Less is More: Computational Regularization by Subsampling

Lorenzo Rosasco
University of Genova - Istituto Italiano di Tecnologia
Massachusetts Institute of Technology
lcsl.mit.edu

joint work with Alessandro Rudi, Raffaello Camoriano

Paris

A Starting Point

Classically:

Statistics and optimization distinct steps in algorithm design

Empirical process theory + Optimization

A Starting Point

Classically:

Statistics and optimization distinct steps in algorithm design

Empirical process theory + Optimization

Large Scale:

Consider **interplay** between statistics and optimization! (Bottou, Bousquet '08)

A Starting Point

Classically:

Statistics and optimization distinct steps in algorithm design

Empirical process theory + Optimization

Large Scale:

Consider **interplay** between statistics and optimization! (Bottou, Bousquet '08)

Computational Regularization:

Computation "tricks" = regularization

Supervised Learning

Problem: Estimate f^*

Supervised Learning

Problem: Estimate f^* given $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$

Supervised Learning

Problem: Estimate f^* given $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$

The Setting

$$y_i = f^*(x_i) + \varepsilon_i \qquad i \in \{1, \dots, n\}$$

- ullet $arepsilon_i \in \mathbb{R}, x_i \in \mathbb{R}^d$ random (bounded but with unknown distribution)
- ► f* unknown

Outline

Nonparametric Learning

Data Dependent Subsampling

Data Independent Subsampling

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

▶ q non linear function

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

- ightharpoonup q non linear function
- $lackbox{w}_i \in \mathbb{R}^d$ centers

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

- ightharpoonup q non linear function
- $lackbox{w}_i \in \mathbb{R}^d$ centers
- $ightharpoonup c_i \in \mathbb{R}$ coefficients

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

- ightharpoonup q non linear function
- $\mathbf{v}_i \in \mathbb{R}^d$ centers
- $ightharpoonup c_i \in \mathbb{R}$ coefficients
- $ightharpoonup M = M_n$ could/should grow with n

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

- ▶ q non linear function
- $\mathbf{v}_i \in \mathbb{R}^d$ centers
- $ightharpoonup c_i \in \mathbb{R}$ coefficients
- ▶ $M = M_n$ could/should grow with n

Question: How to choose w_i , c_i and M given S_n ?

Learning with Positive Definite Kernels

There is an *elegant* answer if:

- ightharpoonup q is symmetric
- lacktriangledown all the matrices $\widehat{Q}_{ij}=q(x_i,x_j)$ are positive semi-definite 1

¹They have non-negative eigenvalues

Learning with Positive Definite Kernels

There is an elegant answer if:

- ightharpoonup q is symmetric
- ▶ all the matrices $\widehat{Q}_{ij} = q(x_i, x_j)$ are positive semi-definite¹

Representer Theorem (Kimeldorf, Wahba '70; Schölkopf et al. '01)

- ightharpoonup M = n,
- $ightharpoonup w_i = x_i$,
- c_i by convex optimization!

¹They have non-negative eigenvalues

Kernel Ridge Regression (KRR)

a.k.a. Tikhonov Regularization

$$\widehat{f}_{\lambda} = \operatorname*{argmin}_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||^2$$

where²

$$\mathcal{H} = \{ f \mid f(x) = \sum_{i=1}^{M} c_i q(x, w_i), \ c_i \in \mathbb{R}, \underline{w_i \in \mathbb{R}^d}, \ \underline{M \in \mathbb{N}} \}$$

 $^{^2 {\}rm The}$ norm is induced by the inner product $\langle f,f'\rangle = \sum_{i,j} c_i c'_j q(x_i,x_j)$

Kernel Ridge Regression (KRR)

a.k.a. Tikhonov Regularization

$$\widehat{f}_{\lambda} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||^2$$

where²

$$\mathcal{H} = \{ f \mid f(x) = \sum_{i=1}^{M} c_i q(x, w_i), \ c_i \in \mathbb{R}, \underline{w_i \in \mathbb{R}^d}, \ \underline{M \in \mathbb{N}} \}$$

