Geodesic shooting on shape spaces

Alain Trouvé

CMLA, Ecole Normale Supérieure de Cachan

GDR MIA Paris, November 21 2014

Riemannian manifolds (finite dimensional)

Spaces spaces (intrinsic metrics)

Diffeomorphic transport and homogeneous shape spaces

Geodesic shooting on homogeneous shape spaces

Riemannian geometry

The classical apparatus of (finite dimensional) *riemannian geometry* starts with the definition of a **metric** \langle , \rangle_m on the tangent bundle.

Geodesics and energy

Find the path $t \rightarrow \gamma(t)$ from m_0 to m_1 minimizing the energy

$$I(\gamma) \doteq \int_0^1 \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_{\gamma(t)} dt$$

Critical paths from I are geodesics

Figure: Path $\gamma(t)$

Geodesic equation

$$\frac{dI}{ds}(\gamma) = -\int_0^T \langle \frac{D}{\partial t} \dot{\gamma}, \frac{\partial}{\partial s} \gamma \rangle_{\gamma(t)} dt$$

Figure: Variations around $\gamma(t)$

$$\delta I \equiv 0$$
 for $\frac{D}{dt}\dot{\gamma} \equiv 0$

where $\frac{D}{dt} = \nabla_{\dot{\gamma}}$ is the **covariant derivative** along γ

Second order EDO given $\gamma(0), \dot{\gamma}(0)$.

Exponential Mapping and Geodesic Shooting

This leads to the definition of the exponential mapping

$$Exp_{\gamma(0)}: T_{\gamma(0)}M o M$$
 .

Starts at $m_0 = \gamma(0)$, chooses the direction $\gamma'(0) \in T_{\gamma(0)}M$ and **shoots** along the geodesic to $m_1 = \gamma(1)$.

Figure: Exponential mapping and normal cordinates

Key component of many interesting problems : Generative models,

Karcher means, parallel transport via Jacobi fields, etc.

Lagrangian Point of View

(In local coordinates)

Constrained minimization problem

 $\begin{cases} \int_0^1 L(q(t), \dot{q}(t)) dt \\ \text{with Lagrangian } L(q, \dot{q}) = \frac{1}{2} |\dot{q}|_q^2 = \frac{1}{2} (L_q \dot{q} |\dot{q}) \\ \text{and } (q_0, q_1) \text{ fixed} \end{cases}$

 L_q codes the metric. L_q symmetric positive definite.

Euler-Lagrange equation

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0$$

From Lagrangian to Hamiltonian Variables

► Change (q, q) (position, velocity) → (q, p) (position, momentum) with

$$p = \frac{\partial L}{\partial \dot{q}} = L_q \dot{q}$$

Euler-Lagrange equation is equivalent to the Hamiltonian equations :

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p}(q, p) \\ \dot{p} = -\frac{\partial H}{\partial q}(q, p) \end{cases}$$

where (Pontryagin Maximum Principle)

$$H(q,p) \doteq \max_{u} (p|u) - L(q,u) = \frac{1}{2}(K_q p|p)$$

 $K_q = L_q^{-1}$ define the co-metric.

Note: $\partial_q H$ induces the derivative of K_q with respect to q.

Riemannian manifolds (finite dimensional)

Spaces spaces (intrinsic metrics)

Diffeomorphic transport and homogeneous shape spaces

Geodesic shooting on homogeneous shape spaces

Parametrized shapes

The *ideal* mathematical setting: A smart space Q of smooth mappings from a smooth manifold *S* to \mathbb{R}^d .

Basic spaces are $\text{Emb}(S, \mathbb{R}^d)$, $\text{Imm}(S, \mathbb{R}^d)$ the space of smooth (say C^{∞}) embeddings or immersions from S to \mathbb{R}^d . May introduce a finite regularity $k \in \mathbb{N}^*$ and speak about $\text{Emb}^k(S, \mathbb{R}^d)$ and $\text{Imm}^k(S, \mathbb{R}^d)$.

 $S = S^1$ for close curves, $S = S^2$ for close surfaces homeomorphic to the sphere

Nice since open subset of $C^{\infty}(S, \mathbb{R})$. For k > 0, open subset of a Banach space.

