



# Inverse Problems in Interferometric Phase Imaging

José M. Bioucas Dias

Instituto de Telecomunicações and Instituto Superior Técnico Universidade de Lisboa **PORTUGAL** 

Joint work with Vladimir Katkovnik and Gonçalo Valadão

Project FCT: UID/EEA/50008/2013

Mathematics and Image Analysis (MIA), Paris, January, 2016

#### Phase estimation from interferometric measurements

**Problem**: given a set of observations  $e^{j\phi_p} \equiv (\cos \phi_p, \sin \phi_p)$ , determine  $\phi_p$  (up to a constant) for  $p \in \mathcal{V} \equiv \{1, \dots, n\}$ 

 $e^{j\phi_p}$  is  $2\pi$ -periodic  $\longrightarrow$  nonlinear and ill-posed inverse problem

**Continuous/discrete flavor:**  $\phi = \mathcal{W}(\phi) + 2k\pi$   $\mathcal{W} : \mathbb{R} \to [\pi, \pi[$ 



### **Outline**

- □ Interferometric phase imaging. Examples
- □ Absolute phase estimation
- □ Phase unwrapping
- □ Interferometric phase denoising via sparse regression
- □ Multisource phase estimation
- Concluding remarks

#### **Applications**

□ Synthetic aperture radar/sonar

Magnetic resonance imaging

□ 3D surface imaging from structured light

High dynamic range photography

Diffraction tomography

Optical interferometry

Tomographic phase microscopy

Doppler echocardiography

Doppler weather radar

# Absolute phase estimation in InSAR (Interferometric SAR)



**InSAR Problem:** Estimate  $\phi_2 - \phi_1$  from signals read by  $s_1$  and  $s_2$ 

#### **InSAR Example**

Atacama desert (Chile)

(from [Moreira et al.,13])

Interferogram  $\mathcal{W}(\phi_1 - \phi_2)$ 



Unwrapped phase  $\phi_1 - \phi_2$ 



Geocoded digital elevation model (DEM)







# **Magnetic resonance imaging (MRI)**

#### Intensity



#### Interferometric phase



#### Interferomeric phase

- measure temperature
- visualize veins in tissues
- water-fat separation
- map the principal magnetic field

# High dynamic range photography

#### (from [Zhao et al., 15])

#### Intensity camera



#### Modulo camera



$$I_N = \mod \left( I, 2^N \right)$$

#### Unwrapped image (tone-mapped)



# **3D surface imaging from structured light**

#### Fringe images

$$\phi_{r_1} = -120^{\circ} \qquad \phi_{r_2} = 0^{\circ} \qquad \phi_{r_3} = 0^{\circ}$$

$$I_k = b_0 + b_1 \cos(\phi - \phi_{r_k})$$

Original









# Forward problem: sensor model

 $x_i = \cos \phi + n_i$   $n = (n_i, n_q)$  $x_q = \sin \phi + n_q$ 

 $n_i, n_q \sim \mathcal{N}(0, \sigma^2)$  independent

$$x = (x_i, x_q)$$

$$Q$$

$$x_{q}$$

$$x_{q}$$

$$x_{q}$$

$$x_{i}$$

$$\eta = \mathcal{W}(\phi) + w$$

$$\mathcal{W}(\phi), w \in [-\pi, \pi[$$

#### Data likelihood

$$p(x|\phi) \propto c e^{\lambda} \cos(\phi - \eta)$$
  

$$\eta = \arg(x) \quad \lambda = \frac{2|x|}{\sigma^2}$$
  

$$\widehat{\phi}_{ML} = \eta + 2k\pi$$

# **Simulated Interferograms**

Images: 
$$\eta = \arg(e^{j\phi} + n)$$

$$SNR = \frac{1}{2\sigma^2}$$



# **Real interferograms**

MRI



#### InSAR



#### MRI



#### InSAR



# **Bayesian absolute phase estimation**

Data term: 
$$p(\mathbf{x}|\boldsymbol{\phi}) = \prod_{p \in \mathcal{V}} p(x_p|\phi_p)$$
 Prior term:  $p(\boldsymbol{\phi}) = \frac{1}{Z}e^{-U(\boldsymbol{\phi})}$ 

Ex: pairwise interactions 
$$U(\phi) = \sum_{\{p,q\}\in\mathcal{E}} U_{pq}(\phi_p - \phi_q)$$

$$\square \mathcal{E} = \{\{p,q\} \, : \, p \sim q\}$$
 clique set

 $\Box$   $U_{pq}$  clique potential



# **Estimation criteria**

Maximum a posteriori (MAP)  $\hat{\phi} \in \arg \max_{\phi \in \mathbb{R}^n} p(\mathbf{x}|\phi)p(\phi) = \arg \min_{\phi \in \mathbb{R}^n} E(\phi)$ 

$$E(\boldsymbol{\phi}) = \sum_{p \in \mathcal{V}} -\lambda_p \cos(\phi_p - \eta_p) + U(\boldsymbol{\phi})$$

