Less is More:
 Computational Regularization by Subsampling

Lorenzo Rosasco
University of Genova - Istituto Italiano di Tecnologia
Massachusetts Institute of Technology
lcsl.mit.edu
joint work with Alessandro Rudi, Raffaello Camoriano

Paris

A Starting Point

Classically:
Statistics and optimization distinct steps in algorithm design
Empirical process theory + Optimization

A Starting Point

Classically:
Statistics and optimization distinct steps in algorithm design
Empirical process theory + Optimization

Large Scale:
Consider interplay between statistics and optimization! (Bottou, Bousquet '08)

A Starting Point

Classically:
Statistics and optimization distinct steps in algorithm design

$$
\text { Empirical process theory }+ \text { Optimization }
$$

Large Scale:
Consider interplay between statistics and optimization!
(Bottou, Bousquet '08)

Computational Regularization:
Computation "tricks" = regularization

Supervised Learning

Problem: Estimate f^{*}

Supervised Learning

Problem: Estimate f^{*} given $S_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$

Supervised Learning

Problem: Estimate f^{*} given $S_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$

The Setting

$$
y_{i}=f^{*}\left(x_{i}\right)+\varepsilon_{i} \quad i \in\{1, \ldots, n\}
$$

- $\varepsilon_{i} \in \mathbb{R}, x_{i} \in \mathbb{R}^{d}$ random (bounded but with unknown distribution)
- f^{*} unknown

Outline

Nonparametric Learning

Data Dependent Subsampling

Data Independent Subsampling

Non-linear/non-parametric learning

$$
\widehat{f}(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right)
$$

Non-linear/non-parametric learning

$$
\widehat{f}(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right)
$$

- q non linear function

Non-linear/non-parametric learning

$$
\widehat{f}(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right)
$$

- q non linear function
- $w_{i} \in \mathbb{R}^{d}$ centers

Non-linear/non-parametric learning

$$
\widehat{f}(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right)
$$

- q non linear function
- $w_{i} \in \mathbb{R}^{d}$ centers
- $c_{i} \in \mathbb{R}$ coefficients

Non-linear/non-parametric learning

$$
\widehat{f}(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right)
$$

- q non linear function
- $w_{i} \in \mathbb{R}^{d}$ centers
- $c_{i} \in \mathbb{R}$ coefficients
- $M=M_{n}$ could/should grow with n

Non-linear/non-parametric learning

$$
\widehat{f}(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right)
$$

- q non linear function
- $w_{i} \in \mathbb{R}^{d}$ centers
- $c_{i} \in \mathbb{R}$ coefficients
- $M=M_{n}$ could/should grow with n

Learning with Positive Definite Kernels

There is an elegant answer if:

- q is symmetric
- all the matrices $\widehat{Q}_{i j}=q\left(x_{i}, x_{j}\right)$ are positive semi-definite ${ }^{1}$

Learning with Positive Definite Kernels

There is an elegant answer if:

- q is symmetric
- all the matrices $\widehat{Q}_{i j}=q\left(x_{i}, x_{j}\right)$ are positive semi-definite ${ }^{1}$

Representer Theorem (Kimeldorf, Wahba '70; Schölkopf et al. '01)

- $M=n$,
- $w_{i}=x_{i}$,
- c_{i} by convex optimization!

Kernel Ridge Regression (KRR)

a.k.a. Tikhonov Regularization

$$
\widehat{f_{\lambda}}=\underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda\|f\|^{2}
$$

where 2

$$
\mathcal{H}=\{f \mid f(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right), c_{i} \in \mathbb{R}, \underbrace{w_{i} \in \mathbb{R}^{d}}_{\text {any center! }}, \underbrace{M \in \mathbb{N}}_{\text {any length! }}\}
$$

${ }^{2}$ The norm is induced by the inner product $\left\langle f, f^{\prime}\right\rangle=\sum_{i, j} c_{i} c_{j}^{\prime} q\left(x_{i}, x_{j}\right)$

Kernel Ridge Regression (KRR)

a.k.a. Tikhonov Regularization

$$
\widehat{f_{\lambda}}=\underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda\|f\|^{2}
$$

where ${ }^{2}$

$$
\mathcal{H}=\{f \mid f(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right), c_{i} \in \mathbb{R}, \underbrace{w_{i} \in \mathbb{R}^{d}}_{\text {any center! }}, \underbrace{M \in \mathbb{N}}_{\text {any length! }}\}
$$

