Feuille d'exercices n° 4 bis

Irréductibilité (2)

Exercice 1.

- 1) Soient A un anneau commutatif, I et J deux idéaux de A. On note π la projection canonique de A sur A/I. Rappeler pourquoi les anneaux $\frac{A}{I+J}$ et $\frac{A/I}{\pi(J)}$ sont isomorphes.
- 2) Soient K un corps et P(X) un polynôme irréductible de K[X]. Prouver que $K[X]/\langle P(X)\rangle$ est un corps.
- 3) Soient q un entier naturel premier et $P(X) \in \mathbb{Z}[X]$ un polynôme dont la réduction modulo q est irréductible dans $\mathbb{Z}/q\mathbb{Z}[X]$. Expliquer pourquoi $\mathbb{Z}[X]/\langle q \rangle$ est isomorphe à $\mathbb{Z}/q\mathbb{Z}[X]$ et montrer à l'aide des questions précédentes que l'idéal $\langle q, P(X) \rangle$ est maximal dans $\mathbb{Z}[X]$.
- 4) Montrer que l'idéal $\langle X^3 + 8X + 15, X^4 + X^3 + 8X^2 + 23X + 22 \rangle$ est maximal dans $\mathbb{Z}[X]$.

Exercice 2.

- 1) En le réduisant modulo 2 et 3 montrer que $X^4 + 5X^2 8X + 9$ est irréductible dans $\mathbb{Z}[X]$ et dans $\mathbb{Q}[X]$.
- 2) En le réduisant modulo 2 montrer que $X^5 + 3X^4 X^2 + 1$ est irréductible dans $\mathbb{Z}[X]$ et dans $\mathbb{Q}[X]$.

Exercice 3.

Soient des entiers $n \ge 2$ et p premier > 2. On pose $P(X) = X^n + X + p$.

- 1) Soit α une racine de P(X) dans \mathbb{C} . Montrer que $|\alpha| > 1$.
- 2) En déduire que P(X) est irréductible dans $\mathbb{Z}[X]$ et dans $\mathbb{Q}[X]$.

Exercice 4.

Soient un entier $n \ge 2$ et $a_1, a_2, \dots, a_n \in \mathbb{Z}$ deux à deux distincts. Montrer que le polynôme

$$P(X) = (X - a_1)(X - a_2) \cdots (X - a_n) - 1$$

est irréductible dans $\mathbb{Z}[X]$ et dans $\mathbb{Q}[X]$.