Feuille d'exercices n° 7

Extensions cyclotomiques, corps finis

Exercice 1.

- 1) Soit un entier n > 1. Montrer que $\Phi_n(0) = 1$.
- 2) Montrer que pour tout n > 1, le polynôme $\Phi_n(X)$ est palindromique (si $\Phi_n(X) = \sum_{i=0}^r a_i X^i$ alors $a_{r-i} = a_i$ pour tout $0 \le i \le r$).

Exercice 2. Soit un entier n > 1.

- 1) Exprimer dans $\mathbb{Z}[X]$ les polynômes cyclotomiques $\Phi_8(X)$ et $\Phi_{12}(X)$.
- 2) Montrer que $\Phi_{2n}(X) = \Phi_n(-X)$ si n est impair et que $\Phi_{2n}(X) = \Phi_n(X^2)$ si n est pair.
- 3) Soit p un nombre premier qui ne divise pas n. Montrer que $\Phi_{pn}(X)\Phi_n(X) = \Phi_n(X^p)$.
- 4) Soit m le produit des facteurs premiers de n. Montrer que $\Phi_n(X) = \Phi_m(X^{\frac{n}{m}})$.
- **5)** Exprimer dans $\mathbb{Z}[X]$ les polynômes cyclotomiques $\Phi_{10}(X)$, $\Phi_{15}(X)$, $\Phi_{36}(X)$ et $\Phi_{60}(X)$.

Exercice 3.

- 1) Soit un entier n > 0. Montrer que $x_n = \cos \frac{2\pi}{n}$ est algébrique sur \mathbb{Q} et déterminer le degré de $\mathbb{Q}(x_n)/\mathbb{Q}$.
- 2) Quel est le polynôme minimal sur \mathbb{Q} de x_n pour n = 10, 12 et 15?

Exercise 4. Soit $P(X) = X^4 + X + 1 \in \mathbb{F}_2[X]$.

- 1) Montrer que P(X) est irréductible dans $\mathbb{F}_2[X]$. On pose $K = \mathbb{F}_2[X]/\langle P(X)\rangle$ et on note α la classe de X dans K.
- 2) L'anneau K est-il un corps? Quels sont le cardinal et la caractéristique de K?
- 3) Prouver que α engendre le groupe multiplicatif (K^{\times}, \times) de K.
- 4) Combien y a-t-il de générateurs de (K^{\times}, \times) ?
- 5) Soit $\beta = \alpha^2 + \alpha$. Prouver que $L = \mathbb{F}_2(\beta)$ est un sous-corps strict de K.
- 6) Déterminer Q(X) le polynôme minimal de β sur \mathbb{F}_2 , ainsi que le polynôme minimal de α sur L.
- 7) Prouver que L est un corps de décomposition de Q(X) sur \mathbb{F}_2 .
- 8) Déterminer les polynômes minimaux de tous les éléments de K.
- 9) Donner la décomposition en produit d'irréductibles de $X^{15} + 1$ dans $\mathbb{F}_2[X]$

Exercice 5. Soient p un premier impair et P(X) un diviseur irréductible de $X^4 + 1$ dans $\mathbb{F}_p[X]$. Soit d le degré de P(X). On note K le corps $\mathbb{F}_p[X]/\langle P(X)\rangle$ et α la classe de X dans K.

- 1) Quelle est la caractéristique de K? Quel est son cardinal?
- **2)** Montrer que $\alpha \in K^{\times}$ et que $(\alpha + \alpha^{-1})^2 = 2$.
- 3) Prouver que 2 est un carré dans \mathbb{F}_p si et seulement si $\alpha + \alpha^{-1} \in \mathbb{F}_p$.
- 4) Montrer que $\alpha^3 + \alpha^{-3} \neq \alpha + \alpha^{-1}$.
- 5) En déduire que 2 est un carré dans \mathbb{F}_p si et seulement si $p \equiv \pm 1 \mod 8$.

Exercice 6. Soit K un corps fini.

- 1) Montrer que pour tout $x \in K$, il existe un polynôme $P(X) \in K[X]$ tel que P(x) = 1 et P(y) = 0 pour tout $y \in K \setminus \{x\}$.
- 2) En déduire que toute fonction f de K dans K est polynomiale (il existe $P(X) \in K[X]$ tel que pour tout $x \in K$, f(x) = P(x)).
- 3) Soit n un entier ≥ 1 . Montrer que toute fonction f de K^n dans K est polynomiale (il existe $P(X_1, X_2, \ldots, X_n) \in K[X_1, X_2, \ldots, X_n]$ tel que pour tout $(x_1, x_2, \ldots, x_n) \in K^n, f(x_1, x_2, \ldots, x_n) = P(x_1, x_2, \ldots, x_n)$.

Exercice 7. Un corps commutatif K est dit parfait si tout polynôme irréductible de K[X] est à racines simples dans une clôture algébrique de K.

Soit K un corps commutatif et soit $P(X) = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_0$ un polynôme irréductible de K[X] où $n \ge 1$ et $a_n \ne 0$. On suppose que P a une racine double dans une clôture algébrique de K.

- 1) Montrer que P'=0. En déduire que tout corps de caractéristique 0 est parfait.
- 2) Dans cette question K est fini de caractéristique p.
 - (a) Prouver que p divise n et que

$$P(X) = \sum_{k=0}^{n/p} a_{kp} X^{kp}.$$

- (b) En déduire qu'il existe un polynôme $Q(X) \in K[X]$ tel que $P(X) = Q(X)^p$.
- (c) Un corps fini est-il parfait?
- 3) On prend $K = \mathbb{F}_p(Y^p)$, sous-corps du corps des fractions rationnelles $\mathbb{F}_p(Y)$ (p premier). Montrer que le polynôme $P_0(X) = X^p Y^p \in K[X]$ est irréductible et en déduire que K n'est pas parfait [on pourra observer que $\mathbb{F}_p(Y)$ est un corps de décomposition de P_0].