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Phase estimation from interferometric measurements

Problem: given a set of observations                                      determine                                                 

(up to a constant)  for 

Continuous/discrete flavor:

Phase Unwrapping (PU)

Estimation of 

Phase Denoising (PD)

Estimation of 

(wrapped phase)
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nonlinear and ill-posed inverse problemis periodic



Outline

 Interferometric phase imaging. Examples
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 Absolute phase estimation

 Phase unwrapping

 Interferometric phase denoising via sparse regression

 Multisource phase estimation

 Concluding remarks
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Applications

 Synthetic aperture radar/sonar 

 Magnetic resonance imaging

 3D surface imaging from structured light

 High dynamic range photography

 Diffraction tomography

 Optical interferometry

 Tomographic phase microscopy

 Doppler echocardiography

 Doppler weather radar
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Absolute phase estimation in InSAR (Interferometric  SAR)

InSAR Problem: Estimate from signals read by and 



InSAR Example (from [Moreira et al.,13]) 
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Interferogram Unwrapped phase Geocoded digital elevation 

model (DEM)

Atacama desert (Chile)



Magnetic resonance imaging (MRI)

Interferomeric phase
 measure temperature

 visualize veins in tissues

 water-fat separation

 map the principal magnetic field

Interferometric phaseIntensity
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High dynamic range photography

Intensity camera Unwrapped image (tone-mapped)Modulo camera

(from [Zhao et al., 15])
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3D surface imaging from structured light 

Fringe images

Original (alg. 1) (alg. 2)

(from [Huang et al., 06])
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Forward problem: sensor model

independent

Data likelihood
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Simulated Interferograms Images:
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Real  interferograms

MRI
MRI

InSAR InSAR
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Bayesian absolute phase estimation

Data term: Prior term:

Ex: pairwise interactions
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Enforces smoothness

convex

Enforces piecewise smoothness 

(discontinuity preserving)

non-convex

clique set

clique potential



Estimation criteria

Maximum a posteriori (MAP)

is hard to optimize due to the sinusoidal data terms
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Popular approaches to absolute phase estimation

 Interferometric phase denoising + phase unwrapping

 Reformulation as linear observations in non-Gaussian noise 
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Phase differences

Wrapped difference of wrapped phases:

wrap errors due

to discontinuities,

high phase rate,

and noiseadditive noise distributed in 

 In the absence of noise, if (Itoh condition)

 In most applications is small but positive

if

Number of wrap errors increases with . If , then
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Absolute phase estimation: linear observations in non-Gaussian noise
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Formulation based on the linear observation model (LOM)

Regularized norm (convex)  [Gonzalez & Jacques, 15]

Adaptive normregularized [Kamilov et al.,15]

PD
[Chambolle, Pock, 11]

Minimum norm [Ghiglia & Pritt, 98] Algorithms

IRLS, MM
[Lange & Fessler., 95]

Nuclear norm

Seq. of ADMM 

subproblems

SALSA

[Afonso, B-D, Fig., 11]
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1) Denoise (filter out    )    

19

A few comments on the LOM-based phase estimation

Observation model: 

original interferometric

 The  wrap errors         due to phase discontinuities tend to be sparse and 

thus well  modeled by       norms with         

 norm  (and     on the gradient)  yields convex programs but has 

limited  power to cope with wrap errors 

Ex: Tickhonov regularization using Regularization is challenging.

wrap errors are amplified

self-similar
highpass

sparse and    -dependent 

2) (Use       with          )  or  (           and detect the discontinuities) 



Interferometric phase denoising + phase unwrapping
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Back to MAP estimate

Assume that:

Then:

Pairwise interactions:

Integer

optimization



Phase unwrapping: path following methods
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Then

Assume that (Itoh condition)

Why isn’t PU a trivial problem?

Discontinuities

High phase rate

Noise 

PU summing over walks



[B-D & Leitao, 01] (exact) sequence of positive cycles on a graph 



[Frey et al., 01] (approx) belief propagation on a 1st order MRF 



[Flynn, 97] (exact) sequence of positive cycles on a graph 

[Costantini, 98] (exact) min-cost flow on a graph 

convex

[B-D & Valadao, 07,09,11] (exact) sequence of K min cuts (                  )

[B-D & G. Valadao, 07,09,11] sequence of min cuts (                  )

[Ghiglia, 96] LPN0 (continuous relaxation)

non-convex

Phase unwrapping algorithms 
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PUMA finds a sequence 

of steepest descent 

binary images

23

PUMA (Phase Unwrapping MAx-flow) [B-D & Valadao, 07,09,11] 

 A local minimum is a global minimum

 Takes at most K (range of k) iterations

 is submodular: 

each binary optimization  has the complexity 

of a min cut

Convex priors 



[Veksler, 99] (1-jump moves )

[Murota, 03] (steepest descent algorithm for  L-convex functions)

[Ishikawa, 03] (MRFs with convex priors)

[Kolmogorov & Shioura, 05,09], [Darbon, 05] (Include unary terms)

[Ahuja, Hochbaum, Orlin, 03]  (convex dual network flow problem)

