Université de Bordeaux

Licence 3 - année 2021-2022 Structures algébriques 2 - 4TMFF502U

Devoir maison n°2

À rendre le 23 novembre

Exercice 1

Posons $\alpha = \sqrt{2} + \sqrt[3]{5} \in \mathbf{R}$.

- (1) Montrer que $\sqrt{2} \in \mathbf{Q}(\alpha)$.
- (2) En déduire que $\mathbf{Q}(\alpha) = \mathbf{Q}(\sqrt{2}, \sqrt[3]{5})$.
- (3) Calculer $[\mathbf{Q}(\alpha):\mathbf{Q}]$.
- (4) Montrer que le polynôme $X^3 5$ est irréductible dans $\mathbf{Q}(\sqrt{2})[X]$.
- (5) Calculer le polynôme minimal de α sur \mathbf{Q} .

Exercice 2

Soient p un nombre premier et \mathbf{F}_p le corps $\mathbf{Z}/p\,\mathbf{Z}$.

- (1) Combien existe-t-il de polynômes unitaires réductibles de degré 2 dans $\mathbf{F}_p[X]$?
- (2) Montrer qu'il existe un corps de cardinal p^2 .

Exercice 3

Posons $\zeta = e^{\frac{2i\pi}{7}} \in \mathbf{C}$.

- (1) Montrer que ζ est algébrique sur \mathbf{Q} et déterminer $[\mathbf{Q}(\zeta):\mathbf{Q}]$. (2) Déterminer le polynôme minimal de $\alpha := \zeta + \zeta^2 + \zeta^4$ sur \mathbf{Q} (indication : on pourra poser $\beta = \zeta^3 + \zeta^5 + \zeta^6$, et calculer $\alpha + \beta$ et $\alpha\beta$).
- (3) Montrer que $\mathbf{Q}(\alpha) = \mathbf{Q}(i\sqrt{7})$.
- (4) Posons $\gamma = \zeta + \zeta^6$. Expliquer pourquoi $\gamma \in \mathbf{R}$ puis pourquoi $[\mathbf{Q}(\zeta) : \mathbf{Q}(\gamma)] = 2$.
- (5) Déterminer le polynôme minimal de γ sur \mathbf{Q} .