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Riemannian geometry

The classical apparatus of (finite dimensional) riemannian geometry
starts with the definition of a metric 〈 , 〉m on the tangent bundle.

Geodesics and energy

Find the path t → γ(t) from m0 to m1
minimizing the energy

I(γ) .=
∫ 1

0
〈γ̇(t), γ̇(t)〉γ(t)dt

Figure: Path γ(t)

Critical paths from I are geodesics



Geodesic equation

Figure: Variations around γ(t)

dI
ds

(γ) = −
∫ T

0
〈D
∂t
γ̇,

∂

∂s
γ〉γ(t)dt

δI ≡ 0 for
D
dt
γ̇ ≡ 0

where D
dt = ∇γ̇ is the covariant derivative along γ

Second order EDO given γ(0), γ̇(0).



Exponential Mapping and Geodesic Shooting

Figure: Exponential mapping
and normal cordinates

This leads to the definition of the
exponential mapping

Expγ(0) : Tγ(0)M → M .

Starts at m0 = γ(0), chooses the
direction γ′(0) ∈: Tγ(0)M and shoots
along the geodesic to m1 = γ(1).

Key component of many interesting problems : Generative models,
Karcher means, parallel transport via Jacobi fields, etc.



Lagrangian Point of View

(In local coordinates)

I Constrained minimization problem
∫ 1

0 L(q(t), q̇(t))dt

with Lagrangian L(q, q̇) = 1
2 |q̇|

2
q = 1

2 (Lq q̇|q̇)
and (q0,q1) fixed

Lq codes the metric. Lq symmetric positive definite.

I Euler-Lagrange equation

∂L
∂q
− d

dt

(
∂L
∂q̇

)
= 0



From Lagrangian to Hamiltonian Variables

I Change (q, q̇) (position, velocity)→ (q,p) (position, momentum)
with

p =
∂L
∂q̇

= Lq q̇

I Euler-Lagrange equation is equivalent to the Hamiltonian
equations : 

q̇ = ∂H
∂p (q,p)

ṗ = −∂H
∂q (q,p)

where (Pontryagin Maximum Principle)

H(q,p) .= max
u

(p|u)− L(q,u) =
1
2
(Kqp|p)

Kq = L−1
q define the co-metric.

Note: ∂qH induces the derivative of Kq with respect to q.
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Parametrized shapes

The ideal mathematical setting: A smart space Q of smooth
mappings from a smooth manifold S to Rd .

Basic spaces are Emb(S,Rd ), Imm(S,Rd ) the space of smooth (say
C∞) embeddings or immersions from S to Rd . May introduce a finite
regularity k ∈ N∗ and speak about Embk (S,Rd ) and Immk (S,Rd ).

S = S1 for close curves, S = S2 for close surfaces homeomorphic to
the sphere

Nice since open subset of C∞(S,R). For k > 0, open subset of a
Banach space.



Metrics

Case of curves: S1 is the unit circle.

I L2 metric : h,h′ ∈ TqC∞(S,Rd )

〈h,h′〉q =

∫
〈h,h′〉|∂θq|dθ =

∫
S1
〈h,h′〉ds .

I Extensions in Michor and Mumford (06)

I Ḣ1 type metric :

〈h,h′〉q =

∫
S1
〈(Dsh)⊥, (Dsh′)⊥〉 + b2〈(Dsh)>, (Dsh′)>〉ds

where Ds = ∂θ/|∂θq|
I Younes’s elastic metric (Younes ’98, b = 1, d = 2), Joshi Klassen

Srivastava Jermyn ‘07 for b = 1/2 and d ≥ 2 (SRVT trick).



Metrics (Cont’d)

Parametrization invariance: ψ ∈ Diff(S)

〈h ◦ ψ,h′ ◦ ψ〉q◦ψ = 〈h,h′〉q .

