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OUTLINE

I Scene Interpretation
I Matched Bayesian Model
I Entropy Pursuit
I Application to Table Settings
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MACHINES VS. HUMANS

I Interpreting scenes is effortless and instantaneous for
people, even generating rich semantic annotations (“telling
a story”).

I Machines lag very far behind in understanding images, and
building a description machine remains a fundamental A.I.
challenge.

I This remains true even for the restricted task of detecting
and localizing all instances from a set of object categories.
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STREET SCENES
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TABLE SCENES
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PERFECT “PLATE” DETECTIONS BY CNNS
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POOR “PLATE” DETECTIONS BY CNNS
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“GLASS” DETECTIONS BY CNNS
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CONTEXTUALLY INCONSISTENT DETECTIONS
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MATCHED BAYESIAN

I Combine discriminative (parsing by scanning with trained
classifiers) and model-based (identifying likely
interpretations under the posterior) approaches.

I Replace the usual features in Bayesian data models with
high-level classifiers; define latent variables (almost)
one-to-one correspondence with classifiers.

I In particular, no low-level or mid-level features in the model;
all variables have semantic content.

I The prior model encodes knowledge about relative sizes
and likely configurations (spatial context).

I The posterior distribution modulates or contextualizes raw
classifier output.
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SEQUENTIAL BAYESIAN

I Model construction also motivated by efficient search and
evidence integraion.

I Scene annotation is procedural, inspired by
divide-and-conquer querying and selective attention.

I Computational efficiency by prioritizing what to do next - a
process of discovery.

I Prioritization by entropy pursuit.
I Processing can be terminated at any point, ideally when the

posterior is peaked.
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SCENES AND IMAGES

I C: object categories of interest.
I ω: 3D scene, described by instances from C and their 3D

poses.
I H: scene-to-image transformation.
I I = I(ω,H): image over an image domain L for FOV of the

camera
I p ∈ P: pose space in image coordinates.
I {(ck ,pk ), k = 1, . . . ,N}: image description, where N is

random.
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ANNOCELLS AND ANNOBITS

I A: hierarchy of image patches (sub-windows) W ⊂ L.
I YA: “What is going on in A?” for A ∈ A. For example, for
C = {plate,bottle,glass,utensil}, which categories have
instances fully inside A?

I More generally, yes-no questions (“annobits”) about subsets
of C and subsets of P (“pose cells”), e.g.,

I “Is there a plate in W?”
I “Is there a bottle or glass centered in W in the scale range

[s,S]?”
I YA corresponds to |C| such annobits with 2|C| possible

values.
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ANNOCELL HIERARCHY

I A partitioning of the input image at different levels of spatial resolution.
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PRIOR MODELS

I P(ω): 3D scene model.
I P(H): distribution on homographies.
I Y = YA,A ∈ A
I P(ω,H,y) = P(ω)P(H)δ(y = y(ω,H)).
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DATA MODEL

I XA: classifier to predict YA.
I In practice, XA assumes |C|+ 1 values, not 2|C|.
I X = XA,A ∈ A
I P(x | y): conditional distribution of classifiers
I Will assume conditional independence:

P(x | y) =
∏
A∈A

PA(xA | y)

and
PA(xA | y) = PA(xA | yA).
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SEQUENTIAL TESTING STRATEGY

I We will collect evidence by asking questions sequentially
and adaptively.

I qt = {q1, ...,qt} ⊂ A: annocells previously processed
I xqt = {Xq1(I), ...,Xqt (I)}: corresponding classifier results
I et = (qt ,xqt ): evidence acquired from I after t classifiers
I Entropy Pursuit:

qt+1 = arg min
A∈A

H(Y|et ,XA).

I Key Assumption: All classifiers have unit cost.
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MORE PRECISELY

I At(I) ⊂ A: the annocells previously processed. This is a
random subset depending on I, the image being processed.

I et(I) = {XA = XA(I),A ∈ At(I)}: history as an event, that is,
et(I) is the set of images with XA values identical to those
for image I for each A ∈ At(I).

I At+1(I) = {A} ∪ At(I), where

A = arg min
A∈A

H(Y|et(I),XA).
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APPROXIMATION

I Replace
qt+1 = arg min

A∈A
H(Y|et ,XA)

by
qt+1 = arg min

A∈A
H(Y|et ,YA).

I It then follows that

qt+1 = arg max
A∈A

H(YA|et)

.
I Hence, “pursue” highly uncertain annocells under the

current posterior.
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GREAT EXPECTATIONS

I Does coarse-to-fine search emerge naturally from EP?
I Are ambiguities due to conflicting evidence resolved?
I Can a fraction of the classifiers do as well as all of them?
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JHU TABLE-SETTING DATASET
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PRIOR MODEL ON TABLE SETTINGS

I T : Table dimensions (geometry).
I ω: |C| binary variables for each 5cm× 5cm table cell

indicating the presence of at least one instance from the
corresponding category.

I P(ω|T ): 3D scene model (Gibbs distribution) on the table.
I P(H): distribution on homographies.
I Y = YA,A ∈ A determined by ω,H.
I P(ω,H,T ) = P(H)P(T )P(ω|T ) where:

pλ(ω|T ) =
1

Z (λ)
exp
(
λ.f(ω)

)
.
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ACTUALLY TWO PRIOR SCENE MODELS

I First: A generative attributed graph (GAG) prior model in
the world coordinate system (skipped).

I The GAG model has interpretable parameters and was
efficiently learned from limited number of annotated images.

I But: conditional inference is slow.

