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Teaser : what is High Dynamic Range Imaging (HDR) ?

Capture a scene containing a large range of intensity levels...

Limited dynamic range of the camera ! loss of details in bright and/or dark areas.
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Motivation : High Dynamic Range Imaging (HDR)

Usual approach for HDR image generation : fusion of mutiple exposures.

HDR 
generation

Irradiance
Map 
(number of photons 
reaching each 
pixel per unit time)
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Challenges of HDR imaging in dynamic scenes

noise

moving
objects

camera
motion
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Challenges of HDR imaging in dynamic scenes

ghosting effect 

camera + object motion 
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Would it be possible to create a HDR
image from a single shot ?

First, let’s focus on a very generic inverse
problem...
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A generic inverse problem
Original image
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A generic inverse problem

Noise
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A generic inverse problem
Missing pixels
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Inverse Problem

Degradation model

ũ = Au + n

u reference image

A is a diagonal operator

Additive noise n may depend on u:
Exemple RAW data (shot noise and readout noise)

n(x) ⇠ N (0,↵(x)u(x) + �(x))

8 / 32



Inverse Problem

Degradation model

ũ = Au + n

Notation for patches

Z
i

= p
i

(ũ) (degraded patch of size d = f ⇥ f centered at i)

C
i

= p
i

(u) (unknown reference patch)

N
i

= p
i

(n) (additive noise patch)

D
i

restriction of A to p
i

(u)

Degradation model for a patch centered at pixel i

Zi = DiCi +Ni
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Patch degradation Model

+= x

Observed
patch

Assumptions :

D is known

N ⇠ N (0,⌃
N

), eventually depends on C but Cov(N,C ) = 0

C ⇠ N (µ,⌃) with µ and ⌃ unknown
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Patch degradation Model

+= x

Patch we seek
to estimate 

Gaussian prior 
for patches

Observed
patch

Assumptions :

D is known

N ⇠ N (0,⌃
N

), eventually depends on C but Cov(N,C ) = 0

C ⇠ N (µ,⌃) with µ and ⌃ unknown
9 / 32



How to set Gaussian prior parameters µ and ⌃ ?

1 Classical choice : MLE [NL-Bayes - Lebrun et al. 2013]
Set of similar patches Z1, . . . ,ZM

, such that all the (unknown) C
i

follow the
same law N (µ,⌃).

bµ =
1

M

MX

i=1

Z
i

and b⌃ =
1

M � 1

MX

i=1

[Z
i

� bµ][Z
i

� bµ]T

Not reliable when pixels are missing !

2 Gaussian Mixture Model prior on patches [EPLL - Zoran and Weiss
2011 ; PLE - Yu et al. 2012]
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How to set Gaussian prior parameters µ and ⌃ ?

MAP with an hyperprior on (µ,⌃)

argmax
{C

i

},µ,⌃
p({C

i

}
i

, µ,⌃ | {Z
i

}
i

) =

argmax
{C

i

},µ,⌃
p({Z

i

} | {C
i

}, µ,⌃) . p({C
i

} | µ,⌃) . p(µ,⌃).

Rappel

Z
i

| C
i

, µ
i

,⌃
i

⇠ N (D
i

C
i

,⌃
N

i

)

C
i

| µ
i

,⌃
i

⇠ N (µ,⌃)

(µ,⌃) ?

Inclusion of hyperprior information compensates for missing pixels.
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Hyperprior on (µ,⌃)

Conjugate prior for a multivariate normal distribution

Normal prior on the mean (conditionnal on the covariance)

µ | ⌃ ⇠ N (µ0,⌃/) / |⌃|� 1
2 exp

⇣
�

2
(µ� µ0)

T⌃�1(µ� µ0)
⌘

inverse Wishart prior on the covariance matrix

⌃ ⇠ IW(⌫⌃0, ⌫) / |⌃|�
⌫+d+1

2 exp

✓
�1

2
trace[⌫⌃0⌃

�1]

◆
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Hyperprior on (µ,⇤) with ⇤ = ⌃�1 (precision matrix)

Conjugate prior for a multivariate normal distribution

Normal prior on the mean (conditionnal on the covariance)

µ | ⇤ ⇠ N (µ0,⇤
�1/) / |⇤| 12 exp

⇣
�

2
(µ� µ0)

T⇤(µ� µ0)
⌘

Wishart prior on the inverse covariance matrix

⇤ ⇠ W((⌫⌃0)
�1, ⌫) / |⇤|

⌫�d�1
2 exp

✓
�1

2
trace[⌫⌃0⇤]

◆
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Minimization with respect to {Ci}i

{Z
i

} set of similar patches;

µ,⇤ fixed.

argmax
{C

i

}
p({Z

i

} | {C
i

}) . p({C
i

} | µ,⇤) . p(µ,⇤)

= argmax
{C

i

}
⇧M

i=1 (p(Zi

| C
i

) . p(C
i

| µ,⇤))

= argmax
{C

i

}
⇧M

i=1

⇣
g0,⌃

N

i

(Z
i

� D
i

C
i

) . gµ,⇤�1(C
i

)
⌘

.

