SCENE INTERPRETATION BY ENTROPY PURSUIT

Donald Geman Johns Hopkins University

MIA'16 Institut Henri Poincare Paris, January 18-20, 2015

COLLABORATORS

- Ehsan Jahangiri (PhD student, JHU)
- Erdem Yoruk (former PhD student, JHU)
- Laurent Younes
- Rene Vidal

OUTLINE

- Scene Interpretation
- Matched Bayesian Model
- Entropy Pursuit
- Application to Table Settings

MACHINES VS. HUMANS

- Interpreting scenes is effortless and instantaneous for people, even generating rich semantic annotations ("telling a story").
- Machines lag very far behind in understanding images, and building a *description machine* remains a fundamental A.I. challenge.
- This remains true even for the restricted task of detecting and localizing all instances from a set of object categories.

STREET SCENES

TABLE SCENES

PERFECT "PLATE" DETECTIONS BY CNNS

POOR "PLATE" DETECTIONS BY CNNS

"GLASS" DETECTIONS BY CNNS

CONTEXTUALLY INCONSISTENT DETECTIONS

OUTLINE

- Scene Interpretation
- Matched Bayesian Model
- Entropy Pursuit
- Application to Table Settings

MATCHED BAYESIAN

- Combine discriminative (parsing by scanning with trained classifiers) and model-based (identifying likely interpretations under the posterior) approaches.
- Replace the usual features in Bayesian data models with high-level classifiers; define latent variables (almost) one-to-one correspondence with classifiers.
- In particular, no low-level or mid-level features in the model; all variables have semantic content.
- The prior model encodes knowledge about relative sizes and likely configurations (spatial context).
- The posterior distribution modulates or *contextualizes* raw classifier output.

SEQUENTIAL BAYESIAN

- Model construction also motivated by efficient search and evidence integraion.
- Scene annotation is procedural, inspired by divide-and-conquer querying and selective attention.
- Computational efficiency by prioritizing what to do next a process of discovery.
- Prioritization by *entropy pursuit*.
- Processing can be terminated at any point, ideally when the posterior is peaked.

Scenes and Images

- C: object categories of interest.
- ω: 3D scene, described by instances from C and their 3D poses.
- ► *H*: scene-to-image transformation.
- I = I(ω, H): image over an image domain L for FOV of the camera
- $p \in \mathcal{P}$: pose space in image coordinates.
- $\{(c_k, p_k), k = 1, ..., N\}$: image description, where N is random.

ANNOCELLS AND ANNOBITS

- \mathcal{A} : hierarchy of image patches (sub-windows) $W \subset \mathcal{L}$.
- Y_A: "What is going on in A?" for A ∈ A. For example, for C = {plate, bottle, glass, utensil}, which categories have instances fully inside A?
- More generally, yes-no questions ("annobits") about subsets of C and subsets of P ("pose cells"), e.g.,
 - "Is there a plate in W?"
 - "Is there a bottle or glass centered in W in the scale range [s, S]?"
- Y_A corresponds to |C| such annobits with 2^{|C|} possible values.

ANNOCELL HIERARCHY

• A partitioning of the input image at different levels of spatial resolution.

PRIOR MODELS

- $P(\omega)$: 3D scene model.
- P(H): distribution on homographies.
- ► $\mathbf{Y} = Y_A, A \in \mathcal{A}$
- $P(\omega, H, \mathbf{y}) = P(\omega)P(H)\delta(\mathbf{y} = \mathbf{y}(\omega, H)).$

DATA MODEL

- X_A : classifier to predict Y_A .
- In practice, X_A assumes |C| + 1 values, not $2^{|C|}$.
- $\blacktriangleright X = X_A, A \in \mathcal{A}$
- ► *P*(**x** | **y**): conditional distribution of classifiers
- Will assume conditional independence:

$$P(\mathbf{x} \mid \mathbf{y}) = \prod_{A \in \mathcal{A}} P_A(x_A \mid \mathbf{y})$$

and

$$P_A(x_A \mid \mathbf{y}) = P_A(x_A \mid y_A).$$

OUTLINE

- Scene Interpretation
- Matched Bayesian Model
- Entropy Pursuit
- Application to Table Settings