I Second: The MRF whose parameters are learned from
GAG model samples.
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OVERVIEW

I To estimate p(YA|et), posterior model samples are projected to the
image coordinate system via perspective projection and the
interpretation units are aggregated.
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MRF FEATURES

d

Fine-level singleton

Middle-level singleton Singleton OR Conjunction

Coarse-level singleton

I The singleton features accommodate the overall empirical statistics for
localized object instances.

I The conjunction feature functions incorporate contextual relations
between different object categories.
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MRF LEARNING (SKIPPING DETAILS)

I We exploit symmetry in table-settings to reduce the number
of parameters.

I We learned 10 MRF models P(ω|T ) for 10 different table
sizes using stochastic gradient descent, iteratively
minimizing the KL divergence between the Gibbs and
empirical distribution.
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POSTERIOR SAMPLING

I Posterior sampling was carried out in three nested loops
corresponding to factoring the posterior at step t :

P(ω,T ,H|et) = P(T |et)P(H|T ,et)P(ω|T ,H,et).

I Outer Loop: sampling table size (Metropolis-Hastings)
I Middle Loop: sampling homography (Metropolis-Hastings)
I Inner Loop: sampling MRF model (Gibbs sampling)

I Given posterior samples of (ω,H), directly obtain posterior
samples of Y, and hence can estimate H(YA|et) for all A.
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CNN CLASSIFIERS

I We trained (the last layers of) three deep CNNs, all based
on the VGG-16 network (up to layer 15):

I CatNet: for category classification,
I ScaleNet: to estimate the scale of detected object instances,
I TableNet: to detect the table surface area in a given image.
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CATNET

I The CatNet is a CNN with a 5-way softmax output layer
used to predict the ground-truth annoint associated with the
input patch, with:

I OUTPUT 1: estimating “No Object” proportion,
I OUTPUT 2: estimating “Plate” proportion,
I OUTPUT 3: estimating “Bottle” proportion,
I OUTPUT 4: estimating “Glass” proportion,
I OUTPUT 5: estimating “Utensil” proportion.

I Reducing the 24 = 16 possible states of a patch to only 5,
whereas crude, does scale linearly with the number of
categories (rather than exponential 2|C|).
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CATNET TRAINING

I A patch including multiple object instances appears multiple
times in the training set, each time with the category label of
one of the existing instances.

I The CatNet was trained by minimizing the cross-entropy
loss function using stochastic gradient descent.

I Training took about 24 hours when the first 15 weight layers
were initializing by the first 15 weight layers from the
VGG-16 network.
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CATNET TESTING

I CNN output proportions are processed to obtain binary
classification per category.

I We define two parameters (k ,Sg) for considering the top-k
scores with less than Sg consecutive score gap (distance).

I Suppose k = 3 with score gap Sg = 0.2, and the CatNet
outputs are:

(s1 = 0.05, s2 = 0.45, s3 = 0.05, s4 = 0.1, s5 = 0.35)

Then categories “2” and “5” are declared as positive
detections.
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SCALENET (IN BRIEF)

I ScaleNet estimates the ratio of an object’s scale (in pixels)
to the size of the input patch, which stays unchanged after
resizing the original input to 224× 224.

I For an object that is fully inside a patch the scale ratio is
within the range (0,1].

I We declare an annocell patch as a positive detection
(bounding box) for category c if both Sscale ≥ 0.5 and c is
detected.

36 / 53



CNN DETECTION EXAMPLES
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CNN DETECTION EXAMPLES
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CNN DETECTION EXAMPLES
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TABLE DETECTION BY TABLENET
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DIRICHLET DATA MODEL

I The Dirichlet distribution is a density on probability vectors
x ∈ [0,1]K .

p(x) ∼ Dir(α1, ..., αK ) =
Γ(
∑

k αk )∏
k Γ(αk )

∏
k

xαk−1
k .

I We learned 16 conditional CatNet data models (MLE) (i.e.,
16 Dirichlet models) for the 16 possible subsets of four
object categories.

I The training data are obtained by running the CNNs on
patches with matching configuration.

I Similarly for ScaleNet.

41 / 53



RECALL

I YA: “What is going on in A?” for A ∈ A.
I P(ω,H,T ) = P(H)P(T )P(ω|T ).
I XA: CNN to predict YA.
I

P(x | y) =
∏
A∈A

PA(xA | yA).

I et = (qt ,xqt ): evidence acquired from I after t annocells
processed with both CatNet and ScaleNet.

I Next annocell examined is

qt+1 = arg max
A∈A

H(YA|et)

.
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FULL POSTERIOR DETECTIONS
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EP DETECTIONS (STEP 40)

44 / 53



CNN DETECTIONS
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EP QUESTIONS (STEPS 1-4)
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EP QUESTIONS (STEPS 51-54)
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EP QUESTIONS (STEPS 81-84)
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ENTROPY OF EP QUESTIONS
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PRECISION-RECALL CURVES

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

CNN (all)
Full Posterior
EP (140 Q.)
EP (60 Q.)
EP (30 Q.)
EP (10 Q.)
Posterior (Rand. 140 Q.)
Posterior (Rand. 30 Q.)
Prior
CNN (Rand. 10 Q.)
CNN (Rand. 30 Q.)
CNN (Rand. 60 Q.)
CNN (Rand. 140 Q.)

50 / 53



PRECISION-RECALL CURVES
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PRECISION-RECALL CURVES
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CONCLUDING REMARKS

I Some ad hoc aspects and lots to integrate.
I Many improvements are possible, e.g., better integration of

scale and table prediction into the matched Bayesian
framework.

I Also, dropping the “oracle approximation” in EP deserves
investigation.

I But does serve as a proof of concept.
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