Université de Bordeaux

Licence 3 - année 2020-2021 Structures algébriques 2 - 4TMFF502U

Devoir maison n°2

À rendre le 27 novembre (version scannée sur Moodle)

Dans ce qui suit, tous les anneaux considérés sont supposés commutatifs, et K désigne un corps.

(0) Si p est un nombre premier et A un anneau de caractéristique p, rappeler pourquoi l'application

$$\varphi_A \colon A \to A$$

$$x \mapsto x^p$$

est un morphisme d'anneaux. On dit que A est parfait lorsque φ_A est un isomorphisme. Montrer qu'un corps fini est parfait.

On fixe $P \in K[X]$. Si $P(X) = a_d X^d + \cdots + a_0 \in K[X]$, on pose $P'(X) = da_d X^{d-1} + \cdots + a_1$ (c'est le polynôme dérivé de P).

- (1) Supposons car(K) = p > 0. Montrer l'équivalence entre
 - (i) P' = 0;
 - (ii) $P \in K[X^p]$ (i.e. il existe $Q \in K[X]$ tel que $P(X) = Q(X^p)$);

et que si K est supposé parfait, ces conditions sont en outre équivalentes à

- (iii) il existe $R \in K[X]$ tel que $P(X) = R(X)^p$.
- (2) Supposons P irréductible dans K[X].
 - (a) Montrer que si car(K) = 0, alors pgcd(P', P) = 1.
 - (b) Montrer que si $\operatorname{car}(K) = p > 0$, on a $\operatorname{pgcd}(P', P) = \begin{cases} P & \text{si } P \in K[X^p] \\ 1 & \text{sinon} \end{cases}$. Si K est supposé parfait, montrer qu'on a $\operatorname{pgcd}(P', P) = 1$.
 - (c) Donner un exemple de polynôme irréductible dans $(\mathbf{Z}/p\mathbf{Z})(T)[X]$ et dont la dérivée est nulle.

Désormais, on ne suppose plus P irréductible : soit $P = \prod_{i=1}^r P_i^{\alpha_i}$ avec $P_1, \ldots, P_r \in K[X]$ irréductibles deux à deux premiers entre eux et $\alpha_1, \ldots, \alpha_r \in \mathbf{N}_{>0}$ sa factorisation en produit d'éléments irréductibles.

- (3) Exprimer P' en fonction de P_1, \ldots, P_r et $\alpha_1, \ldots, \alpha_r$; montrer que $\prod_{i=1}^r P_i^{\alpha_i 1} \mid \mathsf{pgcd}(P', P)$.
 - (a) Montrer que si $\operatorname{\mathsf{car}}(K) = 0$, on a $\operatorname{\mathsf{pgcd}}(P', P) = \prod_{i=1}^r P_i^{\alpha_i 1}$.
 - (b) Montrer que si $\operatorname{car}(K) = p > 0$, on a $\operatorname{pgcd}(P', P) = \prod_{i=1}^r P_i^{\beta_i}$ avec

$$\beta_i = \begin{cases} \alpha_i - 1 & \text{si } p \nmid \alpha_i \text{ et } P_i' \neq 0 \\ \alpha_i & \text{sinon} \end{cases}.$$

On dit que P est séparable si $\alpha_1 = \cdots = \alpha_r = 1$ (i.e. si P est sans facteur carré).

(4) Supposons K de caractéristique 0 (resp. parfait de caractéristique p > 0). Montrer que $pgcd(P', P) \in \{1, P\}$ si et seulement si P est séparable (resp. P est séparable ou P' = 0).

Ce qui précède montre que si K est de caractéristique nulle ou parfait de caractéristique p>0, la factorisation des polynômes se ramène à celle des polynômes séparables.

On suppose désormais que $K = \mathbf{Z}/p\mathbf{Z}$ et que P est séparable. On pose $A = K[X]/\langle P \rangle$.

- (5) Que vaut $\dim_K(A)$? Montrer que l'anneau A est produit de r extensions finies de K et que l'application φ_A est K-linéaire.
- (6) Posons $E = \text{Ker}(\varphi_A \text{Id}_A) \subset A$.
 - (a) Montrer que si L/K est une extension finie et $x \in L$, on a $\varphi_L(x) = x \Leftrightarrow x \in K$. En déduire que $\dim_K(E) = r$.
 - (b) Montrer que si $Q \in K[X]$ est tel que $\overline{Q} \in E$ (où \overline{Q} désigne l'image de Q dans A) et $1 \leq \deg(Q) < \deg(P)$, alors on a

$$P(X) = \prod_{\lambda \in K} \mathsf{pgcd}(P(X), Q(X) - \lambda)$$

et que ce produit est une factorisation non triviale de P dans K[X].

Cela fournit un algorithme de factorisation des polynômes à coefficients dans $K = \mathbf{Z}/p\mathbf{Z}$: on calcule la matrice de φ_A dans une base, puis le sous-espace propre associé à la valeur propre 1. S'il est de dimension 1, le polynôme P est irréductible dans K[X], sinon un vecteur propre n'appartenant pas à la droite K1 fournit une factorisation non triviale, et on peut appliquer l'algorithme sur chaque facteur. Bien entendu, l'algorithme s'étend à un corps fini K quelconque : il suffit de prendre pour φ_A l'application $x \mapsto x^q$ où q = #K.

(7) Appliquer l'algorithme à $X^p - X - 1 \in (\mathbf{Z}/p\mathbf{Z})[X]$.