsymbol{g}}^{(k)}=\mathcal{D}^{\frac{1}{2}} \boldsymbol{g}^{(k)} \quad$ and

$$
\boldsymbol{y}^{(k+1)}=\mathcal{D}^{-\frac{1}{2}}\left(\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D} \boldsymbol{g}^{(k)}\right)=\mathcal{D}^{-\frac{1}{2}} \boldsymbol{x}^{(k+1)}
$$

- gradient step on $\boldsymbol{y}^{(k)} \leftrightarrow$ scaled gradient step on $\boldsymbol{x}^{(k)}$


## The Ritz values in Scaled Gradient Methods

Consider the scaled gradient method: $\quad \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \boldsymbol{g}^{(k)}$

## Recall the quadratic case: $\min f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}-b^{T} \boldsymbol{x}$

- consider the problem $\tilde{f}(\boldsymbol{y})=\frac{1}{2} \boldsymbol{y}^{T} \mathcal{D}^{\frac{1}{2}} A \mathcal{D}^{\frac{1}{2}} \boldsymbol{y}-b^{T} \mathcal{D}^{\frac{1}{2}} \boldsymbol{y}$ and

$$
\boldsymbol{y}^{(k+1)}=\boldsymbol{y}^{(k)}-\alpha_{k} \tilde{\boldsymbol{g}}^{(k)}, \quad \tilde{\boldsymbol{g}}^{(k)}=\nabla \tilde{f}\left(\boldsymbol{y}^{(k)}\right)
$$

- Let $\boldsymbol{y}^{(k)}=\mathcal{D}^{-\frac{1}{2}} \boldsymbol{x}^{(k)} ; \quad$ we have $\quad \tilde{\boldsymbol{g}}^{(k)}=\mathcal{D}^{\frac{1}{2}} \boldsymbol{g}^{(k)} \quad$ and

$$
\boldsymbol{y}^{(k+1)}=\mathcal{D}^{-\frac{1}{2}}\left(\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D} \boldsymbol{g}^{(k)}\right)=\mathcal{D}^{-\frac{1}{2}} \boldsymbol{x}^{(k+1)}
$$

- gradient step on $\boldsymbol{y}^{(k)} \leftrightarrow$ scaled gradient step on $\boldsymbol{x}^{(k)}$

$$
\begin{gathered}
G=\left[\mathcal{D}_{k-m}^{\frac{1}{2}} \boldsymbol{g}^{(k-m)}, \ldots, \mathcal{D}_{k-1}^{\frac{1}{2}} \boldsymbol{g}^{(k-1)}\right] \\
G^{T} G=R^{T} R \quad R^{T} \boldsymbol{r}=G^{T} \mathcal{D}_{k}^{\frac{1}{2}} \boldsymbol{g}^{(k)} \quad T=\left[\begin{array}{ll}
R & \boldsymbol{r}
\end{array}\right] J R^{-1}
\end{gathered}
$$

## Diagonal scaling matrix in SGP: the updating rule

- A standard choice: $\mathcal{D}_{k}=\operatorname{diag}\left(\mathcal{D}_{1}^{(k)}, \mathcal{D}_{2}^{(k)}, \ldots, \mathcal{D}_{n}^{(k)}\right)$

$$
\mathcal{D}_{i}^{(k)}=\min \left\{\rho, \max \left\{\frac{1}{\rho},\left(\frac{\partial^{2} f\left(\boldsymbol{x}^{(k)}\right)}{\left(\partial x_{i}\right)^{2}}\right)^{-1}\right\}\right\}, \quad i=1, \ldots, n,
$$