SEQUENTIAL TESTING STRATEGY

- We will collect evidence by asking questions sequentially and adaptively.
- ▶ $\mathbf{q}_t = \{q_1, ..., q_t\} \subset A$: annocells previously processed
- ► $\mathbf{x}_{\mathbf{q}_{t}} = \{X_{q_{1}}(I), ..., X_{q_{t}}(I)\}$: corresponding classifier results
- $\mathbf{e}_t = (\mathbf{q}_t, \mathbf{x}_{\mathbf{q}_t})$: evidence acquired from *I* after *t* classifiers
- Entropy Pursuit:

 $q_{t+1} = \arg\min_{A\in\mathcal{A}} H(\mathbf{Y}|\mathbf{e}_t, X_A).$

Key Assumption: All classifiers have unit cost.

MORE PRECISELY

- *A_t*(*I*) ⊂ *A*: the annocells previously processed. This is a random subset depending on *I*, the image being processed.
- $\mathbf{e}_t(I) = \{X_A = X_A(I), A \in \mathcal{A}_t(I)\}$: history as an event, that is, $\mathbf{e}_t(I)$ is the set of images with X_A values identical to those for image *I* for each $A \in \mathcal{A}_t(I)$.

• $\mathcal{A}_{t+1}(I) = \{A\} \cup \mathcal{A}_t(I)$, where

 $A = \arg\min_{A \in \mathcal{A}} H(\mathbf{Y}|\mathbf{e}_t(I), X_A).$

APPROXIMATION

Replace

$$q_{t+1} = \arg\min_{A\in\mathcal{A}} H(\mathbf{Y}|\mathbf{e}_t, X_A)$$

by

.

$$q_{t+1} = \arg\min_{A\in\mathcal{A}} H(\mathbf{Y}|\mathbf{e}_t, Y_A).$$

It then follows that

$$q_{t+1} = rg\max_{A\in\mathcal{A}}H(Y_A|\mathbf{e}_t)$$

 Hence, "pursue" highly uncertain annocells under the current posterior.

GREAT EXPECTATIONS

- Does coarse-to-fine search emerge naturally from EP?
- Are ambiguities due to conflicting evidence resolved?
- Can a fraction of the classifiers do as well as all of them?

OUTLINE

- Scene Interpretation
- Matched Bayesian Model
- Entropy Pursuit
- Application to Table Settings

JHU TABLE-SETTING DATASET

PRIOR MODEL ON TABLE SETTINGS

- ► *T*: Table dimensions (geometry).
- $P(\omega|T)$: 3D scene model (Gibbs distribution) on the table.
- P(H): distribution on homographies.
- $\mathbf{Y} = \mathbf{Y}_{A}, A \in \mathcal{A}$ determined by ω, H .
- $P(\omega, H, T) = P(H)P(T)P(\omega|T)$ where:

$$p_{\lambda}(\omega|T) = \frac{1}{Z(\lambda)} \exp(\lambda.\mathbf{f}(\omega)).$$

ACTUALLY TWO PRIOR SCENE MODELS

- First: A generative attributed graph (GAG) prior model in the world coordinate system (skipped).
- The GAG model has interpretable parameters and was efficiently learned from limited number of annotated images.
- But: conditional inference is slow.
- Second: The MRF whose parameters are learned from GAG model samples.

OVERVIEW

To estimate p(Y_A|e_t), posterior model samples are projected to the image coordinate system via perspective projection and the interpretation units are aggregated.

MRF FEATURES

- The singleton features accommodate the overall empirical statistics for localized object instances.
- The conjunction feature functions incorporate contextual relations between different object categories.

MRF LEARNING (SKIPPING DETAILS)

- We exploit symmetry in table-settings to reduce the number of parameters.
- ► We learned 10 MRF models P(ω|T) for 10 different table sizes using stochastic gradient descent, iteratively minimizing the KL divergence between the Gibbs and empirical distribution.

POSTERIOR SAMPLING

Posterior sampling was carried out in three nested loops corresponding to factoring the posterior at step t:

 $P(\omega, T, H|\mathbf{e}_t) = P(T|\mathbf{e}_t)P(H|T, \mathbf{e}_t)P(\omega|T, H, \mathbf{e}_t).$

- Outer Loop: sampling table size (Metropolis-Hastings)
- Middle Loop: sampling homography (Metropolis-Hastings)
- Inner Loop: sampling MRF model (Gibbs sampling)
- Given posterior samples of (ω, H), directly obtain posterior samples of Y, and hence can estimate H(Y_A|e_t) for all A.

