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Introduction

• We proposed a stochastic gradient algorithm on a specific
manifold for matrix regression in:

• Regression on fixed-rank positive semidefinite matrices: a
Riemannian approach, Meyer, Bonnabel and Sepulchre,
Journal of Machine Learning Research, 2011.

• Compete(ed) with (then) state of the art for low-rank
Mahalanobis distance and kernel learning

• Convergence then left as an open question
• The material of today’s presentation is the paper

Stochastic gradient descent on Riemannian manifolds,
IEEE Trans. on Automatic Control, 2013.

• Bottou and Bousquet have recently popularized SGD in
machine learning as randomly picking the data is a way to
handle ever-increasing datasets.



Outline

1 Stochastic gradient descent

• Introduction and examples
• Standard convergence analysis (due to L. Bottou)

2 Stochastic gradient descent on Riemannian manifolds

• Introduction
• Results

3 Examples



Classical example

Linear regression: Consider the linear model

y = xT w + ν

where x ,w ∈ Rd and y ∈ R and ν ∈ R a noise.

• examples: z = (x , y)

• loss (prediction error):

Q(z,w) = (y − ŷ)2 = (y − xT w)2

• cannot minimize expected risk C(w) =
∫

Q(z,w)dP(z)

• minimize empirical risk instead Ĉn(w)=1
n
∑n

i=1 Q(zi ,w).



Gradient descent
Batch gradient descent : process all examples together

wt+1 = wt − γt∇w

(
1
n

n∑
i=1

Q(zi ,wt )

)
Stochastic gradient descent: process examples one by one

wt+1 = wt − γt∇wQ(zt ,wt )

for some random example zt = (xt , yt ).

⇒ well known identification algorithm for Wiener- ARMAX
systems

yt =
n∑
1

aiyt−i +
m∑
1

biut−i + vt = ψT
t w + vt ,

Q(yt ,wt ) = (yt − ψT
t wt )
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Stochastic versus online

Stochastic: examples drawn randomly from a finite set
• SGD minimizes the empirical risk

Online: examples drawn with unknown dP(z)

• SGD minimizes the expected risk (+ tracking property)

Stochastic approximation: approximate a sum by a stream of
single elements



Stochastic versus batch

SGD can converge very slowly: for a long sequence

∇wQ(zt ,wt )

may be a very bad approximation of

∇w Ĉn(wt ) = ∇w

(
1
n

n∑
i=1

Q(zi ,wt )

)

SGD can converge very fast when there is redundancy

• extreme case z1 = z2 = · · ·



Some examples

Least mean squares:

• Loss: Q(z,w) = (y − ŷ)2 = (y − xT w)

• Update: wt+1 = wt − γt∇wQ(zt ,wt ) = wt − γt (yt − ŷt )xt

Robbins-Monro algorithm (1951): C smooth with a unique
minimum⇒ the algorithm converges in L2

k-means: McQueen (1967)

• Procedure: pick zt , attribute it to wk

• Update: wk
t+1 = wk

t + γt (zt − wk
t )



Some examples

Ballistics example (old). Early adaptive control

• optimize the trajectory of a projectile in fluctuating wind
• successive gradient corrections on the launching angle
• with γt → 0 it will stabilize to an optimal value



Another example: mean

Computing a mean: Total loss 1
n
∑

i‖zi − w‖2

Minimum: w − 1
n
∑

i zi = 0 i.e. w is the mean of the points zi

Stochastic gradient: wt+1 = wt − γt (wt − zi) where zi
randomly picked3

3what if ‖‖ is replaced with some more exotic distance ?
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Notation

Expected cost:

C(w) := Ez(Q(z,w)) =

∫
Q(z,w)dP(z)

Approximated gradient under the event z denoted by H(z,w)

EzH(z,w) = ∇(

∫
Q(z,w)dP(z)) = ∇C(w)

Stochastic gradient update: wt+1 ← wt − γtH(zt ,wt )



Convergence results

Convex case: known as Robbins-Monro algorithm.
Convergence to the global minimum of C(w) in mean, and
almost surely.

Nonconvex case. C(w) is generally not convex. We are
interested in proving
• almost sure convergence
• a.s. convergence of C(wt )

• ... to a local minimum
• ∇C(wt )→ 0 a.s.

Provable under a set of reasonable assumptions



Assumptions

Step sizes: the steps must decrease. Classically∑
γ2

t <∞ and
∑

γt = +∞

The sequence γt = t−α, provides examples for 1
2 < α ≤ 1.

Cost regularity: averaged loss C(w) 3 times differentiable
(relaxable).

Sketch of the proof
1 confinement: wt remains a.s. in a compact.
2 convergence: ∇C(wt )→ 0 a.s.



Confinement

Main difficulties:

1 Only an approximation of the cost is available
2 We are in discrete time

Approximation: the noise can generate unbounded
trajectories with small but nonzero probability.

