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Teaser : what is High Dynamic Range Imaging (HDR) ?

Capture a scene containing a large range of intensity levels...
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Motivation : High Dynamic Range Imaging (HDR)

Usual approach for HDR image generation : fusion of mutiple exposures.

Irradiance
Map
(number of photons

reaching each
pixel per unit time)



Challenges of HDR imaging in dynamic scenes

moving
objects

camera
motion



Challenges of HDR imaging in dynamic scenes




Would it be possible to create a HDR
image from a single shot 7



Would it be possible to create a HDR
image from a single shot 7

First, let's focus on a very generic inverse
problem...



A generic inverse problem

Original image

7
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A generic inverse problem

Noise
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A generic inverse problem

Missing pixels




Inverse Problem

Degradation model

@ u reference image
@ A is a diagonal operator
@ Additive noise n may depend on u:
Exemple RAW data (shot noise and readout noise)

n(x) ~ N (0, a(x)u(x) + B(x))



Inverse Problem

Degradation model

| A

Notation for patches
Z; = pi(d) (degraded patch of size d = f X f centered at /)
C; = pi(u) (unknown reference patch)
N; = pi(n) (additive noise patch)
D; restriction of A to p;(u)

A\

Degradation model for a patch centered at pixel /

Z; = DG + N;




Patch degradation Model

Observed
patch




Patch degradation Model

Observed
patch

Assumptions :
@ D is known
o N~ N(0,Xy), eventually depends on C but Cov(N,C) =0



Patch degradation Model

Observed Patch we seek
patch to estimate

N

Gaussian prior

for patches '
@ D is known

o N~ N(0,Xy), eventually depends on C but Cov(N,C) =0
@ C ~ N(u,X) with x and T unknown

Assumptions :
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How to set Gaussian prior parameters p and > 7

@ Classical choice : MLE [NL-Bayes - Lebrun et al. 2013]
Set of similar patches Zi, ..., Zy, such that all the (unknown) C; follow the
same law N (p, X).

similar patches

=)
I
-

M 1 M
f S _ - 7z — 7
>z and T Vi ;[z, Az -7l

i=1



How to set Gaussian prior parameters p and > 7

@ Classical choice : MLE [NL-Bayes - Lebrun et al. 2013]
Set of similar patches Zi, ..., Zy, such that all the (unknown) C; follow the
same law N (p, X).

similar patches

1M 1M
~_ : "_7 L . ™MT
B=1 E Z; and Y= V1 IE_I[Z, ul[Zi — [l

i=1

Not reliable when pixels are missing !
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@ Classical choice : MLE [NL-Bayes - Lebrun et al. 2013]
Set of similar patches Zi, ..., Zy, such that all the (unknown) C; follow the
same law N (p, X).

similar patches
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Not reliable when pixels are missing !

@ Gaussian Mixture Model prior on patches [EPLL - Zoran and Weiss
2011 ; PLE - Yu et al. 2012]



How to set Gaussian prior parameters 1 and 2 7

MAP with an hyperprior on (p,Y)

argmax p({Gl}i,pn, 2| {Z}i) =
{C,'},}L,Z

argmax p({Zi} [ {G}, . X) . p({ G} | 1, E) - p(p, E).
{GhupX

Rappel
o Zi | Gui, i ~ N(D;C,xp)
o GluinXi ~ N(X)
o (u,x)7?

Inclusion of hyperprior information compensates for missing pixels.
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Hyperprior on (u, X)

Conjugate prior for a multivariate normal distribution

@ Normal prior on the mean (conditionnal on the covariance)

_1 R —
[T~ N(uo, £/K) o |Z|77 exp (—E(u—uo)TZ 1(/4—/@))

@ inverse Wishart prior on the covariance matrix

v+d+

Y ~IW(WXo,v) x |X]7 2

1 1
exp (2trace[z/zozl])



Hyperprior on (u, A) with A = X1 (precision matrix)

Conjugate prior for a multivariate normal distribution

@ Normal prior on the mean (conditionnal on the covariance)

- 1 K
(| A~ N(o, A /k) o |A|7 exp <_§(M — o) TA (e — Mo))

@ Wishart prior on the inverse covariance matrix

v—d—1

AN~ W((rEo) Hv) o A2 exp <;trace[1/20/\]>
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Minimization with respect to {C;};

o {Z;} set of similar patches;
o u, N fixed.

argmax p({Zi} [{G}) - p({Ci} [ 1 A) - p(p, N)