Solution

$$\widehat{f}_{\lambda} = \sum_{i=1}^{n} c_i q(x, x_i)$$
 with $c = (\widehat{Q} + \lambda nI)^{-1} \widehat{y}$

 $^{^2 \}text{The norm is induced by the inner product } \langle f,f'\rangle = \sum_{i,j} c_i c'_j q(x_i,x_j)$

Well understood statistical properties:

Classical Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 $\mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Well understood statistical properties:

Classical Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 $\mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Remarks

Well understood statistical properties:

Classical Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 $\mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Remarks

1. Optimal nonparametric bound

Well understood statistical properties:

Classical Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 $\mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Remarks

- 1. Optimal nonparametric bound
- 2. More refined results for smooth kernels

$$\lambda_* = n^{-\frac{1}{2s+1}}, \qquad \mathbb{E}\left(\widehat{f}_{\lambda_*}(x) - f^*(x)\right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

Well understood statistical properties:

Classical Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 $\mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Remarks

- 1. Optimal nonparametric bound
- 2. More refined results for smooth kernels

$$\lambda_* = n^{-\frac{1}{2s+1}}, \qquad \mathbb{E}(\widehat{f}_{\lambda_*}(x) - f^*(x))^2 \lesssim n^{-\frac{2s}{2s+1}}$$

- 3. Adaptive tuning, e.g. via cross validation
- Proofs: inverse problems results + random matrices (Smale and Zhou + Caponnetto, De Vito, R.)

KRR: Optimization

$$\widehat{f}_{\lambda} = \sum_{i=1}^{n} c_i q(x, x_i)$$
 with $c = (\widehat{Q} + \lambda nI)^{-1} \widehat{y}$

Linear System

Complexity

- ▶ Space $O(n^2)$
- ▶ Time $O(n^3)$

KRR: Optimization

$$\widehat{f}_{\lambda} = \sum_{i=1}^{n} c_i q(x, x_i)$$
 with $c = (\widehat{Q} + \lambda nI)^{-1} \widehat{y}$

Linear System

Complexity

- ▶ Space $O(n^2)$
- ▶ Time $O(n^3)$

BIG DATA?

Running out of time and space ...

Can this be fixed?

 $(\hat{Q} + \lambda I)^{-1}$ approximation of \hat{Q}^{\dagger} controlled by λ

$$(\hat{Q} + \lambda I)^{-1}$$
 approximation of \hat{Q}^{\dagger} controlled by λ

Can we approximate \hat{Q}^{\dagger} by saving computations?

$$(\hat{Q} + \lambda I)^{-1}$$
 approximation of \hat{Q}^{\dagger} controlled by λ

Can we approximate \hat{Q}^{\dagger} by saving computations?

Yes!

$$(\hat{Q}+\lambda I)^{-1}$$
 approximation of \hat{Q}^{\dagger} controlled by λ

Can we approximate \hat{Q}^{\dagger} by saving computations?

Yes!

Spectral filtering (Engl '96- inverse problems, Rosasco et al. 05- ML)

$$g_{\lambda}(\hat{Q}) \sim \hat{Q}^{\dagger}$$

The filter function g_{λ} defines the form of the approximation

Spectral filtering

Examples

- ► Tikhonov- ridge regression
- Truncated SVD- principal component regression
- ▶ Landweber iteration— $\mathsf{GD}/\ L_2$ -boosting
- nu-method— accelerated GD/Chebyshev method

Spectral filtering

Examples

- ► Tikhonov- ridge regression
- Truncated SVD- principal component regression
- ▶ Landweber iteration— GD/ L_2 -boosting
- nu-method- accelerated GD/Chebyshev method
- **.** . . .

Landweber iteration (truncated power series)...

$$c_t = g_t(\hat{Q}) = \gamma \sum_{r=0}^{t-1} (I - \gamma \hat{Q})^r \hat{y}$$

Spectral filtering

Examples

- ► Tikhonov- ridge regression
- ► Truncated SVD- principal component regression
- ▶ Landweber iteration— GD/ L_2 -boosting
- nu-method- accelerated GD/Chebyshev method
- **.** . . .