Solution

$$
\widehat{f}_{\lambda}=\sum_{i=1}^{n} c_{i} q\left(x, x_{i}\right) \quad \text { with } \quad c=(\widehat{Q}+\lambda n I)^{-1} \widehat{y}
$$

${ }^{2}$ The norm is induced by the inner product $\left\langle f, f^{\prime}\right\rangle=\sum_{i, j} c_{i} c_{j}^{\prime} q\left(x_{i}, x_{j}\right)$

KRR: Statistics

KRR: Statistics

Well understood statistical properties:
Classical Theorem
If $f^{*} \in \mathcal{H}$, then

$$
\lambda_{*}=\frac{1}{\sqrt{n}} \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}}(x)-f^{*}(x)\right)^{2} \lesssim \frac{1}{\sqrt{n}}
$$

KRR: Statistics

Well understood statistical properties:
Classical Theorem
If $f^{*} \in \mathcal{H}$, then

$$
\lambda_{*}=\frac{1}{\sqrt{n}} \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}}(x)-f^{*}(x)\right)^{2} \lesssim \frac{1}{\sqrt{n}}
$$

Remarks

KRR: Statistics

Well understood statistical properties:
Classical Theorem
If $f^{*} \in \mathcal{H}$, then

$$
\lambda_{*}=\frac{1}{\sqrt{n}} \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}}(x)-f^{*}(x)\right)^{2} \lesssim \frac{1}{\sqrt{n}}
$$

Remarks

1. Optimal nonparametric bound

KRR: Statistics

Well understood statistical properties:
Classical Theorem
If $f^{*} \in \mathcal{H}$, then

$$
\lambda_{*}=\frac{1}{\sqrt{n}} \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}}(x)-f^{*}(x)\right)^{2} \lesssim \frac{1}{\sqrt{n}}
$$

Remarks

1. Optimal nonparametric bound
2. More refined results for smooth kernels

$$
\lambda_{*}=n^{-\frac{1}{2 s+1}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

KRR: Statistics

Well understood statistical properties:

Classical Theorem
If $f^{*} \in \mathcal{H}$, then

$$
\lambda_{*}=\frac{1}{\sqrt{n}} \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}}(x)-f^{*}(x)\right)^{2} \lesssim \frac{1}{\sqrt{n}}
$$

Remarks

1. Optimal nonparametric bound
2. More refined results for smooth kernels

$$
\lambda_{*}=n^{-\frac{1}{2 s+1}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

3. Adaptive tuning, e.g. via cross validation
4. Proofs: inverse problems results + random matrices (Smale and Zhou + Caponnetto, De Vito, R.)

KRR: Optimization

$$
\widehat{f}_{\lambda}=\sum_{i=1}^{n} c_{i} q\left(x, x_{i}\right) \quad \text { with } \quad c=(\widehat{Q}+\lambda n I)^{-1} \widehat{y}
$$

Linear System

Complexity

- Space $O\left(n^{2}\right)$
- Time $O\left(n^{3}\right)$

KRR: Optimization

$$
\widehat{f}_{\lambda}=\sum_{i=1}^{n} c_{i} q\left(x, x_{i}\right) \quad \text { with } \quad c=(\widehat{Q}+\lambda n I)^{-1} \widehat{y}
$$

Linear System

Complexity

- Space $O\left(n^{2}\right)$
- Time $O\left(n^{3}\right)$

BIG DATA?

Running out of time and space ...
Can this be fixed?

Beyond Tikhonov: Spectral Filtering

$(\hat{Q}+\lambda I)^{-1}$ approximation of \hat{Q}^{\dagger} controlled by λ

Beyond Tikhonov: Spectral Filtering

$(\hat{Q}+\lambda I)^{-1}$ approximation of \hat{Q}^{\dagger} controlled by λ

Can we approximate \hat{Q}^{\dagger} by saving computations?

Beyond Tikhonov: Spectral Filtering

$(\hat{Q}+\lambda I)^{-1}$ approximation of \hat{Q}^{\dagger} controlled by λ

Can we approximate \hat{Q}^{\dagger} by saving computations?
Yes!

Beyond Tikhonov: Spectral Filtering

$(\hat{Q}+\lambda I)^{-1}$ approximation of \hat{Q}^{\dagger} controlled by λ

Can we approximate \hat{Q}^{\dagger} by saving computations?