- Exploit first-order optimality condition (KKT condition) To simplify the exposition, consider

$$
\min _{\boldsymbol{x} \geq 0} f(\boldsymbol{x})
$$

KKT condition:

$$
\begin{gathered}
\nabla f(\boldsymbol{x})-\boldsymbol{\lambda}=0, \quad \boldsymbol{x} \geq \mathbf{0}, \quad \boldsymbol{\lambda} \geq \mathbf{0}, \quad x_{i} \lambda_{i}=0, \quad i=1, \ldots, n \\
\boldsymbol{x} \cdot \nabla f(\boldsymbol{x})=\mathbf{0}, \quad \boldsymbol{x} \geq \mathbf{0}, \quad \nabla f(\boldsymbol{x}) \geq \mathbf{0}
\end{gathered}
$$

"." denotes the component-wise product

## Diagonal scaling matrix in SGP: the updating rule

Split the gradient [Lantéri-Roche-Aime, Inv. Prob. (2002)]:

$$
\nabla f(\boldsymbol{x})=V(\boldsymbol{x})-U(\boldsymbol{x}), \quad V(\boldsymbol{x})>0, \quad U(\boldsymbol{x}) \geq 0
$$

and use the splitting in the nonlinear equation $\boldsymbol{x} \cdot \nabla f(\boldsymbol{x})=\mathbf{0}$ :

$$
\boldsymbol{x} \cdot V(\boldsymbol{x})=\boldsymbol{x} \cdot U(\boldsymbol{x})=\boldsymbol{x} \cdot(-\nabla f(\boldsymbol{x})+V(\boldsymbol{x})),
$$

$\boldsymbol{x}=\boldsymbol{x}-\frac{\boldsymbol{x}}{V(\boldsymbol{x})} \cdot \nabla f(\boldsymbol{x})=\boldsymbol{x}-\mathcal{D} \nabla f(\boldsymbol{x}), \quad \mathcal{D}=\operatorname{diag}\left(\frac{x_{1}}{V_{1}(\boldsymbol{x})}, \ldots, \frac{x_{n}}{V_{n}(\boldsymbol{x})}\right)$
Iterative methods for $\boldsymbol{x} \cdot \nabla f(\boldsymbol{x})=\mathbf{0}$ based on scaled gradient direction:

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\mathcal{D}_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right), \quad \mathcal{D}_{k}=\operatorname{diag}\left(\frac{x_{1}^{(k)}}{V_{1}\left(\boldsymbol{x}^{(k)}\right)}, \ldots, \frac{x_{n}^{(k)}}{V_{n}\left(\boldsymbol{x}^{(k)}\right)}\right)
$$

## Diagonal scaling matrix in SGP: the updating rule

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\lambda_{k}\left(P_{+}\left(\boldsymbol{x}^{(k)}-\alpha_{k} \mathcal{D}_{k} \nabla f\left(\boldsymbol{x}^{(k)}\right)\right)-\boldsymbol{x}^{(k)}\right)
$$

- use the split gradient idea to define the SGP scaling matrix:
$\mathcal{D}_{i}^{(k)}=\min \left\{\rho, \max \left\{\frac{1}{\rho}, \frac{x_{i}^{(k)}}{V_{i}\left(\boldsymbol{x}^{(k)}\right)}\right\}\right\}, \quad V_{i}\left(\boldsymbol{x}^{(k)}\right)>0, \quad i=1, \ldots, n$,
- In some applications the splitting $\nabla f(\boldsymbol{x})=V(\boldsymbol{x})-U(\boldsymbol{x})$ is suggested by the form of the gradient (problem dependent scaling matrix) e.g.: algorithms in imaging (EM, ISRA) exploit this approach
- similar idea used in [Hager-Mair-Zhang, Math. Program. (2009)] in case of special constraints (e.g. $\boldsymbol{x} \geq 0$ )

$$
\mathcal{D}_{i}^{(k)}=\frac{\alpha_{k} x_{i}^{(k)}}{x_{i}^{(k)}+\alpha_{k}\left(\nabla f\left(\boldsymbol{x}^{(k)}\right)\right)_{i}^{+}}, \quad i=1, \ldots, n, \quad(t)^{+}=\max \{0, t\}
$$

