Manopt

A Matlab toolbox to make optimization on manifolds
feel as simple as unconstrained optimization

What is the minimal framework you need
for steepest descent optimization?

To optimize, we only need the search space
to be a Riemannian manifold

min f (x)

We need...

A notion of directions along which we can move
tangent space, tangent vector

A notion of steepest descent direction
inner product, gradient

A means of moving along a direction |
Geodesics, retractions B et

\ N

The theory is mature at this point.

What’s been missing is matching software.

Manopt

A Matlab toolbox to make optimization on manifolds
feel as simple as unconstrained optimization

Low-rank matrix completion

. 2
min z (Xij = Ayj)

(i,j) €Q

M = {X € R™"™ : rank(X) = r}

Find a which matches A
as well as possible on a subset of entries.

Independent component analysis

. . T 2
min | Z Nlloffdlag(X C: X))l
i=1,..,

M = {X € R™P : ddiag(X"X) = I,,}

Find a demixing
which simultaneously diagonalizes
given C;’s as well as possible.

Distance matrix completion
! 2
min z (Xij = Ayj)
(i,j) EQ
2
M={XeR"Y™:qq..,q, €ERP and X;; = ||ql- - qj|| }
Find a X which

matches A as well as possible on a subset of
entries.

Estimation of rotations
min_ > [[RR]
Ry,..RNEM - H
QD eq

M={Q € R"": QTQ = anddet(Q) = +1}

Find R. which match
measurements of relative rotations

Hi; = R;R/ as well as possible.

Example code for dominant eigenvectors

xT Ax
max —
x xTx

Example code for dominant eigenvectors

max x!Ax
|x||=1

f(x) = x"TAx

Vf(x) = 2Ax grad f(x) = (I — xxDHVf(x)

import manopt.solvers.trustregions.*;
import manopt.manifolds.sphere.*;

import manopt.tools.*;

o\

Generate the problem data.
= 1000;

= randn(n) ;

= .5* (A+A");

> @ 3

% Create the problem structure.

manifold = spherefactory(n);

problem.M = manifold;

% Define the problem cost function and its gradient.
problem.cost = @ (x) -x'*(A*x);

problem.grad = @ (x) manifold.egrad2rgrad(x, -2*A*x);
% Numerically check gradient consistency.

checkgradient (problem) ;

10°

Gradient check

Approximation
error

Step size in the Taylor expansion

import manopt.solvers.trustregions.*;

import manopt.manifolds.sphere.*;

import manopt.tools.*;

o\

= 1000;
= randn (n) ;
= 5% (A+A")

> @ 3

.
4

Generate the problem data.

% Create the problem structure.

manifold = spherefactory(n);

problem.M = manifold;

% Define the
problem.cost

problem.grad

[e)

problem cost function and its

@ (x)
@ (x)

—x'"* (A*x) ;

manifold.egrad2rgrad(x,

% Numerically check gradient consistency.

checkgradient (problem) ;

o)

% Solve.

[x xcost info]

trustregions (problem) ;

gradient.

—2*A*x) ;

REJ TR-
acc
acc
acc
acc
acc
acc
acc
acc
acc
acc
acc

acc

k:

AR A A A AN A A AN A AR

O J o U W N

Ne]

10
11
12
13

num_inner:
num_inner:
num_inner:
num_inner:
num_inner:
num_inner:
num_inner:
num_inner:
num_inner:
num_inner:
num_inner:
num_inner:

num_inner:

Gradient norm tolerance reached.

Total time is 2.966843

[s] (excludes statsfun)

o b w NN

8
20
20
24
39
50

Fh ot FhoFh Fh Fh Fh Fh o Hh Fh Fh Fh R

1.571531e+000
1.571531e+000

.147351e+001
-3.
-3.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.

066561e+001
683374e+001
007868e+001
237276e+001
356244e+001
412433e+001
438540e+001
442759%9e+001
442790e+001
442790e+001
442790e+001

|grad] :
|grad] :
|grad] :
|grad] :
|grad]:
|grad]:
|grad]:
|grad]:
|grad]:
|grad]:
|grad]:
|grad] :
|grad]:
|grad]:

W P P w N oo RN W WD

.456216e+001
.456216e+001
.053440e+001
.142679e+001
.125506e+001
.389614e+001
.687523e+000
.142297e+000
.860465e+000
.893763e-001
.116374e-002
.443240e-003
.790137e-006
.992606e-010

negative curvature

negative curvature

negative curvature

exceeded trust
exceeded trust
exceeded trust
exceeded trust
exceeded trust
reached target
reached target
reached target

reached target

region
region
region
region
region
residual-kappa
residual-kappa
residual-theta

residual-theta

dimension exceeded

import manopt.solvers.trustregions.*;
import manopt.manifolds.sphere.*;

import manopt.tools.*;

o\

Generate the problem data.
= 1000;

= randn(n) ;

= .5* (A+A");

> @ 3

% Create the problem structure.
manifold = spherefactory(n);

problem.M = manifold;

[e)

problem.cost = @(x) -x'*(A*x);

% Define the problem cost function and its gradient.

problem.grad = @ (x) manifold.egrad2rgrad(x, -2*A*x);

[e)

% Numerically check gradient consistency.
checkgradient (problem) ;

% Solve.

[x xcost info] = trustregions (problem);

% Display some statistics.

semilogy([info.iter], [info.gradnorm], '

=)

Convergence of the trust-regions method
10°

Gradient
norm
10" - -
107 | |
0 4 10

lteration #

14

Riemannian optimization is...

Well-understood
Theory is available for many algorithms

Useful
We covered a few fashionable problems

Easy
With Manopt, you simply provide the cost

Manopt is open source and documented

www.manopt.org

A Tutorial & Forum A About = Contact

Download &

Get started A

Maniwhat now?

Manifolds are mathematical sets with a smooth geometry,
such as spheres. If you are facing a nonlinear (and possi-
bly nonconvex) optimization problem with nice-looking con-
straints or invariance properties, Manopt may just be the
tool for you. Check out the manifolds library to find out!

Key features

Manopt comes with a large library of manifolds and ready-
to-use Riemannian optimization algorithms. It is well docu-
mented and includes diagnostics tools to help you get
started quickly and make sure you make no mistakes
along the way. It is designed to provide great flexibility in
describing your cost function and incorporates an optional
caching system for more efficiency.

May | use it?

Sure! This is open-source software. Check out the license
and let us know how you use Manopt.