Metrics

Case of curves: S^1 is the unit circle.

▶ L^2 metric : $h, h' \in T_q C^\infty(S, \mathbb{R}^d)$

$$\langle h, h'
angle_q = \int \langle h, h'
angle | \partial_\theta q | d\theta = \int_{S^1} \langle h, h'
angle ds$$

Extensions in Michor and Mumford (06)

► H¹ type metric :

$$\langle h, h' \rangle_q = \int_{\mathcal{S}^1} \langle (D_s h)^{\perp}, (D_s h')^{\perp} \rangle + b^2 \langle (D_s h)^{\top}, (D_s h')^{\top} \rangle ds$$

where $D_s = \partial_{\theta}/|\partial_{\theta} q|$

▶ Younes's elastic metric (Younes '98, b = 1, d = 2), Joshi Klassen Srivastava Jermyn '07 for b = 1/2 and $d \ge 2$ (SRVT trick).

Metrics (Cont'd)

Parametrization invariance: $\psi \in \text{Diff}(S)$

$$\langle h \circ \psi, h' \circ \psi \rangle_{q \circ \psi} = \langle h, h' \rangle_q.$$

Sobolev metrics (Michor Mumford '07; Charpiat Keriven Faugeras '07; Sundaramoorthi Yezzi Mennuci '07): a₀ > 0, a_n > 0

$$\langle h, h' \rangle_q = \int_{S^1} \sum_{i=0}^n a_i \langle D_s^i h, D_s h' \rangle ds.$$

Again, paramerization invariant metric.

Extension for surfaces $(\dim(S) \ge 2)$ in *Bauer Harms Michor '11*.

Summary and questions

- Many possible metrics on the preshape spaces Q (how to choose)
- Ends up with a smooth parametrization invariant metric on a smooth preshape space Q and a riemmanian geodesic distance.

Questions: Minimal: Local existence of geodesic equations and smoothness for smooth data ? More

- 1. Existence of global solution (in time) of the geodesic equation (geodesically complete metric space) ?
- 2. Existence of a minimising geodesic between any two points (geodesic metric space) ?
- 3. Completeness of the space for the geodesic distance (complete metric space) ?

1-2-3 equivalents on finite dimensional riemannian manifold (Hopf-Rinow thm)

Summary and questions

- Many possible metrics on the preshape spaces Q (how to choose)
- Ends up with a smooth parametrization invariant metric on a smooth preshape space Q and a riemmanian geodesic distance.

Questions: Minimal: Local existence of geodesic equations and smoothness for smooth data ? More

- 1. Existence of global solution (in time) of the geodesic equation (geodesically complete metric space) ?
- 2. Existence of a minimising geodesic between any two points (geodesic metric space) ?
- 3. Completeness of the space for the geodesic distance (complete metric space) ?

1-2-3 equivalents on finite dimensional riemannian manifold (Hopf-Rinow thm)

Summary and questions

- Many possible metrics on the preshape spaces Q (how to choose)
- Ends up with a smooth parametrization invariant metric on a smooth preshape space Q and a riemmanian geodesic distance.

Questions: Minimal: Local existence of geodesic equations and smoothness for smooth data ? More

- 1. Existence of global solution (in time) of the geodesic equation (geodesically complete metric space) ?
- 2. Existence of a minimising geodesic between any two points (geodesic metric space) ?
- 3. Completeness of the space for the geodesic distance (complete metric space) ?

1-2-3 equivalents on finite dimensional riemannian manifold (Hopf-Rinow thm)

Few answers

(Local solution): Basically, for Sobolev norm of order n greater than 1, local existence of solutions of the geodesic equation if the initial data has enough regularity (*Bauer Harms Michor '11*):

$$k > \frac{\dim(S)}{2} + 2n + 1$$

- (Geodesic completeness): Global existence has been proved recently for S = S¹, d = 2 (planar shapes) and n = 2 (*Bruveris Michor Mumford '14*). Wrong for the order 1 Sobolev metric. Mostly unkown for the other cases.
- Geodesic metric spaces): Widely open
- ► (Complete metric space): No for smooth mappings (weak metric). Seems to be open for Imm^k(S, ℝ^d) or Emb^k(S, ℝ^d) and order k Sobolev metric.

