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A book
http://press.princeton.edu/titles/8586.html

Optimization Algorithms on Matrix Manifolds
P.-A. Absil, R. Mahony, R. Sepulchre
Princeton University Press, January 2008

1. Introduction
2. Motivation and applications
3. Matrix manifolds: first-order geometry
4. Line-search algorithms
5. Matrix manifolds: second-order geometry
6. Newton’s method
7. Trust-region methods
8. A constellation of superlinear algorithms
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A toolbox
http://www.manopt.org/

Ref: Nicolas Boumal et al, Manopt, a Matlab toolbox for optimization on
manifolds, JMLR 15(Apr) 1455-1459, 2014.
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Optimization on manifolds: an introduction Motivation and problem formulation

Why general manifolds? – Motivating examples

Given A = AT ∈ R
n×n Given A = AT ∈ R

n×n,
and N = diag(p, p − 1, . . . , 1),

min f (X ) = − trace(XTAXN) min f (Y ) = − trace
(

(Y TY )−1(Y TAY )
)

subj. to X ∈ R
n×p : XTX = I subj. to Y ∈ R

n×p
∗ (i.e., Y full rank)

f

R

Y

R

f

YM

f (YM) = f (Y )

Feasible set: St(p, n) Feasible set: Gr(p, n)

= {X ∈ R
n×p : XTX = I} =

{

{YM : M ∈ R
p×p
∗ } : Y ∈ Rn×p

∗

}

Embedded submanifold Quotient manifold
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Optimization on manifolds: an introduction Specific manifolds

Specific manifolds, and where they appear

◮ Stiefel manifold St(p, n) and orthogonal group Op = St(n, n)

St(p, n) = {X ∈ R
n×p : XTX = Ip}

Applications: computer vision; principal component analysis;
independent component analysis...

◮ Grassmann manifold Gr(p, n)

Set of all p-dimensional subspaces of Rn

Applications: various dimension reduction problems...

◮ Set of fixed-rank PSD matrices S+(p, n). A quotient representation:

X ∼ Y ⇔ ∃Q ∈ Op : Y = XQ

Applications: Low-rank approximation of symmetric matrices;
algorithms for (large-scale) semidefinite programming...
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Optimization on manifolds: an introduction Specific manifolds

Specific manifolds, and where they appear

◮ Low-rank manifold R
m×n
rkp

R
m×n
rkp = {M ∈ R

m×n : rk(M) = p}

Applications: dimensionality reduction; model for matrix
completion...

◮ Shape manifold On\R
n×p
∗

Y ∼ X ⇔ ∃U ∈ On : Y = UX

Applications: shape analysis

◮ Oblique manifold R
n×p
∗ /Sdiag+

R
n×p
∗ /Sdiag+ ≃ {Y ∈ R

n×p
∗ : diag(Y TY ) = Ip}

Applications: blind source separation; factor analysis (oblique
Procrustes problem)...
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Optimization on manifolds: an introduction Mathematical background

Smooth optimization problems on general manifolds

M
f

R

x

f ∈ C∞(x)?

ϕ(U)

R
d

ϕ

Yes iff
f ◦ ϕ−1 ∈ C∞(ϕ(x))

ψ

U
V

ψ(V)
ϕ(U ∩ V) ψ(U ∩ V)

ψ ◦ ϕ−1

ϕ ◦ ψ−1

C∞

R
d
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Optimization on manifolds: an introduction Mathematical background

Optimization on manifolds in its most abstract formulation

M
f

R

x

f ∈ C∞(x)?

ϕ(U)

R
d

ϕ

Yes iff
f ◦ ϕ−1 ∈ C∞(ϕ(x))

ψ

U
V

ψ(V)
ϕ(U ∩ V) ψ(U ∩ V)

ψ ◦ ϕ−1

ϕ ◦ ψ−1

C∞

R
d

Given:

◮ A set M endowed (explicitly or implicitly) with a manifold structure
(i.e., a collection of compatible charts).

◮ A function f : M → R, smooth in the sense of the manifold
structure.