E is hard to optimize due to the sinusoidal data terms

Popular approaches to absolute phase estimation

Reformulation as linear observations in non-Gaussian noise

□ Interferometric phase denoising + phase unwrapping

#### **Phase differences**

Wrapped difference of wrapped phases:

$$\eta = \mathcal{W}(\phi) + w$$

$$\mathcal{W}(\eta_p - \eta_q) = (\phi_q - \phi_q) + \underbrace{(w_p - w_q)}_{+} + \underbrace{2\pi l_{p,q}}_{-} \longrightarrow$$
  
additive noise distributed in  $[-2\pi, 2\pi]$ 

wrap errors due to discontinuities, high phase rate, and noise

 $\Box$  In the absence of noise,  $\ l_{p,q}=0$  if  $\ |\phi_q-\phi_q|<\pi$  (Itoh condition)

 $\hfill \hfill \hfill$ 

 $\square \ l_{p,q} = 0 \text{ for } \{p,q\} \in \mathcal{E} \quad \text{if} \quad \max_{\{p,q\} \in \mathcal{E}} |\phi_p - \phi_q| + \max_{\{p,q\} \in \mathcal{E}} |w_p - w_q| < \pi$ 

 $\Box$  Number of wrap errors increases with  $\sigma$ . If  $w_p \sim \mathcal{N}(0, \sigma^2)$ , then

$$\mathbb{E}\Big[\max_{\{p,q\}\in\varepsilon}|w_p-w_q|\Big]\Big) \ge \mathbb{E}\Big[\max_{\{p,q\}\in\varepsilon}(w_p-w_q)\Big] = O\Big(\sigma\sqrt{\log|\mathcal{E}|}\Big)$$

#### Absolute phase estimation: linear observations in non-Gaussian noise

$$\mathbf{y} = \mathcal{W}(\mathbf{D}\boldsymbol{\eta}) \quad \mathbf{D} : \mathbb{R}^n \to \mathbb{R}^{2n} - \text{discrete gradient}$$

 $\mathbf{w}_{\eta}$  – interferometric noise

$$\mathbf{y} = \mathbf{D} \boldsymbol{\phi} + \mathbf{w}_\eta + \mathbf{w}_\pi$$

 $\mathbf{w}_{\pi}$  – wrap errors

#### Histograms of $\mathbf{y} - \mathbf{D}\phi = \mathbf{w}_{\eta} + \mathbf{w}_{\pi}$ for a Gaussian phase surface

1200  $|\phi_q - \phi_q| < \pi$  $\mathbf{D}_h \boldsymbol{\phi}$ 1.5 1000 1  $\simeq$  Gaussian 800 0.5 600 0 -0.5 400 -1 200 -1.5 0년 -20 -10 0 10 20 1000  $|\phi_q - \phi_q| \ge \pi$ 10  $\mathbf{D}_h oldsymbol{\phi}$ 800  $\simeq$  mixture of -5 Gaussians 600 -0 400 -5 200 0년 -20 -10 -10 10 20 0 16

# Formulation based on the linear observation model (LOM)

Minimum  $\ell_p$  norm 0 [Ghiglia & Pritt, 98]

$$\min_{\boldsymbol{\phi} \in \mathbb{R}^n} \| \mathbf{y} - \mathbf{D} \boldsymbol{\phi} \|_{p,Q} \quad \text{s.t.} \quad \mathbf{A} \boldsymbol{\phi} = \mathbf{b}$$

**Regularized**  $\ell_1$  **norm (convex)** [Gonzalez & Jacques, 15]

$$\min_{\boldsymbol{\phi}, \mathbf{u} \in \mathbb{R}^n} \| \mathbf{W} \boldsymbol{\phi} \|_1 \text{ s.t.} \begin{cases} \| \mathbf{y} - \mathbf{D}(\boldsymbol{\phi} + \mathbf{u}) \|_1 \le \varepsilon_{\pi} \\ \| \mathbf{u} \|_2 \le \varepsilon_w \\ \mathbf{A} \boldsymbol{\phi} = \mathbf{b} \end{cases}$$

Algorithms

IRLS, MM [Lange & Fessler., 95]

PD [Chambolle, Pock, 11]

#### Adaptive regularized $\ell_2$ norm [Kamilov et al., 15]

$$\begin{split} & \underset{\phi \in \mathbb{R}^{n}}{\min} \sum_{i=1}^{n} q_{i}^{t} \| \mathbf{y}_{i} - \mathbf{D}_{i} \phi \|_{2} + \tau \| \mathbf{H}_{i} \phi \|_{*} \quad \text{s.t.} \quad \mathbf{A} \phi = \mathbf{b} \\ & \underset{\phi \in \mathbb{R}^{n}}{\sup} \sum_{i=1}^{n} q_{i}^{t} \| \mathbf{y}_{i} - \mathbf{D}_{i} \phi \|_{2} + \tau \| \mathbf{H}_{i} \phi \|_{*} \quad \text{s.t.} \quad \mathbf{A} \phi = \mathbf{b} \\ & \underset{\phi \in \mathbb{R}^{n}}{\sup} \sum_{i=1}^{n} \mathbf{D}_{i} : \mathbb{R}^{n} \to \mathbb{R}^{2} - \text{discrete gradient} \quad \underset{\mathbf{M} \text{ acc} a \text{ acc}}{\inf} \sum_{\substack{i \in \mathbb{R}^{n} \\ i \in \mathbb{$$

#### Example: IRTV ([Kamilov et al., 15]) (SALSA implementation) $n = 128 \times 128$

 $\tau = 10^{-3}$  $\tau = 10^{-3}$  $\tau = 10^{-3}$ 50 10 40 30 20

10

0

 $\text{ISNR} = \frac{2n\sigma^2}{\|\widehat{\boldsymbol{\phi}} - \boldsymbol{\phi}\|_F^2}$ ISNR = (1.4, 1.5, -16.4) dB $\tau = (10^{-4}, 10^{-2}, 10^{0})$ 

