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Edge Detection

A fundamental task in low level image processing. Key ingredient
in various applications.
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Edge Detection

A fundamental task in low level image processing. Key ingredient
in various applications.

Let / be an n x n (discrete) image. An edge is a curve [ s.t. at all
pixels (i,j) € T

VI-n is  large’
(ig)er

> 30 years of research, many edge detection algorithms

Popular Methods: Detect edges from /ocal image gradients or
more recently learned edge filters.
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Previous Works

Hundreds of papers on edge detection...

Classical Works: zero-crossings of image Laplacian [Marr &
Hildreth 80’], Gaussian smoothing+gradients [Canny 1986],
variational interpretations [Kimmel & Bruckstein 03]

Anisotropic Diffusion: Perona and Malik 90', Weickert 97, etc.

Wavelet / Curvelet / Contourlet Methods: focus is on sparse
image representation, but can be used for edge detection.

Learning-Based Approaches for Natural Images PB [Malik et.
al.] Boosted Edge Learning (BEL) [Dollar, Tu, Belongie, 2007],
Structured forests [Dollar and Zitnick, 2013].
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Edge Detection at low SNR

Our Focus:

Faint edge detection in very noisy 2D images and 3D video

Motivations:

1.
2.

Bio-medical imaging.
Natural images at non-ideal conditions: poor lighting, fog,
rain, night.

3. SAR images, various surveillance applications.

4. Object tracking in (noisy) 3D video.
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Applications involving faint edges

Example: Electron Microscopy

Boaz Nadler

[m]

Faint Edge Detection

[Photosynthetic membranes in chloroplast]
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[Data: Z. Reich, E. Shimoni and O. Rav-Hon, Weizmann|]



Biological /Biomedical Applications
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Biological /Biomedical Applications
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Poor Visibility
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Why is faint edge detection difficult 7

Empirically: at high noise levels, local methods typically fail
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Why is faint edge detection difficult 7

Empirically: at high noise levels, local methods typically fail

Note the contrast reversals (locations where the red curve
exceeds the blue one).
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Edge Contrast and Edge Length

At high noise levels: only long edges can be detected
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Edge Contrast and Edge Length

At high noise levels: only long edges can be detected
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Optimal Faint Edge Detection

To identify weak noisy edges, apply matched filter of width w:

- smooth along the edge

- compute difference across edge (after smoothing)
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Optimal Faint Edge Detection

To identify weak noisy edges, apply matched filter of width w:

- smooth along the edge

- compute difference across edge (after smoothing)
Problem: Don't know in advance where edge is !

Edge Detection = Search/Test all feasible curves
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Edge Detection Algorithmic Framework

Input:

I = Noisy n x n image

o = noise level

S = family of feasible curves of length L
a € (0,1) = desired false alarm

Algorithm:
For L € [Lmin, Lmax]

» For each I € S/, compute matched filter response R(I).

» keep I only if |R(T")| > T = threshold(n, L, «,Sy),
Post-processing: edge localization, refinement, non-maximal
suppression.

Output: Set of detected edges.

Boaz Nadler Faint Edge Detection 11



Choice of Threshold

control number of false detections
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Choice of Threshold

control number of false detections
Multiple Hypothesis Testing (Statistics)
A-contrario principle (Morel et. al.)

[von Gioi et. al. 10']
Line Segment Detector with false detection control
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Choice of Threshold

control number of false detections
Multiple Hypothesis Testing (Statistics)
A-contrario principle (Morel et. al.)

[von Gioi et. al. 10']
Line Segment Detector with false detection control

| = pure noise image.
Ri, Ro,... = edge responses of all [ € S;.
Choose threshold s.t.

Pr[max|R;| > threshold(n, L, o)] < «
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Choice of Threshold

control number of false detections
Multiple Hypothesis Testing (Statistics)
A-contrario principle (Morel et. al.)

