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Proximal point algorithm in Hadamard spaces

Why? Well. . . it is used in:

• Phylogenetics: computing medians and means of
phylogenetic trees.

• diffusion tensor imaging: the space P (n,R) of symmetric
positive definite matrices n× n with real entries is a
Hadamard space if it is equipped with the Riemannian metric

〈X,Y 〉A := Tr
(
A−1XA−1Y

)
, X, Y ∈ TA (P (n,R)) ,

for every A ∈ P (n,R).

• Computational biology: shape analyses of tree-like
structures:



Tree-like structures in organisms

Figure: Bronchial tubes in lungs

Figure: Transport system in plants

Figure: Human circulatory system



Definition of Hadamard space

Let (H, d) be a complete metric space where:

1 any two points x0 and x1 are connected by a geodesic

x : [0, 1]→ H : t 7→ xt,

2 and,

d (y, xt)
2 ≤ (1− t)d (y, x0)2 + td (y, x1)

2 − t(1− t)d (x0, x1)2 ,

for every y ∈ H.

Then (H, d) is called a Hadamard space.

For today: assume that local compactness.
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Definition of nonpositive curvature

A geodesic triangle in a geodesic space:
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Terminology remark

CAT(κ) spaces, for κ ∈ R, were introduced
in 1987 by Michail Gromov

C = Cartan A = Alexandrov T = Toponogov

We are particularly interested in CAT(0) spaces.



Examples of Hadamard spaces

1 Hilbert spaces, the Hilbert ball

2 complete simply connected Riemannian manifolds
with Sec ≤ 0

3 R-trees: a metric space T is an R-tree if
• for x, y ∈ T there is a unique geodesic [x, y]
• if [x, y] ∩ [y, z] = {y}, then [x, z] = [x, y] ∪ [y, z]

4 Euclidean buildings

5 the BHV tree space (space of phylogenetic trees)

6 L2(M,H), where (M,µ) is a probability space:

d2(u, v) :=

(∫
M
d (u(x), v(x))2 dµ(x)

) 1
2

, u, v ∈ L2(M,H)



Convexity in Hadamard spaces

Let (H, d) be a Hadamard space. These spaces allow for a natural
definition of convexity:

Definition

A set C ⊂ H is convex if, given x, y ∈ C, we have [x, y] ⊂ C.

Definition

A function f : H → (−∞,∞] is convex if f ◦ γ is a convex
function for each geodesic γ : [0, 1]→ H.
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Examples of convex functions

1 The indicator function of a convex closed set C ⊂ H :

ιC(x) := 0, if x ∈ C, and ιC(x) :=∞, if x /∈ C.

2 The distance function to a closed convex subset C ⊂ H :

dC(x) := inf
c∈C

d(x, c), x ∈ H.

3 The displacement function of an isometry T : H → H :

δT (x) := d(x, Tx), x ∈ H.
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Examples of convex functions

4 Let c : [0,∞)→ H be a geodesic ray. The function
bc : H → R defined by

bc(x) := lim
t→∞

[d (x, c(t))− t] , x ∈ H,

is called the Busemann function associated to the ray c.

5 The energy of a mapping u : M → H given by

E(u) :=

∫∫
M×M

d (u(x), u(y))2 p(x, dy)dµ(x),

where (M,µ) is a measure space with a Markov kernel
p(x,dy).

E is convex continuous on L2(M,H).
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Examples of convex functions

6 Given a1, . . . , aN ∈ H and w1, . . . , wN > 0, set

f(x) :=

N∑
n=1

wnd (x, an)
p , x ∈ H,

where p ∈ [1,∞).
• If p = 1, we get Fermat-Weber problem for optimal facility

location. A minimizer of f is called a median.
• If p = 2, then a minimizer of f is the barycenter of

µ :=

N∑
n=1

wnδan ,

or the mean of a1, . . . , aN .
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Strongly convex functions

A function f : H → (−∞,∞] is strongly convex with parameter
β > 0 if

f ((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)−βt(1− t)d(x, y)2,

for any x, y ∈ H and t ∈ [0, 1].

Each strongly has a unique minimizer.

Example

Given y ∈ H, the function f := d(y, ·)2 is strongly convex. Indeed,

d (y, xt)
2 ≤ (1− t)d (y, x0)2 + td (y, x1)

2 − t(1− t)d (x0, x1)2 ,

for each geodesic x : [0, 1]→ H.
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Proximal point algorithm

Let f : H → (−∞,∞] be convex lsc.