 $\max \phi_p = 20\pi \quad \sigma = 0.5$ 

$$\max \phi_p = 4\pi$$



1 iter (fixed weights) time  $= 20 \,\mathrm{s}$ 

 $\max \phi_p = 4\pi$ 





10 iters (adaptive weights) time  $= 200 \,\mathrm{s}$ 

# A few comments on the LOM-based phase estimation



 $\Box$  Regularization is challenging. Ex: Tickhonov regularization using  $\|\mathbf{D}\phi\|^2$ 

$$\widehat{\boldsymbol{\phi}} = \frac{1}{1+\tau} \left( \boldsymbol{\phi} + \mathbf{W} + \mathbf{D}^{\dagger} \mathbf{w}_{\pi} \right) \longrightarrow \text{wrap errors are amplified}$$

 $\hfill \hfill \hfill$ 

 $\square \quad \ell_1 \text{ norm (and } \ell_1 \text{ on the gradient) yields convex programs but has limited power to cope with wrap errors$ 

1) Denoise (filter out w)

2) (Use  $\ell_p$  with p < 1) or ( $p \ge 1$  and detect the discontinuities)

#### Interferometric phase denoising + phase unwrapping

#### Back to MAP estimate

$$\widehat{\phi} \in \arg\min_{\phi \in \mathbb{R}^n} E(\phi) \qquad E(\phi) = \sum_{p \in \mathcal{V}} -\lambda_p \cos(\phi_p - \eta_p) + U(\phi)$$

Assume that:  $\phi = \{\phi_p | \phi_p = \eta_p + 2k_p \pi, p \in \mathcal{V}, k_p \in \mathbb{Z}\} \quad (\Leftrightarrow \lambda_p \to \infty)$ 

Then:

$$\widehat{\mathbf{k}} \in \arg\min_{\mathbf{k}\in\mathbb{Z}^n} E(\boldsymbol{\eta},\mathbf{k}) = \arg\min_{\mathbf{k}\in\mathbb{Z}^n} U(\boldsymbol{\eta},\mathbf{k})$$

Integer optimization

Pairwise interactions: 
$$U(\boldsymbol{\eta}, \mathbf{k}) = \sum_{\{p,q\} \in \mathcal{E}} V_{pq}(k_p - k_q)$$

$$V_{pq}(k_p - k_q) = U_{pq}(\eta_p - \eta_q + 2\pi(k_p - k_q))$$

# Phase unwrapping: path following methods

Assume that  $|\phi_p - \phi_q| < \pi$  (Itoh condition)

$$\phi_p = \eta_p + 2k_p\pi$$

Then 
$$\phi_p - \phi_q = \mathcal{W}(\phi_p - \phi_q) = \mathcal{W}(\eta_p - \eta_q)$$

 $\mathsf{PU} \Leftrightarrow \mathsf{summing} \ \mathcal{W}(\eta_p - \eta_q) \mathsf{ over walks}$ 

$$\phi_{p_m} = \phi_{p_0} + \sum_{i=1}^m \mathcal{W}(\eta_{p_i} - \eta_{p_{i-1}})$$



Why isn't PU a trivial problem?

Discontinuities High phase rate Noise

$$|\phi_p - \phi_q| \ge \pi$$

# Phase unwrapping algorithms

$$E(\mathbf{k}) = \sum_{\{p,q\}\in\mathcal{E}} V_{pq}(k_p - k_q)$$

•  $V_{pq}(\cdot) = |\cdot|_{2\pi-\text{quantized}}$ [Flynn, 97] (exact) sequence of positive cycles on a graph [Costantini, 98] (exact) min-cost flow on a graph  $(|\mathcal{V}| = n, |\mathcal{E}| = 4n)$ 

- $V_{pq}(\cdot) = (\cdot)^2$ [B-D & Leitao, 01] (exact) sequence of positive cycles on a graph  $(|\mathcal{V}| = n, |\mathcal{E}| = 4n)$ [Frey et *al.*, 01] (approx) belief propagation on a 1st order MRF
- $V_{pq}(\cdot)$  convex

[B-D & Valadao, 07,09,11] (exact) fequence of  $K \min \text{ cuts}$  ( KT(n, 6n))

V<sub>pq</sub>(·) non-convex
 [Ghiglia, 96] LPN0 (continuous relaxation)
 [B-D & G. Valadao, 07,09,11] sequence of min cuts (KT(n,6n))

#### PUMA (Phase Unwrapping MAx-flow) [B-D & Valadao, 07,09,11]

Algorithm 1: PUMA  

$$\phi := \eta$$
, succes == false  
while succes == false do  
 $\delta := \arg \min_{\mathbf{x} \in \{0,1\}^{|\nu|}} E(\phi + 2\mathbf{x}\pi)$   
if  $E(\phi + 2\mathbf{x}\pi) < E(\phi)$  then  
 $| \phi := \phi + 2\delta\pi$   
else  
 $\lfloor succes == false$   
return  $\phi$ 

PUMA finds a sequence of steepest descent binary images

**Convex priors** 
$$E(\mathbf{k}) = \sum V_{pq}(k_p - k_q)$$

□ A local minimum is a global minimum

□ Takes at most *K* (range of k) iterations

 $\Box E$  is submodular:  $2V_{pq}(0) \le V_{pq}(1) + V_{pq}(-1)$ 

 $\Rightarrow$  each binary optimization has the complexity of a min cut T(n, 6n)

