Proximal point algorithm in Hadamard spaces

Miroslav Bacak

Télécom ParisTech

Optimisation Géométrique sur les Variétés

Paris, 21 novembre 2014

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

1 Basic facts on Hadamard spaces

2 Proximal point algorithm

3 Applications to computational phylogenetics

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Why? Well...it is used in:

- **Phylogenetics:** computing medians and means of phylogenetic trees.
- diffusion tensor imaging: the space P(n, ℝ) of symmetric positive definite matrices n × n with real entries is a Hadamard space if it is equipped with the Riemannian metric

$$\langle X, Y \rangle_A := \operatorname{Tr} \left(A^{-1} X A^{-1} Y \right), \qquad X, Y \in T_A \left(P(n, \mathbb{R}) \right),$$

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

for every $A \in P(n, \mathbb{R})$.

Computational biology: shape analyses of tree-like structures:

Tree-like structures in organisms

Figure: Bronchial tubes in lungs

Figure: Transport system in plants

Figure: Human circulatory system

Let (\mathcal{H}, d) be a complete metric space where:

(1) any two points x_0 and x_1 are connected by a geodesic

 $x\colon [0,1] \to \mathcal{H}\colon t \mapsto x_t,$

2 and,

 $d(y, x_t)^2 \le (1-t)d(y, x_0)^2 + td(y, x_1)^2 - t(1-t)d(x_0, x_1)^2,$ for every $y \in \mathcal{H}$.

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

Then (\mathcal{H}, d) is called a Hadamard space.

For today: assume that local compactness.

A geodesic triangle in a geodesic space:

きょう しょう シュート ショー しょう

Terminology remark

 $\mathsf{CAT}(\kappa)$ spaces, for $\kappa \in \mathbb{R}$, were introduced in 1987 by Michail Gromov

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

We are particularly interested in CAT(0) spaces.

Examples of Hadamard spaces

- 1 Hilbert spaces, the Hilbert ball
- **2** complete simply connected Riemannian manifolds with $\operatorname{Sec} \leq 0$
- **3** \mathbb{R} -trees: a metric space T is an \mathbb{R} -tree if
 - for $x, y \in T$ there is a unique geodesic [x, y]
 - if $[x,y] \cap [y,z] = \{y\}$, then $[x,z] = [x,y] \cup [y,z]$

4 Euclidean buildings

- **5** the BHV tree space (space of phylogenetic trees)
- **6** $L^2(M, \mathcal{H})$, where (M, μ) is a probability space:

$$d_2(u,v) := \left(\int_M d\left(u(x), v(x)\right)^2 \mathrm{d}\mu(x)\right)^{\frac{1}{2}}, \qquad u, v \in L^2(M, \mathcal{H})$$

Let (\mathcal{H},d) be a Hadamard space. These spaces allow for a natural definition of convexity:

Definition

A set $C \subset \mathcal{H}$ is **convex** if, given $x, y \in C$, we have $[x, y] \subset C$.

Definition

A function $f: \mathcal{H} \to (-\infty, \infty]$ is **convex** if $f \circ \gamma$ is a convex function for each geodesic $\gamma: [0, 1] \to \mathcal{H}$.

Let (\mathcal{H},d) be a Hadamard space. These spaces allow for a natural definition of convexity:

Definition

A set $C \subset \mathcal{H}$ is **convex** if, given $x, y \in C$, we have $[x, y] \subset C$.

Definition

A function $f: \mathcal{H} \to (-\infty, \infty]$ is **convex** if $f \circ \gamma$ is a convex function for each geodesic $\gamma: [0, 1] \to \mathcal{H}$.

・ロト・4日ト・4日ト・4日ト・4日ト

Let (\mathcal{H},d) be a Hadamard space. These spaces allow for a natural definition of convexity:

Definition

A set $C \subset \mathcal{H}$ is **convex** if, given $x, y \in C$, we have $[x, y] \subset C$.

Definition

A function $f: \mathcal{H} \to (-\infty, \infty]$ is **convex** if $f \circ \gamma$ is a convex function for each geodesic $\gamma: [0, 1] \to \mathcal{H}$.

① The **indicator function** of a convex closed set $C \subset \mathcal{H}$:

$$\iota_C(x) := 0$$
, if $x \in C$, and $\iota_C(x) := \infty$, if $x \notin C$.

