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What is the minimal framework you need 
for steepest descent optimization? 















To optimize, we only need the search space 
to be a Riemannian manifold 

We need… 
 

A notion of directions along which we can move 
tangent space, tangent vector 
 

A notion of steepest descent direction 

inner product, gradient 
 

A means of moving along a direction 
Geodesics, retractions 

min
𝑥∈𝑀
𝑓(𝑥) 



 

The theory is mature at this point. 

 
 

 

What’s been missing is matching software. 



A Matlab toolbox to make optimization on manifolds 
feel as simple as unconstrained optimization 

With generic solvers, 
a library of manifolds and 
diagnostics tools 

Manopt 



Low-rank matrix completion 

Find a matrix X of rank r which matches A 
as well as possible on a subset of entries. 

min
𝑋∈𝑀
   𝑋𝑖𝑗 − 𝐴𝑖𝑗

2

𝑖,𝑗  ∈ Ω

 

𝑀 = {𝑋 ∈ ℝ𝑚×𝑛 ∶ rank 𝑋 = 𝑟} 



Independent component analysis 

Find a demixing matrix X with unit-norm 
columns which simultaneously diagonalizes 
given 𝐶𝑖’s as well as possible. 

min
𝑋∈𝑀
   offdiag(𝑋𝑇𝐶𝑖𝑋)

2

 𝑖=1,…,𝑁

 

𝑀 = {𝑋 ∈ ℝ𝑛×𝑝 ∶ ddiag 𝑋𝑇𝑋 = 𝐼𝑝} 



Distance matrix completion 

Find a Euclidean distance matrix X  which 
matches A as well as possible on a subset of 
entries. 

min
𝑋∈𝑀
   𝑋𝑖𝑗 − 𝐴𝑖𝑗

2

𝑖,𝑗  ∈ Ω

 

𝑀 = {𝑋 ∈ ℝ𝑛×𝑛 ∶ 𝑞1, … , 𝑞𝑛 ∈ ℝ
𝑝 and 𝑋𝑖𝑗 = 𝑞𝑖 − 𝑞𝑗

2
} 



Estimation of rotations 

min
𝑅1,…,𝑅𝑁∈𝑀

   𝑅𝑖𝑅𝑗
𝑇  − 𝐻𝑖𝑗

2

𝑖,𝑗  ∈ Ω

 

𝑀 = {𝑄 ∈ ℝ𝑛×𝑛 ∶ 𝑄𝑇𝑄 = 𝐼 anddet 𝑄 = +1} 

Find rotation matrices Ri which match 
measurements of relative rotations 
𝐻𝑖𝑗 ≈ 𝑅𝑖𝑅𝑗

𝑇 as well as possible. 



Example code for dominant eigenvectors 

max
𝑥
 
𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
 



Example code for dominant eigenvectors 

max
𝑥 =1
 𝑥𝑇𝐴𝑥 

grad 𝑓 𝑥 = (𝐼 − 𝑥𝑥𝑇)𝛻𝑓 𝑥  

𝑓 𝑥 = 𝑥𝑇𝐴𝑥 

𝛻𝑓 𝑥 = 2𝐴𝑥 

𝑀 = {𝑥 ∈ ℝ𝑛 ∶ 𝑥𝑇𝑥 = 1} 



import manopt.solvers.trustregions.*; 

import manopt.manifolds.sphere.*; 

import manopt.tools.*; 

 

% Generate the problem data. 

n = 1000; 

A = randn(n); 

A = .5*(A+A'); 

 

% Create the problem structure. 

manifold = spherefactory(n); 

problem.M = manifold; 

 

% Define the problem cost function and its gradient. 

problem.cost = @(x) -x'*(A*x); 

problem.grad = @(x) manifold.egrad2rgrad(x, -2*A*x); 

 

% Numerically check gradient consistency. 

checkgradient(problem); 



Gradient check 

Approximation 
error 

Step size in the Taylor expansion 



import manopt.solvers.trustregions.*; 

import manopt.manifolds.sphere.*; 

import manopt.tools.*; 

 

% Generate the problem data. 

n = 1000; 

A = randn(n); 

A = .5*(A+A'); 

 

% Create the problem structure. 

manifold = spherefactory(n); 

problem.M = manifold; 

 

% Define the problem cost function and its gradient. 

problem.cost = @(x) -x'*(A*x); 

problem.grad = @(x) manifold.egrad2rgrad(x, -2*A*x); 

 

% Numerically check gradient consistency. 

checkgradient(problem); 

 

% Solve. 

[x xcost info] = trustregions(problem); 



                                            f:  1.571531e+000   |grad|: 4.456216e+001 

REJ TR-   k:     1     num_inner:     1     f:  1.571531e+000   |grad|: 4.456216e+001   negative curvature 

acc       k:     2     num_inner:     1     f: -2.147351e+001   |grad|: 3.053440e+001   negative curvature 

acc       k:     3     num_inner:     2     f: -3.066561e+001   |grad|: 3.142679e+001   negative curvature 

acc       k:     4     num_inner:     2     f: -3.683374e+001   |grad|: 2.125506e+001   exceeded trust region 

acc       k:     5     num_inner:     3     f: -4.007868e+001   |grad|: 1.389614e+001   exceeded trust region 

acc       k:     6     num_inner:     4     f: -4.237276e+001   |grad|: 9.687523e+000   exceeded trust region 

acc       k:     7     num_inner:     6     f: -4.356244e+001   |grad|: 5.142297e+000   exceeded trust region 

acc       k:     8     num_inner:     8     f: -4.412433e+001   |grad|: 2.860465e+000   exceeded trust region 

acc       k:     9     num_inner:    20     f: -4.438540e+001   |grad|: 3.893763e-001   reached target residual-kappa 

acc       k:    10     num_inner:    20     f: -4.442759e+001   |grad|: 4.116374e-002   reached target residual-kappa 

acc       k:    11     num_inner:    24     f: -4.442790e+001   |grad|: 1.443240e-003   reached target residual-theta 

acc       k:    12     num_inner:    39     f: -4.442790e+001   |grad|: 1.790137e-006   reached target residual-theta 

acc       k:    13     num_inner:    50     f: -4.442790e+001   |grad|: 3.992606e-010   dimension exceeded 

Gradient norm tolerance reached. 

Total time is 2.966843 [s] (excludes statsfun) 



import manopt.solvers.trustregions.*; 

import manopt.manifolds.sphere.*; 

import manopt.tools.*; 

 

% Generate the problem data. 

n = 1000; 

A = randn(n); 

A = .5*(A+A'); 

 

% Create the problem structure. 

manifold = spherefactory(n); 

problem.M = manifold; 

 

% Define the problem cost function and its gradient. 

problem.cost = @(x) -x'*(A*x); 

problem.grad = @(x) manifold.egrad2rgrad(x, -2*A*x); 

 

% Numerically check gradient consistency. 

checkgradient(problem); 

 

% Solve. 

[x xcost info] = trustregions(problem); 

 

% Display some statistics. 

semilogy([info.iter], [info.gradnorm], '.-'); 



Convergence of the trust-regions method 

Gradient 
norm 

Iteration # 



Riemannian optimization is… 

Well-understood 

Theory is available for many algorithms 
 

Useful 

We covered a few fashionable problems 
 

Easy 

With Manopt, you simply provide the cost 

 



Manopt is open source and documented 

www.manopt.org 

 

 