# **PUMA: convex priors**

$$E(\mathbf{k}) = \sum V_{pq}(k_p - k_q)$$

□ Let  $\phi$  be a smooth surface in the Itoh sense. That is  $|\phi_p - \phi_q| < \pi$  for  $\{p,q\} \in \mathcal{E}$ . If  $U_{pq}(x)$  is convex and strictly increasing of |x|, then

$$\boldsymbol{\phi} = \boldsymbol{\eta} + \widehat{\mathbf{k}} + c$$

where  $\widehat{k}$  is the PUMA solution

Related algorithms

$$E(\mathbf{k}) = \sum_{p \in \mathcal{V}} D_p(k_p) + \sum_{\{p,q\} \in \mathcal{E}} V_{pq}(k_p - k_q)$$

[Veksler, 99] (1-jump moves ) [Murota, 03] (steepest descent algorithm for L-convex functions) [Ishikawa, 03] (MRFs with convex priors) [Kolmogorov & Shioura, 05,09], [Darbon, 05] (Include unary terms)

[Ahuja, Hochbaum, Orlin, 03] (convex dual network flow problem)

#### **Results**

 $U_{pq}(\cdot) = (\cdot)^2$ 



#### Convex priors do not preserve discontinuities



**Results** 



$$U_{pq}(x) = \begin{cases} x^2 & |x| \le \pi \\ \pi^2 |x/\pi|^{0.5} & |x| > \pi \end{cases}$$
  
*E<sub>pq</sub>* is not graph representable

# **PUMA: non-convex priors**



#### **Shortcomings**

- Local minima are no more global minima
- Energy contains nonsubmodular terms (NP-hard)

Proposed suboptimal solution: majorization minimization applied PUMA binary sub-problems

# Majorizing nonsubmodular terms



Majorization Minimization (MM)

#### Other suboptimal approaches

- Quadratic Pseudo Boolean Optimization (Probing [Boros et al., 2006], Improving [Rother et al., 2007])
- □ Sequencial Tree-Reweighted Message Passing (TRW-S) [Kolmogorov, 2006]
- □ Dual decomposition (DD) [Komodakis et al., 2011]
- DD + Augmented Lagrangian [Martins et al., 2015]

# **Results with PUMA (MM)** $(n = 128 \times 128, 2^{nd} \text{ order neighborhood}, p = 0.2, th = 0.1)$



 $\eta$ 



Time = 1s

 $\widehat{\phi}(MM)$  (8 iter)



 $\widehat{\phi}(MM)$  (8 iter)



# **PUMA/IRTV in a HDRP example** $\phi \in [0, \rho]$ $n = 256 \times 256$ PUMA: 1<sup>st</sup> order neighborhood, p = 0.2 th = 0.1



 $\phi \mod 2\pi$   $(\rho =$ 



 $\phi \mod 2\pi \qquad (\rho = 8)$ 



|               | SNR (dB)                                                                                                                          |                                                                                                                                                                                                                                     |                                                        |  |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|--|
| ρ             | PUMA                                                                                                                              | IRTV                                                                                                                                                                                                                                |                                                        |  |  |  |  |  |
| 4             | $\infty$                                                                                                                          | $\infty$                                                                                                                                                                                                                            |                                                        |  |  |  |  |  |
| 5             | $\infty$                                                                                                                          | 25.65                                                                                                                                                                                                                               |                                                        |  |  |  |  |  |
| 6             | 25.2                                                                                                                              | 19.98                                                                                                                                                                                                                               | ļ                                                      |  |  |  |  |  |
| 7             | 17.34                                                                                                                             | 16.09                                                                                                                                                                                                                               |                                                        |  |  |  |  |  |
| 8             | 13.68                                                                                                                             | 0.92                                                                                                                                                                                                                                |                                                        |  |  |  |  |  |
| 9             | 1.82                                                                                                                              | 2.17                                                                                                                                                                                                                                | L                                                      |  |  |  |  |  |
| $\Gamma(sec)$ | 1                                                                                                                                 | 350                                                                                                                                                                                                                                 |                                                        |  |  |  |  |  |
|               | $\begin{array}{c} \rho \\ \hline 4 \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \hline 8 \\ 9 \\ \hline \Gamma(\text{sec}) \end{array}$ | $ \begin{array}{c c} \rho & & & \\ \hline PUMA & & \\ \hline 4 & \infty & \\ \hline 5 & \infty & \\ \hline 6 & 25.2 & \\ \hline 7 & 17.34 & \\ \hline 8 & 13.68 & \\ \hline 9 & 1.82 & \\ \hline \Gamma(sec) & 1 & \\ \end{array} $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |  |  |  |  |





[Kamilov et al.,15]

## Degradation mechanisms: noise + "phase discontinuities"



# Interferometric phase denoising

**objective:** estimate  $\mathcal{W}[\phi]$  from  $\eta$ phase modulo  $2\pi$ 



#### original interf. image $\phi_{2\pi} \equiv \mathcal{W}[\phi]$



#### observed interf. image $\eta$



#### State-of-the-art in interferometric phase estimation

 $x = ae^{j\phi} + n$ 

Unwrap (first) + denoise

CAPE [Valadao & B-D, 09]: unwrap with PUMA and then minimize  $E(\pmb{\phi}_{\pi}, {\bf k})~~{\rm w.r.t.}~~\pmb{\phi}_{\pi}$ 

lacksquare parametric model for  $\phi$ 

PEARLS [B-D et al., 2008]: local first order approximation for phase and adaptive window selection (ICI [Katkovnik et al., 06])

 $\Box$  denoise x

WFT [Kemao, 2007]: windowed Fourier thresholding

#### non-local means filtering

NL-InSAR/NL-SAR [Deledalle, et al., 11, 15]: patch similarity criterion suitable to SAR images and a weighted maximum likelihood estimation interferogram with weights derived in a data-driven way.