Yes!

Spectral filtering (Engl '96- inverse problems, Rosasco et al. 05- ML)

$$
g_{\lambda}(\hat{Q}) \sim \hat{Q}^{\dagger}
$$

The filter function g_{λ} defines the form of the approximation

Spectral filtering

Examples

- Tikhonov- ridge regression
- Truncated SVD- principal component regression
- Landweber iteration- GD/ L_{2}-boosting
- nu-method- accelerated GD/Chebyshev method
- ...

Spectral filtering

Examples

- Tikhonov- ridge regression
- Truncated SVD- principal component regression
- Landweber iteration-GD/ L_{2}-boosting
- nu-method- accelerated GD/Chebyshev method
- ...

Landweber iteration (truncated power series)...

$$
c_{t}=g_{t}(\hat{Q})=\gamma \sum_{r=0}^{t-1}(I-\gamma \hat{Q})^{r} \widehat{y}
$$

Spectral filtering

Examples

- Tikhonov- ridge regression
- Truncated SVD- principal component regression
- Landweber iteration-GD/ L_{2}-boosting
- nu-method- accelerated GD/Chebyshev method
- ...

Landweber iteration (truncated power series)...

$$
c_{t}=g_{t}(\hat{Q})=\gamma \sum_{r=0}^{t-1}(I-\gamma \hat{Q})^{r} \widehat{y}
$$

. . . it's GD for ERM!!

$$
r=1 \ldots t \quad c_{r}=c_{r-1}-\gamma\left(\hat{Q} c_{r-1}-\hat{y}\right), \quad c_{0}=0
$$

Statistics and computations with spectral filtering

The different filters achieve essentially the same optimal statistical error!

Statistics and computations with spectral filtering

The different filters achieve essentially the same optimal statistical error!

Difference is in computations

Filter	Time	Space
Tikhonov	n^{3}	n^{2}
GD	$n^{2} \lambda_{*}^{-1}$	n^{2}
Accelerated GD	$n^{2} \lambda_{*}^{-1 / 2}$	n^{2}
Truncated SVD	$n^{2} \lambda_{*}^{-\gamma}$	n^{2}

Notet: $\lambda_{*}^{-1}=t$, for iterative methods

Semiconvergence

- Iterations control statistics and time complexity

Computational Regularization

Computational Regularization

BIG DATA?

Running out of 玨封e and space ...

Computational Regularization

BIG DATA?

Running out of lime and space ...

Is there a principle to control statistics, time and space complexity?

Outline

Nonparametric Learning

Data Dependent Subsampling

Data Independent Subsampling

Subsampling

1. pick w_{i} at random...

Subsampling

1. pick w_{i} at random... from training set (Smola, Scholköpf '00)

$$
\tilde{w}_{1}, \ldots, \tilde{w}_{M} \subset x_{1}, \ldots x_{n} \quad M \ll n
$$

Subsampling

1. pick w_{i} at random... from training set (Smola, Scholköpf '00)

$$
\tilde{w}_{1}, \ldots, \tilde{w}_{M} \subset x_{1}, \ldots x_{n} \quad M \ll n
$$

2. perform $K R R$ on

$$
\mathcal{H}_{M}=\left\{f \mid f(x)=\sum_{i=1}^{M} c_{i} q\left(x, \tilde{w}_{i}\right), c_{i} \in \mathbb{R}, w_{i} \in \mathbb{R}^{む}, M \in \mathbb{N}\right\}
$$

Subsampling

1. pick w_{i} at random... from training set (Smola, Scholköpf '00)

$$
\tilde{w}_{1}, \ldots, \tilde{w}_{M} \subset x_{1}, \ldots x_{n} \quad M \ll n
$$

2. perform $K R R$ on

$$
\mathcal{H}_{M}=\left\{f \mid f(x)=\sum_{i=1}^{M} c_{i} q\left(x, \tilde{w}_{i}\right), c_{i} \in \mathbb{R}, w_{i} \in \mathbb{R}^{む}, M \in \mathbb{N}\right\}
$$

Linear System

Complexity

- Space $O\left(n^{2}\right) \rightarrow O(n M)$
- Time $O\left(n^{3}\right) \rightarrow O\left(n M^{2}\right)$

Subsampling

1. pick w_{i} at random... from training set (Smola, Scholköpf '00)

$$
\tilde{w}_{1}, \ldots, \tilde{w}_{M} \subset x_{1}, \ldots x_{n} \quad M \ll n
$$

