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MACHINES VS. HUMANS

» Interpreting scenes is effortless and instantaneous for
people, even generating rich semantic annotations (“telling
a story”).

» Machines lag very far behind in understanding images, and
building a description machine remains a fundamental A.l.
challenge.

» This remains true even for the restricted task of detecting
and localizing all instances from a set of object categories.
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STREET SCENES
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TABLE SCENES
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PERFECT “PLATE” DETECTIONS BY CNNs
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POOR “PLATE” DETECTIONS BY CNNSs
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“GLASS” DETECTIONS BY CNNs
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CONTEXTUALLY INCONSISTENT DETECTIONS
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MATCHED BAYESIAN

» Combine discriminative (parsing by scanning with trained
classifiers) and model-based (identifying likely
interpretations under the posterior) approaches.

» Replace the usual features in Bayesian data models with
high-level classifiers; define latent variables (almost)
one-to-one correspondence with classifiers.

» In particular, no low-level or mid-level features in the model;
all variables have semantic content.

» The prior model encodes knowledge about relative sizes
and likely configurations (spatial context).

» The posterior distribution modulates or contextualizes raw
classifier output.
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SEQUENTIAL BAYESIAN

» Model construction also motivated by efficient search and
evidence integraion.

» Scene annotation is procedural, inspired by
divide-and-conquer querying and selective attention.

» Computational efficiency by prioritizing what to do next - a
process of discovery.

» Prioritization by entropy pursuit.

» Processing can be terminated at any point, ideally when the
posterior is peaked.
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SCENES AND IMAGES

v

C: object categories of interest.

w: 3D scene, described by instances from C and their 3D
poses.

H: scene-to-image transformation.

| = I(w, H): image over an image domain L for FOV of the
camera

» p € P: pose space in image coordinates.

» {(ck,px), k =1,...,N}: image description, where N is
random.
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ANNOCELLS AND ANNOBITS

» A: hierarchy of image patches (sub-windows) W C L.

» Ya: “What is going on in A?” for A € A. For example, for
C = {plate, bottle, glass, utensil}, which categories have
instances fully inside A?

» More generally, yes-no questions (“annobits”) about subsets
of C and subsets of P (“pose cells”), e.g.,

» “Is there a plate in W?”
» “Is there a bottle or glass centered in W in the scale range

[s, S|?”
» Y, corresponds to |C| such annobits with 2/°I possible
values.
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ANNOCELL HIERARCHY

» A partitioning of the input image at different levels of spatial resolution.

i Level O
m— Level 1
m— Level 2

Level 3
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PRIOR MODELS

v

P(w): 3D scene model.

P(H): distribution on homographies.
Y=YsAc A

P(w,H,y) = P(w)P(H)i(y = y(w, H)).
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DATA MODEL

v

Xa: classifier to predict Y.

In practice, X, assumes |C| + 1 values, not 2/!.
X=X3,Ac A

P(x | y): conditional distribution of classifiers
Will assume conditional independence:

P(x|y)=]] Pa(xaly)

AcA

v
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and
Pa(xa | Y) = Pa(Xa | Ya).
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SEQUENTIAL TESTING STRATEGY

» We will collect evidence by asking questions sequentially
and adaptively.

» d: = {q1,...,q:} C A: annocells previously processed

> Xq, = {Xg, (/),.... X4 (/) }: corresponding classifier results
» e; = (s, Xq,): evidence acquired from [ after ¢ classifiers
» Entropy Pursuit:

G+t = argmin H(Yler, Xa).

» Key Assumption: All classifiers have unit cost.
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MORE PRECISELY

» Ai(l) C A: the annocells previously processed. This is a
random subset depending on /, the image being processed.

» ei(l) = {Xa= Xa(l),A € Ai(])}: history as an event, that is,
e:(/) is the set of images with X, values identical to those
for image / for each A € A;(/).

> At+1(/) = {A} U At(/), where
A=arg min H(Y|e:(!), Xa).
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APPROXIMATION
» Replace
G+t = argmin H(Yle;, Xa)
by
Qe1 = argmin H(Ylet, Ya).
» It then follows that
Ge+1 = argmax H(Yale:)
» Hence, “pursue” highly uncertain annocells under the
current posterior.
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GREAT EXPECTATIONS

» Does coarse-to-fine search emerge naturally from EP?
» Are ambiguities due to conflicting evidence resolved?
» Can a fraction of the classifiers do as well as all of them?
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JHU TABLE-SETTING DATASET
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PRIOR MODEL ON TABLE SETTINGS

» T: Table dimensions (geometry).

w: |C| binary variables for each 5¢cm x 5cm table cell
indicating the presence of at least one instance from the
corresponding category.

P(w|T): 3D scene model (Gibbs distribution) on the table.
P(H): distribution on homographies.

» Y=Y, Ac Adetermined by w, H.

P(w,H, T) = P(H)P(T)P(w|T) where:

v

v

v

v

pr(w|T) = ZEA) exp(Af(w)).
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ACTUALLY TwO PRIOR SCENE MODELS

v

First: A generative attributed graph (GAG) prior model in
the world coordinate system (skipped).

v

The GAG model has interpretable parameters and was
efficiently learned from limited number of annotated images.