Task: Compute a local minimizer of f .
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Optimization on manifolds: an introduction Algorithms on abstract manifolds

Algorithms formulated on abstract manifolds

◮ Steepest-descent
Needs: Riemannian structure and retraction

◮ Newton
Needs: affine connection and retraction

◮ Conjugate Gradients
Needs: Riemannian structure, retraction, and vector transport

◮ BFGS
Needs: needs Riemannian structre, retraction, and vector transport

◮ Trust Region
Needs: Riemannian structure and retraction
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Optimization on manifolds: an introduction Algorithms on abstract manifolds

Steepest descent on abstract manifolds

Required: Riemannian manifold M; retraction R on M.
Iteration xk ∈ M 7→ xk+1 ∈ M defined by

1. Compute steepest-descent direction in TxkM:

ηk = − grad f (xk).

2. Set
xk+1 := Rxk (tkηk)

where tk is chosen using a line-search method.
R

f
x

x+

grad f (x)
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Optimization on manifolds: an introduction Algorithms on abstract manifolds

Newton on abstract manifolds

Required: Riemannian manifold M; retraction R on M; affine
connection ∇ on M; real-valued function f on M.
Iteration xk ∈ M 7→ xk+1 ∈ M defined by

1. Solve the Newton equation

Hess f (xk)ηk = − grad f (xk)

for the unknown ηk ∈ TxkM, where

Hess f (xk)ηk := ∇ηk grad f .

2. Set
xk+1 := Rxk (ηk).
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Optimization on manifolds: an introduction Algorithms on abstract manifolds

Newton on submanifolds of Rn

Required: Riemannian submanifold M of Rn; retraction R on M;
real-valued function f on M.
Iteration xk ∈ M 7→ xk+1 ∈ M defined by

1. Solve the Newton equation

Hess f (xk)ηk = − grad f (xk)

for the unknown ηk ∈ TxkM, where

Hess f (xk)ηk := PTxk
MDgrad f (xk)[ηk ].

2. Set
xk+1 := Rxk (ηk).
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Optimization on manifolds: an introduction Algorithms on abstract manifolds

Newton on the unit sphere Sn−1

Required: real-valued function f on Sn−1.
Iteration xk ∈ Sn−1 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation

{

Pxk D(grad f )(xk)[ηk ] = − grad f (xk)

xTηk = 0,

for the unknown ηk ∈ R
n, where

Pxk = (I − xkx
T
k ).

2. Set

xk+1 :=
xk + ηk
‖xk + ηk‖

.
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Optimization on manifolds: an introduction Algorithms on abstract manifolds

Newton for Rayleigh quotient optimization on unit sphere

Iteration xk ∈ Sn−1 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation

{

Pxk APxk ηk − ηkx
T
k Axk = −Pxk Axk ,

xTk ηk = 0,

for the unknown ηk ∈ R
n, where

Pxk = (I − xkx
T
k ).

2. Set

xk+1 :=
xk + ηk
‖xk + ηk‖

.
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Optimization on manifolds: an introduction Algorithms on abstract manifolds

Conjugate Gradients on abstract manifolds

Require: Riemannian manifold M; vector transport T on M with
associated retraction R ; real-valued function f on M; initial iterate
x0 ∈ M.

1: Set η0 = − grad f (x0).
2: for k = 0, 1, 2, . . . do

3:
Compute a step size αk and set

xk+1 = Rxk (αkηk). (1)

4:
Compute βk+1 and set

ηk+1 = − grad f (xk+1) + βk+1Tαkηk (ηk). (2)

5: end for

Fletcher-Reeves: βk+1 =
〈grad f (xk+1),grad f (xk+1)〉

〈grad f (xk),grad f (xk )〉
.

Polak-Ribière: βk+1 =
〈grad f (xk+1),grad f (xk+1)−Tαkηk

(grad f (xk ))〉

〈grad f (xk),grad f (xk)〉
.

Ref: PAA et al [AMS08, §8.3], Sato & Iwai [SI13].
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Optimization on manifolds: an introduction Algorithms on abstract manifolds

BFGS on abstract manifolds

1: Given: Riemannian manifold M with Riemannian metric g ; vector
transport T on M with associated retraction R ; smooth real-valued
function f on M; initial iterate x0 ∈ M; initial Hessian approximation
B0.