Landweber iteration (truncated power series)...

$$c_t = g_t(\hat{Q}) = \gamma \sum_{r=0}^{t-1} (I - \gamma \hat{Q})^r \hat{y}$$

...it's GD for ERM!!

$$r = 1 \dots t$$
 $c_r = c_{r-1} - \gamma(\hat{Q}c_{r-1} - \hat{y}), \quad c_0 = 0$

Statistics and computations with spectral filtering

The different filters achieve *essentially* **the same** optimal statistical error!

Statistics and computations with spectral filtering

The different filters achieve essentially the same optimal statistical error!

Difference is in computations

Filter	Time	Space
Tikhonov	n^3	n^2
GD	$n^2\lambda_*^{-1}$	n^2
Accelerated GD	$n^2\lambda_*^{-1/2}$	n^2
Truncated SVD	$n^2 \lambda_*^{-\gamma}$	n^2

Note: $\lambda_*^{-1} = t$, for iterative methods

Semiconvergence

▶ Iterations control statistics and time complexity

Computational Regularization

Computational Regularization

BIG DATA?

Running out of time and space ...

Computational Regularization

BIG DATA?

Running out of time and space ...

Is there a principle to control statistics, time and space complexity?

Outline

Nonparametric Learning

Data Dependent Subsampling

Data Independent Subsampling

1. pick w_i at random...

1. pick w_i at random... from training set (Smola, Scholköpf '00)

$$\tilde{w}_1, \dots, \tilde{w}_M \subset x_1, \dots x_n \qquad M \ll n$$

1. pick w_i at random... from training set (Smola, Scholköpf '00)

$$\tilde{w}_1, \dots, \tilde{w}_M \subset x_1, \dots x_n \qquad M \ll n$$

2. perform KRR on

$$\mathcal{H}_M = \{ f \mid f(x) = \sum_{i=1}^M c_i q(x, \tilde{\boldsymbol{w}_i}), \ c_i \in \mathbb{R}, \ \boldsymbol{w_i \in \mathbb{R}^d}, \ \boldsymbol{M \in \mathbb{N}} \}.$$

1. pick w_i at random... from training set (Smola, Scholköpf '00)

$$\tilde{w}_1, \dots, \tilde{w}_M \subset x_1, \dots x_n \qquad M \ll n$$

2. perform KRR on

$$\mathcal{H}_M = \{ f \mid f(x) = \sum_{i=1}^M c_i q(x, \tilde{\boldsymbol{w}}_i), \ c_i \in \mathbb{R}, \ \boldsymbol{w}_i \in \mathbb{R}^d, \ M \in \mathbb{N} \}.$$

Linear System

Complexity

- ▶ Space $O(n^2) \rightarrow O(nM)$ ▶ Time $O(n^3) \rightarrow O(nM^2)$

1. pick w_i at random... from training set (Smola, Scholköpf '00)

$$\tilde{w}_1, \dots, \tilde{w}_M \subset x_1, \dots x_n \qquad M \ll n$$

2. perform KRR on

$$\mathcal{H}_M = \{ f \mid f(x) = \sum_{i=1}^M c_i q(x, \tilde{\boldsymbol{w}}_i), \ c_i \in \mathbb{R}, \ \boldsymbol{w}_i \in \mathbb{R}^d, \ M \in \mathbb{N} \}.$$

Linear System

Complexity

- ▶ Space $O(n^2) \rightarrow O(nM)$ ▶ Time $O(n^3) \rightarrow O(nM^2)$

What about statistics? What's the price for efficient computations?

Putting our Result in Context

► *Many* different subsampling schemes (Smola, Scholkopf '00; Williams, Seeger '01; ... 20+)

Putting our Result in Context

► *Many* different subsampling schemes (Smola, Scholkopf '00; Williams, Seeger '01; ... 20+)

► Theoretical guarantees mainly on matrix approximation (Mahoney and Drineas '09; Cortes et al '10, Kumar et al.'12 ... 10+)

$$\|\widehat{Q} - \widetilde{Q}_M\| \lesssim \frac{1}{\sqrt{M}}$$

Putting our Result in Context

Many different subsampling schemes (Smola, Scholkopf '00; Williams, Seeger '01; ... 20+)