# **Dictionary based interferometric phase estimation**

#### **Motivation**

- sparse and redundant representations are at the heart of many state-of-the-art applications namely in image restoration
- phase images exhibit a high level of self-similarity. So they admit sparse representations on suitable dictionaries.

**Challenge:** the observation mechanism linking the observed phase  $\eta$  with the interferometric phase  $\phi_{2\pi}$  is nonlinear.

**Observation:** the fact that the amplitude and phase images a and  $\phi$  are self-similar, implies that  $ae^{j\phi}$  is self-similar

**Our approach**: learn sparse representations for  $\mathbf{a}e^{j\phi}$  and from them infer  $\mathbf{a}$  and  $\phi$ 

# **Interferometric Phase Estimation via Sparse Regression**

Complex valued image



 $\mathbf{D} \equiv [\mathbf{d}_1, \dots, \mathbf{d}_k] \in \mathbb{C}^{m \times k}$  dictionary with respect to which  $\mathbf{z}_i$  admits a sparse representation

 $\widehat{\mathbf{z}}_i = \mathbf{D}\widehat{\alpha}_i \qquad \min_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_0, \quad \text{s.t.:} \quad \|\mathbf{D}\boldsymbol{\alpha} - \mathbf{x}_i\|_2^2 \leq \delta$ 

estimation error  $\boldsymbol{\varepsilon}_i = \widehat{\mathbf{x}}_i - \mathbf{x}_i$ 

i.d. noise 
$$\Rightarrow$$
  $\frac{\|\boldsymbol{\varepsilon}_i\|_2^2}{\|\mathbf{n}_i\|_2^2} \simeq \frac{p}{m}$   $p = \|\widehat{\boldsymbol{\alpha}}\|_0$ 

# Interferometric phase estimation

$$\mathcal{P}_k o -$$
 the set of patches containing the pixel k



 $\widehat{z}_i = z_i + \varepsilon_i, \quad i \in \mathcal{P}_k$  the set of estimates of  $z_k$  obtained from patches  $i \in \mathcal{P}_k$ 

Maximum likelihood estimate of  $z_i = a e^{j\phi}$ 

(assume that 
$$\boldsymbol{\varepsilon}_i = [\varepsilon_1, \dots, \varepsilon_p]$$
 is  $\mathcal{N}(\mathbf{0}, \mathbf{C})$  )

$$\widehat{\phi}_{2\pi} = \arg\left(\sum_{j=1}^{q} \widehat{z}_{j} \gamma_{j}\right) \qquad \widehat{a} = \frac{\left|\sum_{j=1}^{q} \widehat{z}_{j} \gamma_{j}\right|}{\sum_{j=1}^{q} \gamma_{j}}$$

where  $\gamma_j := \sum_{k=1}^q [\mathbf{C}^{-1}]_{jk}$ .

In practice  $\gamma_j$  is very hard to compute and we take  $\gamma_j = c^{te}$ 

# **Dictionary learning**

Find a dictionary representing accurately the image patches with the smallest possible number of atoms.

formalization under the regularization framework

$$\begin{split} \min_{\mathbf{D}\in\mathcal{C},\mathbf{A}} L(\mathbf{D},\mathbf{A}) & L(\mathbf{D},\mathbf{A}) = (1/2) \left\| \mathbf{X} - \mathbf{D}\mathbf{A} \right\|_{F}^{2} + \lambda \|\mathbf{A}\|_{1}, \\ \text{where } \mathcal{C} := \left\{ \mathbf{D}\in\mathbb{C}^{m\times k} \,:\, \left|\mathbf{d}_{j}^{H}\mathbf{d}_{j}\right| \leq 1,\, j = 1,\ldots,k \right\} \\ \text{and} \quad \mathbf{X} = \left[\mathbf{x}_{1},\ldots,\mathbf{x}_{N_{p}}\right] \text{ and } \mathbf{A} = \left[\boldsymbol{\alpha}_{1},\ldots,\boldsymbol{\alpha}_{N_{p}}\right] \end{split}$$

**DL Algorithm:** alternating proximal minimization (APM)

$$\begin{aligned} \mathbf{D}^{k+1} &\in \arg\min_{\mathbf{D}\in\mathcal{C}} L(\mathbf{D},\mathbf{A}^k) + \lambda \|\mathbf{D} - \mathbf{D}^k\|_F^2 \\ \mathbf{A}^{k+1} &\in \arg\min_{\mathbf{A}} L(\mathbf{D}^{k+1},\mathbf{A}) + \lambda \|\mathbf{A} - \mathbf{A}^k\|_F^2 \end{aligned}$$

Convergence (based on the Kurdyka- Lojasiewicz inequality) [Attouch et al. 10], [Xu, Yin, 2012]