2) The distance function to a closed convex subset $C \subset \mathcal{H}$:

$$d_C(x) := \inf_{c \in C} d(x, c), \quad x \in \mathcal{H}.$$

(3) The **displacement function** of an isometry $T: \mathcal{H} \to \mathcal{H}:$

$$\delta_T(x) := d(x, Tx), \quad x \in \mathcal{H}.$$

・ロト < 団ト < ヨト < ヨト < ヨト < ロト

① The **indicator function** of a convex closed set $C \subset \mathcal{H}$:

$$\iota_C(x) := 0$$
, if $x \in C$, and $\iota_C(x) := \infty$, if $x \notin C$.

2 The **distance function** to a closed convex subset $C \subset \mathcal{H}$:

$$d_C(x) := \inf_{c \in C} d(x, c), \quad x \in \mathcal{H}.$$

(3) The **displacement function** of an isometry $T: \mathcal{H} \to \mathcal{H}:$

$$\delta_T(x) := d(x, Tx), \quad x \in \mathcal{H}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のQ@

1 The **indicator function** of a convex closed set $C \subset \mathcal{H}$:

$$\iota_C(x) := 0$$
, if $x \in C$, and $\iota_C(x) := \infty$, if $x \notin C$.

2 The **distance function** to a closed convex subset $C \subset \mathcal{H}$:

$$d_C(x) := \inf_{c \in C} d(x, c), \quad x \in \mathcal{H}.$$

3 The **displacement function** of an isometry $T: \mathcal{H} \to \mathcal{H}:$

$$\delta_T(x) := d(x, Tx), \quad x \in \mathcal{H}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のQ@

Examples of convex functions

④ Let $c: [0, \infty) \to \mathcal{H}$ be a geodesic ray. The function $b_c: \mathcal{H} \to \mathbb{R}$ defined by

$$b_c(x) := \lim_{t \to \infty} \left[d\left(x, c(t)\right) - t \right], \quad x \in \mathcal{H},$$

is called the **Busemann function** associated to the ray c. **(5)** The **energy** of a mapping $u: M \to \mathcal{H}$ given by

$$E(u) := \iint_{M \times M} d\left(u(x), u(y)\right)^2 p(x, \mathrm{d}y) \mathrm{d}\mu(x),$$

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

where (M,μ) is a measure space with a Markov kernel $p(x,\mathrm{d}y).$

E is convex continuous on $L^2(M, \mathcal{H})$.

④ Let $c: [0, \infty) \to \mathcal{H}$ be a geodesic ray. The function $b_c: \mathcal{H} \to \mathbb{R}$ defined by

$$b_c(x) := \lim_{t \to \infty} \left[d\left(x, c(t)\right) - t \right], \quad x \in \mathcal{H},$$

is called the **Busemann function** associated to the ray c. **5** The **energy** of a mapping $u: M \to \mathcal{H}$ given by

$$E(u) := \iint_{M \times M} d\left(u(x), u(y)\right)^2 p(x, \mathrm{d}y) \mathrm{d}\mu(x),$$

where (M, μ) is a measure space with a Markov kernel p(x, dy).

E is convex continuous on $L^2(M, \mathcal{H})$.

6 Given $a_1, \ldots, a_N \in \mathcal{H}$ and $w_1, \ldots, w_N > 0$, set

$$f(x) := \sum_{n=1}^{N} w_n d(x, a_n)^p, \qquad x \in \mathcal{H},$$

where $p \in [1, \infty)$.

- If p = 1, we get **Fermat-Weber problem** for optimal facility location. A minimizer of f is called a **median**.
- If p = 2, then a minimizer of f is the **barycenter** of

$$\mu := \sum_{n=1}^{N} w_n \delta_{a_n},$$

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

or the **mean** of a_1, \ldots, a_N .

6 Given $a_1, \ldots, a_N \in \mathcal{H}$ and $w_1, \ldots, w_N > 0$, set

$$f(x) := \sum_{n=1}^{N} w_n d(x, a_n)^p, \qquad x \in \mathcal{H},$$

where $p \in [1, \infty)$.

- If p = 1, we get **Fermat-Weber problem** for optimal facility location. A minimizer of f is called a **median**.
- If p = 2, then a minimizer of f is the **barycenter** of

$$\mu := \sum_{n=1}^{N} w_n \delta_{a_n},$$

or the **mean** of a_1, \ldots, a_N .