But: conditional inference is slow.

v

Second: The MRF whose parameters are learned from
GAG model samples.

v
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OVERVIEW

CLASSIFIERS TRAINING DATA

TOP-DOWN PRIOR

ANNOBITS

l MRF PRIOR

EP QUERY ENGINE

MRF POSTERIOR l

» To estimate p(Yale;), posterior model samples are projected to the
image coordinate system via perspective projection and the
interpretation units are aggregated.
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MRF FEATURES

-
i)
i

M Fine-level singleton [l Coarse-level singleton

[l Middle-level singleton [l Singleton OR Conjunction

» The singleton features accommodate the overall empirical statistics for
localized object instances.

» The conjunction feature functions incorporate contextual relations
between different object categories.
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MRF LEARNING (SKIPPING DETAILS)

» We exploit symmetry in table-settings to reduce the number
of parameters.

» We learned 10 MRF models P(w|T) for 10 different table
sizes using stochastic gradient descent, iteratively
minimizing the KL divergence between the Gibbs and
empirical distribution.
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POSTERIOR SAMPLING

» Posterior sampling was carried out in three nested loops
corresponding to factoring the posterior at step t:

P(w, T,Hle:) = P(T|e;)P(H|T,e)P(w|T, H,e;).

» Outer Loop: sampling table size (Metropolis-Hastings)
» Middle Loop: sampling homography (Metropolis-Hastings)
» Inner Loop: sampling MRF model (Gibbs sampling)
» Given posterior samples of (w, H), directly obtain posterior
samples of Y, and hence can estimate H(Yx|e;) for all A.
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CNN CLASSIFIERS

» We trained (the last layers of) three deep CNNs, all based
on the VGG-16 network (up to layer 15):

» CatNet: for category classification,
» ScaleNet: to estimate the scale of detected object instances,
» TableNet: to detect the table surface area in a given image.

VGG-16
(2014)
mem o
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CATNET

» The CatNet is a CNN with a 5-way softmax output layer
used to predict the ground-truth annoint associated with the
input patch, with:

OUTPUT 1: estimating “No Object” proportion,

» OUTPUT 2: estimating “Plate” proportion,

» OUTPUT 3: estimating “Bottle” proportion,

OUTPUT 4: estimating “Glass” proportion,

» OUTPUT 5: estimating “Utensil” proportion.

» Reducing the 2* = 16 possible states of a patch to only 5,

whereas crude, does scale linearly with the number of
categories (rather than exponential 2/°).
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CATNET TRAINING

» A patch including multiple object instances appears multiple
times in the training set, each time with the category label of
one of the existing instances.

» The CatNet was trained by minimizing the cross-entropy
loss function using stochastic gradient descent.

» Training took about 24 hours when the first 15 weight layers
were initializing by the first 15 weight layers from the
VGG-16 network.
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CATNET TESTING

» CNN output proportions are processed to obtain binary
classification per category.

» We define two parameters (k, Sy) for considering the top-k
scores with less than S, consecutive score gap (distance).

» Suppose k = 3 with score gap S, = 0.2, and the CatNet
outputs are:

(s1 =0.05,s, =0.45,53 = 0.05,s4, = 0.1, 55 = 0.35)

Then categories “2” and “5” are declared as positive
detections.
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SCALENET (IN BRIEF)

» ScaleNet estimates the ratio of an object’s scale (in pixels)
to the size of the input patch, which stays unchanged after
resizing the original input to 224 x 224.

» For an object that is fully inside a patch the scale ratio is
within the range (0, 1].

» We declare an annocell patch as a positive detection
(bounding box) for category c if both Ss.5e > 0.5 and c is
detected.
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CNN DETECTION EXAMPLES
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CNN DETECTION EXAMPLES
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CNN DETECTION EXAMPLES
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TABLE DETECTION BY TABLENET
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DIRICHLET DATA MODEL

v

The Dirichlet distribution is a density on probability vectors
x € [0, 1]X.

M4 ) T et

p(x) ~ Dir(ay, ..., ak) = . (ak) p

v

We learned 16 conditional CatNet data models (MLE) (i.e.,
16 Dirichlet models) for the 16 possible subsets of four
object categories.

v

The training data are obtained by running the CNNs on
patches with matching configuration.

Similarly for ScaleNet.

v
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RECALL

v

Ya: “What is going on in A?” for A € A.
P(w,H, T) = P(H)P(T)P(w|T).
Xa: CNN to predict Y.

v

v

P(x|y) =[] Paxa | ya)-

AcA

v

e: = (q:, Xq,): evidence acquired from / after t annocells
processed with both CatNet and ScaleNet.

Next annocell examined is

v

Ge+1 = argmax H(Yale:)
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FULL POSTERIOR DETECTIONS
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EP DETECTIONS (STEP 40)
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CNN DETECTIONS
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EP QUESTIONS (STEPS 1-4)
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EP QUESTIONS (STEPS 51-54)
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EP QUESTIONS (STEPS 81-84)
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ENTROPY OF EP QUESTIONS

Entropy

Entropy of Selected Question (subsampled at rate 2)

Entropy of Selected Question (batch size = 2)
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PRECISION-RECALL CURVES
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PRECISION-RECALL CURVES
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PRECISION-RECALL CURVES

T T T T T
1r \
0.8 5
= 06
Ke]
[%2) \
S
9] |
& o4t \
|
CNN (all)
| | — Full Posterior
0 EP (60 Q))
0 0.2 0.4 0.6 0.8 1

Recall
52/53



CONCLUDING REMARKS

» Some ad hoc aspects and lots to integrate.

» Many improvements are possible, e.g., better integration of
scale and table prediction into the matched Bayesian
framework.

» Also, dropping the “oracle approximation” in EP deserves
investigation.

» But does serve as a proof of concept.
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