## $\operatorname{SGP}\left(\mathrm{ABB}_{\text {min }}\right)$ vs $\mathrm{SGP}($ Ritz $)$

Benchmark test problems in image deblurring

SGP as solver for the regularized problem

$$
\begin{gathered}
\min _{\boldsymbol{x} \geq \mathbf{0}} f_{0}(\boldsymbol{x})+\beta f_{1}(\boldsymbol{x}), \quad \beta>0 \\
f_{0}(\boldsymbol{x})=\sum_{i=1}^{n}\left\{y_{i} \log \frac{y_{i}}{(A \boldsymbol{x}+b)_{i}}+(A \boldsymbol{x}+b)_{i}-y_{i}\right\} \\
f_{1}(\boldsymbol{x})=\sum_{k=1}^{n} \sqrt{\Delta_{k}}, \quad \Delta_{k}=\left(x_{i+1, j}-x_{i, j}\right)^{2}+\left(x_{i, j+1}-x_{i, j}\right)^{2}+\delta^{2}
\end{gathered}
$$

## SGP as solver for a regularized problem

$$
\boldsymbol{x}^{*}=\underset{\boldsymbol{x} \geq 0}{\operatorname{argmin}} f_{\beta}(\boldsymbol{x}) ; \quad \text { stopping rule: }\left|f_{\beta}\left(\boldsymbol{x}^{(k)}\right)-f_{\beta}\left(\boldsymbol{x}^{(k-1)}\right)\right| /\left|f_{\beta}\left(\boldsymbol{x}^{(k)}\right)\right| \leq t_{f}
$$

|  | Cameraman $\left(t_{f}=10^{-8}\right)$ |  |  | Spacecraft $\left(t_{f}=10^{-6}\right)$ |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | it. | Sec. | err. | it. | Sec. | err. |
| SGP ABB |  |  |  |  |  |  |
| min | 974 | 18.0 | 0.0011 | 1063 | 20.0 | 0.16 |
| SGP Ritz | 504 | 11.3 | 0.0023 | 400 | 8.7 | 0.16 |

Relative minimization error


Relative minimization error


## Solving $D_{y}(\bar{\beta})=\tau$ by using SGP as inner solver

Given $\beta$, the computation of $D_{\boldsymbol{y}}(\beta)$ requires

$$
\boldsymbol{x}_{\beta}^{*}=\underset{\boldsymbol{x} \geq 0}{\operatorname{argmin}} f_{\beta}(\boldsymbol{x})=f_{0}(\boldsymbol{x})+\beta f_{1}(\boldsymbol{x})
$$

We obtain $\boldsymbol{x}_{\beta}^{*}$ by $\operatorname{SGP}($ Ritz $)$ with stopping rule on $f_{\beta}\left(\boldsymbol{x}^{(k)}\right)$

$$
e r_{k}<t_{f} \quad e r_{k}=\left|f_{\beta}\left(\boldsymbol{x}^{(k)}\right)-f_{\beta}\left(\boldsymbol{x}^{(k-1)}\right)\right| /\left|f_{\beta}\left(\boldsymbol{x}^{(k)}\right)\right|
$$

> Design a root finding solver for $D_{\boldsymbol{y}}(\bar{\beta})=\tau$

Two phases secant-based algorithm

1) Bracketing Phase:

$$
\beta_{l}<\beta_{u} \Rightarrow D_{\boldsymbol{y}}\left(\beta_{l}\right)<D_{\boldsymbol{y}}\left(\beta_{u}\right)
$$

2) Secant Phase in $\left[\beta_{l}, \beta_{u}\right.$ ]