A function $f\colon \mathcal{H}\to (-\infty,\infty]$ is strongly convex with parameter $\beta>0$ if

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y) - \beta t(1-t)d(x,y)^2,$$

for any $x, y \in \mathcal{H}$ and $t \in [0, 1]$.

Each strongly has a unique minimizer.

Example

Given $y \in \mathcal{H}$, the function $f := d(y, \cdot)^2$ is strongly convex. Indeed,

$$d(y, x_t)^2 \le (1-t)d(y, x_0)^2 + td(y, x_1)^2 - t(1-t)d(x_0, x_1)^2,$$

for each geodesic $x \colon [0,1] \to \mathcal{H}$.

1 Basic facts on Hadamard spaces

2 Proximal point algorithm

3 Applications to computational phylogenetics

▲□▶ ▲圖▶ ▲目▶ ▲目▶ ●目■ のへで

Let $f\colon \mathcal{H}\to (-\infty,\infty]$ be convex lsc.

Optimization problem:
$$\min_{x \in \mathcal{H}} f(x)$$
.

Recall: no (sub)differential, no shooting (singularities).

Implicit methods are appropriate. The PPA generates a sequence

$$x_i := J_{\lambda_i} \left(x_{i-1} \right) := \operatorname*{arg\,min}_{y \in \mathcal{H}} \left[f(y) + \frac{1}{2\lambda_i} d(y, x_{i-1})^2 \right].$$

where $x_0 \in \mathcal{H}$ is a given starting point and $\lambda_i > 0$, for each $i \in \mathbb{N}$.

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

Let $f \colon \mathcal{H} \to (-\infty, \infty]$ be convex lsc.

Optimization problem:
$$\min_{x \in \mathcal{H}} f(x)$$
.

Recall: no (sub)differential, no shooting (singularities).

Implicit methods are appropriate. The PPA generates a sequence

$$\boldsymbol{x_i} := J_{\lambda_i} \left(\boldsymbol{x_{i-1}} \right) := \operatorname*{arg\,min}_{\boldsymbol{y} \in \mathcal{H}} \left[f(\boldsymbol{y}) + \frac{1}{2\lambda_i} d(\boldsymbol{y}, \boldsymbol{x_{i-1}})^2 \right].$$

where $x_0 \in \mathcal{H}$ is a given starting point and $\lambda_i > 0$, for each $i \in \mathbb{N}$.

Theorem (M.B., 2011)

Let $f: \mathcal{H} \to (-\infty, \infty]$ be a convex lsc function attaining its minimum. Given $x_0 \in \mathcal{H}$ and (λ_i) such that $\sum_{1}^{\infty} \lambda_i = \infty$, the PPA sequence (x_i) converges to a minimizer of f.

(Resolvents are firmly nonexpansive - cheap version for $\lambda_i = \lambda$.)

Disadvantage: The resolvents

$$x_i := J_{\lambda_i} \left(x_{i-1} \right) := \underset{y \in \mathcal{H}}{\operatorname{arg\,min}} \left[f(y) + \frac{1}{2\lambda_i} d(y, x_{i-1})^2 \right],$$

◆□▶ ◆□▶ ★□▶ ★□▶ ▲□▶ ◆○

are often difficult to compute.

Theorem (M.B., 2011)

Let $f: \mathcal{H} \to (-\infty, \infty]$ be a convex lsc function attaining its minimum. Given $x_0 \in \mathcal{H}$ and (λ_i) such that $\sum_{1}^{\infty} \lambda_i = \infty$, the PPA sequence (x_i) converges to a minimizer of f.

(Resolvents are firmly nonexpansive - cheap version for $\lambda_i = \lambda$.)

Disadvantage: The resolvents

$$\mathbf{x}_{i} := J_{\lambda_{i}}\left(\mathbf{x}_{i-1}\right) := \operatorname*{arg\,min}_{y \in \mathcal{H}} \left[f(y) + \frac{1}{2\lambda_{i}} d(y, x_{i-1})^{2} \right],$$

◆□▶ ◆□▶ ★□▶ ★□▶ ▲□▶ ◆○

are often difficult to compute.

Let f_1,\ldots,f_N be convex lsc and consider

$$f(x) := \sum_{n=1}^{N} f_n(x), \qquad x \in \mathcal{H}.$$

Example (Median and mean)

$$f_n := d(\cdot, a_n), \qquad f_n := d(\cdot, a_n)^2.$$

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Key idea: apply resolvents J_{λ}^{n} 's of f_{n} 's in a cyclic or random order.

