
A Matlab toolbox to make optimization on manifolds
feel as simple as unconstrained optimization

A project of the RANSO group

Nicolas Boumal and Bamdev Mishra

P.-A. Absil, Y. Nesterov and R. Sepulchre

Manopt

What is the minimal framework you need
for steepest descent optimization?

To optimize, we only need the search space
to be a Riemannian manifold

We need…

A notion of directions along which we can move
tangent space, tangent vector

A notion of steepest descent direction

inner product, gradient

A means of moving along a direction
Geodesics, retractions

min
𝑥∈𝑀
𝑓(𝑥)

The theory is mature at this point.

What’s been missing is matching software.

A Matlab toolbox to make optimization on manifolds
feel as simple as unconstrained optimization

With generic solvers,
a library of manifolds and
diagnostics tools

Manopt

Low-rank matrix completion

Find a matrix X of rank r which matches A
as well as possible on a subset of entries.

min
𝑋∈𝑀
 𝑋𝑖𝑗 − 𝐴𝑖𝑗

2

𝑖,𝑗 ∈ Ω

𝑀 = {𝑋 ∈ ℝ𝑚×𝑛 ∶ rank 𝑋 = 𝑟}

Independent component analysis

Find a demixing matrix X with unit-norm
columns which simultaneously diagonalizes
given 𝐶𝑖’s as well as possible.

min
𝑋∈𝑀
 offdiag(𝑋𝑇𝐶𝑖𝑋)

2

 𝑖=1,…,𝑁

𝑀 = {𝑋 ∈ ℝ𝑛×𝑝 ∶ ddiag 𝑋𝑇𝑋 = 𝐼𝑝}

Distance matrix completion

Find a Euclidean distance matrix X which
matches A as well as possible on a subset of
entries.

min
𝑋∈𝑀
 𝑋𝑖𝑗 − 𝐴𝑖𝑗

2

𝑖,𝑗 ∈ Ω

𝑀 = {𝑋 ∈ ℝ𝑛×𝑛 ∶ 𝑞1, … , 𝑞𝑛 ∈ ℝ
𝑝 and 𝑋𝑖𝑗 = 𝑞𝑖 − 𝑞𝑗

2
}

Estimation of rotations

min
𝑅1,…,𝑅𝑁∈𝑀

 𝑅𝑖𝑅𝑗
𝑇 − 𝐻𝑖𝑗

2

𝑖,𝑗 ∈ Ω

𝑀 = {𝑄 ∈ ℝ𝑛×𝑛 ∶ 𝑄𝑇𝑄 = 𝐼 anddet 𝑄 = +1}

Find rotation matrices Ri which match
measurements of relative rotations
𝐻𝑖𝑗 ≈ 𝑅𝑖𝑅𝑗

𝑇 as well as possible.

Example code for dominant eigenvectors

max
𝑥

𝑥𝑇𝐴𝑥

𝑥𝑇𝑥

Example code for dominant eigenvectors

max
𝑥 =1
 𝑥𝑇𝐴𝑥

grad 𝑓 𝑥 = (𝐼 − 𝑥𝑥𝑇)𝛻𝑓 𝑥

𝑓 𝑥 = 𝑥𝑇𝐴𝑥

𝛻𝑓 𝑥 = 2𝐴𝑥

𝑀 = {𝑥 ∈ ℝ𝑛 ∶ 𝑥𝑇𝑥 = 1}

import manopt.solvers.trustregions.*;

import manopt.manifolds.sphere.*;

import manopt.tools.*;

% Generate the problem data.

n = 1000;

A = randn(n);

A = .5*(A+A');

% Create the problem structure.

manifold = spherefactory(n);

problem.M = manifold;

% Define the problem cost function and its gradient.

problem.cost = @(x) -x'*(A*x);

problem.grad = @(x) manifold.egrad2rgrad(x, -2*A*x);

% Numerically check gradient consistency.

checkgradient(problem);

Gradient check

Approximation
error

Step size in the Taylor expansion

import manopt.solvers.trustregions.*;

import manopt.manifolds.sphere.*;

import manopt.tools.*;

% Generate the problem data.

n = 1000;

A = randn(n);

A = .5*(A+A');

% Create the problem structure.

manifold = spherefactory(n);

problem.M = manifold;

% Define the problem cost function and its gradient.

problem.cost = @(x) -x'*(A*x);

problem.grad = @(x) manifold.egrad2rgrad(x, -2*A*x);

% Numerically check gradient consistency.

checkgradient(problem);

% Solve.

[x xcost info] = trustregions(problem);

 f: 1.571531e+000 |grad|: 4.456216e+001

REJ TR- k: 1 num_inner: 1 f: 1.571531e+000 |grad|: 4.456216e+001 negative curvature

acc k: 2 num_inner: 1 f: -2.147351e+001 |grad|: 3.053440e+001 negative curvature

acc k: 3 num_inner: 2 f: -3.066561e+001 |grad|: 3.142679e+001 negative curvature

acc k: 4 num_inner: 2 f: -3.683374e+001 |grad|: 2.125506e+001 exceeded trust region

acc k: 5 num_inner: 3 f: -4.007868e+001 |grad|: 1.389614e+001 exceeded trust region

acc k: 6 num_inner: 4 f: -4.237276e+001 |grad|: 9.687523e+000 exceeded trust region

acc k: 7 num_inner: 6 f: -4.356244e+001 |grad|: 5.142297e+000 exceeded trust region

acc k: 8 num_inner: 8 f: -4.412433e+001 |grad|: 2.860465e+000 exceeded trust region

acc k: 9 num_inner: 20 f: -4.438540e+001 |grad|: 3.893763e-001 reached target residual-kappa

acc k: 10 num_inner: 20 f: -4.442759e+001 |grad|: 4.116374e-002 reached target residual-kappa

acc k: 11 num_inner: 24 f: -4.442790e+001 |grad|: 1.443240e-003 reached target residual-theta

acc k: 12 num_inner: 39 f: -4.442790e+001 |grad|: 1.790137e-006 reached target residual-theta

acc k: 13 num_inner: 50 f: -4.442790e+001 |grad|: 3.992606e-010 dimension exceeded

Gradient norm tolerance reached.

Total time is 2.966843 [s] (excludes statsfun)

import manopt.solvers.trustregions.*;

import manopt.manifolds.sphere.*;

import manopt.tools.*;

% Generate the problem data.

n = 1000;

A = randn(n);

A = .5*(A+A');

% Create the problem structure.

manifold = spherefactory(n);

problem.M = manifold;

% Define the problem cost function and its gradient.

problem.cost = @(x) -x'*(A*x);

problem.grad = @(x) manifold.egrad2rgrad(x, -2*A*x);

% Numerically check gradient consistency.

checkgradient(problem);

% Solve.

[x xcost info] = trustregions(problem);

% Display some statistics.

semilogy([info.iter], [info.gradnorm], '.-');

Convergence of the trust-regions method

Gradient
norm

Iteration #

Riemannian optimization is…

Well-understood

Theory is available for many algorithms

Useful

We covered a few fashionable problems

Easy

With Manopt, you simply provide the cost

Manopt is open source and documented

www.manopt.org