## Two phases secant-based algorithm: the Bracketing phase

Input: a tentative $\beta$, an initial step $d \beta, \gamma \in(0,1)$, and $F(\beta)=\frac{2}{n} D_{\boldsymbol{y}}(\beta)-1$

$$
\begin{aligned}
& \text { if } \quad \begin{array}{l}
F(\beta)<0 \\
\beta_{l}=\beta, \quad \beta=\beta+d \beta \\
\text { while } F(\beta)<0
\end{array} \\
& \quad d s=\text { secant step, } d \beta=d \beta+d s \\
& \quad \beta_{l}=\beta, \quad \beta=\beta+d \beta \\
& \text { end } \\
& \beta_{u}=\beta \\
& \text { else secant-like steps to increase } \beta \\
& \quad \beta_{u}=\beta, \quad \beta=\beta_{u} \gamma \\
& \text { while } F(\beta)>0 \\
& \quad \beta_{u}=\beta, \quad \beta=\beta_{u} \gamma \\
& \text { end } \\
& \beta_{l}=\beta
\end{aligned} \quad \begin{aligned}
& \text { progressive reduction of } \beta \\
& \text { end for slowly approaching } \beta=0 \\
& \text { end }
\end{aligned}
$$

Output: $\beta_{l}, \beta_{u}$ such that $\bar{\beta} \in\left[\beta_{l}, \beta_{u}\right]$

## Two phases secant-based algorithm: the Bracketing phase

SGP (Ritz): warm start not useful; progressive stopping tol. very useful.

|  |  | Cameraman $\left(\beta_{0}=0.1\right.$ |  |  |  | SGP reference tol. $\left.=10^{-9}, \boldsymbol{x}^{(0)}=\boldsymbol{y}\right)$ |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | severe SGP tol. |  |  | progressive SGP tol. |  |  |
| it. | $\beta$ | $t_{f}$ | inner it. | $F(\beta)$ | $t_{f}$ | inner it. | $F(\beta)$ |
| 1 | 0.1 | $10^{-8}$ | 504 | 1.9900 | $10^{-6}$ | 197 | 1.8099 |
| 2 | 0.01 | $10^{-9}$ | 440 | 0.0810 | $2 \cdot 10^{-7}$ | 198 | 0.0821 |
| 3 | 0.001 | $10^{-9}$ | 644 | -0.2113 | $4 \cdot 10^{-8}$ | 428 | -0.2111 |
|  |  |  | 1588 |  | $\mathbf{8 2 3}$ |  |  |


|  |  | Spacecraft $\left(\beta_{0}=0.1\right.$, SGP reference tol. $\left.=10^{-9}, \boldsymbol{x}^{(0)}=\boldsymbol{y}\right)$ |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | severe SGP tol. |  |  |  |  |  |  |  | progressive SGP tol. |  |  |
| it. | $\beta$ | $t_{f}$ | inner it. | $F(\beta)$ | $t_{f}$ | inner it. | $F(\beta)$ |  |  |  |  |
| 1 | 0.1 | $10^{-8}$ | 3046 | 0.3658 | $10^{-6}$ | 400 | 0.5427 |  |  |  |  |
| 2 | 0.01 | $10^{-9}$ | 1966 | 0.0403 | $2 \cdot 10^{-7}$ | 576 | 0.0417 |  |  |  |  |
| 3 | 0.001 | $10^{-9}$ | 1546 | 0.0014 | $4 \cdot 10^{-8}$ | 1022 | 0.0017 |  |  |  |  |
| 4 | 0.0001 | $10^{-9}$ | 2370 | -0.0046 | $8 \cdot 10^{-9}$ | 1589 | -0.0044 |  |  |  |  |
|  |  |  | 8928 |  | $\mathbf{3 5 8 7}$ |  |  |  |  |  |  |