[von Gioi et. al. 10']
Line Segment Detector with false detection control

| = pure noise image.
Ri, Ro,... = edge responses of all [ € S;.
Choose threshold s.t.

Pr[max|R;| > threshold(n, L, o)] < «
Almost no spurious edge detections for pure noise image
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Questions / Challenges:

» QI - Minimal Detectable Contrast: Which edge strengths can
be reliably detected ? Dependence on length and complexity
of feasible set of edges ?

» Q2 - Computationally Efficient Methods: to detect such
edges.

» Q3 - Severe Computational Constraints (sub-linear time
complexity).
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Image Model

Observe n x n noisy image

I:IO —|—0’f

lo = noise free image with few step edges

o = noise level

n x nimage of i.i.d. N(0,1) Gaussian noise
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Image Model

Step Edges + Noise
Definition: Edge SNR (=Normalized Edge Contrast)

|VI-n|/o
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Q1- Minimal Detectable Contrast

Factors Affecting Edge Detection:

- Edge length L (matched filter reduces noise as 1/v/L)
- Family of feasible curves (size increases with L)
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Q1- Minimal Detectable Contrast

Factors Affecting Edge Detection:

- Edge length L (matched filter reduces noise as 1/v/L)
- Family of feasible curves (size increases with L)

Question:
Can any arbitrarily faint edge be detected if it is sufficiently long ?
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Lower Bound on Full Set of Curves

Lemma: Let / be a pure noise image. There exists a monotone
curve I =T(/) of length L, such that

g

V2r

E/[R(T(N)] >0

and s.t. its variance is O(1/L).
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Lower Bound on Full Set of Curves

Lemma: Let / be a pure noise image. There exists a monotone
curve I =T(/) of length L, such that

g

E/[R(T(N)] N

>0

and s.t. its variance is O(1/L).

Proof Idea: A greedy approach. At each pixel, choose maximal
local contrast between continuing up or to the right.
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Lower Bound on Full Set of Curves

Lemma: Let / be a pure noise image. There exists a monotone
curve I =T(/) of length L, such that

g

E/[R(T(N)] N

>0

and s.t. its variance is O(1/L).

Proof Idea: A greedy approach. At each pixel, choose maximal
local contrast between continuing up or to the right.

Conclusion: Cannot detect any arbitrary edge.

In particular for exponentially large search spaces, lower limit on
detectability.
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Minimal Detectable Contrast

Lemma: Assume K; feasible curves at length L. By simple union
bound,

2In(K /)
wl

Remarks:
- If K| is exponential in L then T 4 0 as L — oc.

- If K; is subexponential in L then T — 0.
- If K; independent of L, then T — 0 as 1/ﬂ

If feasible set S; is sub-exponential in L

then asymptotically
any faint edge can be reliably detected if sufficiently long
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Example: Straight Edges
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Q2 - Computationally Efficient Algorithms

How can we efficiently compute all K responses ?
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How can we efficiently compute all K responses ?
Typically K| scales (at-least) polynomially with image width n.

Naively going over all possible curves would be extremely slow.
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Q2 - Computationally Efficient Algorithms

How can we efficiently compute all K responses ?
Typically K| scales (at-least) polynomially with image width n.
Naively going over all possible curves would be extremely slow.

Key approach: Multi-scale construction.
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Straight Lines

[Galun, Basri, Brandt 07’]
For n x n image with N = n? pixels, there are O(N?) feasible
straight line segments.

using multiscale construction by Brandt and Dym, Fast calculation
of multiple line integrals, 1999.
- Efficiently compute dense sub-set of O(N In N) line integrals.

- Via hierarchical recursive calculation, time complexity is
O(N1In N), instead of N3/2In N of direct calculation.

works very well for noisy images with straight edges
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Straight Lines

[Galun, Basri, Brandt 07’]
For n x n image with N = n? pixels, there are O(N?) feasible
straight line segments.

using multiscale construction by Brandt and Dym, Fast calculation
of multiple line integrals, 1999.
- Efficiently compute dense sub-set of O(N In N) line integrals.