2. perform $K R R$ on

$$
\mathcal{H}_{M}=\left\{f \mid f(x)=\sum_{i=1}^{M} c_{i} q\left(x, \tilde{w}_{i}\right), c_{i} \in \mathbb{R}, w_{i} \in \mathbb{R}^{む}, M \in \mathbb{N}\right\}
$$

Linear System

Complexity

- Space $O\left(n^{2}\right) \rightarrow O(n M)$
- Time $O\left(n^{3}\right) \rightarrow O\left(n M^{2}\right)$

Putting our Result in Context

- *Many* different subsampling schemes (Smola, Scholkopf '00; Williams, Seeger '01; ...20+)

Putting our Result in Context

- *Many* different subsampling schemes (Smola, Scholkopf '00; Williams, Seeger '01; ...20+)
- Theoretical guarantees mainly on matrix approximation (Mahoney and Drineas '09; Cortes et al '10, Kumar et al.' $12 \ldots 10+$)

$$
\left\|\widehat{Q}-\widetilde{Q}_{M}\right\| \lesssim \frac{1}{\sqrt{M}}
$$

Putting our Result in Context

- *Many* different subsampling schemes
(Smola, Scholkopf '00; Williams, Seeger '01; ...20+)
- Theoretical guarantees mainly on matrix approximation (Mahoney and Drineas '09; Cortes et al '10, Kumar et al.' $12 \ldots 10+$)

$$
\left\|\widehat{Q}-\widetilde{Q}_{M}\right\| \lesssim \frac{1}{\sqrt{M}}
$$

- Statistical guarantees suboptimal or in restricted setting (Cortes et al. '10; Jin et al. '11, Bach '13, Alaoui, Mahoney '14)

Main Result

(Rudi, Camoriano, Rosasco, '15)

Theorem
If $f^{*} \in \mathcal{H}$, then

$$
\lambda_{*}=\frac{1}{\sqrt{n}} \quad, M_{*}=\frac{1}{\lambda_{*}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim \frac{1}{\sqrt{n}}
$$

Main Result

(Rudi, Camoriano, Rosasco, '15)

Theorem
If $f^{*} \in \mathcal{H}$, then

$$
\lambda_{*}=\frac{1}{\sqrt{n}} \quad, M_{*}=\frac{1}{\lambda_{*}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim \frac{1}{\sqrt{n}}
$$

Remarks

Main Result

(Rudi, Camoriano, Rosasco, '15)

Theorem
If $f^{*} \in \mathcal{H}$, then

$$
\lambda_{*}=\frac{1}{\sqrt{n}} \quad, M_{*}=\frac{1}{\lambda_{*}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim \frac{1}{\sqrt{n}}
$$

Remarks

1. Subsampling achives optimal bound...

Main Result

(Rudi, Camoriano, Rosasco, '15)

Theorem
If $f^{*} \in \mathcal{H}$, then

$$
\lambda_{*}=\frac{1}{\sqrt{n}} \quad, M_{*}=\frac{1}{\lambda_{*}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim \frac{1}{\sqrt{n}}
$$

Remarks

1. Subsampling achives optimal bound...
2. \ldots with $M_{*} \sim \sqrt{n}$!!

Main Result

(Rudi, Camoriano, Rosasco, '15)

Theorem
If $f^{*} \in \mathcal{H}$, then

$$
\lambda_{*}=\frac{1}{\sqrt{n}} \quad, M_{*}=\frac{1}{\lambda_{*}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim \frac{1}{\sqrt{n}}
$$

Remarks

1. Subsampling achives optimal bound...
2. \ldots with $M_{*} \sim \sqrt{n}$!!
3. More generally,

$$
\lambda_{*}=n^{-\frac{1}{2 s+1}}, \quad M_{*}=\frac{1}{\lambda_{*}}, \quad \mathbb{E}_{x}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

Main Result

(Rudi, Camoriano, Rosasco, '15)

Theorem
If $f^{*} \in \mathcal{H}$, then

$$
\lambda_{*}=\frac{1}{\sqrt{n}} \quad, M_{*}=\frac{1}{\lambda_{*}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim \frac{1}{\sqrt{n}}
$$

Remarks

1. Subsampling achives optimal bound...
2. \ldots with $M_{*} \sim \sqrt{n}$!!
3. More generally,

$$
\lambda_{*}=n^{-\frac{1}{2 s+1}}, \quad M_{*}=\frac{1}{\lambda_{*}}, \quad \mathbb{E}_{x}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

Note: An interesting insight is obtained rewriting the result. . .