I Sobolev metrics (Michor Mumford ’07; Charpiat Keriven
Faugeras ’07; Sundaramoorthi Yezzi Mennuci ’07): a0 > 0,
an > 0

〈h,h′〉q =

∫
S1

n∑
i=0

ai〈Di
sh,Dsh′〉ds .

Again, paramerization invariant metric.

I Extension for surfaces (dim(S) ≥ 2) in Bauer Harms Michor ’11.



Summary and questions

I Many possible metrics on the preshape spaces Q (how to
choose)

I Ends up with a smooth parametrization invariant metric on a
smooth preshape space Q and a riemmanian geodesic distance.

Questions: Minimal: Local existence of geodesic equations and
smoothness for smooth data ? More

1. Existence of global solution (in time) of the geodesic equation
(geodesically complete metric space) ?

2. Existence of a minimising geodesic between any two points
(geodesic metric space) ?

3. Completeness of the space for the geodesic distance (complete
metric space) ?

1-2-3 equivalents on finite dimensional riemannian manifold
(Hopf-Rinow thm)
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Few answers

I (Local solution): Basically, for Sobolev norm of order n greater
than 1, local existence of solutions of the geodesic equation if the
intial data has enough regularity (Bauer Harms Michor ’11):

k >
dim(S)

2
+ 2n + 1

I (Geodesic completeness): Global existence has been proved
recently for S = S1, d = 2 (planar shapes) and n = 2 (Bruveris
Michor Mumford ’14). Wrong for the order 1 Sobolev metric.
Mostly unkown for the other cases.

I (Geodesic metric spaces): Widely open

I (Complete metric space): No for smooth mappings (weak
metric). Seems to be open for Immk (S,Rd ) or Embk (S,Rd ) and
order k Sobolev metric.



Why there is almost no free lunch

Back to the Hamiltonian point of view.
The metric can be written (Lqh|h) with Lh an elliptic symmetric
definite diferential operator.

H(q,p) =
1
2
(Kqp|q)

where Kq = L−1
q is a pseudo-differential operator with a really intricate

dependency with the pre-shape q.



Towards shape shapes: removing parametrisation

Diff(S) as a nuisance parameter

I Diff(S): the diffeomorphism group on S (reparametrization).

I Canonical shape spaces : Emb(S,Rd )/Diff(S) or
Imm(S,Rd )/Diff(S)

[q] = {q ◦ ψ | ψ ∈ Diff(S)}

I Structure of manifold for Emb(S,Rd )/Diff(S) and
Imm(S,Rd )/Diff(S) (orbifold)

I Induced geodesic distance

dQ/Diff(S)([q0], [q1]) = inf{dQ(q0,q1 ◦ ψ) | ψ ∈ Diff(S) }



Questions: Given to two curves q0 and qtarg representing two shapes
[q0] and [qtarg ]

I Existence of an horizontal geodesic path t 7→ qt ∈ Q emanating
from q0 and of a reparametrisation path t 7→ ψt ∈ Diff(S) such
that qtarg = q1 ◦ ψ1 ?

No available shooting algorithms for parametrized curves or surfaces,
only mainly path straightening algorithms or DP algorithms that
alternate between q and ψ.

Usually, no guarantee of existence of an optimal diffeomorphic
parametrisation ψ1 (T. Younes ’97).
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Shape spaces as homogeneous spaces

Idea #1:
D’Arcy Thomspon and Grenander. Put the emphasis on the left
action of the group of diffeomorphisms on the embedding space Rd

and consider homogeneous spaces M = G.m0:

G ×M → M

Diffeomorphisms can act on almost everything
(changes of coordinates)!

Idea #2:
Put the metric on the group G (right invariance). More simple. Just
need to specify the metric at the identity.