## Two phases secant-based algorithm: the Secant phase

Input: $\beta_{l}, \beta_{u}, f l a g\left(t_{f}\right) \in\{0,1\} \quad$ (SGP progressive tol.), $t_{\text {min }}>0, \operatorname{stop}(\beta)=0$
if $\quad \operatorname{flag}\left(t_{f}\right)=1$
reduce $t_{f}$
refine $F\left(\beta_{l}\right)$ by improving $\boldsymbol{x}_{\beta_{l}}^{*}$ (warm start in $\operatorname{SGP}\left(t_{f}, \boldsymbol{x}_{\beta_{l}}^{*}\right)$ )
refine $F\left(\beta_{u}\right)$ by improving $\boldsymbol{x}_{\beta_{u}}^{*}$ (warm start in $\left.\operatorname{SGP}\left(t_{f}, \boldsymbol{x}_{\beta_{u}}^{*}\right)\right)$
end
update $\beta$ by a secant step and $F(\beta)$ by $\operatorname{SGP}\left(t_{f}, \boldsymbol{y}\right)$
$t_{f}=t_{\text {min }}$
while $\quad(\sim \operatorname{stop}(\beta))$
update $\beta$ by a secant-like step and $F(\beta)$ (warm start in $\operatorname{SGP}\left(t_{f}, \boldsymbol{x}_{\beta}^{*}\right)$ ) end

Output: $\bar{\beta}$ such that $F(\bar{\beta}) \approx 0$

## Two phases secant-based algorithm: the Secant phase

SGP (Ritz): warm start very useful;

|  | Cameraman (SGP reference tol. $=10^{-9}$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\beta$ | $t_{f}$ | inner it. | $F(\beta)$ |  |
| 1 | $1.00 \mathrm{e}-3$ | $6.3 \mathrm{e}-9$ | 37 | $-2.1 \mathrm{e}-1$ |  |
| 2 | $1.00 \mathrm{e}-2$ | $6.3 \mathrm{e}-9$ | 173 | $8.1 \mathrm{e}-2$ |  |
| 3 | $7.50 \mathrm{e}-3$ | $6.3 \mathrm{e}-9$ | 357 | $2.0 \mathrm{e}-2$ |  |
| 4 | $6.67 \mathrm{e}-3$ | $3.3 \mathrm{e}-10$ | 271 | $-1.0 \mathrm{e}-3$ |  |
| 5 | $6.71 \mathrm{e}-3$ | $3.3 \mathrm{e}-10$ | 38 | $-9.8 \mathrm{e}-5$ |  |
|  | 876 |  |  |  |  |


|  | Spacecraft (SGP reference tol. $=10^{-9}$ ) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\beta$ | $t_{f}$ | inner it. | $F(\beta)$ |
| 1 | $1.00 \mathrm{e}-4$ | $2.8 \mathrm{e}-9$ | 374 | $-4.5 \mathrm{e}-3$ |
| 2 | $1.00 \mathrm{e}-3$ | $2.8 \mathrm{e}-9$ | 919 | $1.4 \mathrm{e}-3$ |
| 3 | $7.88 \mathrm{e}-4$ | $2.8 \mathrm{e}-9$ | 1756 | $3.6 \mathrm{e}-4$ |
| 4 | $7.14 \mathrm{e}-4$ | $3.3 \mathrm{e}-10$ | 323 | $1.1 \mathrm{e}-4$ |
|  | 3372 |  |  |  |

## A constrained model for the regularization parameter

An alternative approach for computing $\bar{\beta}$ such that

$$
\begin{equation*}
D_{\boldsymbol{y}}(\bar{\beta})=D_{K L}\left(\boldsymbol{y}, A \boldsymbol{x}_{\bar{\beta}}^{*}\right)=\tau \tag{1}
\end{equation*}
$$

can be derived by exploiting the relation between the problems

$$
\begin{equation*}
\operatorname{argmin} f_{1}(L \boldsymbol{x}) \quad \text { subject to } D_{K L}(\boldsymbol{y}, A \boldsymbol{x}) \leq \tau \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{\boldsymbol{x} \geq 0}{\operatorname{argmin}} f_{1}(L \boldsymbol{x})+\lambda D_{K L}(\boldsymbol{y}, A \boldsymbol{x}) \tag{3}
\end{equation*}
$$