Computational Regularization by Subsampling (Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and $M \ldots$

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and $M \ldots$
Theorem
If $f^{*} \in \mathcal{H}$ with a smooth kernel, then

$$
M_{*}=n^{\frac{1}{2 s+1}}, \quad \lambda_{*}=\frac{1}{M_{*}}, \quad \mathbb{E}_{x}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and $M \ldots$
Theorem
If $f^{*} \in \mathcal{H}$ with a smooth kernel, then

$$
M_{*}=n^{\frac{1}{2 s+1}}, \quad \lambda_{*}=\frac{1}{M_{*}}, \quad \mathbb{E}_{x}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

- λ and M play the same role...
... new interpretation: subsampling regularizes!

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and $M \ldots$
Theorem
If $f^{*} \in \mathcal{H}$ with a smooth kernel, then

$$
M_{*}=n^{\frac{1}{2 s+1}}, \quad \lambda_{*}=\frac{1}{M_{*}}, \quad \mathbb{E}_{x}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

- λ and M play the same role...
... new interpretation: subsampling regularizes!
- New natural incremental algorithm...

Algorithm

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and $M \ldots$
Theorem
If $f^{*} \in \mathcal{H}$ with a smooth kernel, then

$$
M_{*}=n^{\frac{1}{2 s+1}}, \quad \lambda_{*}=\frac{1}{M_{*}}, \quad \mathbb{E}_{x}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

- λ and M play the same role...
... new interpretation: subsampling regularizes!
- New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and $M \ldots$
Theorem
If $f^{*} \in \mathcal{H}$ with a smooth kernel, then

$$
M_{*}=n^{\frac{1}{2 s+1}}, \quad \lambda_{*}=\frac{1}{M_{*}}, \quad \mathbb{E}_{x}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

- λ and M play the same role...
... new interpretation: subsampling regularizes!
- New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution
2. Pick another center + rank one update

Computational Regularization by Subsampling

(Rudi, Camoriano, Rosasco, '15)

A simple idea: "swap" the role of λ and $M \ldots$
Theorem
If $f^{*} \in \mathcal{H}$ with a smooth kernel, then

$$
M_{*}=n^{\frac{1}{2 s+1}}, \quad \lambda_{*}=\frac{1}{M_{*}}, \quad \mathbb{E}_{x}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

- λ and M play the same role...
... new interpretation: subsampling regularizes!
- New natural incremental algorithm...

Algorithm

1. Pick a center + compute solution
2. Pick another center + rank one update
3. Pick another center ...

Nÿstrom CoRe Illustrated

n, λ are fixed

Computation controls stability!
Time/space requirement tailored to generalization

Experiments

comparable/better w.r.t. the state of the art

Dataset	$n_{t r}$	d	Incremental CoRe	Standard KRLS	Standard Nyström	Random Features	Fastfood $R F$
Ins. Co.	5822	85	$0.23180 \pm 4 \times 10^{-5}$	$\mathbf{0 . 2 3 1}$	0.232	0.266	0.264
CPU	6554	21	$\mathbf{2 . 8 4 6 6} \pm \mathbf{0 . 0 4 9 7}$	7.271	6.758	7.103	7.366
CT slices	42800	384	$\mathbf{7 . 1 1 0 6} \pm \mathbf{0 . 0 7 7 2}$	NA	60.683	49.491	43.858
Year Pred.	463715	90	$\mathbf{0 . 1 0 4 7 0} \pm \mathbf{5} \times \mathbf{1 0}^{-\mathbf{5}}$	NA	0.113	0.123	0.115
Forest	522910	54	0.9638 ± 0.0186	NA	$\mathbf{0 . 8 3 7}$	0.840	0.840

- Random Features (Rahimi, Recht '07)
- Fastfood (Le et al. '13)

Summary so far

- Optimal learning with data dependent subsampling
- Computational regularization: subsampling regularizes!

Summary so far

- Optimal learning with data dependent subsampling
- Computational regularization: subsampling regularizes!

Few more questions:

- Can one do better than uniform sampling?