Solution given by Wiener estimator for each i separately

bC
i

= ⇤�1DT

i| {z }
E(C

i

Z

T

i

)

(D
i

⇤�1DT

i

+ ⌃
N

i| {z }
E(Z

i

Z

T

i

)

)�1

| {z }
W

i

(Z
i

� D
i

µ) + µ
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Minimization with respect to µ,⇤

{C
i

}
i

fixed.

argmax
µ,⇤

p({Z
i

} | {C
i

}, µ,⇤)| {z }
HYP : independent of µ,⇤

. p({C
i

} | µ,⇤) . p(µ,⇤)

' argmax
µ,⇤

p({C
i

} | µ,⇤) . p(µ,⇤)

= argmax
µ,⇤

⇧M

i=1 gµ,⇤�1(C
i

) gµ0,⇤�1/(µ) w⇤0/⌫,⌫(⇤).

Explicit solution
(
bµ = MC+µ0

M+

b⇤�1 = ⌫⌃0+(bµ�µ0)(bµ�µ0)
T+

P
M

i=1(
b
C

i

�bµ)(bC
i

�bµ)T
⌫+M�d
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Loop in (µ,⇤)

In the previous formula, Ĉ
i

, µ̂ and ⇤̂ depend on each other. Replacing Ĉ
i

by its
expression in (µ,⇤) and reinjecting this in the formula of (µ̂, ⇤̂), we get

bµ =

0

@Id +
MX

j=1

W
j

D
j

1

A
�1 0

@
MX

j=1

W
j

Z
j

+ µ0

1

A

(⌫ +M � d) b⇤�1 =
MX

j=1

(W
j

(Z
j

� D
j

µ))(W
j

(Z
j

� D
j

µ))T

+ (µ� µ0)(µ� µ0)
T + ⌫⌃0

with W
j

= ⇤�1DT

j

(D
j

⇤�1DT

j

+ ⌃
N

j

)�1.

16 / 32



Algorithm
Initialization : compute Oracle image C

oracle

For k = 1 : maxit

For each Patch Z

1 Find patches similar to Z in C

oracle

2 Compute µ0 and ⌃0 from this set of similar patches in C

oracle

3 Compute first bµ, b⌃ with a small loop and then Ĉ .

Restore image from restored patches and update C
oracle

= restored image.
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Initialization

DCT
for isotropic

patterns
+(K-1) edges with

different orientationsK predefined models :

From PLE [Yu et al., 2012]:
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Results

Synthetic data, 70% missing pixels. 19 / 32
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Results

Synthetic data, 70% missing pixels, gaussian noise � = 10. 19 / 32



Results
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Results

Zoom on Real data. Left to right : Input low-resolution image, HBE, PLE,
bicubic. 19 / 32



Now, how can we do HDR imaging from a single shot ?
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Spatially Varying pixel Exposures (SVE) 
[Nayar and Mitsunaga, 2000]
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1 image = N exposures 
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SVE Single-image HDR

X No need for image alignment.

X No need for motion detection.

X No ghosting problems.

X No large saturated regions to fill.

⇥ Resolution loss : unknown pixels to be restored (over and under exposed
pixels).

⇥ Noise.

⇥ Need to modify the standard camera.
I Alternative without camera modification [Hirakawa and Simon, 2011].
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SVE: Regular or Random?

Random pattern to avoid aliasing [ Schöberl et al., 2012]
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Inverse Problem for HDR

Degradation model for a patch centered at pixel i

Z
i

= D
i

C
i

+ N
i

D
i

is a diagonal operator
I

D

ii

= 0 ) over- or under-exposed pixel (ignored)
I

D

ii

= 1 ) well-exposed pixel (kept)

C
i

irradiance at pixel i (reference image)

Noise model for RAW data (shot noise and readout noise)

N
i

⇠ N (0,⌃
N

i

)

with diagonal covariance matrix ⌃
N

i

such that

(⌃
N

i

)
k

= ↵
k

C
k

+ �
k

,

with ↵ and � known.
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Results HDR - Synthetic data
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Results HDR - Synthetic data

Ground-truth HPNLB PLEV Schöberl Nayar-Mitsun

Input Di↵erences to ground-truth

PSNR: 33.1dB 29.7dB 30.4dB 29.4dB
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Results HDR - Synthetic data

Ground-truth HPNLB PLEV Schöberl Nayar-Mitsun

Input Di↵erences to ground-truth

PSNR: 35.1dB 34.0dB 30.0dB 28.5dB
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Real data: experimental protocol
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Results HDR - Real data
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Results HDR - Real data
H
P
N
L
B

P
L
E
V

M
as
k
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Results real data
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Results real data
H
P
N
L
B

P
L
E
V

M
as
k

32 / 32


