
WITT VECTORS

OLIVIER BRINON

Abstract. These is a short introduction to Witt vectors. These notes have no originality. The main
references used were [3, Chap. II, �6], [1, Chap. IX, �1] and [2, Chap. I].

In what follows, �ring� means commutative unitary ring. Let p be a prime integer. Let X � pX0, X1, . . .q
be a indeterminate.

De�nition 1. Let n P Z¥0, the n-th Witt polynomial is

ΦnpXq � Xpn

0 � pXpn�1

1 � � � � � pn�1Xp
n�1 � pnXn �

ņ

i�0

piXpn�i

i

If A is ring, the ghost map is:

ΦA : AZ¥0 Ñ AZ¥0

a ÞÑ
�
Φnpaq

�
nPZ¥0

Lemma 2. Let A be a ring, and x, y P A such that x � y mod pA. Then xp
i

� yp
i

mod pi�1A for every
i P Z¥0.

Proof. We proceed by induction on i P Z¥0, the case i � 0 being the hypothesis. Let i P Z¥0 be such

that xp
i

� yp
i

mod pi�1A: write xp
i

� yp
i

� pi�1z with z P A. By the binomial theorem, we have

xp
i�1

�
�
yp

i

� pi�1z
�p

� yp
i�1

�
p�1°
k�1

�
p
k

�
pkpi�1qyp

ipp�kqzk � pppi�1qzp. For k P t1, . . . , p � 1u, we have

vp
��
p
k

�
pkpi�1q

�
� 1�kpi� 1q ¥ i� 2, and ppi� 1q ¥ i� 2 (because p ¥ 2), so xp

i�1

� yp
i�1

mod pi�2A. �

Lemma 3. (Dwork). Let ϕ : AÑ A be a ring homomorphism such that ϕpaq � ap mod pA for all a P A.
Then a sequence pxnqnPZ¥0

P AZ¥0 is in the image of ΦA if and only if ϕpxnq � xn�1 mod pn�1A for all
n P Z¥0.

Proof.  As ϕ is a ring homomorphism, we have ϕpΦnpaqq �
n°
i�0

piϕpaiq
pn�i

for all a � panqnPZ¥0
. As

ϕpaiq � api mod pA, we have ϕpaiq
pn�i

� ap
n�1�i

i mod pn�1�iA for all i P t0, . . . , nu by lemma 2. This

implies that ϕpΦnpaqq �
n°
i�0

piap
n�1�i

i mod pn�1A, i.e. ϕpΦnpaqq � Φn�1paq mod pn�1A.

 Conversely, assume that pxnqnPZ¥0
P AZ¥0 satis�es ϕpxnq � xn�1 mod pn�1A for all n P Z¥0: we

construct a � panqnPZ¥0
P AZ¥0 inductively such that xn � Φnpaq for all n P Z¥0. Put a0 � x0 P A.

Let n P Z¥0 be such that a0, . . . , an P A have been constructed such that for all k P t0, . . . , nu, we have

xk � Φkpa0, . . . , akq. By the computation above, we have ϕpxnq � ϕpΦnpaqq �
n°
i�0

piap
n�1�i

i mod pn�1A

i.e. xn�1 �
n°
i�0

piap
n�1�i

i P pn�1A (since xn�1 � ϕpxnq � 0 mod pn�1A): there exists an�1 P A (that may

not be unique when A has p-torsion) such that xn�1 �
n�1°
i�0

piap
n�1�i

i � Φn�1pa0, . . . , an�1q. �

Let Y � pY0, Y1, . . .q be a indeterminate.

Proposition 4. (cf [3, Chap. II, �6, Theorem 5]). There exist unique sequences of polynomials

pSnqnPZ¥0
, pPnqnPZ¥0

P ZrX,Y sZ¥0
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2 Witt vectors

and pInqnPZ¥0 P ZrXsZ¥0 such that:

SnpX,Y q, PnpX,Y q P ZrX0, . . . , Xn, Y0, . . . , Yns

InpXq P ZrX0, . . . , Xns

Φn
�
S0pX,Y q, . . . , SnpX,Y q

�
� ΦnpXq � ΦnpY q

Φn
�
P0pX,Y q, . . . , PnpX,Y q

�
� ΦnpXqΦnpY q

Φn
�
I0pXq, . . . , InpXq

�
� �ΦnpXq

Proof.  Let A � ZrX,Y s be the polynomial ring. Denote by ϕ : A Ñ A the unique ring endomorphism
such that ϕpxnq � Xp