By solving (2) by a primal-dual algorithm, a sequence $\left\{\lambda^{(k)}\right\}_{k}$ is generated converging to a parameter $\hat{\lambda}$ such that $\bar{\beta}=\frac{1}{\hat{\lambda}}$ satisfies the discrepancy equation (1).
[Carlavan, Blanc-Feraud, 2011,2012], [Teuber, Steidl, Chan, 2013]

## A constrained model for the regularization parameter

$$
\tau_{0}=\min _{\boldsymbol{x} \geq 0} D_{K L}(\boldsymbol{y}, A \boldsymbol{x}), \quad \tau_{L}=\min _{\boldsymbol{x} \geq \mathbf{0}, \boldsymbol{x} \in \mathcal{N}(L)} D_{K L}(\boldsymbol{y}, A \boldsymbol{x}), \quad \mathcal{K}=\{\boldsymbol{x} \geq 0: A \boldsymbol{x}>0\}
$$

Let $\boldsymbol{y}>0, \mathcal{K} \neq \emptyset, \mathcal{N}(L) \cap \mathcal{N}(A)=\{\mathbf{0}\}, \operatorname{argmin}_{\boldsymbol{x} \geq \mathbf{0}} D_{K L}(\boldsymbol{y}, A \boldsymbol{x}) \cap \mathcal{N}(L)=\emptyset$. If $\hat{\boldsymbol{x}}$ is a solution of (2) with $\tau_{0}<\tau<\tau_{L}$, then there exists a unique $\lambda>0$ such that $\hat{\boldsymbol{x}}$ is a solution of (3).
Moreover $\lambda$ does not depend on the chosen solution of (2).
Under the above assumptions, if

$$
\tau_{0}<\frac{n}{2}<\tau_{L}
$$

the solution $\bar{\beta}$ of the discrepancy equation exists and is unique $\left(\bar{\beta}=\frac{1}{\lambda}\right)$.

Compute $\bar{\beta}$ by solving the divergence constrained problem (2)

## ADMM for the constrained problem

We set $\boldsymbol{q}_{i}=\gamma \boldsymbol{p}_{i}, i=1,2,3, \quad \gamma>0$;

- $\boldsymbol{q}_{i}^{(0)}=0, \quad \boldsymbol{w}_{1}^{(0)}=A \boldsymbol{y}, \quad \boldsymbol{w}_{2}^{(0)}=L \boldsymbol{y}, \quad \boldsymbol{w}_{3}^{(0)}=\boldsymbol{y} ; \quad \lambda_{0}=\lambda_{-1}=0 ;$
- For $k=0,1, \ldots$ repeat until a suitable stopping criterion is fulfilled

1. $\boldsymbol{x}^{(k+1)}=\operatorname{argmin}_{\boldsymbol{x}}\left\|\boldsymbol{q}_{1}^{(k)}+A \boldsymbol{x}-\boldsymbol{w}_{1}^{(k)}\right\|^{2}+\left\|\boldsymbol{q}_{2}^{(k)}+L \boldsymbol{x}-\boldsymbol{w}_{2}^{(k)}\right\|^{2}+\left\|\boldsymbol{q}_{3}^{(k)}+\boldsymbol{x}-\boldsymbol{w}_{3}^{(k)}\right\|^{2}$
2. $\boldsymbol{w}_{1}^{(k+1)}=\operatorname{argmin} \boldsymbol{w}_{1} \in \operatorname{lev}_{\tau} D_{K L}\left(\boldsymbol{y}, \boldsymbol{w}_{1}\right) \frac{1}{2 \gamma}\left\|\boldsymbol{q}_{1}^{(k)}+A \boldsymbol{x}^{(k+1)}-\boldsymbol{w}_{1}\right\|^{2}$;
computation of $\lambda_{k+1}$, Lagrange multiplier of the inequality constraint;
3. $\boldsymbol{w}_{2}^{(k+1)}=\operatorname{argmin}_{\boldsymbol{w}_{2}} f_{1}\left(\boldsymbol{w}_{2}\right)+\frac{1}{2 \gamma}\left\|\boldsymbol{q}_{2}^{(k)}+L x^{(k+1)}-\boldsymbol{w}_{2}\right\|^{2}$
4. $\boldsymbol{w}_{3}^{(k+1)}=\operatorname{argmin}_{\boldsymbol{w}_{3} \geq 0} \frac{1}{2 \gamma}\left\|\boldsymbol{q}_{3}^{(k)}+x^{(k+1)}-\boldsymbol{w}_{3}\right\|^{2}=\max \left(\boldsymbol{q}_{3}^{(k)}+\boldsymbol{x}^{(k+1)}, 0\right)$
5. $\boldsymbol{q}_{1}^{(k+1)}=\boldsymbol{q}_{1}^{(k)}+A \boldsymbol{x}^{(k+1)}-\boldsymbol{w}_{1}^{(k+1)}$
6. $\boldsymbol{q}_{2}^{(k+1)}=\boldsymbol{q}_{2}^{(k)}+L \boldsymbol{x}^{(k+1)}-\boldsymbol{w}_{2}^{(k+1)}$
7. $\boldsymbol{q}_{3}^{(k+1)}=\boldsymbol{q}_{3}^{(k)}+\boldsymbol{x}^{(k+1)}-\boldsymbol{w}_{3}^{(k+1)}$

