
 Understanding (or not)

Deep Convolutional Networks

 Stéphane Mallat

École Normale Supérieure
www.di.ens.fr/data

http://www.di.ens.fr/data/scattering

 Deep Neural Networks

• Approximations of high-dimensional functions from examples,
for classification and regression.

• Applications: computer vision, audio and music classification,
natural language analysis, bio-medical data, unstructured data…

• Related to: neurophysiology of vision and audition, quantum and
statistical physics, linguistics, …

• Mathematics: statistics, probability, harmonic analysis,
geometry, optimization. Little is understood.

given n sample values {xi , yi = f(xi)}in

• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Classification: estimate a class label f(x)

 High Dimensional Learning

Image Classification d = 106

Anchor Joshua Tree Beaver Lotus Water Lily

Huge variability

inside classes

Find invariants

 Curse of Dimensionality

local interpolation if f is regular and there are close examples:

• f(x) can be approximated from examples {xi , f(xi)}i by

?
x

• Need ✏�d
points to cover [0, 1]d at a Euclidean distance ✏

) kx� xik is always large

Huge variability

inside classes

Data:

 Linearisation by Change of Variable

x 2 Rd

�

Linear Classifier

x

Change of variable �(x) = {�k(x)}kd0

f̃(x) = h�(x) , wi =
X

k

wk �k(x) .

�(x) 2 Rd0

to nearly linearize f(x), which is approximated by:

w

1D projection

x

⇢(u) = |u|

Linear Classificat.

⇢

linear convolution

linear convolution

 Deep Convolution Neworks

L2

⇢

�(x)

...
Exceptional results for images, speech, bio-data classification.

Products by FaceBook, IBM, Google, Microsoft, Yahoo...

non-linear scalar:

L1

neuron

Why does it work so well ?

• The revival of an old (1950) idea: Y. LeCun , G. Hinton

Optimize Lj with architecture constraints: over 109 parameters

 ImageNet Data Basis

• Data basis with 1 million images and 2000 classes

• Imagenet supervised training: 1.2 10

6
examples, 10

3
classes

15.3% testing error

Wavelets

 Alex Deep Convolution Network

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel I

xy

=

[I

R

xy

, I

G

xy

, I

B

xy

]

T we add the following quantity:

[p
1

,p
2

,p
3

][↵

1

�

1

,↵

2

�

2

,↵

3

�

3

]

T

where p
i

and �

i

are ith eigenvector and eigenvalue of the 3 ⇥ 3 covariance matrix of RGB pixel
values, respectively, and ↵

i

is the aforementioned random variable. Each ↵

i

is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11⇥11⇥3 learned by the first convolutional
layer on the 224⇥224⇥3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

v

i+1

:= 0.9 · v
i

� 0.0005 · ✏ · w
i

� ✏ ·
⌧
@L

@w

��
wi

�

Di

w

i+1

:= w

i

+ v

i+1

where i is the iteration index, v is the momentum variable, ✏ is the learning rate, and
D

@L

@w

��
wi

E

Di

is
the average over the ith batch D

i

of the derivative of the objective with respect to w, evaluated at
w

i

.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

A. Krizhevsky, Sutsever, Hinton

in 2012

New networks with 5% errors.

with 150 layers!

 Image Classification Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

 Scene Labeling / Car Driving

Y LeCun
MA Ranzato

Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
MA Ranzato

Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

 Overview

• Linearisation of symmetries

• Deep convolutional networks architectures

• Simplified convolutional trees: wavelet scattering

• Deep networks: contractions, linearization and separations

Separation and Linearization with�

• Separation: change of variable f(x) = f(�(x))

) �(x) 6= �(x0) if f(x) 6= f(x0)

f(z) is Lipschitz , k�(x)� �(x0)k � ✏ |f(x)� f(x0)|

• Linearization: f(z) = hw, zi

linearize level sets ⌦t = {x : f(x) = t}

�(⌦t) for all t are in parallel linear spaces

⌦t w

8x 2 ⌦t , f(x) = h�(x), wi = t

 Linearization of Symmetries

• No local estimations because of dimensionality curse

: global

• A symmetry is an operator g which preserves level sets:

8x , f(g.x) = f(x) .

If g1 and g2 are symmetries then g1.g2 is also a symmetry

) groups G of symmetries.

• A change of variable �(x) must linearize the orbits {g.x}g2G

Problem: find the symmetries and linearise them.