Let f_1,\ldots,f_N be convex lsc and consider

$$f(x) := \sum_{n=1}^{N} f_n(x), \qquad x \in \mathcal{H}.$$

Example (Median and mean)

$$f_n := d(\cdot, a_n), \qquad f_n := d(\cdot, a_n)^2.$$

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Key idea: apply resolvents J_{λ}^{n} 's of f_{n} 's in a cyclic or random order.

Let f_1,\ldots,f_N be convex lsc and consider

$$f(x) := \sum_{n=1}^{N} f_n(x), \qquad x \in \mathcal{H}.$$

Example (Median and mean)

$$f_n := d(\cdot, a_n), \qquad f_n := d(\cdot, a_n)^2.$$

・ロト・4日ト・4日ト・4日ト・4日ト

Key idea: apply resolvents J_{λ}^{n} 's of f_{n} 's in a cyclic or random order.

Splitting proximal point algorithm

Let $x_0 \in \mathcal{H}$ be a starting point. For each $k \in \mathbb{N}_0$ we apply resolvents in **cyclic order**:

 $\begin{aligned} x_{kN+1} &\coloneqq J_{\lambda_k}^1 \left(x_{kN} \right), \\ x_{kN+2} &\coloneqq J_{\lambda_k}^2 \left(x_{kN+1} \right), \\ &\vdots \\ &\vdots \\ &\vdots \end{aligned}$

$$x_{kN+N} := J_{\lambda_k}^N \left(x_{kN+N-1} \right),$$

or in random order:

$$x_{i+1} := J_{\lambda_i}^{r_i} \left(x_i \right),$$

where (r_i) are random variables with values in $\{1, \ldots, N\}$.

Convergence of splitting proximal point algorithm

Theorem (Cyclic order version + Random order version)

Assume that f_n are Lipschitz (or locally Lipschitz and the minimizing sequence is bounded). Then

- $\mathbf{0}$ the cyclic PPA sequence converges to a minimizer of f
- It the random PPA sequence converges to a minimizer of f almost surely.

Assumptions are satisfied for

$$f(x) := \sum_{n=1}^{N} w_n d(x, a_n)^p, \qquad x \in \mathcal{H},$$

where $p \in [1, \infty)$.

Convergence of splitting proximal point algorithm

Theorem (Cyclic order version + Random order version)

Assume that f_n are Lipschitz (or locally Lipschitz and the minimizing sequence is bounded). Then

- $\mathbf{0}$ the cyclic PPA sequence converges to a minimizer of f
- It the random PPA sequence converges to a minimizer of f almost surely.

Assumptions are satisfied for

$$f(x) := \sum_{n=1}^{N} w_n d(x, a_n)^p, \qquad x \in \mathcal{H},$$

where $p \in [1, \infty)$.

Splitting proximal point algorithm (for mean)

Hence instead of computing (the usual PPA)

$$x_{i+1} \coloneqq \underset{z \in \mathcal{H}}{\operatorname{arg\,min}} \left[\sum_{n=1}^{N} d\left(z, a_n\right)^2 + \frac{1}{2\lambda_i} d\left(z, x_i\right)^2 \right],$$

we are to minimize the function

$$x_{i+1} := \operatorname*{arg\,min}_{z \in \mathcal{H}} \left[d\left(z, a_n\right)^2 + \frac{1}{2\lambda_i} d\left(z, x_i\right)^2 \right],$$

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

where a_n are chosen in a cyclic or random order.

This is **one-dimensional** problem!

Splitting proximal point algorithm (for mean)

Hence instead of computing (the usual PPA)

$$x_{i+1} := \underset{z \in \mathcal{H}}{\operatorname{arg\,min}} \left[\sum_{n=1}^{N} d\left(z, a_n\right)^2 + \frac{1}{2\lambda_i} d\left(z, x_i\right)^2 \right],$$

we are to minimize the function

$$x_{i+1} := \operatorname*{arg\,min}_{z \in \mathcal{H}} \left[d\left(z, a_n\right)^2 + \frac{1}{2\lambda_i} d\left(z, x_i\right)^2 \right],$$

・ロト・4日ト・4日ト・4日ト・4日ト

where a_n are chosen in a cyclic or random order.

This is **one-dimensional** problem!

$$\implies$$
 x_{i+1} is a convex combination of a_n and x_i .