Back to the Hamiltonian point of view.

The metric can be written $(L_q h | h)$ with L_h an elliptic symmetric definite differential operator.

$$H(q,p) = rac{1}{2}(K_q p | q)$$

where $K_q = L_q^{-1}$ is a pseudo-differential operator with a really intricate dependency with the pre-shape *q*.

Towards shape shapes: removing parametrisation

 $\operatorname{Diff}(S)$ as a nuisance parameter

- ▶ Diff(S): the diffeomorphism group on *S* (reparametrization).
- ► Canonical shape spaces : Emb(S, ℝ^d)/Diff(S) or Imm(S, ℝ^d)/Diff(S)

$$[q] = \{q \circ \psi \mid \psi \in \mathsf{Diff}(S)\}$$

- Structure of manifold for Emb(S, ℝ^d)/Diff(S) and Imm(S, ℝ^d)/Diff(S) (orbifold)
- Induced geodesic distance

 $d_{\mathcal{Q}/\mathsf{Diff}(\mathcal{S})}([q_0], [q_1]) = \inf\{d_{\mathcal{Q}}(q_0, q_1 \circ \psi) \mid \psi \in \mathsf{Diff}(\mathcal{S}) \}$

Questions: Given to two curves q_0 and q_{targ} representing two shapes $[q_0]$ and $[q_{targ}]$

Existence of an *horizontal* geodesic path t → q_t ∈ Q emanating from q₀ and of a reparametrisation path t → ψ_t ∈ Diff(S) such that q_{targ} = q₁ ∘ ψ₁ ?

No available shooting algorithms for parametrized curves or surfaces, only mainly path straightening algorithms or DP algorithms that alternate between q and ψ .

Usually, no guarantee of existence of an optimal diffeomorphic parametrisation ψ_1 (T. Younes '97).

Riemannian manifolds (finite dimensional)

Spaces spaces (intrinsic metrics)

Diffeomorphic transport and homogeneous shape spaces

Geodesic shooting on homogeneous shape spaces

Shape spaces as homogeneous spaces

Idea #1:

D'Arcy Thomspon and Grenander. Put the emphasis on the **left** action of the group of diffeomorphisms on the embedding space \mathbb{R}^d and consider homogeneous spaces $M = G.m_0$:

 $G \times M \to M$

Diffeomorphisms can act on almost everything (changes of coordinates)!

Idea #2:

Put the metric on the group G (right invariance). More simple. Just need to specify the metric at the identity.

Shape spaces as homogeneous spaces (Cont'd)

Idea #3: Build the metric on *M* from the metric on *G* :

1. If G has a G (right)-equivariant metric :

$$d_G(g_0g,g_0g')=d_G(g,g')$$
 for any $g_0\in G$

then *M* inherits a quotient metric

$$d_M(m_0, m_1) = \inf\{ d_G(\mathrm{Id}, g) \mid gm_0 = m_1 \in G \}$$

2. The geodesic on Gm_0 can be lifted to a geodesic in G (horizontal lift).

(日)

Construction of right-invariant metrics

Start from a Hilbert space $V \hookrightarrow C_0^1(\mathbb{R}^d, \mathbb{R}^d)$.

1. Integrate time dependent vector fields $v(.) = (v(t))_{t \in [0,1]}$:

$$\dot{g}=v\circ g,\;g(0)=\mathsf{Id}$$
 .

2. Note $g^{\nu}(.)$ the solution and

$$G_{\mathcal{V}} \doteq \{ g^{\mathcal{V}}(1) \mid \int_0^1 |v(t)|_{\mathcal{V}}^2 dt < \infty \}.$$

$$d_{G_V}(g_0,g_1) \doteq \left(\inf\{\int_0^1 |v(t)|_V^2 dt < \infty \mid g_1 = g^v(1) \circ g_0\}\right)^{1/2}$$

Basic properties

Thm (T.) If $V \hookrightarrow C_0^1(\mathbb{R}^d, \mathbb{R}^d)$ then

- 1. G_V is a **group** of C^1 diffeomorphisms on \mathbb{R}^d .
- 2. G_V is a complete metric space for d_G
- 3. we have existence of a minimizing geodesic between any two group elements g₀ and g₁ (geodesic metric space)

Note: G_V is parametrized by V which is not a Lie algebra. Usualle G_V and d_G is not explicite.