 Related algorithms

PUMA: convex priors  
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 Let      be a smooth  surface in the Itoh sense. That is

for                  . If               is convex and strictly 

increasing of      , then 

where    is the PUMA solution 



Results 



Results Convex priors do not preserve discontinuities
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Epq is not graph representable



PUMA: non-convex priors

Shortcomings
 Local minima are no more global minima

 Energy contains nonsubmodular terms (NP-hard)

Ex:

-15 -10 -5 0 5 10 15
0

5

10

15

20
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Models discontinuities

Models Gaussian noise

Proposed suboptimal solution: majorization minimization applied

PUMA binary  sub-problems



Majorizing nonsubmodular terms Majorization Minimization (MM) 

[Lange & Fessler, 95] 

Non-increasing property
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Other suboptimal approaches
 Quadratic Pseudo Boolean Optimization  (Probing [Boros et al., 2006],

Improving [Rother et al., 2007])

 Sequencial Tree-Reweighted Message Passing (TRW-S) [Kolmogorov, 2006]

 Dual decomposition (DD) [Komodakis et al., 2011] 

 DD + Augmented Lagrangian [Martins et al., 2015] 



Results with PUMA (MM) 
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PUMA/IRTV in a HDRP example

[Kamilov et al.,15] 31



Degradation mechanisms: noise + “phase discontinuities”
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Interferometric phase denoising

original interf. image observed  interf. image
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objective: estimate             from     

phase modulo 



CAPE  [Valadao & B-D, 09]: unwrap with PUMA and then minimize 

w.r.t.           

State-of-the-art  in interferometric phase estimation

 parametric model for          

PEARLS [B-D et al., 2008]:   local first order approximation for 

phase   and adaptive window selection (ICI [Katkovnik et al., 06])

 denoise

WFT [Kemao, 2007]:  windowed Fourier thresholding

 non-local means filtering           

NL-InSAR/NL-SAR [Deledalle, et al., 11, 15]: patch similarity criterion 

suitable to SAR images and a weighted maximum likelihood estimation 

interferogram with weights derived in a data-driven way.
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 Unwrap (first) + denoise



Dictionary based  interferometric phase estimation

Motivation  

 sparse and redundant representations are at the heart of many 

state-of-the-art applications namely in image restoration

Challenge: the observation mechanism  linking the observed phase 

with the interferometric phase         is nonlinear.
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Observation:  the fact that the amplitude  and phase images     and    

are self-similar, implies that          is self-similar

Our approach:  learn  sparse representations for           and from 

them infer    and 

 phase images exhibit a high level of self-similarity. So they admit 

sparse representations on suitable dictionaries. 



Complex valued image

Interferometric Phase Estimation via Sparse Regression

observed  vector

original vector

noise vector

patch of size                     at pixel i

dictionary with respect to which admits  a 

sparse representation

estimation error                        

i.i.d. noise
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Interferometric phase estimation

the set of estimates of       obtained from 

patches 

the set of patches  containing the pixel k

Maximum likelihood estimate of 

(assume that                                is                )  

where

In practice      is very hard to  compute and we take  

37



Dictionary learning

Find a dictionary representing accurately the image patches with 

the smallest possible number of atoms.

formalization under the regularization framework

where

and

DL Algorithm: alternating proximal minimization (APM) 

Convergence (based on the Kurdyka- Lojasiewicz inequality)

[Attouch et al. 10], [Xu, Yin, 2012]
38



Dictionary learning

drawback:  alternating proximal minimization takes too long (order of 104 sec) 

in a typical  image scenario (Np = 100000, m = 100, and k = 200)

Online Dictionary Learning (ODL): [Mairal et al. 2010] 
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converges to the 

stationary points of 

Computational complexity:



The proposed denoising algorithm

SpInPHASE [Hongxing, B-D, Katkovnik, 14]

(complex valued image)

(absolute phase estimate)

(extract patches)

(learn the dictionary)

(sparse coding)

(patch estimate)

(patch compose)

(interferometric phase estimate)

(phase unwrapping)
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DL: Example (truncated Gaussian - )

learned dictionary 

RMSE = 0.048 (rad)

PSNR  = 42.35  dB

time (ODL)      =  71 sec

(histogram of  ||®||0)
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time (APS)      =  7182 sec



DL: Online (ODL) Versus Batch (APM)
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Restored Images
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RMSE = 0.052 RMSE = 0.108 RMSE = 0.174



Results



Dictionary learned from 6 images (shown before)
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Comparisons with competitors
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Concluding remarks 

 Current research directions

 State-of-the-art results, namely regarding the preservation

of discontinuities coded in the interferometric phase

 Overview absolute phase estimation, from interferometric measurements, 

based a linear observation formulation and on phase unwarpping

 The need for interferometric phase estimation

 SpInPhase: Interferometric phase denoising via sparse coding in the

complex domain

 Exploits the self-similarity of the complex valued images

 Phase retrieval with patch-oriented dictionaries

 Multisource phase estimation

 Denoising via sparse coding in the complex domain via  

high-order SVD and nonlocal block matching techniques
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Multi-source absolute  phase estimation

Ex: different frequencies

Two sources. Ex:

Noise is an issue

Integer formulation: unwrap phase images with range larger than  

LOM formulation
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two sources, image manExample:
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