Optimization problem: min
x∈H

f(x).

Recall: no (sub)differential, no shooting (singularities).

Implicit methods are appropriate. The PPA generates a sequence

xi := Jλi (xi−1) := argmin
y∈H

[
f(y) +

1

2λi
d(y, xi−1)

2

]
,

where x0 ∈ H is a given starting point and λi > 0, for each i ∈ N.
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Convergence of proximal point algorithm

Theorem (M.B., 2011)

Let f : H → (−∞,∞] be a convex lsc function attaining its
minimum. Given x0 ∈ H and (λi) such that

∑∞
1 λi =∞, the PPA

sequence (xi) converges to a minimizer of f.

(Resolvents are firmly nonexpansive - cheap version for λi = λ.)

Disadvantage: The resolvents

xi := Jλi (xi−1) := argmin
y∈H

[
f(y) +

1

2λi
d(y, xi−1)

2

]
,

are often difficult to compute.
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Splitting proximal point algorithm

Let f1, . . . , fN be convex lsc and consider

f(x) :=

N∑
n=1

fn(x), x ∈ H.

Example (Median and mean)

fn := d (·, an) , fn := d (·, an)2 .

Key idea: apply resolvents Jnλ ’s of fn’s in a cyclic or random
order.
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Splitting proximal point algorithm

Let x0 ∈ H be a starting point. For each k ∈ N0 we apply
resolvents in cyclic order:

xkN+1 := J1
λk

(xkN ) ,

xkN+2 := J2
λk

(xkN+1) ,

...

xkN+N := JNλk (xkN+N−1) ,

or in random order:

xi+1 := Jriλi (xi) ,

where (ri) are random variables with values in {1, . . . , N}.



Convergence of splitting proximal point algorithm

Theorem (Cyclic order version + Random order version)

Assume that fn are Lipschitz (or locally Lipschitz and the
minimizing sequence is bounded). Then

1 the cyclic PPA sequence converges to a minimizer of f

2 the random PPA sequence converges to a minimizer of f
almost surely.

Assumptions are satisfied for

f(x) :=

N∑
n=1

wnd (x, an)
p , x ∈ H,

where p ∈ [1,∞).
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Splitting proximal point algorithm (for mean)

Hence instead of computing (the usual PPA)

xi+1 := argmin
z∈H

[
N∑
n=1

d (z, an)
2 +

1

2λi
d (z, xi)

2

]
,

we are to minimize the function

xi+1 := argmin
z∈H

[
d (z, an)

2 +
1

2λi
d (z, xi)

2

]
,

where an are chosen in a cyclic or random order.

This is one-dimensional problem!

=⇒ xi+1 is a convex combination of an and xi.
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Left: One of many evolutionary trees

Right: A picture of an evolutionary tree by Charles Darwin (1837)



Billera-Holmes-Vogtmann tree space Td
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Figure: 5 out of 15 orthants of T4



Billera-Holmes-Vogtmann tree space Td

Figure: A finite set of trees in T4



Billera-Holmes-Vogtmann tree space Td

Figure: Consider the most frequent tree topology only



Computing the mean: Random order version

Algorithm (SPPA with fn := d(·, Tn)2)

Input: T1, . . . , TN ∈ Td
Step 1: S1 := T1 and i := 1

Step 2: choose r ∈ {1, . . . , N} at random
Step 3: Si+1 :=

1
i+1Tr +

i
i+1Si

Step 4: i := i+ 1

Step 5: go to Step 2

Geodesics can be computed in polynomial time:

The Owen-Provan algorithm (2011)
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Le Big Data

Space Td : orthant dimension = d− 2, # of orthants = (2d− 3)!!

The actual dimension of Td is d+ 1 + (d− 2)(2d− 3)!!

# of trees = N (e.g. coming from an MCMC simulation)

Our computation: d = 12 hence dim ≈ 1011 and N = 105
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Resuls (courtesy of Philipp Benner)
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Resuls (courtesy of Philipp Benner) . . . continued.

Squirrel
Guinea pig
Kangaroo rat
Mouse

Rat
Human
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Figure: Approximation of the mean of the 100,000 trees.
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