# **Dictionary learning**

**drawback:** alternating proximal minimization takes too long (order of  $10^4$  sec) in a typical image scenario ( $N_p = 100000$ , m = 100, and k = 200)

#### Online Dictionary Learning (ODL): [Mairal et al. 2010]

Select randomly 
$$\mathbf{x}^t \equiv [\mathbf{x}_i^t \ i = 1, \dots, \eta]$$
 from  $\mathbf{z}$   
(Sparse coding: BPDN)  
 $\boldsymbol{\alpha}^t := \arg \min_{\boldsymbol{\alpha} \in \mathbb{C}^{k \times \eta}} (1/2) \|\mathbf{x}^t - \mathbf{D}\boldsymbol{\alpha}\|_F^2 + \lambda \|\boldsymbol{\alpha}\|_1$   
 $\min_{\mathbf{D} \in \mathcal{C}} \frac{1}{S_t} \sum_{i=1}^t w_i \left\{ (1/2) \|\mathbf{x}^i - \mathbf{D}\boldsymbol{\alpha}^i\|_F^2 + \lambda \|\boldsymbol{\alpha}^i\|_1 \right\}$ 

 $\begin{aligned} \mathbf{D}^{t} \text{ converges to the} \\ \text{stationary points of} \\ (1/2) \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_{F}^{2} + \lambda \|\mathbf{A}\|_{1}, \\ \mathbf{D} \in \mathcal{C} \end{aligned}$ 

Somputational complexity:  $O(km^2 + \eta km)$ 

# The proposed denoising algorithm

SpInPHASE [Hongxing, B-D, Katkovnik, 14]

Input:  $\mathbf{x} \in \mathbb{C}^{N_1 \times N_2}$ (complex valued image) Ouput:  $\widehat{oldsymbol{\phi}} \in \mathbb{R}^{N_1 imes N_2}$ (absolute phase estimate) Begin  $\mathbf{x}_i \leftarrow \mathbf{M}_i \mathbf{x}, \ i = \dots, N_p$ (extract patches)  $\mathbf{D} \leftarrow \mathrm{DL}(\mathbf{x}_i, i = 1, \ldots, N_n)$ (learn the dictionary)  $\boldsymbol{\alpha}_i \leftarrow \text{OMP}(\mathbf{D}, \mathbf{x}_i, i = 1, \dots, N_n)$ (sparse coding)  $\widehat{\mathbf{z}}_i \leftarrow \mathbf{D} \boldsymbol{\alpha}_i, i = 1, \dots, N_p$ (patch estimate)  $\widehat{\mathbf{x}} \leftarrow \operatorname{compose}(\widehat{\mathbf{z}}_i, i = 1, \dots, N_n)$ (patch compose)  $\widehat{\phi}_{2\pi} \leftarrow \arg(\widehat{\mathbf{x}})$ (interferometric phase estimate)  $\widehat{\phi} \leftarrow \text{PUMA}(\widehat{\phi}_{2\pi})$ (phase unwrapping) End

#### **DL: Example** (truncated Gaussian - $\sigma = 0.3$ ) $\sqrt{m} = 12, k = 256$



RMSE := 
$$\frac{\|\mathcal{W}(\widehat{\phi}_{2\pi} - \phi_{2\pi})\|_F}{\sqrt{N}}$$
$$PSNR := \frac{4N\pi^2}{\|\mathcal{W}(\widehat{\phi}_{2\pi} - \phi_{2\pi})\|_F^2}$$

$$\frac{\|\mathcal{W}(\boldsymbol{\eta} - \boldsymbol{\phi}_{2\pi})\|_F^2}{\|\mathcal{W}(\widehat{\boldsymbol{\phi}}_{2\pi} - \boldsymbol{\phi}_{2\pi})\|_F^2} = 20 \simeq \frac{1}{2} \frac{m}{\overline{p}}$$