## Crucial steps

- The first step requires the solution of a linear system:

$$
\boldsymbol{x}^{(k+1)}=\left(A^{T} A+L^{T} L+I\right)^{-1}\left(A^{T}\left(\boldsymbol{w}_{1}^{(k)}-\boldsymbol{q}_{1}^{(k)}\right)+L^{T}\left(\boldsymbol{w}_{2}^{(k)}-\boldsymbol{q}_{2}^{(k)}\right)+\left(\boldsymbol{w}_{3}^{(k)}-\boldsymbol{q}_{3}^{(k)}\right)\right)
$$

- The computation of $\boldsymbol{w}_{2}^{(k+1)}$ depends on the regularization term
- If $\boldsymbol{y}>0, \tau>0, \boldsymbol{z}=\boldsymbol{q}_{1}^{(k)}+A \boldsymbol{x}^{(k+1)}$, from the solution of

$$
\min _{\boldsymbol{w}} \frac{1}{2}\|\boldsymbol{z}-\boldsymbol{w}\|^{2} \text { sub. to } \quad D_{K L}(\boldsymbol{y}, \boldsymbol{w}) \leq \tau
$$

we compute $\boldsymbol{w}_{1}^{(k+1)}$ and $\lambda_{k+1} \quad$ [Carlavan, Blanc-Feraud, 2011,2012].
By few Newton's steps we compute the solution $\hat{\lambda}$ of $D_{K L}(\boldsymbol{y}, \boldsymbol{w}(\boldsymbol{z}, \lambda))=\tau$ where $\boldsymbol{w}(\boldsymbol{z}, \lambda)$ is the solution of $\min _{\boldsymbol{w}} \frac{1}{2}\|\boldsymbol{z}-\boldsymbol{w}\|^{2}+\lambda D_{K L}(\boldsymbol{y}, \boldsymbol{w})$.
Set $\lambda_{k+1}=\frac{\hat{\lambda}}{\gamma}$ and $\boldsymbol{w}_{1}^{(k+1)}=\boldsymbol{w}(\boldsymbol{z}, \hat{\lambda})$.
The sequence $\left\{\left(\boldsymbol{x}^{(k)}, \boldsymbol{w}^{(k)}, \boldsymbol{q}^{(k)}, \lambda_{k}\right)\right\}$ converges to $\left(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{w}}, \tilde{\boldsymbol{q}}, \frac{1}{\beta}\right)$, where $\tilde{\boldsymbol{x}}$ is a solution of the constrained problem and the related penalized problem with $\beta>0$ and $\tilde{\boldsymbol{p}}=\frac{\tilde{\boldsymbol{q}}}{\gamma}$ is a solution of the dual problems [Teuber, Steidl, Chan 2013].