Thm (Bruveris, Vialard '14) If $V = H^k(\mathbb{R}^d, \mathbb{R}^d)$ with $k > \frac{d}{2} + 1$ then $G_V = \text{Diff}^k(\mathbb{R}^d)$ and G_V is also

geodesically complete

Finite dimensional approximations

Key induction property for homogeneous shape spaces under the same group G

Let $G \times M' \to M'$ and $G \times M \to M$ be defining two homegeneous shape spaces and assume that $\pi : M' \to M$ is a onto mapping such that

$$\pi(gm')=g\pi(m').$$

Then

$$d_M(m_0, m_1) = d_{M'}(\pi^{-1}(m_0), \pi^{-1}(m_1)).$$

Consequence: if $M_n = \lim \uparrow M_\infty$ we can approximate geodesics on M_∞ from geodesic on the finite dimensional approximations M_n .

Basis for **landmarks based approximations** of many shape spaces of submanifolds.

Riemannian manifolds (finite dimensional)

Spaces spaces (intrinsic metrics)

Diffeomorphic transport and homogeneous shape spaces

Geodesic shooting on homogeneous shape spaces

Shooting on homogeneous shape space

For $(q, v) \mapsto \xi_q(v)$ (infinitesimal transport) we end up with an optimal control problem

 $\begin{cases} \min \int_0^1 (Lv|v) dt \\ \text{subject to} \\ q(0), q(1) \text{ fixed}, \ \dot{q} = \xi_q(v) \end{cases}$

The solution can be written in hamiltonian form: with

$$H(q,p,v)=(p|\xi_q(v))-\frac{1}{2}(Lv|v).$$

Reduction from PMP:

$$H(q,p)=\frac{1}{2}(K\xi_q^*(p)|\xi_q^*(p))$$

Smooth as soon as $(q, v) \mapsto \xi_q(v)$ **is smooth**. No metric derivative ! (*Arguillière, Trelat, T., Younes'14*)

··· 田 · · (田 · · (田 · · (町 · · (□ ·

Why shooting is good

Let consider a generic optimization problem arising from shooting: Let $z = (q, p)^T$, $F = (\partial_p H, -\partial_q H)^T$ (*R* and *U* smooth enough)

 $\begin{cases} \min_{z(0)} R(z(0)) + U(z(1)) \\ \text{subject to} \\ Cz(0) = 0, \dot{z} = F(z) \end{cases}$

Gradient scheme through a *forward-backward* algorithm:

- Given $z_n(0)$, shoot forward $(\dot{z} = F(z))$ to get $z_n(1)$.
- Set $\eta_n(1) + dU(z_n(1)) = 0$ and integrate backward the *adjoint* evolution until time 0

$$\dot{\eta} = -dF^*(z_n)\eta$$

The gradient descent direction D_n is given as

$$D_n = C^* \lambda -
abla R(z_n(0)) + \eta_n(0)$$

An extremely usefull remark (S. Arguillère '14)

If
$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$$
, we have $F = J \nabla H$

so that

$$dF = J d(\nabla H) = J \text{Hess}(H)$$

Since the hessian is symmetric we get

$$dF^* = JdFJ$$

Hence

$$dF(z)^*\eta = J \frac{d}{d\varepsilon} (F(z + \varepsilon \eta))_{|\varepsilon=0} J$$

so that we get the backward evolution **at the same cost** than the forward via a finite difference scheme.

Shooting the painted bunny (fixed template)

Figure: Shooting from fixed template (painted bunny

(Charlier, Charon, T.'14)

(ロ) (個) (E) (E) E の

(ロ)、(部)、(E)、(E)、(E)、(O)

Thank You.