#### learned dictionary





# **DL: Online (ODL) Versus Batch (APM)**



#### **Restored Images**

$$\sigma = 0.5$$

$$\sigma = 1.0$$



RMSE = 0.052

RMSE = 0.108

RMSE = 0.174



# **Dictionary learned from 6 images (shown before)**

 $\sqrt{m} = 12, \, k = 512$ 



# **Comparisons with <u>competitors</u>**

|                  |          | PSNR (dB) |        |       | $PSNR_a$ (dB) |        | NELP  |        |        | TIME (s) |        |        |    |
|------------------|----------|-----------|--------|-------|---------------|--------|-------|--------|--------|----------|--------|--------|----|
| Surf.            | $\sigma$ | Sp(ld)    | Sp(pd) | W     | Sp(ld)        | Sp(pd) | W     | Sp(ld) | Sp(pd) | W        | Sp(ld) | Sp(pd) | W  |
| Trunc.<br>Gauss. | 0.3      | 42.51     | 42.88  | 40.29 | 42.51         | 42.88  | 40.29 | 0      | 0      | 0        | 69     | 6      | 10 |
|                  | 0.5      | 39.63     | 39.95  | 36.71 | 39.63         | 39.95  | 36.71 | 0      | 0      | 0        | 74     | 4      | 10 |
|                  | 0.7      | 35.69     | 36.96  | 34.26 | 35.85         | 36.98  | 34.37 | 8      | 3      | 10       | 72     | 3      | 10 |
|                  | 0.9      | 33.52     | 36.04  | 32.79 | 33.52         | 36.23  | 32.79 | 0      | 7      | 0        | 72     | 3      | 10 |
| Sinu.            | 0.3      | 48.94     | 47.77  | 35.76 | 48.94         | 47.77  | 35.76 | 0      | 0      | 0        | 61     | 2      | 10 |
|                  | 0.5      | 41.91     | 43.50  | 31.48 | 41.91         | 43.50  | 31.48 | 0      | 0      | 0        | 65     | 2      | 10 |
|                  | 0.7      | 38.44     | 41.20  | 28.90 | 38.44         | 41.20  | 28.90 | 0      | 0      | 0        | 65     | 2      | 10 |
|                  | 0.9      | 36.42     | 39.30  | 26.36 | 36.42         | 39.30  | 26.36 | 0      | 0      | 0        | 63     | 2      | 10 |
| Sinu.<br>discon. | 0.3      | 44.45     | 42.29  | 35.91 | 44.45         | 42.29  | 35.91 | 0      | 0      | 0        | 63     | 6      | 10 |
|                  | 0.5      | 39.41     | 38.61  | 31.86 | 39.41         | 38.61  | 31.86 | 0      | 0      | 0        | 72     | 3      | 10 |
|                  | 0.7      | 37.09     | 35.95  | 29.86 | 37.09         | 35.95  | 29.95 | 0      | 0      | 1        | 71     | 2      | 10 |
|                  | 0.9      | 34.17     | 34.00  | 27.64 | 34.17         | 34.00  | 27.71 | 0      | 0      | 6        | 66     | 2      | 10 |
| Mount.           | 0.3      | 40.66     | 38.90  | 40.00 | 40.66         | 38.90  | 40.00 | 0      | 0      | 0        | 57     | 10     | 10 |
|                  | 0.5      | 37.20     | 35.66  | 36.55 | 37.20         | 35.66  | 36.55 | 0      | 0      | 0        | 60     | 6      | 10 |
|                  | 0.7      | 34.35     | 33.29  | 34.17 | 34.35         | 33.29  | 34.17 | 0      | 0      | 0        | 62     | 5      | 10 |
|                  | 0.9      | 32.55     | 31.66  | 32.31 | 32.70         | 31.79  | 32.31 | 1      | 1      | 0        | 60     | 4      | 10 |
| Shear<br>plane   | 0.3      | 49.36     | 47.01  | 40.67 | 49.36         | 47.01  | 40.67 | 0      | 0      | 0        | 57     | 23     | 10 |
|                  | 0.5      | 42.95     | 44.05  | 37.07 | 42.95         | 44.05  | 37.07 | 0      | 0      | 0        | 63     | 2      | 10 |
|                  | 0.7      | 38.39     | 39.58  | 34.13 | 38.39         | 39.58  | 34.13 | 0      | 0      | 0        | 68     | 2      | 10 |
|                  | 0.9      | 33.53     | 38.72  | 33.24 | 33.53         | 38.72  | 33.24 | 0      | 0      | 0        | 72     | 2      | 10 |
| Long's<br>Peak   | 0.3      | 35.49     | 35.68  | 35.40 | 35.51         | 35.69  | 35.41 | 28     | 28     | 28       | 515    | 179    | 31 |
|                  | 0.5      | 33.05     | 33.19  | 32.89 | 33.08         | 33.24  | 32.93 | 32     | 33     | 31       | 357    | 77     | 30 |
|                  | 0.7      | 31.32     | 31.46  | 31.19 | 31.46         | 31.53  | 31.28 | 26     | 48     | 32       | 326    | 42     | 30 |
|                  | 0.9      | 29.97     | 30.17  | 29.90 | 30.09         | 30.26  | 29.99 | 34     | 32     | 35       | 308    | 27     | 30 |

# **Concluding remarks**

- Overview absolute phase estimation, from interferometric measurements, based a linear observation formulation and on phase unwarpping
- □ The need for interferometric phase estimation
- SpInPhase: Interferometric phase denoising via sparse coding in the complex domain
  - Exploits the self-similarity of the complex valued <u>images</u>
  - State-of-the-art results, namely regarding the preservation of discontinuities coded in the interferometric phase  $e^{j\phi}$
- Current research directions
  - Multisource phase estimation
  - Denoising via sparse coding in the complex domain via high-order SVD and nonlocal block matching techniques
  - Phase retrieval with patch-oriented dictionaries

#### References

- H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, "Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality", *Mathematics of Operations Research*, vol. *35, no.* 2, pp. 438-457, 2010.
- M. Afonso, J. Bioucas-Dias, and M. Figueiredo, "An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems", IEEE Transactions on Image Processing, vol. 20, no. 3, pp. 681-695, 2011.
- J. Darbon, *Composants logiciels et algorithmes de minimisation exacte d'energies dedies au traitement des images*, PhD thesis, Ecole Nationale Superieure des Telecommunications, 2005.
- J. Dias and J. Leitao, "The ZπM algorithm for interferometric image reconstruction in SAR/SAS", *IEEE Transactions on Image processing*, vol. 11, no. 4, pp. 408-422, 2002.
- J. Bioucas-Dias and G. Valadao, "Phase unwrapping via graph cuts", *IEEE Transactions on Image processing*, vol. 16, no. 3, pp. 698-709, 2007.
- A. Chambolle and T. Pock. "A first-order primal-dual algorithm for convex problems with applications to imaging." *Journal of Mathematical Imaging and Vision*, vol., 40, no. 1, pp. 120-145, 2011.
- D. Ghiglia and M. Pritt. *Two-dimensional phase unwrapping: theory, algorithms, and software*. vol. 4. New York: Wiley, 1998.
- A. Gonzalez and L. Jacques. "Robust phase unwrapping by convex optimization" (ICIP), 2014 IEEE IEEE International Conference on. Image Processing (ICIP), 2014.
- H. Hongxing, J. Bioucas-Dias, and V. Katkovnik, "Interferometric phase estimation via sparse coding in the complex domain", *IEEE Transactions on Geoscience and Remote Sensing*, vol, 53, no. 5, pp. 2587 2602, 2015.