2: for k = 0, 1, 2, . . . do
3: Obtain ηk ∈ TxkM by solving Bkηk = − grad f (xk).
4: Compute step size αk and set xk+1 = Rxk (αkηk).
5: Define sk = Tαηk (αηk) and yk = grad f (xk+1)− Tαηk (grad f (xk)).
6: Define the linear operator Bk+1 : Txk+1

M → Txk+1
M by

Bk+1p = B̃kp−
g(sk , B̃kp)

g(sk , B̃ksk)
B̃ksk+

g(yk , p)

g(yk , sk)
yk for all p ∈ Txk+1

M,

(3)
with

B̃k = Tαηk ◦ Bk ◦ (Tαηk )
−1. (4)

7: end for

Ref: Qi et al [QGA10], Ring & Wirth [RW12].
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Optimization on manifolds: an introduction Algorithms on abstract manifolds

Trust region on abstract manifolds

y

v1

M

TyM

my

η
y+

Refs: PAA et al [ABG07], Huang et al [HAG14].
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Optimization on manifolds: an introduction A brief history

Some classics on Optimization On Manifolds (I)

R

f

x

x+

Luenberger (1973), Introduction to linear and nonlinear programming.
Luenberger mentions the idea of performing line search along geodesics,
“which we would use if it were computationally feasible (which it
definitely is not)”.
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Optimization on manifolds: an introduction A brief history

Some classics on Optimization On Manifolds (II)

Gabay (1982), Minimizing a differentiable function over a differential
manifold. Stepest descent along geodesics; Newton’s method along
geodesics; Quasi-Newton methods along geodesics.

Smith (1994), Optimization techniques on Riemannian manifolds.
Levi-Civita connection ∇; Riemannian exponential; parallel translation.
But Remark 4.9: If Algorithm 4.7 (Newton’s iteration on the sphere for
the Rayleigh quotient) is simplified by replacing the exponential update
with the update

xk+1 =
xk + ηk
‖xk + ηk‖

then we obtain the Rayleigh quotient iteration.
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Optimization on manifolds: an introduction A brief history

Some classics on Optimization On Manifolds (III)

Manton (2002), Optimization algorithms exploiting unitary constraints
“The present paper breaks with tradition by not moving along
geodesics”. The geodesic update Expx η is replaced by a projective
update π(x + η), the projection of the point x + η onto the manifold.

Adler, Dedieu, Shub, et al. (2002), Newton’s method on Riemannian
manifolds and a geometric model for the human spine. The exponential
update is relaxed to the general notion of retraction. The geodesic can
be replaced by any (smoothly prescribed) curve tangent to the search
direction.
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Optimization on manifolds: an introduction A brief history
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Application: curve fitting

An Application:
Curve Fitting
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Application: curve fitting

Sources

◮ Nonparametric curve fitting on manifolds:
◮ Chafik Samir, PAA, Anuj Srivastava, Eric Klassen, A gradient-descent

method for curve fitting on Riemannian manifolds, Foundations of
Computational Mathematics, 12(1), pp. 49-73, 2012.

◮ Nicolas Boumal, PAA, Discrete regression methods on the cone of
positive-definite matrices, ICASSP 2011.

◮ Nicolas Boumal, PAA, A discrete regression method on manifolds and
its application to data on SO(n), IFAC World Congress 2011.

◮ Parametric curve fitting on manifolds (see Pierre-Yves’s talk):
◮ C. Samir, P. Van Dooren, D. Laurent, K. A. Gallivan, PAA, Elastic

morphing of 2D and 3D objects on a shape manifold, Lecture Notes
in Computer Science, Volume 5627/2009, pp. 563-572, 2009

◮ Pierre-Yves Gousenbourger, Chafik Samir, PAA, Piecewise-Bézier C 1

interpolation on Riemannian manifolds with application to 2D shape
morphing, ICPR 2014

◮ Antoine Arnould, Pierre-Yves Gousenbourger, Chafik Samir, PAA,
Fitting Smooth Paths on Riemannian manifolds: Endometrial Surface
Reconstruction and Preoperative MRI-Based Navigation, submitted.
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Application: curve fitting Motivation and problem formulation

Curve fitting on manifolds

Γ

R

E

M

p0

p1

p2

γ(t0)

γ(t1)
γ(t2)

γ
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Application: curve fitting Motivation and problem formulation

Curve fitting on manifolds: application to morphing

Γ

R

E

Shape manifold

γ
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Application: curve fitting Motivation and problem formulation

Curve fitting on manifolds: possible applications

Γ

R

E

M

p0

p1

p2

γ(t0)

γ(t1)
γ(t2)

γ

Applications in noise reduction, resampling, and trajectory generation.