= argmax M2 (p(Zi | G) - p(Ci | 1, N))

= argmox MY, (8024 (Z — DIC) - gon1(C)
G

Solution given by Wiener estimator for each i separately

G =AD] (DAT'D] +Tn)Z — Dip) + 1
—_——

E(GZT) E(ZZ])

W,
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Minimization with respect to pu, A

(] {C,'},' fixed.

argmax  p({Zi} | {Gi}, 11, \) - p({ G} | 11, ) - p(p1 )

i\

HYP : independent of p,A
~argmax p({C} |, N). p(y,N)

N\
= argmax I'Ii’i1 gun1(G) gﬂov,\fl/,{(u) W,\O/,,,l,(/\).

Hy

Explicit solution

~ _ ME—H@#O
= M-+k
AL

_ vEotk(f—po)(f—po) + XM (G=a)(C—m)T
- v+M—d
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Loop in (u,\)

In the previous formula, ¢, it and A depend on each other. Replacing G by its

expression in (12, A) and reinjecting this in the formula of (2, A), we get

M ey
= Ii/d-f—z D; Z Zj + Ko
j=1 j=1

(Wi(Z; = D) (Wi(Z; = D))"

M=

(v+M—d)A T =

j=1
+ w(p = po)(i — o) T + Vo

with 1V, = A1D] (DA1D] + )L
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Algorithm
Initialization : compute Oracle image Cyracle

For k = 1 : maxit
@ For each Patch Z

@ Find patches similar to Z in Corace
@ Compute o and ¥ from this set of similar patches in Coracie
© Compute first [, ¥ with a small loop and then C.

@ Restore image from restored patches and update C,cfe = restored image.

(" {Model .+~ . -~ )
i Mode ~
| parameters (,LL, Z)
ﬁl | estimation
M similar patches S (_/_\_I gor lt_lll_n_ _l 2 - ( ﬂ, i)
Normal-Wishart X Patch é
prioron (4, %) restoration

L " G/ sinmmrey




Initialization

From PLE [Yu et al., 2012]:

. i DCT
K predefined models : (K1) edges with . .
P different orientations ' for isotropic
patterns

72)

(u@




Results

(a) Ground-truth

Svynthetic data, 70% missing pixels.



Results
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(f) Ground-truth (g) HBE (30.20 dB) (h) PLE (27.89 dB)
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Synthetic data, 70% missing pixels.



Results
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Svnthetic data, 70% missing pixels. gaussian noise o = 10.



Results

(g) HBE (28.34 dB)

Svnthetic data, 70% missing pixels, gaussian noise o = 10.



Results

Zoom on Real data. Left to right : Input low-resolution image, HBE, PLE,
bicubic. o5



Now, how can we do HDR imaging from a single shot 7
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Spatially Varying pixel Exposures (SVE)
[Nayar and Mitsunaga, 2000]
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1 image = N exposures

L
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SVE Single-image HDR

SN NN

No need for image alignment.
No need for motion detection.
No ghosting problems.

No large saturated regions to fill.

Resolution loss : unknown pixels to be restored (over and under exposed
pixels).

Noise.

Need to modify the standard camera.
» Alternative without camera modification [Hirakawa and Simon, 2011].

N
N

¥



SVE: Regular or Random?

Random pattern to avoid aliasing [ Schoberl et al., 2012]
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Inverse Problem for HDR

Degradation model for a patch centered at pixel i

Zi=DiG + N;

@ D; is a diagonal operator
» Djj =0 = over- or under-exposed pixel (ignored)
» Di =1 = well-exposed pixel (kept)

e C; irradiance at pixel i (reference image)

@ Noise model for RAW data (shot noise and readout noise)
N; ~ N(0,Xn,)
with diagonal covariance matrix X, such that
(Zn )k = kG + Br,

with v and S known.



Results HDR - Synthetic data
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Results HDR - Synthetic data

Ground-truth ~ HPNLB PLEV Schéberl  Nayar-Mitsun
o R s

PSNR: 33.1dB 29.7dB 30.4dB 29.4dB
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Results HDR - Synthetic data

Ground-truth ~ HPNLB PLEV Schéberl  Nayar-Mitsun

- A L

Input Differences to ground-truth

PSNR: 35.1dB 34.0dB 30.0dB 28.5dB
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Real data: experimental protocol
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Results HDR - Real data




Results HDR - Real data
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Results HDR - Real data
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Real data

9INdH A3

Results HDR
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Results real data
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Results real data
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Results real data
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