► Theoretical guarantees mainly on matrix approximation (Mahoney and Drineas '09; Cortes et al '10, Kumar et al.'12 ... 10+)

$$\|\widehat{Q} - \widetilde{Q}_M\| \lesssim \frac{1}{\sqrt{M}}$$

 Statistical guarantees suboptimal or in restricted setting (Cortes et al. '10; Jin et al. '11, Bach '13, Alaoui, Mahoney '14)

(Rudi, Camoriano, Rosasco, '15)

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}} \quad , M_* = \frac{1}{\lambda_*}, \quad \mathbb{E}(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$$

(Rudi, Camoriano, Rosasco, '15)

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}} \quad , M_* = \frac{1}{\lambda_*}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x)\right)^2 \lesssim \frac{1}{\sqrt{n}}$$

Remarks

(Rudi, Camoriano, Rosasco, '15)

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 , $M_* = \frac{1}{\lambda_*}$, $\mathbb{E}(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Remarks

1. Subsampling achives **optimal** bound...

(Rudi, Camoriano, Rosasco, '15)

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}}$$
 , $M_* = \frac{1}{\lambda_*}$, $\mathbb{E}(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$

Remarks

- 1. Subsampling achives **optimal** bound...
- 2. ... with $M_* \sim \sqrt{n}$!!

(Rudi, Camoriano, Rosasco, '15)

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}} \quad , M_* = \frac{1}{\lambda_*}, \quad \mathbb{E}(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$$

Remarks

- 1. Subsampling achives **optimal** bound...
- 2. ... with $M_* \sim \sqrt{n}$!!
- 3. More generally,

$$\lambda_* = n^{-\frac{1}{2s+1}}, \quad M_* = \frac{1}{\lambda}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

(Rudi, Camoriano, Rosasco, '15)

Theorem

If $f^* \in \mathcal{H}$, then

$$\lambda_* = \frac{1}{\sqrt{n}} \quad , M_* = \frac{1}{\lambda_*}, \quad \mathbb{E}(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x))^2 \lesssim \frac{1}{\sqrt{n}}$$

Remarks

- 1. Subsampling achives **optimal** bound...
- 2. ... with $M_* \sim \sqrt{n}$!!
- 3. More generally,

$$\lambda_* = n^{-\frac{1}{2s+1}}, \quad M_* = \frac{1}{\lambda}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

Note: An interesting insight is obtained rewriting the result...

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and M...

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$ with a smooth kernel, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$ with a smooth kernel, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

lacktriangledown λ and M play the same role. . .

... new interpretation: subsampling regularizes!

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$ with a smooth kernel, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

- λ and M play the same role... ...new interpretation: subsampling regularizes!
- ▶ New natural incremental algorithm...

Algorithm

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$ with a smooth kernel, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

- λ and M play the same role... ...new interpretation: subsampling regularizes!
- ▶ New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$ with a smooth kernel, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

- λ and M play the same role...
 ... new interpretation: subsampling regularizes!
- ▶ New natural incremental algorithm...

Algorithm

- 1. Pick a center + compute solution
- 2. Pick another center + rank one update

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and M...

Theorem

If $f^* \in \mathcal{H}$ with a smooth kernel, then

$$M_* = n^{\frac{1}{2s+1}}, \quad \lambda_* = \frac{1}{M_*}, \quad \mathbb{E}_x \left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x) \right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

- λ and M play the same role...
 ... new interpretation: subsampling regularizes!
- ▶ New natural incremental algorithm...

Algorithm

- 1. $Pick\ a\ center + compute\ solution$
- 2. Pick another center + rank one update
- 3. Pick another center . . .

Nÿstrom CoRe Illustrated

Computation controls stability!

Time/space requirement tailored to **generalization**

Experiments

comparable/better w.r.t. the state of the art

Dataset	n_{tr}	d	Incremental CoRe	Standard KRLS	Standard Nyström	Random Features	Fastfood RF
Ins. Co.	5822	85	$0.23180 \pm 4 \times 10^{-5}$	0.231	0.232	0.266	0.264
CPU	6554	21	$\bf 2.8466 \pm 0.0497$	7.271	6.758	7.103	7.366
CT slices	42800	384	7.1106 ± 0.0772	NA	60.683	49.491	43.858
Year Pred.	463715	90	$0.10470 \pm 5 imes 10^{-5}$	NA	0.113	0.123	0.115
Forest	522910	54	0.9638 ± 0.0186	NA	0.837	0.840	0.840

- ▶ Random Features (Rahimi, Recht '07)
- ► Fastfood (Le et al. '13)

Summary so far

- ▶ Optimal learning with data dependent subsampling
- ► Computational regularization: subsampling regularizes!

