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Singular Value Decomposition

Singular values and singular vectors are crucial for the analysis of 
linear methods for solving inverse problems

Singular vectors are obtained as solutions of eigenvalue problem

Singular value 
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Convex Variational Regularization

In the last years linear reconstruction methods lost importance

Popular approaches (in particular in imaging) are of the form

with one-homogeneous  J  like TV or L1

Are there singular vectors for such ? Are they useful ?
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Defining Singular Vectors

We need variational characterization for comparison
Note: linear case corresponds to

Rayleigh-principle: singular vector for smallest singular value 
minimizes  
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Ground States

Generalize Rayleigh principle:

Problem: can yield uninteresting elements minimizing J 

Example J=TV: Ground states would simply be constant functions
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Ground States

Choose J to be a seminorm on a dense subspace.
Then its kernel is a closed linear subspace

Eliminate kernel for improved definition of ground state

Existence under standard assumptions
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Ground States: Examples 

1D Total Variation denoising (K=I): 

ground state = single step function
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Ground States: Examples 

Sparsity (                              ):  
ground state = vector with nonzero entry at index corresponding to 
column of K with maximal norm

Nuclear norm of matrices: 
ground state = rank one matrix corresponding to classical largest 
singular value
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Ground States and Singular Vectors

Ground states are stationary points of Lagrangian

Due to nonconvexity of constraint there are multiple stationary 
points satisfying

We call them singular vectors and focus on those with 
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Rayleigh Principle for Higher Singular Vectors

Usual construction for further singular vectors

Due to nonconvexity of constraint there are multiple stationary 
points satisfying

where
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Rayleigh Principle for Singular Vectors

Usual construction for further singular vectors fails !

Using Lagrange multipliers we find

with
 

No particular reason for those to vanish !
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Rayleigh Principle for Higher Singular Vectors

Construction for special cases can still be interesting 

1D total variation denoising with appropriate TV definition:

Rayleigh principle yields sequence of singular vectors equivalent to 
the Haar wavelet basis !
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Use of Singular Vectors ?

Due to nonlinearity, there is no singular value decomposition

Other ways of use:

- Canonical cases and exact solutions for regularization methods, 
analysis of bias

- Definition of scale relative to regularization, scale estimates 
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Exact Solutions of Variational Regularization

Solutions of 

with 

are given by

                                 if 

Similar results for noisy perturbations 
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Exact Solutions of Inverse Scale Space Method

Solutions of 

with 

are given by

Similar results for noisy data and other related methods
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Exact Solutions of Variational Regularization

Provides systematic way of analyzing exact solutions

Includes all examples in literature (most being ground states, some 
already charaterized as eigenfunctions):

- TV: Strong-Chan 1996, Meyer 2001, Strong 2003

- TV-flow: Bellettini et al 2001, Andreu et al 2001, Caselles-Chambolle-
Novaga 2007-2010

- Higher order TV: Papafitsoros-Bredies 2014, Pöschl-Scherzer 2014 

mainly contained as singular values in Benning-Brune-mb-Müller 2013
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Higher order TV functionals avoiding staircasing

Major idea: combine TV with higher order TV
Infimal convolution

Dual version

Chambolle-Lions 97
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TGV / GTV
Decomposition by inf-convolution not optimal, improvement by 
stronger dual constraint

Primal version

Bredies et al 2011
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TGV vs. ICTV
Equivalence of functionals in 1D

Intuitive advantages of TGV in multiple dimensions 
Bredies et al 2011 / 2013, Benning-Brune-mb-Müller 2013

Better understanding by constructing eigenfunctions for TGV 
denoising, which are not eigenfunctions of ICTV .
Any eigenfunction of ICTV is eigenfunction of TGV
Müller  PhD 2013
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GTV Origami
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Bias of Variational Regularization

Error (bias) in solution increasing with size of singular value

Does the smallest singular value define minimal bias ?

Arbitrary data satisfying only 

Then  

where
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Bias of Variational Regularization

In the same way underestimation of regularization functional

then
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Spectral Decomposition

Consider simpler case of K = Id (eigenfunctions / values)

Can we get a spectral decomposition from a seminorm J ?

Example: Fourier Decomposition / Laplacian eigenfunctions                
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Laplacian Eigenfunctions

Fourier cosine decomposition in 1D                             
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Spectral Decomposition

Natural / geometric spectral definition of an 
image ?                       
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Spectral Decomposition

   Natural / geometric spectral definition of an image ?     
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What is a Spectral Decomposition ?

Standard case related to positive semifinite linear operator A in 
Hilbert space X, respectively seminorm

Spectral theorem: there exists a vector valued measure (to the 
space of linear operators on X) such that for a scalar function

In particular decomposition of A and Identity                
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Filtering

We are not interested in the operator, but in action on f

Hence we have a vector valued measure into X

Spectral decomposition / filtering                
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Nonlinear Spectral Decomposition

Keep basic  properties:

Wavelength representation:
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Nonlinear Spectral Decomposition

Polar decomposition of the measure defines spectrum

Parseval identity  
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Defining Spectral Decompositions

Different options: variational methods / gradient flows 
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Defining Spectral Decompositions

Spectral representation derived from dynamics of eigenfunctions
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Connections of Spectral Decompositions

Very similar results for all the spectral decompositions

Conjecture: under appropriate conditions all spectral 
representations are the same

GF and VM have same primal variable u(t)

VM and IS have same dual variable p(t) / q(s)

VM dual variable is Fejer mean of GF dual variable
VM primal variable is Fejer mean of IS primal variable
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Relations of Spectral Decomposition

Consider finite-dimensional polyhedral (crystalline) case
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Piecewise linear dynamics under (PS)

Gradient flow (related to results by Briani et 2011 for TV flow):

Inverse scale space method (related to mb-Möller-Benning-Osher 
2012, Möller-mb 2014):
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Piecewise linear dynamics under (PS)

Variational method:
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Spectral representation

Well-defined decomposition

 



Martin Burger

Equivalence under (MINSUB)

If (PS) and (MINSUB) hold, then for all f: 
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Equivalence under (DD-L1)

Canonical example

(MINSUB) is satisfied if and only if KK* is weakly diagonally 
dominant 
Satisfied e.g. for 1D TV, K = div (Briani et al 2011) 

Under this condition we also obtain that VM and IS are equivalent 
(same dual variable)

In particular all three approaches yield the same spectral 
decomposition
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Eigenfunction decomposition 

Under (DD-L1) the subgradients of the gradient flow are 
eigenfunctions of J 

Hence we have a decomposition into eigenfunctions
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Applications: Filtering
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Applications: Filtering
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Applications: Ageing
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Applications: Ageing
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Applications: Personalized Avatar
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Conclusion

Ground states and singular vectors can be generalized nicely to 
nonlinear setup

Yield detailed insight into behaviour of regularization methods and 
multiple scales

Potential for further investigation 

Computation of singular vectors (explicit / numerical)
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