Université ®ORDEAUX	ANNÉE UNIVERSITAIRE 2019 / 2020 SESSION 1 D'AUTOMNE PARCOURS / ÉTAPE : 4TMA903U Code UE : 4TTN901S, 4TTN901S Épreuve : Algebraic number theory Due date: 2019/10/21	Collège Sciences et technologies
-------------------------------	--	--

Exercise 1

(1) Find the limit of the sequence of integers $(3, 33, 333, 3333, \ldots)$ (written in base 10) in \mathbf{Q}_5 . (2) Let p be a prime integer and $x \in \mathbf{Z}$ such that gcd(p, x) = 1. Show that the sequence $(x^{p^n})_{n \in \mathbf{Z}_{\geq 0}}$ converges in \mathbf{Q}_p . Show that the limit is a root of unity, that depends only on the image of x in \mathbf{F}_p^{\times} . (3) Let p be a prime integer. Prove that $X^p - X - 1$ is irreducible in $\mathbf{Q}_p[X]$.

Exercise 2

Let (K, |.|) be a non-archimedean valued field such that $char(K) = char(\kappa_K)$. Show that if $x, y \in K$ are distinct roots of unity, then |x - y| = 1.

Exercise 3

Show that the polynomial $(X^2 - 2)(X^2 - 17)(X^2 - 34)$ has a root in **R** and in **Z**_p for every prime p, but no root in **Q**.

Exercise 4

Let $A = \mathbb{Z}\left[\sqrt{-5}\right]$ and $K = \operatorname{Frac}(A) = \mathbb{Q}(\sqrt{-5})$. Explain why $I = 3A + (1 + \sqrt{-5})A \subset K$ is a projective A-module. Show it explicitly as a direct factor of A^2 . Show that it is not free.

Exercise 5

Let A be a Dedekind ring, K its fraction field and X an indeterminate. (1) The *content* of a polynomial $P \in A[X]$ is the ideal $\mathfrak{c}(P)$ generated by the coefficients of P. Show that $\mathfrak{c}(PQ) = \mathfrak{c}(P)\mathfrak{c}(Q)$ for all $P, Q \in A[X]$.

(2) Let $S = \{P \in A[X]; \mathfrak{c}(P) = A\}$. Show that S is a multiplicative part in A[X]: let

$B=S^{-1}(A[X])\subset {\rm Frac}(A[X])$

be the associated localization. Show that if $P, Q \in A[X]$ and $Q \neq 0$, then $\frac{P}{Q} \in B$ if and only if $\mathfrak{c}(P) \subset \mathfrak{c}(Q)$. (3) Show that $K \cap B = A$. Let $J \subset B$ be an ideal: show that J = IB where $I = J \cap A$, and that the map $I \mapsto IB$ is a bijection between the set of ideals of A onto the set of ideals of B. (4) Prove that B is a PID.

Exercise 6

Show that every non-trivial non archimedean absolute value on \mathbf{R} has divisible value group and algebraically closed residue field.