◮ Evolution of the paleomagnetic north pole, as in Jupp and
Kent [JK87]: M = S2, the sphere.

◮ Rigid body motion: M = SE(3), the special Euclidean group.
◮ Diffusion-Tensor MRI: M = S++

3 , the set of all 3× 3 symmetric
positive-definite matrices.

◮ Morphing: M is a shape manifold.
◮ ...
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Application: curve fitting Motivation and problem formulation

Curve fitting on manifolds: problem considered

Γ

R

E

M

p0

p1

p2

γ(t0)

γ(t1)
γ(t2)

γ

Given: Riemannian manifold M; p0, . . . , pN ∈ M;
0 = t0 < · · · < tN = 1.
Goal: find the curve γ : [0, 1] 7→ M that minimizes

E2 : Γ2 → R : E2(γ) = Ed(γ) + λEs,2(γ)

=
1

2

N
∑

i=0

d2(γ(ti ), pi ) +
λ

2

∫ 1

0
〈
D2γ

dt2
,
D2γ

dt2
〉 dt,

where Γ2 is the Sobolev space H2([0, 1],M).
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Application: curve fitting Previous work

Previous work

Machado and Silva Leite [ML06, Mac06] consider

E2 : Γ2 → R : E2(γ) =
1

2

N
∑

i=0

d2(γ(ti ), pi ) +
λ

2

∫ 1

0
〈
D2γ

dt2
,
D2γ

dt2
〉 dt,

and obtain the Euler-Lagrange equations (stationarity conditions):
On each subinterval,

D4γ

dt4
+ R

(

D2γ

dt2
, γ̇

)

γ̇ = 0,

and at the knot points,

Dkγ

dtk
(t+i )−

Dkγ

dtk
(t−i ) =











0, k = 0, 1, (i = 1, . . . ,N − 1)

0, k = 2, (i = 0, . . . ,N)
1
λ
Exp−1

γ(ti )
(pi ), k = 3, (i = 0, . . . ,N)

,

with
D2γ

dt2
(t−0 ) =

D3γ

dt3
(t−0 ) =

D2γ

dt2
(t+N ) =

D3γ

dt3
(t+N ) = 0.
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Application: curve fitting Previous work

Gradient-descent for discretized E2

Objective: E2(γ) =
1
2

∑N
i=0 d

2(γ(ti ), pi ) +
λ
2

∫ 1
0 〈

D2γ
dt2

, D
2γ

dt2
〉 dt.

◮ Finite differences in R
n:

ẍ0 =
2

∆tf +∆tb

1

∆tf∆tb
[∆tb(xf − x0) + ∆tf(xb − x0)] +O(∆t)

(5)
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Application: curve fitting Previous work

Gradient-descent for discretized E2

Objective: E2(γ) =
1
2

∑N
i=0 d

2(γ(ti ), pi ) +
λ
2

∫ 1
0 〈

D2γ
dt2

, D
2γ

dt2
〉 dt.

◮ Finite differences in R
n:

ẍ0 =
2

∆tf +∆tb

1

∆tf∆tb
[∆tb(xf − x0) + ∆tf(xb − x0)] +O(∆t)

(5)

◮ Finite differences on a manifold:

ẍ0 ≈
2

∆tf +∆tb

1

∆tf∆tb

[

∆tb Logx0 (xf) + ∆tf Logx0 (xb)
]

(6)
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Application: curve fitting Previous work

Gradient-descent for discretized E2

Objective: E2(γ) =
1
2

∑N
i=0 d

2(γ(ti ), pi ) +
λ
2

∫ 1
0 〈

D2γ
dt2

, D
2γ

dt2
〉 dt.