Discrete time: even without noise yields difficulties as there is
no line search.

SO ? : confinement to a compact holds under a set of
assumptions: well, see the paper4 ...

4L. Bottou: Online Algorithms and Stochastic Approximations. 1998.



Convergence (simplified)

Confinement
• All trajectories can be assumed to remain in a compact set
• All continuous functions of wt are bounded

Convergence

Letting ht = C(wt ) > 0, second order Taylor expansion:

ht+1 − ht ≤ −2γtH(zt ,wt )∇C(wt ) + γ2
t ‖H(zt ,wt )‖2K1

with K1 upper bound on ∇2C and ‖H(zt ,wt )‖2 < A.



Convergence (in a nutshell)
We have just proved

ht+1 − ht ≤ −2γtH(zt ,wt )∇C(wt ) + γ2
t AK1

Conditioning w.r.t. Ft = {z0, · · · , zt−1,w0, · · · ,wt} and letting

gt := ht +
∞∑
t

γ2AK1 ≥ 0

we have E [gt+1 − gt |Ft ] ≤ −2γt‖∇C(wt )‖2︸ ︷︷ ︸
this term ≤ 0

.

Thus gt supermartingale so it converges a.s. and

0 ≤
∑

t

2γt‖∇C(wt )‖2 <∞

As
∑
γt =∞ we have ∇C(wt ) converges a.s. to 0.
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Connected Riemannian manifold
Riemannian manifold: local coordinates around any point

Tangent space:

Riemmanian metric: scalar product 〈u, v〉g on the tangent
space



Riemannian manifolds

Riemannian manifold carries the structure of a metric space
whose distance function is the arclength of a minimizing path
between two points. Length of a curve c(t) ∈M

L =

∫ b

a

√
〈ċ(t), ċ(t))〉gdt =

∫ b

a
‖ċ(t)‖dt

Geodesic: curve of minimal length joining sufficiently close x
and y .

Exponential map: expx (v) is the point z ∈M situated on the
geodesic with initial position-velocity (x , v) at distance ‖v‖ of x .



Consider f :M→ R twice differentiable.

Riemannian gradient: tangent vector at x satisfying

d
dt
|t=0f (expx (tv)) = 〈v ,∇f (x)〉g

Riemannian Hessian: based on the Taylor expansion

f (expx (tv)) = t〈v ,∇f (x)〉g +
1
2

t2vT [Hess f (x)]v + O(t3)

Second order Taylor expansion:

f (expx (tv))− f (x) ≤ t〈v ,∇f (x)〉g +
t2

2
‖v‖2gk

where k is a bound on the hessian along the geodesic.
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Riemannian SGD onM
Riemannian approximated gradient: Ez(H(zt ,wt )) = ∇C(wt )
a tangent vector !

Stochastic gradient descent onM: update

wt+1 ← expwt
(−γtH(zt ,wt ))

wt+1 must remain onM!
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Convergence

Using the same maths but on manifolds, we have proved:

Theorem 1: confinement and a.s. convergence hold under
hard to check assumptions linked to curvature.

Theorem 2: if the manifold is compact, the algorithm is proved
to a.s. converge under painless conditions.

Theorem 3: same as Theorem 2, where a first order
approximation of the exponential map is used.



Theorem 3

Example of first-order approximation of the exponential map:

The theory is still valid ! (as the step→ 0)
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General method

Four steps:

1 identify the manifold and the cost function involved
2 endow the manifold with a Riemannian metric and an

approximation of the exponential map
3 derive the stochastic gradient algorithm
4 analyze the set defined by ∇C(w) = 0.



Considered examples

• Oja algorithm and dominant subspace tracking
• Matrix geometric means
• Amari’s natural gradient
• Learning of low-rank matrices
• Consensus and gossip on manifolds



Oja’s flow and online PCA
Online principal component analysis (PCA): given a stream
of vectors z1, z2, · · · with covariance matrix

E(ztzT
t ) = Σ

identify online the r -dominant subspace of Σ.

Goal: reduce online the dimen-
sion of input data entering a pro-
cessing system to discard lin-
ear combination with small vari-
ances. Applications in data
compression etc.



Oja’s flow and online PCA

Search space: V ∈ Rr×d with orthonormal columns. VV T is a
projector identified with an element of the Grassman manifold
possessing a natural metric.

Cost: C(V ) = −Tr(V T ΣV ) = Ez‖VV T z − z‖2 + cst

Riemannian gradient: (I − VtV T
t )ztzT

t Vt

Exponential approx: RV (∆) = V + ∆ plus orthonormalisation

Oja flow for subspace tracking is recovered

Vt+1 = Vt − γt (I − VtV T
t )ztzT

t Vt plus orthonormalisation.

Convergence is recovered within our framework (Theorem 3).