Shape spaces as homogeneous spaces (Cont’d)

Idea #3:
Build the metric on M from the metric on G :

1. If G has a G (right)-equivariant metric :

dG(g0g,g0g′) = dG(g,g′) for any g0 ∈ G

then M inherits a quotient metric

dM(m0,m1) = inf{ dG(Id,g) | gm0 = m1 ∈ G}

2. The geodesic on Gm0 can be lifted to a geodesic in G (horizontal
lift).



Construction of right-invariant metrics

Start from a Hilbert space V ↪→ C1
0(Rd ,Rd ).

1. Integrate time dependent vector fields v(.) = (v(t))t∈[0,1] :

ġ = v ◦ g, g(0) = Id .

2. Note gv (.) the solution and

GV
.
= { gv (1) |

∫ 1

0
|v(t)|2V dt <∞ } .

dGV (g0,g1)
.
=

(
inf{
∫ 1

0
|v(t)|2V dt <∞ | g1 = gv (1) ◦ g0 }

)1/2



Basic properties

Thm (T.)
If V ↪→ C1

0(Rd ,Rd ) then

1. GV is a group of C1 diffeomorphisms on Rd .

2. GV is a complete metric space for dG

3. we have existence of a minimizing geodesic between any two
group elements g0 and g1 (geodesic metric space)

Note: GV is parametrized by V which is not a Lie algebra. Usualle GV

anddG is not explicite.

Thm (Bruveris, Vialard ’14)
If V = Hk (Rd ,Rd ) with k > d

2 + 1 then GV = Diffk (Rd ) and GV is also
geodesically complete



Finite dimensional approximations

I Key induction property for homogeneous shape spaces under
the same group G

Let G ×M ′ → M ′ and G ×M → M be defining two homegeneous
shape spaces and assume that π : M ′ → M is a onto mapping such
that

π(gm′) = gπ(m′) .

Then
dM(m0,m1) = dM′(π−1(m0), π

−1(m1)) .

Consequence: if Mn = lim ↑ M∞ we can approximate geodesics on
M∞ from geodesic on the finite dimensional approximations Mn.

Basis for landmarks based approximations of many shape spaces
of submanifolds.
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Shooting on homogeneous shape space

For (q, v) 7→ ξq(v) (infinitesimal transport) we end up with an optimal
control problem 

min
∫ 1

0 (Lv |v)dt

subject to
q(0),q(1) fixed, q̇ = ξq(v)

The solution can be written in hamiltonian form: with

H(q,p, v) = (p|ξq(v))−
1
2
(Lv |v) .

Reduction from PMP:

H(q,p) =
1
2
(K ξ∗q(p)|ξ∗q(p))

Smooth as soon as (q, v) 7→ ξq(v) is smooth. No metric derivative !
(Arguillière, Trelat, T., Younes’14)



Why shooting is good
Let consider a generic optimization problem arising from shooting:
Let z = (q,p)T , F =

(
∂pH,−∂qH

)T (R and U smooth enough)
minz(0) R(z(0)) + U(z(1))

subject to

Cz(0) = 0, ż = F (z)

Gradient scheme through a forward-backward algorithm:

I Given zn(0), shoot forward (ż = F (z)) to get zn(1).

I Set ηn(1) + dU(zn(1)) = 0 and integrate backward the adjoint
evolution until time 0

η̇ = −dF ∗(zn)η

The gradient descent direction Dn is given as

Dn = C∗λ−∇R(zn(0)) + ηn(0)



An extremely usefull remark (S. Arguillère ’14)

If J =

(
0 I
−I 0

)
, we have

F = J∇H

so that
dF = J d(∇H) = JHess(H)

Since the hessian is symmetric we get

dF ∗ = JdFJ

Hence
dF (z)∗η = J

d
dε

(F (z + εη))|ε=0J

so that we get the backward evolution at the same cost than the
forward via a finite difference scheme.



Shooting the painted bunny (fixed template)

Figure: Shooting from fixed template (painted bunny

(Charlier, Charon, T.’14)



Shooting the bunny...



Shooting the bunny...



Shooting the bunny...



Shooting the bunny...



Thank You.
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