Summary so far

- Optimal learning with data dependent subsampling
- Computational regularization: subsampling regularizes!

Few more questions:

- Can one do better than uniform sampling? Yes: leverage score sampling...
- What about data independent sampling?

Outline

Nonparametric Learning

Data Dependent Subsampling

Data Independent Subsampling

Random Features

$$
\widehat{f}(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right)
$$

Random Features

$$
\widehat{f}(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right)
$$

- q general non linear function

Random Features

$$
\widehat{f}(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right)
$$

- q general non linear function
- pick \tilde{w}_{i} at random according to a distribution μ

$$
\tilde{w}_{1}, \ldots, \tilde{w}_{M} \sim \mu
$$

Random Features

$$
\widehat{f}(x)=\sum_{i=1}^{M} c_{i} q\left(x, w_{i}\right)
$$

- q general non linear function
- pick \tilde{w}_{i} at random according to a distribution μ

$$
\tilde{w}_{1}, \ldots, \tilde{w}_{M} \sim \mu
$$

- perform KRR on

$$
\mathcal{H}_{M}=\left\{f \mid f(x)=\sum_{i=1}^{M} c_{i} q\left(x, \tilde{w}_{i}\right), c_{i} \in \mathbb{R}\right\}
$$

Random Fourier Features

(Rahimi, Recht '07)

Consider

$$
q(x, w)=e^{i w^{T} x}
$$

Random Fourier Features

(Rahimi, Recht '07)

Consider

$$
q(x, w)=e^{i w^{T} x}, \quad w \sim \mu(w)=\mathcal{N}(0, I)
$$

Random Fourier Features

(Rahimi, Recht '07)

Consider

$$
q(x, w)=e^{i w^{T} x}, \quad w \sim \mu(w)=\mathcal{N}(0, I)
$$

Then

$$
\mathbb{E}_{w}\left[q(x, w) \overline{q\left(x^{\prime}, w\right)}\right]=e^{-\left\|x-x^{\prime}\right\|^{2} \gamma}=K\left(x, x^{\prime}\right)
$$

Random Fourier Features

(Rahimi, Recht '07)

Consider

$$
q(x, w)=e^{i w^{T} x}, \quad w \sim \mu(w)=\mathcal{N}(0, I)
$$

Then

$$
\mathbb{E}_{w}\left[q(x, w) \overline{q\left(x^{\prime}, w\right)}\right]=e^{-\left\|x-x^{\prime}\right\|^{2} \gamma}=K\left(x, x^{\prime}\right)
$$

By sampling $\tilde{w}_{1}, \ldots, \tilde{w}_{M}$ we are considering the approximating kernel

$$
\frac{1}{M} \sum_{i=1}^{M}\left[q\left(x, \tilde{w}_{i}\right) \overline{q\left(x^{\prime}, \tilde{w}_{i}\right)}\right]=\widetilde{K}_{M}\left(x, x^{\prime}\right)
$$

More Random Features

- translation invariant kernels $K\left(x, x^{\prime}\right)=H\left(x-x^{\prime}\right)$,

$$
q(x, w)=e^{i w^{T} x}, \quad w \sim \mu=\mathcal{F}(H)
$$

- infinite neural nets kernels

$$
q(x, w)=\left|w^{T} x+b\right|_{+}, \quad(w, b) \sim \mu=U\left[\mathbb{S}^{d}\right]
$$

- infinite dot product kernels
- homogeneous additive kernels
- group invariant kernels
- ...

Note: Connections with hashing and sketching techniques.

Properties of Random Features

Properties of Random Features

Optimization

- Time: $O\left(n^{3}\right) \quad O\left(n M^{2}\right)$
- Space: $O\left(n^{2}\right) \quad O(n M)$

Properties of Random Features

Optimization

- Time: $O\left(n^{3}\right) \quad O\left(n M^{2}\right)$
- Space: $O\left(n^{2}\right) \quad O(n M)$

Statistics
As before: do we pay a price for efficient computations?