- Via hierarchical recursive calculation, time complexity is
O(N1In N), instead of N3/2In N of direct calculation.

works very well for noisy images with straight edges

Limitation: In many images, edges are curved...
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Rectangular Partition Tree

[Ofir, Galun, N. & Basri, 15']
Key idea: Recursive division of square to rectangle to smaller

squares
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Rectangular Partition Tree

[Ofir, Galun, N. & Basri, 15']
Key idea: Recursive division of square to rectangle to smaller

squares

il
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..

N

D3

Best edge between p; and py : concatenate responses of edges

[(p1, p3) and ['(ps3, p2).
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Complexity of Rectangular Partition Tree

f(A) - number of operations on tile of area A.

Divide tile into 2 sub-tiles, each area A/2, interface boundary
length O(V/A).
f(A) =2f(A/2) + O(A1'5)
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Complexity of Rectangular Partition Tree

f(A) - number of operations on tile of area A.

Divide tile into 2 sub-tiles, each area A/2, interface boundary
length O(V/A).
f(A) =2f(A/2) + O(A1'5)

Master Theorem: time complexity is f(n x n) = O(N*®).
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Complexity of Rectangular Partition Tree

With more detailed analysis, (N = n? = total number of pixels)

f(nx n) ~ 18N3/2

Problem: This may still be too slow for large images.
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Complexity of Rectangular Partition Tree

With more detailed analysis, (N = n? = total number of pixels)

f(nx n) ~ 18N3/2

Problem: This may still be too slow for large images.

Insight: if edge is not extremely faint, don't need to go over all
V/A pixels at interface. Can keep only top k highest responses.
With this variant

| £(n x n) ~ 6k - Nlog(N)|
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Complexity of Rectangular Partition Tree

With more detailed analysis, (N = n? = total number of pixels)

f(nx n) ~ 18N3/2

Problem: This may still be too slow for large images.

Insight: if edge is not extremely faint, don't need to go over all
V/A pixels at interface. Can keep only top k highest responses.
With this variant

| £(n x n) ~ 6k - Nlog(N)|

Empirically, 5 seconds on 256 x 256 image.
Significantly faster than previous methods based on quad-tree
beamlets, whose time complexity is O(N?) or O(N°/?).
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Some Results

from top left clockwise: original, O(N1'5) method, Canny, Crisp
[147].
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Some Results
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Q3: Severe Computational Constraints

In some applications: large and very noisy images (1000 x 1000

pixels or more) or noisy videos.
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In some applications: large and very noisy images (1000 x 1000

pixels or more) or noisy videos.
Task: Process Images/Video in real time but

Low power computing devices
or
Severe power constraints
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Q3: Severe Computational Constraints

In some applications: large and very noisy images (1000 x 1000

pixels or more) or noisy videos.
Task: Process Images/Video in real time but

Low power computing devices
or
Severe power constraints

Examples:

- Battery of Cell-Phone

- Solar Power of distant surveillance camera
- Mobile Robots

In such cases even O(N) = O(n?) linear-time algorithm may be
too slow.
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Problem Setup

| = Iy + £ observed n x n noisy image.
Ip - noise free original image
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Problem Setup

| = Iy + £ observed n x n noisy image.
Ip - noise free original image

Task: Detect edges in Iy from noisy /.