Considered examples

• Oja algorithm and dominant subspace tracking
• Positive definite matrix geometric means
• Amari’s natural gradient
• Learning of low-rank matrices
• Decentralized covariance matrix estimation



Filtering in the cone P+(n)

Vector-valued image and tensor computing
Results of several filtering methods on a 3D DTI of the brain5:

Figure: Original image “Vectorial" filtering “Riemannian" filtering

5Courtesy from Xavier Pennec (INRIA Sophia Antipolis)



Matrix geometric means

Natural geodesic distance d in P+(n).

Karcher mean: minimizer of C(W ) =
∑N

i=1 d2(Zi ,W ).

No closed form solution of the Karcher mean problem.

A Riemannian SGD algorithm was recently proposed6.

SGD update: at each time pick Zi and move along the
geodesic with intensity γtd(W ,Zi) towards Zi

Convergence can be recovered within our framework.

6Arnaudon, Marc; Dombry, Clement; Phan, Anthony; Yang, Le Stochastic
algorithms for computing means of probability measures Stochastic
Processes and their Applications (2012)
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Amari’s natural gradient

Considered problem: zt are realizations of a parametric
model with parameter w ∈ Rn and pdf p(z; w). Let

Q(z,w) = −l(z; w) = − log(p(z; w))

Cramer-Rao bound: any unbiased estimator ŵ of w based on
the sample z1, · · · , zk satisfies

Var(ŵ) ≥ 1
k

G(w)−1

with G(w) the Fisher Information Matrix.



Amari’s natural gradient

Fisher Information (Riemannian) Metric at w :

〈u, v〉w = uT G(w)v

Riemannian gradient of Q(z,w) = natural gradient

−G−1(w)∇w l(z,w)

Exponential approximation: simple addition Rw (u) = w + u.
Taking γt = 1/t we recover the celebrated

Amari’s natural gradient: wt+1 = wt − 1
t G−1(wt )∇w l(zt ,wt ).

Fits in our framework and a.s. convergence is recovered



Considered examples

• Oja algorithm and dominant subspace tracking
• Positive definite matrix geometric means
• Amari’s natural gradient
• Learning of low-rank matrices
• Decentralized covariance matrix estimation



Mahalanobis distance learning
Mahalanobis distance: parameterized by a positive
semidefinite matrix W (inv. of cov. matrix)

d2
W (xi , xj) = (xi − xj)

T W (xi − xj)

Learning: Let W = GGT . Then d2
W simple Euclidian squared

distance for transformed data x̃i = Gxi . Used for classification



Mahalanobis distance learning

Goal: integrate new constraints to an existing W
• equality constraints: dW (xi , xj) = y
• similarity constraints: dW (xi , xj) ≤ y
• dissimilarity constraints: dW (xi , xj) ≥ y

Computational cost significantly reduced when W is low rank !



Interpretation and method
One could have projected everything on a horizontal axis ! For
large datasets low rank allows to derive algorithm with linear
complexity in the data space dimension d .

Four steps:

1 identify the manifold and the cost function involved
2 endow the manifold with a Riemannian metric and an

approximation of the exponential map
3 derive the stochastic gradient algorithm
4 analyze the set defined by ∇C(w) = 0.



Geometry of S+(d , r)

Semi-definite positive matrices of fixed rank

S+(d , r) = {W ∈ Rd×d ,W = W T ,W � 0, rank W = r}

Regression model: ŷ = dW (xi , xj) = (xi − xj)
T W (xi − xj),

Risk: C(W ) = E((ŷ − y)2)

Catch: Wt − γt∇Wt ((ŷt − yt )
2) has NOT same rank as Wt .

Remedy: work on the manifold !
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Decentralized covariance estimation

Set up: Consider a sensor network, each node i having
computed its own empirical covariance matrix Wi,0 of a process.

Goal: Filter the fluctuations out by finding an average
covariance matrix.

Constraints: limited communication, bandwith etc.

Gossip method: two random neighboring nodes communicate
and set their values equal to the average of their current values.
⇒ should converge to a meaningful average.

Alternative average why not the midpoint in the sense of
Fisher-Rao distance (leading to Riemannian SGD)

d(Σ1,Σ2) ≈ KL(N (0,Σ1) || N (0,Σ2))



Example: covariance estimation

Conventional gossip at each step the usual average
1
2(Wi,t + Wj,t ) is a covariance matrix, so the algorithms can be
compared.

Results: the proposed algorithm converges much faster !



Conclusion

We proposed an intrinsic SGD algorithm. Convergence was
proved under reasonable assumptions. The method has
numerous applications.

Future work includes:
• better understand consensus on hyperbolic spaces
• speed up convergence via Polyak-Ruppert averaging

w t =
∑t−1

i=0 wi : generalization to manifolds non-trivial
• tackle new applications: identifying rotations in robotics