## Estimating $\beta$ by the discrepancy principle: numerical results

Cameraman test problem: $\quad \min _{\boldsymbol{x} \geq \mathbf{0}} f_{0}(\boldsymbol{x})+\beta f_{1}(\boldsymbol{x})$

$$
f_{1}(\boldsymbol{x})=\sum_{k=1}^{n} \sqrt{\Delta_{k}}, \quad \Delta_{k}=\left(x_{i+1, j}-x_{i, j}\right)^{2}+\left(x_{i, j+1}-x_{i, j}\right)^{2}+\delta^{2}
$$

Solving the discrepancy equation

| Method | It. | SGP it. | Time | $\beta$ | $D_{\boldsymbol{y}}(\beta)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Secant-based | 8 | 1699 | 37.0 | $6.71010^{-3}$ | 32765 |

Solving the constrained model

| Method | It. | Time | $\beta$ | $D_{\boldsymbol{y}}(\beta)$ |
| :--- | :---: | :---: | :---: | :---: |
| ADMM $(\gamma=10)$ | 540 | 19.3 | $6.70610^{-3}$ | 32766 |
| ADMM $(\gamma=50)$ | 943 | 33.2 | $6.71710^{-3}$ | 32771 |
| ADMM $(\gamma=100)$ | 2020 | 71.4 | $6.71710^{-3}$ | 32771 |
| ADMM $(\gamma=200)$ | 4093 | 146.0 | $6.71710^{-3}$ | 32771 |

## Estimating $\beta$ by the discrepancy principle: numerical results

Spacecraft test problem: $\quad \min _{\boldsymbol{x} \geq \mathbf{0}} f_{0}(\boldsymbol{x})+\beta f_{1}(\boldsymbol{x})$

$$
f_{1}(\boldsymbol{x})=\sum_{k=1}^{n} \sqrt{\Delta_{k}}, \quad \Delta_{k}=\left(x_{i+1, j}-x_{i, j}\right)^{2}+\left(x_{i, j+1}-x_{i, j}\right)^{2}+\delta^{2}
$$

Solving the discrepancy equation

| Method | It. | SGP it. | Time | $\beta$ | $D_{\boldsymbol{y}}(\beta)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Secant-based | 8 | 6959 | 153.5 | $7.1410^{-4}$ | 32772 |

Solving the constrained model

| Method | lt. | Time | $\beta$ | $D_{\boldsymbol{y}}(\beta)$ |
| :--- | :---: | :---: | :---: | :---: |
| ADMM $(\gamma=0.9)$ | 4891 | 173.1 | $6.80010^{-4}$ | 32771 |
| ADMM $(\gamma=0.95)$ | 6373 | 225.4 | $7.06210^{-4}$ | 32771 |
| ADMM $(\gamma=1)$ | 9093 | 317.8 | $7.27310^{-4}$ | 32771 |

Estimating $\beta$ by the discrepancy principle: the reconstructions

reconstruction


Secant-based rec.: $\beta=6.71010^{-3}$, reconstruction err. $=0.08600$ ADMM rec.: $\gamma=50, \beta=6.71710^{-3}$, err. $=0.08559$

## Estimating $\beta$ by the discrepancy principle: the reconstructions

## Original Image <br> Observed Image


reconstruction


Secant-based rec.: $\beta=7.1410^{-4}$, reconstruction err. $=0.3071$ ADMM rec.: $\gamma=0.95, \beta=7.0610^{-4}$, err. $=0.3074$

## Conclusions

- The regularization parameter estimation provided by the discrepancy principle can be computed
- by solving directly the non linear equation it works well if the root finding solver is equipped with an effective inner optimization solver (for differentiable regularization terms this is the case of the SGP solver)
- by solving the constrained problem with ADMM suitable approach also in case of nondifferentiable regularization terms
- Work in progress for improving the estimation provided by the discrepancy principle.