CNN CLASSIFIERS

- We trained (the last layers of) three deep CNNs, all based on the VGG-16 network (up to layer 15):
 - CatNet: for category classification,
 - ScaleNet: to estimate the scale of detected object instances,
 - TableNet: to detect the table surface area in a given image.

CATNET

- The CatNet is a CNN with a 5-way softmax output layer used to predict the ground-truth annoint associated with the input patch, with:
 - OUTPUT 1: estimating "No Object" proportion,
 - OUTPUT 2: estimating "Plate" proportion,
 - OUTPUT 3: estimating "Bottle" proportion,
 - OUTPUT 4: estimating "Glass" proportion,
 - OUTPUT 5: estimating "Utensil" proportion.
- Reducing the 2⁴ = 16 possible states of a patch to only 5, whereas crude, does scale linearly with the number of categories (rather than exponential 2^{|C|}).

CATNET TRAINING

- A patch including multiple object instances appears multiple times in the training set, each time with the category label of one of the existing instances.
- The CatNet was trained by minimizing the cross-entropy loss function using stochastic gradient descent.
- Training took about 24 hours when the first 15 weight layers were initializing by the first 15 weight layers from the VGG-16 network.

CATNET TESTING

- CNN output proportions are processed to obtain binary classification per category.
- ► We define two parameters (k, S_g) for considering the top-k scores with less than S_g consecutive score gap (distance).
- Suppose k = 3 with score gap S_g = 0.2, and the CatNet outputs are:

 $(s_1 = 0.05, s_2 = 0.45, s_3 = 0.05, s_4 = 0.1, s_5 = 0.35)$

Then categories "2" and "5" are declared as positive detections.

SCALENET (IN BRIEF)

- ScaleNet estimates the ratio of an object's scale (in pixels) to the size of the input patch, which stays unchanged after resizing the original input to 224 × 224.
- For an object that is fully inside a patch the scale ratio is within the range (0, 1].
- ► We declare an annocell patch as a positive detection (bounding box) for category *c* if both S_{scale} ≥ 0.5 and *c* is detected.

CNN DETECTION EXAMPLES

CNN DETECTION EXAMPLES

CNN DETECTION EXAMPLES

TABLE DETECTION BY TABLENET

DIRICHLET DATA MODEL

The Dirichlet distribution is a density on probability vectors x ∈ [0, 1]^K.

$$p(\mathbf{x}) \sim \mathsf{Dir}(\alpha_1, ..., \alpha_K) = \frac{\Gamma(\sum_k \alpha_k)}{\prod_k \Gamma(\alpha_k)} \prod_k x_k^{\alpha_k - 1}$$

- We learned 16 conditional CatNet data models (MLE) (i.e., 16 Dirichlet models) for the 16 possible subsets of four object categories.
- The training data are obtained by running the CNNs on patches with matching configuration.
- Similarly for ScaleNet.

RECALL

.

- Y_A : "What is going on in A?" for $A \in A$.
- $P(\omega, H, T) = P(H)P(T)P(\omega|T).$
- X_A : CNN to predict Y_A .

$$P(\mathbf{x} \mid \mathbf{y}) = \prod_{A \in \mathcal{A}} P_A(x_A \mid y_A).$$

- ► e_t = (q_t, x_{q_t}): evidence acquired from *I* after *t* annocells processed with both CatNet and ScaleNet.
- Next annocell examined is

 $q_{t+1} = rg\max_{A\in\mathcal{A}} H(Y_A|\mathbf{e}_t)$

FULL POSTERIOR DETECTIONS

EP DETECTIONS (STEP 40)

CNN DETECTIONS

EP QUESTIONS (STEPS 1-4)

EP QUESTIONS (STEPS 51-54)

EP QUESTIONS (STEPS 81-84)

ENTROPY OF EP QUESTIONS

PRECISION-RECALL CURVES

PRECISION-RECALL CURVES

51 / 53

PRECISION-RECALL CURVES

52 / 53

CONCLUDING REMARKS

- Some ad hoc aspects and lots to integrate.
- Many improvements are possible, e.g., better integration of scale and table prediction into the matched Bayesian framework.
- Also, dropping the "oracle approximation" in EP deserves investigation.
- But does serve as a proof of concept.