Sparse Approximation, List Decoding, and Uncertainty Principles

Anna C. Gilbert Department of Mathematics University of Michigan

Joint work with Mahmoud Abo Khamis, Hung Q. Ngo, Atri Rudra (SUNY: University at Buffalo)

Sparse Approximation: Definitions

EXACT: Given *A*,*b*, find sparsest *x* s.t. *Ax* = *b*.

 $\hat{x} = \operatorname{argmin} \|x\|_0 \text{ s.t. } Ax = b$

SPARSE: Given *A,b,k*, find best *k*-term approximation for *b*. $\hat{x} = \operatorname{argmin} ||Ax - b||_2 \text{ s.t. } ||x||_0 \le k$

Sparse Approximation: Unique repn. "barriers"

- Spark(A) = σ(A) = min number of linearly dependent cols
- Unique EXACT solution: If $k < \sigma/2$, then there's a unique sparsest solution with sparity bonoho, Elad, 2003]
- Coherence(A) = μ(A) = cols

Unique sparse representations

- Unique EXACT solution: if $k < \mu/2$, then there's a unique sparsest solution with sparsity k. [Donoho, Elad, 2003]
- A =spikes and sines, $\mu(A) = 1/\sqrt{n}$
- Bounds = form of **Uncertainty Principle**

Error Correcting Codes: Unique decoding

- Distance of code = minimum distance between 2 codewords
- Receive corrupted codeword
- Return closest codeword
- Tolerate errors up to D/2

List Decoding ECC: definitions

- Return small list of codewords, with guarantee that transmitted codeword is in the list [Elias, 1957, Wozencraft, 1958]
- Formal defn: ρ = fraction of errors, list words differ from transmitted by no more than ρ

List Decoding ECC: implications

Information Theory

- Information theoretic limit $\rho < 1 R$
- Explicit constructions, efficient (?) algorithms: Folded RS codes

Cryptography

- Cryptanalysis of certain blockciphers [Jakobsen, 1998]
- Efficient traitor tracing scheme [Silverberg, Staddon, Walker 2003]
- Complexity Theory
 - Hardcore predicates from one way functions [Goldreich,Levin 1989; Impagliazzo 1997; Ta-Shama, Zuckerman 2001]
 - Worst-case vs. average-case hardness [Cai, Pavan, Sivakumar 1999; Goldreich, Ron, Sudan 1999; Sudan, Trevisan, Vadhan 1999; Impagliazzo, Jaiswal, Kabanets 2006]

List Decoding ECC: progression of results

1. Combinatorial bounds on list size (Johnson bound)

2. Algorithms for finding list

Explicit ECCs that achieve bounds + practical algorithms

Sparse Approximation <-> ECC

Sparse Approximation	ECC
Redundant dictionary	Codebook
Input signal	Received codeword + errors
Coherence	Distance
Redundancy	Rate
Spark	Spark
Best k-term approximation	Decoding
k=1	Closest codeword
k > 1	

List Sparse Approximation: Definitions

List SPARSE: Given *A*,*b*, and *k*, list *all k*-sparse *x* such that $||Ax - b||_2$ is minimized.

Exact analogy with List Decoding ECCs

List APPROX: Given *A*,*b*,*k*,and ε , list *all k*-sparse *x* such that $||Ax - b||_2 \le \epsilon$

List Sparse Approximation: Implications?

- Algorithms' achievability [Dragotti, Lu 2013]
 - $-A = [\Psi, \Phi]$ union of ONBs (can be generalized)
 - ProSparse: proto-list sparse approximation algorithm
 - Returns list of *exact* representations "beyond"
 convex relaxation bound
 and unique repn. bound

List Sparse Approximation: Implications?

1. Combinatorial bounds on list size

2. Dictionaries that achieve bounds

3. Practical algorithms + dictionaries

List Size: Clarifying definitions

•
$$A = I_n, b = (1, 0, ..., 0), \epsilon = \sqrt{2}$$

– Choose $x_1 \in (1 - \sqrt{2}, 1 + \sqrt{2})$ $x_j = 0$

– NOT a meaningful list!

• List Approx: Given A,b,k,and ε , L(A,b,k, ε) is number of distinct support sets of k-sparse solutions x such that $||Ax - b||_2 \le \epsilon$

List Size: Clarifying definitions

- Any support set of size k that contains 1 has same error, $\binom{m-1}{k-1}$ different support sets
- L(A, k, ε, R) denotes the worst case bound on L over all b with the restriction that no atom appears in the support of more than R out of the L solutions.

List-Approx: Combinatorial bounds

• Theorem: (disjoint solutions)

If μ

As long as the error $\varepsilon \leq 1 - \Omega(\mu k)$, the number of disjoint solutions is $O(1/(1 - \varepsilon^2))$.

- Extends Uncertainty Principle to more than two disjoint solutions and allows some approximation error.
- Unique decoding results as corollaries.

List-Approx: Combinatorial bounds

• Theorem:

we ha

Let $0 < \gamma < 1$. As long as

If we consider only solutions where each atom appears only o(L) times in the output list of size L, then L is bounded only by ε (and is independent of k and n). *b* derived from vector that demonstrates tightness of UP

- Lemma: Let A = Kerdock code dictionary, μ(A) = 1/√n. For every s < √n, there is an input vector b s.t.
 - there are $\binom{n}{s}$ vectors x with sparsity $s\sqrt{n}$ and Ax = b- each atom appears in exactly s/n fraction of solns

• So,

- For $\mu < 1/k$, s = 1, we have dictionary+input vector with L(A,k,0,1) > n.

- For $s = \omega(1)$, L(A,k,O,o(L)) can be super-poly in n.

• → Coherence bound is tight!

Conclusions

1. Combinatorial bounds on list sizes 🖌

2. Dictionaries that achieve bounds \checkmark

3. Practical algorithms + dictionaries ?