Assumptions:
- Image Iy contains few edges (sparsity).
- Edges of interest are straight and sufficiently long.
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Example: Powerlines
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Example: Canny, run-time 2.5sec
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Example: Canny, run-time 2.5sec

Cannot detect faint powerlines of second tower
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Example: Straight Segment Detector, run-time 5 min
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Sublinear Time Edge Detection

Goal: Given noisy n x n image I, detect long straight edges in

sublinear time,
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Goal: Given noisy n x n image I, detect long straight edges in
sublinear time,

complexity O(n®) with av < 2
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Sublinear Time Edge Detection

Goal: Given noisy n x n image I, detect long straight edges in
sublinear time,
complexity O(n®) with av < 2

touching only a fraction of the image/video pixels!
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Sublinear Time Edge Detection

Goal: Given noisy n x n image I, detect long straight edges in
sublinear time,
complexity O(n®) with av < 2
touching only a fraction of the image/video pixels!
Questions:

a) Statistical: which edge strengths can one detect vs. a ?
b) Computational: optimal sampling scheme ?

c) Practical: sub-linear time algorithm ?
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Previous Sub-linear time methods

[Xu, Oja, and Kultanan 90’]
[Kiryati et. al, 91']
Randomized / Probabilistic Hough transforms
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Previous Sub-linear time methods

[Xu, Oja, and Kultanan 90’]
[Kiryati et. al, 91']
Randomized / Probabilistic Hough transforms

Based on local gradients, cannot in general detect faint edges.

Also, not designed to detect start and end points of edges that do
not span whole image.
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Optimal Sublinear Edge Detection

For theoretical analysis, consider following class of images:

Z = {I contains only noise or one long fiber plus noise}
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Optimal Sublinear Edge Detection

For theoretical analysis, consider following class of images:

Z = {I contains only noise or one long fiber plus noise}

\
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Fundamental Limitations / Design Principles

Focus on detection under worst-case scenario.
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Fundamental Limitations / Design Principles

Focus on detection under worst-case scenario.

Lemma: If number of observed pixels is n® with o < 1 then there
exists | € 7 whose edges cannot be detected.
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Fundamental Limitations / Design Principles

Focus on detection under worst-case scenario.

Lemma: If number of observed pixels is n® with o < 1 then there
exists | € 7 whose edges cannot be detected.

Theorem: Assume number of observed pixels is s and s/n is
integer. Then,

i) any optimal sampling scheme must observe exactly s/n pixels
per row.

ii) sampling s/n whole columns is an optimal scheme.
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Statistical Accuracy vs. Computational Complexity

Definition: Edge SNR = edge contrast / noise level.
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Statistical Accuracy vs. Computational Complexity

Definition: Edge SNR = edge contrast / noise level.
Theorem: At complexity O(n®), with a > 1,

SNR = +/Inn/no—1

4, |
— /In(n)
35 1
3,
2.5F
z
&5 2

1.5} not possible

0.5¢

a
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Sublinear Edge Detection Algorithm

Key Idea: Sample few image strips

&




Sublinear Edge Detection Algorithm

Key Idea: Sample few image strips

&

first detect edges in strips
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Sublinear Edge Detection Algorithm

Key Idea: Sample few image strips

&

first detect edges in strips
next: non-maximal suppression, edge localization
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Example:

NOISY IMAGE, SNR=1
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Example:

CANNY

NOISY IMAGE, SNR=1
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Example:

NOISY IMAGE, SNR=1
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Sublinear Edge Detection, run-time few seconds
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Presented statistical theory and lower bounds for edge detection.
Fast O(N log N) algorithm for detection of faint curved edges.

Sublinear algorithm for detection of long straight edges.
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Presented statistical theory and lower bounds for edge detection.
Fast O(N log N) algorithm for detection of faint curved edges.
Sublinear algorithm for detection of long straight edges.

Current / future work: extension to sublinear detection of curved
edges. detection of fibers in 3-D.
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Presented statistical theory and lower bounds for edge detection.
Fast O(N log N) algorithm for detection of faint curved edges.
Sublinear algorithm for detection of long straight edges.

Current / future work: extension to sublinear detection of curved
edges. detection of fibers in 3-D.

General question/challenge: what image processing/machine
learning tasks can be performed in sub-linear time, what are the
statistical-computational tradeoffs 7
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The End

Research is a very long path.

Thank you !
www.wisdom.weizmann.ac.il/~nadler/
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