#### References

- S. Huang and S. Zhang, "Fast three-step phase-shifting algorithm," *Applied optics* vol. 45, no. 21, pp. 5086-509, 206
- U. Kamilov, I. Papadopoulos, M. Shoreh, and D. Psaltis, "Isotropic inverse-problem approach for two-dimensional phase unwrapping." *JOSA A*, vol. 32.6, pp. 1092-1100, 2015.
- V. Kolmogorov and A. Shioura. "New algorithms for convex cost tension problem with application to computer vision." *Discrete Optimization* vol. 6, no. 4, pp., 378-393, 2009.
- K. Lange, Kenneth and J. Fessler. "Globally convergent algorithms for maximum a posteriori transmission tomography," *IEEE Transactions on Image Processing, vol.* 4. no. 10, pp. 1430-1438, 1995.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro, "Online dictionary learning for sparse coding", In *Proceedings of the 26th Annual International Conference on Machine Learning*, pp. 689-696, 2009.
- A. Martins, M. Figueiredo, N. Smith, and E. Xing, "Ad3: Alternating directions dual decomposition for map inference in graphical models." *Journal of Machine Learning Research*, vol 16, pp. 495-545, 2015
- A. Moreira, Alberto, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. Papathanassiou, "A tutorial on synthetic aperture radar." *IEEE Geoscience and Remote Sensing Magazine*, vol. 1, no. 1, pp. 6-43, 2013. Arial
- Y. Xu and W. Yin, "A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion." *SIAM Journal on imaging sciences, vol.* vol. 3, no. 3, pp. 1758-1789, 2013
- H. Zhao, B. Shi, C. Fernandez-Cull, S. Yeung, and R. Raskar, "Unbounded high dynamic range photography using a modulo camera, *IEEE International Conference on Computational Photography*, 2015.

#### Multi-source absolute phase estimation

Ex: different frequencies  $p_1(z_i|\phi) \propto c_i e^{\lambda_i \cos(f_i \phi - \eta_i)}$ 

Two sources. Ex:  $f_1 = 1, f_2 = \frac{u}{v}$   $u, v \in \mathbb{N}$  primes  $d(\phi) = -\lambda_1 \cos(\phi - \eta_1) - \lambda_2 \cos(f_2\phi - \eta_2)$  $d(\phi + 2\pi v) = d(\phi) \Rightarrow 2v\pi$ -periodic

LOM formulation  $\mathbf{y} = \mathbf{D}\boldsymbol{\phi} + \mathbf{w}_{\eta} + \mathbf{w}_{\pi}$  $\eta \in \arg \min_{[-v\pi, v\pi[^n]} \sum_{p \in \mathcal{V}} d_p(\boldsymbol{\phi})$  $\mathbf{y} = \mathcal{W}_v(\mathbf{D}\boldsymbol{\eta})$ 

Integer formulation: unwrap phase images with range larger than  $2v\pi$ 

$$\min_{\mathbf{k}\in\mathbb{Z}^n}\sum_{\{p,q\}\in\mathcal{E}}V_{pq}(k_p-k_q) \qquad V_{pq}(k_p-k_q)=U_{pq}(\eta_p-\eta_q+2\tau v(k_p-k_q))$$

#### Noise is an issue

**Example:** two sources, image man  $\rho = 10\pi$   $f_1 = 1, f_2 = \frac{3}{4} \Rightarrow v = 4$ 

 $\mathcal{W}_{\pi}(\mathbf{x}_1)$ 



 $\mathrm{SNR}=58\,\mathrm{dB}$ 



 $\mathcal{W}_{\pi}(\mathbf{x}_2)$ 



$$\eta = \arg\min_{\phi} -\lambda_1 \cos(\phi - \eta_1) - \lambda_2 \cos(f_2\phi - \eta_2) \qquad \qquad f_2 = \frac{2}{3}$$

phase range =  $60\pi$ 



 $\eta$ 



SNR = 5 dB



 $\eta$ 



u/v = 2/3range =  $60\pi$ 





1-PU



$$(v-\mathrm{PU}, iter = 6)$$



 $(v-\mathrm{PU}, iter = 2)$ 



$$(v-PU, iter = 8)$$



(v-PU, iter = 4)



$$(v-\mathrm{PU}, iter = 12)$$



# v-Interferometric Phase Estimation via DL



 $\widehat{oldsymbol{\phi}}_{2\pi v}$  (iter -1 )  $\widehat{oldsymbol{\phi}}_{2\pi v}$  (iter -1 )  $\widehat{oldsymbol{\phi}}_{2\pi v}$  (iter -1 )  $\widehat{oldsymbol{\phi}}_{2\pi v}$  (iter -1 )