: high dimensional

 Contract Linearize Symmetries

•Regularize the orbit, remove high curvature:
linearisation

• A change of variable �(x) must linearize the orbits {g.x}g2G

Problem: find the symmetries and linearise them.

x(u) x

0(u)

 Translation and Deformations

Video of Philipp Scott Johnson

• Digit classification:

- Globally invariant to the translation group

- Locally invariant to small di↵eomorphisms

: small

: huge group

 Deep Convolutional Networks

x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

• ⇢ is a pointwise contractive non-linearity:

8(↵,↵0) 2 R2 , |⇢(↵)� ⇢(↵0)|  |↵� ↵0|

up to J = 150

⇢L1
⇢L2 ⇢LJ

xj = ⇢Lj xj�1

Examples: ⇢(u) = max(u, 0) or ⇢(u) = |u|.

classification

• What is the role of the linear operators Lj and of ⇢ ?

• Optimisation of the Lj to minimise the training error

with stochastic gradient descent and back-propagation.

 Deep Convolutional Networks

x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

up to J = 150

⇢L1
⇢L2 ⇢LJ

xj = ⇢Lj xj�1

classification

• Lj eliminates useless linear variable: dimension reduction

• Lj is a linear preprocessing for the next layers

Lj has several roles:

• Lj computes appropriate variables contracted by ⇢

Linearizes and computes invariants to groups of symmetries

x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

 Deep Convolutional Networks

⇢L1
⇢LJ

xj = ⇢Lj xj�1

xj(u, kj) = ⇢

⇣X

k

xj�1(·, k) ? hkj ,k(u)
⌘

• Optimization of hkj ,k(u) to minimise the training error

sum across channels

classification

• Lj is a linear combination of convolutions and subsampling:

x(u)
x1(u, k1) x2(u, k2)

xJ(u, kJ)

k1 k2

 Simplified Convolutional Networks
• No channel combination

xj = ⇢Lj xj�1

⇢L1
⇢LJ

xj(u, kj) = ⇢

⇣
xj�1(·, k) ? hkj ,kj�1(u)

⌘

no channel interaction

xj(u, kj) = xj�1(·, k) ? hkj ,kj�1(u)

• Lj is a linear combination of convolutions and subsampling:

• If ↵ � 0 then ⇢(↵) = ↵

) if hkj ,kj�1 is an averaging filter then

 Convolution Tree Network

: averaging filters

: band-pass filters

⇢L1

⇢L2

⇢LJ

x

x1

x2

xJ

⇢

⇢

⇢

⇢

⇢

⇢

⇢

⇢ ⇢

⇢ ⇢ ⇢⇢⇢⇢

• No channel combination

 Wavelet Transform

W1 : cascade of low-pass filters and a band-pass filter

⇢W1

: averaging filters

: band-pass filters

x

x ⇢

⇢

⇢

⇢

20

22

2J

|x ? 22,✓|

|W1|

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34

J = 3
C = 6
Q = 1

J = 5
C = 8
Q = 1

J = 3
C = 4
Q = 2

1.2

1.2

1.2

0

0

0

φJ

φJ

φJ

{ψθ,j}j,θ

{ψθ,j}j,θ

{ψθ,j}j,θ

A(ω)

A(ω)

A(ω)

θ

j

Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

Scale

21

|x ? 21,✓|

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34

J = 3
C = 6
Q = 1

J = 5
C = 8
Q = 1

J = 3
C = 4
Q = 2

1.2

1.2

1.2

0

0

0

φJ

φJ

φJ

{ψθ,j}j,θ

{ψθ,j}j,θ

{ψθ,j}j,θ

A(ω)

A(ω)

A(ω)

θ

j

Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

|W1|

 Wavelet Filter Bank
x(u)⇢(↵) = |↵|

• Sparse representation

|x ? 2j ,✓| 2j ,✓: equivalent filter

rotated and dilated:

real parts imaginary parts

 Scale separation with Wavelets

• Wavelet transform:
: average

: higher
frequencies

 2j ,✓(u) = 2�j (2�jr✓u)

• Complex wavelet: (u) = g(u) exp i⇠u , u 2 R2

Wx =

✓
x ? �2J (u)
x ? 2j ,✓(u)

◆

jJ,✓

|x ? 2j ,✓(u)| : eliminates phase which encodes local translation

 Wavelet Scattering Network

⇢L1

⇢L2

⇢LJ

: averaging filters

⇢W1 ⇢W2 ... ⇢WJxJ = x

Sx =
n

|||x ? 2j1 ,✓1 |? 2j2 ,✓2 | ? ...| ? 2jm ,✓m | ? �J
o

jk,✓k

x

xJ

⇢(↵) = |↵|

= . . . |W3| |W2| |W1|xSJx =

0

BBBB@

x ? �2J

|x ? �1 | ? �2J
||x ? �1 | ? �2 | ? �2J

|||x ? �2 | ? �2 | ? �3 | ? �2J
...