Summary so far

- ▶ Optimal learning with data dependent subsampling
- ► Computational regularization: subsampling regularizes!

Few more questions:

Can one do better than uniform sampling?

Summary so far

- Optimal learning with data dependent subsampling
- ► Computational regularization: subsampling regularizes!

Few more questions:

- Can one do better than uniform sampling? Yes: leverage score sampling...
- What about data independent sampling?

Outline

Nonparametric Learning

Data Dependent Subsampling

Data Independent Subsampling

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

lacktriangledown q general non linear function

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

- q general non linear function
- lacksquare pick $ilde{w}_i$ at random according to a distribution μ

$$\tilde{w}_1,\ldots,\tilde{w}_M\sim\mu$$

$$\widehat{f}(x) = \sum_{i=1}^{M} c_i q(x, w_i)$$

- q general non linear function
- lacktriangle pick \tilde{w}_i at random according to a distribution μ

$$\tilde{w}_1,\ldots,\tilde{w}_M\sim\mu$$

perform KRR on

$$\mathcal{H}_M = \{ f \mid f(x) = \sum_{i=1}^{M} c_i q(x, \tilde{w}_i), \ c_i \in \mathbb{R} \}.$$

Random Fourier Features

(Rahimi, Recht '07)

Consider

$$q(x,w) = e^{iw^T x},$$

Random Fourier Features

(Rahimi, Recht '07)

Consider

$$q(x, w) = e^{iw^T x},$$
 $w \sim \mu(w) = \mathcal{N}(0, I)$

Random Fourier Features

(Rahimi, Recht '07)

Consider

$$q(x, w) = e^{iw^T x},$$
 $w \sim \mu(w) = \mathcal{N}(0, I)$

Then

$$\mathbb{E}_w \left[q(x, w) \overline{q(x', w)} \right] = e^{-\|x - x'\|^2 \gamma} = K(x, x')$$

Random Fourier Features

(Rahimi, Recht '07)

Consider

$$q(x, w) = e^{iw^T x},$$
 $w \sim \mu(w) = \mathcal{N}(0, I)$

Then

$$\mathbb{E}_w\left[q(x,w)\overline{q(x',w)}\right] = e^{-\|x-x'\|^2\gamma} = K(x,x')$$

By sampling $ilde{w}_1,\dots, ilde{w}_M$ we are considering the approximating kernel

$$\frac{1}{M} \sum_{i=1}^{M} \left[q(x, \tilde{w}_i) \overline{q(x', \tilde{w}_i)} \right] = \widetilde{K}_M(x, x')$$

More Random Features

translation invariant kernels K(x, x') = H(x - x'),

$$q(x, w) = e^{iw^T x}, \qquad w \sim \mu = \mathcal{F}(H)$$

▶ infinite **neural nets** kernels

$$q(x, w) = |w^T x + b|_+,$$
 $(w, b) \sim \mu = U[\mathbb{S}^d]$

- ▶ infinite dot product kernels
- homogeneous additive kernels
- group invariant kernels

Note: Connections with hashing and sketching techniques.

Properties of Random Features

Properties of Random Features

Optimization

Time: $O(n^3)$ $O(nM^2)$ Space: $O(n^2)$ O(nM)

Properties of Random Features

Optimization

► Time: $O(n^3)$ $O(nM^2)$ ► Space: $O(n^2)$ O(nM)

Statistics

As before: do we pay a price for efficient computations?