1 Basic facts on Hadamard spaces

Proximal point algorithm

3 Applications to computational phylogenetics

◇□▶ <@▶ < E▶ < E▶ < E|= のQQ</p>

think Letwie A J B. chan ulation: C+B. The finit predation, B + D within presta distantion Then genere tinto has formed. - being willing

▲ロト ▲帰下 ▲ヨト ▲ヨト 通言 めんぐ

Left: One of many evolutionary trees

Right: A picture of an evolutionary tree by Charles Darwin (1837)

Billera-Holmes-Vogtmann tree space \mathcal{T}_d

Figure: 5 out of 15 orthants of \mathcal{T}_4

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Billera-Holmes-Vogtmann tree space \mathcal{T}_d

Figure: A finite set of trees in \mathcal{T}_4

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Billera-Holmes-Vogtmann tree space \mathcal{T}_d

Figure: Consider the most frequent tree topology only

Algorithm (SPPA with $f_n := d(\cdot, T_n)^2$)

```
Input: T_1, \ldots, T_N \in \mathcal{T}_d

Step 1: S_1 := T_1 and i := 1

Step 2: choose r \in \{1, \ldots, N\} at random

Step 3: S_{i+1} := \frac{1}{i+1}T_r + \frac{i}{i+1}S_i

Step 4: i := i + 1

Step 5: go to Step 2
```

Geodesics can be computed in polynomial time:

The Owen-Provan algorithm (2011)

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

Algorithm (SPPA with $f_n := d(\cdot, T_n)^2$)

```
Input: T_1, \ldots, T_N \in \mathcal{T}_d

Step 1: S_1 := T_1 and i := 1

Step 2: choose r \in \{1, \ldots, N\} at random

Step 3: S_{i+1} := \frac{1}{i+1}T_r + \frac{i}{i+1}S_i

Step 4: i := i + 1

Step 5: go to Step 2
```

Geodesics can be computed in polynomial time:

The Owen-Provan algorithm (2011)

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

Algorithm (SPPA with $f_n := d(\cdot, T_n)^2$)

```
Input: T_1, ..., T_N \in T_d

Step 1: S_1 := T_1 and i := 1

Step 2: choose r \in \{1, ..., N\} at random

Step 3: S_{i+1} := \frac{1}{i+1}T_r + \frac{i}{i+1}S_i

Step 4: i := i + 1

Step 5: go to Step 2
```

Geodesics can be computed in polynomial time:

The Owen-Provan algorithm (2011)

▲ロト ▲帰下 ▲ヨト ▲ヨト 通言 めんぐ

<□> <@> < E> < E> EI= のQ@

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Space T_d : orthant dimension = d - 2, # of orthants = (2d - 3)!!The actual dimension of T_d is d + 1 + (d - 2)(2d - 3)!!

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

of trees = N (e.g. coming from an MCMC simulation)

Our computation: d = 12 hence $\dim \approx 10^{11}$ and $N = 10^5$

Space T_d : orthant dimension = d - 2, # of orthants = (2d - 3)!!The actual dimension of T_d is d + 1 + (d - 2)(2d - 3)!!

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨヨ ろくぐ

of trees = N (e.g. coming from an MCMC simulation)

Our computation: d = 12 hence dim $\approx 10^{11}$ and $N = 10^5$

Resuls (courtesy of Philipp Benner)

^pika Rabbi<u>t</u> Kangaroo rat Rat Mouse Squirrel Guinea pig Drangutan Baboon Marmoset Gorilla Human Chimpanzee Pika Rabbit Squirrel Kangaroo rat Guineă pig Rạț Mouse rangutan Gorilla Human Chimpanzee Baboon Marmoset

・ロト・4日・4日・4日・4日・900

Resuls (courtesy of Philipp Benner) ... continued.

Figure: Approximation of the mean of the 100,000 trees.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

- M.B.: Computing medians and means in Hadamard spaces, SIAM J. Optim. 24 (2014), no. 3, 1542–1566.
- Benner, Bacak, Bourguignon: Point estimates in phylogenetic reconstructions,
 Bioinformatics, Vol 30 (2014), Issue 17.
- M.B.: Convex analysis and optimization in Hadamard spaces, De Gruyter, Berlin, 2014.

▲ロト ▲帰下 ▲ヨト ▲ヨト 通言 めんぐ