1

CCCCA

�1,�2,�3,...

kWkxk = kxk) k|Wkx|� |Wkx
0|k  kx� x

0kLemma : k[Wk, D⌧]k = kWkD⌧ �D⌧Wkk  C kr⌧k1

if D⌧x(u) = x(u� ⌧(u)) then

lim
J!1

kSJD⌧x� SJxk  C kr⌧k1 kxk

 Scattering Properties

contractive kSJx� SJyk  kx� yk (L2
stability)

Theorem: For appropriate wavelets, a scattering is

translations invariance and linearizes small deformations:

LeCun et. al.

Classification Errors

Joan Bruna

 Digit Classification: MNIST

SJx y = f(x)
x

Training size Conv. Net. Scattering

50000 0.5% 0.4%

Supervised
Linear classifier

Invariants to specific deformations

Separates di↵erent patterns

Invariants to translations

Linearises small deformations

No learning

J. Bruna

Scat. Moments

 Classification of Textures

CUREt database
61 classes

Texte

SJx y = f(x)
x

Training Fourier Histogr. Scattering
per class Spectr. Features

46 1% 1% 0.2 %

2J = image sizeClassification Errors

Supervised
Linear classifier

 Reconstruction from Scattering

• Second order scattering:

SJx =
n

x ? �J , |x ? 2j1 ,✓1 | ? �J , |x ? 2j1 ,✓1 | ? 2j2 ,✓2 | ? �J
o

If x has N

2
pixels and J = log2 N

• Gradient descent reconstruction:

given a random initialisation x0 iteratively update xn

to minimise kSJx� SJxnk

: translation invariant

then SJx has O([log2 N]

2
) coe�cients.

• If x(u) is a stationary process

SJx ⇡
n

E(x) , E(|x ? 2j1 ,✓1 |) , E(||x ? 2j1 ,✓1 | ? 2j2 ,✓2 |)
o

 Translation Invariant Models
Joan BrunaOriginal Textures

Gaussian process model with same second order moments

2D Turbulence

From O((log2 N)

2
) scattering coe�cients of order 2

Sparse

 Complex Image Classification

BateauNénuphareMetronome CastoreArbre de Joshua Ancre

Edouard Oyallon

Data Basis Deep-Net Scat/Unsupervised
CIFAR-10 7% 20%

SJx y = f(x)
x

Supervised
Linear classifier

No learning

Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

 Generation with Deep Networks

• Unsupervised generative models with convolutional networks

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10

• Trained on a data basis of faces:

linearization

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

• On a data basis including bedrooms: interpolaitons

A. Radford, L. Metz, S. Chintala

 Contractions and Separations

• A deep network progressively contracts the space while

preserving margins across classes:

kxj�1 � x

0
j�1k � ✏ if f(x) 6= f(x0) .

xj = ⇢Lj xj�1

) k⇢Ljxj�1 � ⇢Ljx
0
j�1k � ✏ if f(x) 6= f(x0) .

x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

⇢L1
⇢LJ

) contract in directions along which f remains constant.

• Combining multiple layer channels

 From Translations to Symmetries

of a group G of symmetries.

• The value of f remains constant along an orbit {g.xj�1}g2G

u

kj
Gj

xj = ⇢Lj xj�1

x(u)

xJ(u, kJ)

⇢Lj

xj�1

xj

⇢Lj+1

• A two step process:

g.xj(v) = xj(g.v) .

⇢Lj transforms the orbit of xj�1 in a parallel transport in xj :

⇢Lj+1 linearizes by a convolution with wavelets along fibers

 Scattering Transform

t

 Time-Frequency Fibers

�1log! =

t

x(t)

x1(t,�1) = |x ? �1(t)|

u

kj
Gj

time convolutions

time-frequency

convolutions

• Applied to audio classification

 Scale-Rotation-Translation Fibers

2J |x ? 22,✓|

|x ? 23,✓|Scale

|x ? 21,✓|

|W1|

x ? �J

✓

Scaling and rotations defines a parallel transport in (u, ✓, 2j)

Linear covariant operators: convolutions on the group

• Applied to object recognition

u

kj
Gj

 Separate Support Vectors

kxj�1 � x

0
j�1k ⇡ ✏ and f(x) 6= f(x0) .

• Support vectors are pairs xj�1, x
0
j�1 with

Their distance must not be reduced.

u

kj
Gj

• The operator ⇢Lj must separate them in di↵erent fibers:

) sparse representations along fibers

) the rows of Lj encodes the support vectors

Memory of discriminative patterns

 Complex optimization

• The operators have many roles:
– Transform symmetries into transport within network layers
– Convolutions along fibers to linearize symmetries and reduce

dimensions
– Separate support vectors along different fibers: sparsity

• Difficult to separate these roles when analyzing learned networks

Lj

 Conclusions

• Deep neural networks have spectacular high-dimensional
approximation capabilities.

• They seem to compute hierarchical invariants of complex
symmetries

• They store memory

• Neurophysiological models of audition and vision

• Outstanding mathematical problem to understand them:
 notions of complexity, regularity, approximation theorems…