► *Many* different random features for different kernels (Rahimi, Recht '07, Vedaldi, Zisserman, ...10+)

► *Many* different random features for different kernels (Rahimi, Recht '07, Vedaldi, Zisserman, ...10+)

► Theoretical guarantees: mainly **kernel approximation** (Rahimi, Recht '07, ..., Sriperumbudur and Szabo '15)

$$|K(x,x') - \widetilde{K}_M(x,x')| \lesssim \frac{1}{\sqrt{M}}$$

► *Many* different random features for different kernels (Rahimi, Recht '07, Vedaldi, Zisserman, ... 10+)

► Theoretical guarantees: mainly **kernel approximation** (Rahimi, Recht '07, ..., Sriperumbudur and Szabo '15)

$$|K(x,x') - \widetilde{K}_M(x,x')| \lesssim \frac{1}{\sqrt{M}}$$

► Statistical guarantees **suboptimal or in restricted setting** (Rahimi, Recht '09, Yang et al. '13 ..., Bach '15)

Let

$$q(x,w) = e^{iw^T x},$$

Let

$$q(x, w) = e^{iw^T x},$$
 $w \sim \mu(w) = c_d \left(\frac{1}{1 + ||w||^2}\right)^{\frac{d+1}{2}}$

Let

$$q(x, w) = e^{iw^T x},$$
 $w \sim \mu(w) = c_d \left(\frac{1}{1 + ||w||^2}\right)^{\frac{d+1}{2}}$

Theorem

If $f_* \in \mathcal{H}_s$ Sobolev space, then

$$\lambda_* = n^{-\frac{1}{2s+1}}, \quad M_* = \frac{1}{\lambda_*^{2s}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x)\right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

Let

$$q(x, w) = e^{iw^T x},$$
 $w \sim \mu(w) = c_d \left(\frac{1}{1 + ||w||^2}\right)^{\frac{\alpha+1}{2}}$

Theorem

If $f_* \in \mathcal{H}_s$ Sobolev space, then

$$\lambda_* = n^{-\frac{1}{2s+1}}, \quad M_* = \frac{1}{\lambda^{2s}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x)\right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

Random features achieve optimal bound!

Let

$$q(x, w) = e^{iw^T x},$$
 $w \sim \mu(w) = c_d \left(\frac{1}{1 + ||w||^2}\right)^{\frac{d+1}{2}}$

Theorem

If $f_* \in \mathcal{H}_s$ Sobolev space, then

$$\lambda_* = n^{-\frac{1}{2s+1}}, \quad M_* = \frac{1}{\lambda_*^{2s}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_*, M_*}(x) - f^*(x)\right)^2 \lesssim n^{-\frac{2s}{2s+1}}$$

- Random features achieve optimal bound!
- ▶ Efficient worst case subsampling $M_* \sim \sqrt{n}$ but cannot exploit smoothness.

Remarks & Extensions

Nÿstrom vs Random features

- ► Both achieve optimal rates
- ▶ Nÿstrom seems to need fewer samples (random centers)

Remarks & Extensions

Nÿstrom vs Random features

- ► Both achieve optimal rates
- ▶ Nÿstrom seems to need fewer samples (random centers)

How tight are the results?

Remarks & Extensions

Nÿstrom vs Random features

- ▶ Both achieve optimal rates
- Nÿstrom seems to need fewer samples (random centers)

How tight are the results?

Contributions

- ▶ Optimal bounds for data dependent/independent subsampling
- ► Subsampling: Nÿstrom vs Random features
- Beyond ridge regression: early stopping and multiple passes SGD (see arxiv)

Contributions

- Optimal bounds for data dependent/independent subsampling
- Subsampling: Nÿstrom vs Random features
- Beyond ridge regression: early stopping and multiple passes SGD (see arxiv)

Some questions:

- Quest for the best sampling
- ▶ **Regularization by projection**: inverse problems and preconditioning
- ▶ Beyond randomization: non convex neural nets optimization?

Contributions

- Optimal bounds for data dependent/independent subsampling
- Subsampling: Nÿstrom vs Random features
- Beyond ridge regression: early stopping and multiple passes SGD (see arxiv)

Some questions:

- Quest for the best sampling
- ▶ Regularization by projection: inverse problems and preconditioning
- ▶ Beyond randomization: non convex neural nets optimization?

Some perspectives:

- ► Computational regularization: subsampling regularizes
- Algorithm design: control stability for good statistics/computations