◮ Finite differences in R
n:

ẍ0 =
2

∆tf +∆tb

1

∆tf∆tb
[∆tb(xf − x0) + ∆tf(xb − x0)] +O(∆t)

(5)

◮ Finite differences on a manifold:

ẍ0 ≈
2

∆tf +∆tb

1

∆tf∆tb

[

∆tb Logx0 (xf) + ∆tf Logx0 (xb)
]

(6)

◮ Discretized E2:

Ê2 : M
Nd → R : Ê2(γ) =

1

2

N
∑

i=0

d2(pi , γsi ) +
λ

2

Nd
∑

i=1

βi‖ai‖
2
γi
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Application: curve fitting Previous work

Illustrations on the sphere

Objective: E2(γ) =
1
2

∑N
i=0 d

2(γ(ti ), pi ) +
λ
2

∫ 1
0 〈

D2γ
dt2

, D
2γ

dt2
〉 dt.

λ = 10−4 λ = 10−3 λ = 100
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Application: curve fitting Parametric curve fitting

Curve fitting on manifolds

Γ

R

E

M

p0

p1

p2

γ(t0)

γ(t1)
γ(t2)

γ
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Application: curve fitting Parametric curve fitting

Curve fitting on manifolds: application to morphing

Γ

R

E

Shape manifold

γ
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Application: curve fitting Parametric curve fitting

Polynomial interpolation on manifolds

◮ Polynomial interpolation reminder: Given (t0, x0), . . . , (tn, xn) in R
d ,

there is one and only one polynomial pn of degree at most n such
that p(tk) = xk , k = 0, . . . , n.
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Application: curve fitting Parametric curve fitting

Polynomial interpolation on manifolds

◮ Polynomial interpolation reminder: Given (t0, x0), . . . , (tn, xn) in R
d ,

there is one and only one polynomial pn of degree at most n such
that p(tk) = xk , k = 0, . . . , n.

◮ pn(t) can be computed with Neville’s algorithm, based on the
formula

Pi ,j(t) = Pi ,j−1(t) +
t − ti
tj − ti

(Pi+1,j(t)− Pi ,j−1(t)) , (7)

where Pi ,j stands for the polynomial of degree at most j − i that
interpolates (ti , xi ), . . . , (tj , xj). We have pn(t) = P0,n(t).
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Application: curve fitting Parametric curve fitting

Polynomial interpolation on manifolds

◮ Polynomial interpolation reminder: Given (t0, x0), . . . , (tn, xn) in R
d ,

there is one and only one polynomial pn of degree at most n such
that p(tk) = xk , k = 0, . . . , n.

◮ pn(t) can be computed with Neville’s algorithm, based on the
formula

Pi ,j(t) = Pi ,j−1(t) +
t − ti
tj − ti

(Pi+1,j(t)− Pi ,j−1(t)) , (7)

where Pi ,j stands for the polynomial of degree at most j − i that
interpolates (ti , xi ), . . . , (tj , xj). We have pn(t) = P0,n(t).

◮ When x0, . . . , xn are on a manifold, (7) readily generalizes to

Pi ,j(t) = ExpPi,j−1(t)

(

t − ti
tj − ti

LogPi,j−1(t) Pi+1,j(t)

)

.
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Application: curve fitting Parametric curve fitting

Piecewise-polynomial interpolation on manifolds

◮ Polynomial interpolation on manifolds is prone to the Runge
phenomenon.
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Application: curve fitting Parametric curve fitting

Piecewise-polynomial interpolation on manifolds

◮ Polynomial interpolation on manifolds is prone to the Runge
phenomenon.

◮ Polynomial interpolation on manifolds is also prone to a Runge-like
effect!
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Application: curve fitting Parametric curve fitting

Piecewise-polynomial interpolation on manifolds

◮ Polynomial interpolation on manifolds is prone to the Runge
phenomenon.

◮ Polynomial interpolation on manifolds is also prone to a Runge-like
effect!

◮ Remedy: Piecewise-polynomial interpolation on manifolds.
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Application: curve fitting Parametric curve fitting

Piecewise-polynomial interpolation on manifolds

◮ Polynomial interpolation on manifolds is prone to the Runge
phenomenon.

◮ Polynomial interpolation on manifolds is also prone to a Runge-like
effect!

◮ Remedy: Piecewise-polynomial interpolation on manifolds.

◮ See Pierre-Yves Gousenbourger’s talk later today.
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