Previous works

Previous works

- *Many* different random features for different kernels (Rahimi, Recht '07, Vedaldi, Zisserman, ...10+)

Previous works

- *Many* different random features for different kernels (Rahimi, Recht '07, Vedaldi, Zisserman, ...10+)
- Theoretical guarantees: mainly kernel approximation (Rahimi, Recht '07, Sriperumbudur and Szabo '15)

$$
\left|K\left(x, x^{\prime}\right)-\widetilde{K}_{M}\left(x, x^{\prime}\right)\right| \lesssim \frac{1}{\sqrt{M}}
$$

Previous works

- *Many* different random features for different kernels (Rahimi, Recht '07, Vedaldi, Zisserman, ...10+)
- Theoretical guarantees: mainly kernel approximation (Rahimi, Recht '07, Sriperumbudur and Szabo '15)

$$
\left|K\left(x, x^{\prime}\right)-\widetilde{K}_{M}\left(x, x^{\prime}\right)\right| \lesssim \frac{1}{\sqrt{M}}
$$

- Statistical guarantees suboptimal or in restricted setting (Rahimi, Recht '09, Yang et al. '13 ...,Bach '15)

Main Result

Let

$$
q(x, w)=e^{i w^{T} x}
$$

Main Result

Let

$$
q(x, w)=e^{i w^{T} x}, \quad \quad w \sim \mu(w)=c_{d}\left(\frac{1}{1+\|w\|^{2}}\right)^{\frac{d+1}{2}}
$$

Main Result

Let

$$
q(x, w)=e^{i w^{T} x}, \quad w \sim \mu(w)=c_{d}\left(\frac{1}{1+\|w\|^{2}}\right)^{\frac{d+1}{2}}
$$

Theorem
If $f_{*} \in \mathcal{H}_{s}$ Sobolev space, then

$$
\lambda_{*}=n^{-\frac{1}{2 s+1}}, \quad M_{*}=\frac{1}{\lambda_{*}^{2 s}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

Main Result

Let

$$
q(x, w)=e^{i w^{T} x}, \quad w \sim \mu(w)=c_{d}\left(\frac{1}{1+\|w\|^{2}}\right)^{\frac{d+1}{2}}
$$

Theorem
If $f_{*} \in \mathcal{H}_{s}$ Sobolev space, then

$$
\lambda_{*}=n^{-\frac{1}{2 s+1}}, \quad M_{*}=\frac{1}{\lambda_{*}^{2 s}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

- Random features achieve optimal bound!

Main Result

Let

$$
q(x, w)=e^{i w^{T} x}, \quad w \sim \mu(w)=c_{d}\left(\frac{1}{1+\|w\|^{2}}\right)^{\frac{d+1}{2}}
$$

Theorem
If $f_{*} \in \mathcal{H}_{s}$ Sobolev space, then

$$
\lambda_{*}=n^{-\frac{1}{2 s+1}}, \quad M_{*}=\frac{1}{\lambda_{*}^{2 s}}, \quad \mathbb{E}\left(\widehat{f}_{\lambda_{*}, M_{*}}(x)-f^{*}(x)\right)^{2} \lesssim n^{-\frac{2 s}{2 s+1}}
$$

- Random features achieve optimal bound!
- Efficient worst case subsampling $M_{*} \sim \sqrt{n}$ - but cannot exploit smoothness.

Remarks \& Extensions

Nÿstrom vs Random features

- Both achieve optimal rates
- Nÿstrom seems to need fewer samples (random centers)

Remarks \& Extensions

Nÿstrom vs Random features

- Both achieve optimal rates
- Nÿstrom seems to need fewer samples (random centers)

How tight are the results?

Remarks \& Extensions

Nÿstrom vs Random features

- Both achieve optimal rates
- Nÿstrom seems to need fewer samples (random centers)

How tight are the results?

Contributions

- Optimal bounds for data dependent/independent subsampling
- Subsampling: Nÿstrom vs Random features
- Beyond ridge regression: early stopping and multiple passes SGD (see arxiv)

Contributions

- Optimal bounds for data dependent/independent subsampling
- Subsampling: Nÿstrom vs Random features
- Beyond ridge regression: early stopping and multiple passes SGD (see arxiv)

Some questions:

- Quest for the best sampling
- Regularization by projection: inverse problems and preconditioning
- Beyond randomization: non convex neural nets optimization?

Contributions

- Optimal bounds for data dependent/independent subsampling
- Subsampling: Nÿstrom vs Random features
- Beyond ridge regression: early stopping and multiple passes SGD (see arxiv)

Some questions:

- Quest for the best sampling
- Regularization by projection: inverse problems and preconditioning
- Beyond randomization: non convex neural nets optimization?

Some perspectives:

- Computational regularization: subsampling regularizes
- Algorithm design: control stability for good statistics/computations

