	ANNÉE UNIVERSITAIRE 2019 / 2020	
UnjVersite	SEssion 1 D'AUTOMNE	
de BORDEAUX	PARCOURS / ÉTAPE : 4TMA903U	Collège
Sciences et		
technologies		

Exercise 1

(1) Find the limit of the sequence of integers $(3,33,333,3333, \ldots)$ (written in base 10) in \mathbf{Q}_{5}.
(2) Let p be a prime integer and $x \in \mathbf{Z}$ such that $\operatorname{gcd}(p, x)=1$. Show that the sequence $\left(x^{p^{n}}\right)_{n \in \mathbf{Z}}^{\geqslant 0}$ converges in \mathbf{Q}_{p}. Show that the limit is a root of unity, that depends only on the image of x in \mathbf{F}_{p}^{\times}.
(3) Let p be a prime integer. Prove that $X^{p}-X-1$ is irreducible in $\mathbf{Q}_{p}[X]$.

Exercise 2

Let $(K,|\cdot|)$ be a non archimedean valued field such that $\operatorname{char}(K)=\operatorname{char}\left(\kappa_{K}\right)$. Show that if $x, y \in K$ are distinct roots of unity, then $|x-y|=1$.

Exercise 3

Show that the polynomial $\left(X^{2}-2\right)\left(X^{2}-17\right)\left(X^{2}-34\right)$ has a root in \mathbf{R} and in \mathbf{Z}_{p} for every prime p, but no root in \mathbf{Q}.

Exercise 4

Let $A=\mathbf{Z}[\sqrt{-5}]$ and $K=\operatorname{Frac}(A)=\mathbf{Q}(\sqrt{-5})$. Explain why $I=3 A+(1+\sqrt{-5}) A \subset K$ is a projective A-module. Show it explicitely as a direct factor of A^{2}. Show that it is not free.

Exercise 5

Let A be a Dedekind ring, K its fraction field and X an indeterminate.
(1) The content of a polynomial $P \in A[X]$ is the ideal $\mathfrak{c}(P)$ generated by the coefficients of P. Show that $\mathfrak{c}(P Q)=\mathfrak{c}(P) \mathfrak{c}(Q)$ for all $P, Q \in A[X]$.
(2) Let $S=\{P \in A[X] ; \mathfrak{c}(P)=A\}$. Show that S is a multiplicative part in $A[X]$: let

$$
B=S^{-1}(A[X]) \subset \operatorname{Frac}(A[X])
$$

be the associated localization. Show that if $P, Q \in A[X]$ and $Q \neq 0$, then $\frac{P}{Q} \in B$ if and only if $\mathfrak{c}(P) \subset \mathfrak{c}(Q)$. (3) Show that $K \cap B=A$. Let $J \subset B$ be an ideal: show that $J=I B$ where $I=J \cap A$, and that the map $I \mapsto I B$ is a bijection between the set of ideals of A onto the set of ideals of B.
(4) Prove that B is a PID.

Exercise 6

Show that every non-trivial non archimedean absolute value on \mathbf{R} has divisible value group and algebraically closed residue field.