n and ϕpYnq � Y pn for all n P Z¥0. We have ϕpaq � ap mod pA for all a P A. As
ϕ is a ring endomorphism and Φn has integral coe�cients, we have ϕpΦnpXq � ΦnpY qq � ΦnpϕpXqq �
ΦnpϕpY qq (resp. ϕpΦnpXqΦnpY qq � ΦnpϕpXqqΦnpϕpY qq, resp. ϕp�ΦnpXqq � �ΦnpϕpXqq) for all n P Z¥0.
As ΦnpϕpXqq � Φn�1pXq � pn�1Xn�1 and ΦnpϕpY qq � Φn�1pY q � pn�1Yn�1 by de�nition, this implies
that ϕpΦnpXq � ΦnpY qq � Φn�1pXq � Φn�1pY q mod pn�1A (resp. ϕpΦnpXqΦnpY qq � Φn�1pXqΦn�1pY q
mod pn�1A, resp. ϕp�ΦnpXqq � �Φn�1pXq mod pn�1A) for all n P Z¥0. Lemma 3 thus implies that
ΦApXq�ΦApY q, ΦApXqΦApY q and �ΦApXq belong to the image of ΦA, which precisely means the existence
of the sequences of polynomials pSnqnPZ¥0 , pPnqnPZ¥0 P ZrX,Y sZ¥0 and pInqnPZ¥0 P ZrXsZ¥0 .
 The unicity is obvious in Zrp�1srX,Y s by induction. �

Example 5. One has #
S0pX0, Y0q � X0 � Y0

P0pX0, Y0q � X0Y0

and $&
%S1pX0, X1, Y0, Y1q � X1 � Y1 �

p�1°
i�1

1
p

�
p
i

�
Xi

0Y
p�i
0

P1pX0, X1, Y0, Y1q � X1Y
p
0 �Xp

0Y1 � pX1Y1

De�nition 6. Let A be a ring. Put
WpAq � AZ¥0

(as a set). If a � pa0, a1, . . .q, b � pb0, b1, . . .q PWpAq, put

a� b �
�
Snpa, bq

�
nPZ¥0

a.b �
�
Pnpa, bq

�
nPZ¥0

�a �
�
Inpaq

�
nPZ¥0

Remark 7. The map ΦA : AZ¥0 Ñ AZ¥0 above is seen as a map ΦA : WpAq Ñ AZ¥0 .

Proposition 8. (1) A ÞÑ pWpAq,�, .q is a functor on Ring to the category of sets endowed with two
composition laws.
(2) If p is not a zero-divisor (resp. is a unit) in A, then ΦA is injective (resp. bijective).
(3) pWpAq,�, .q is a commutative ring with zero element 0 � p0, 0, . . .q and unit p1, 0, 0, . . .q. The map ΦA
is a ring homomorphism.

Proof. (1) and (2) are obvious. For (3), let B Ñ A be a surjective ring homomorphism, such that p is not
a zero-divisor in B (one can take B � ZrXasaPA, and B Ñ A; Xa ÞÑ a). As ΦB is injective, pWpBq,�, .q
identi�es (via ΦB) with a subring of BZ¥0 (with the product structure). Since B Ñ A is surjective, so is
WpBq ÑWpAq, and pWpAq,�, .q ful�lls the ring axioms. �

De�nition 9. Let A be a ring. The Teichmüller representative of a P A is ras :� pa, 0, 0, . . .q PWpAq.

Proposition 10. Let A be a ring. If a, b P A, then rabs � ras.rbs in WpAq.

Proof. Here again, it is enough to check the equality when A has no p-torsion, hence after applying ΦA
(since it is injective in the p-torsionfree case), but ΦAprasq � pa, ap, ap

2

, . . .q is multiplicative. �

Proposition 11. There exists a sequence pFnqnPZ¥0 P ZrXsZ¥0 such that FnpXq P ZrX0, . . . , Xn�1s and

p@n P Z¥0q Φn
�
F0pXq, . . . , FnpXq

�
� Φn�1pXq

Proof. As in the proof of proposition 4, it is enough, using lemma 3, to check that if A � ZrXs, we have
ϕpΦnpXqq � Φn�1pXq mod pn�1A for all n P Z¥0, which is trivial. Here again, the unicity in Zrp�1srXs is
obvious by induction. �
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Example 12. We have $&
%
F0pX0, X1q � Xp

0 � pX1

F1pX0, X1, X2q � Xp
1 � pX2 �

p°
i�1

�
p
i

�
pi�1Xi

1X
ppp�iq
0

De�nition 13. Let A be a ring. The Frobenius map of WpAq is

F paq �
�
F0paq, F1paq, . . .

�
Proposition 14. Let A be a ring.
(1) p@a P AqF prasq � raps.
(2) p@n P Z¥0qFnpXq � Xp

n mod pZrXs. In particular, it pA � 0, then F pa0, a1, . . .q � pap0, a
p
1, . . .q.

Proof. (1) Considering a surjective ring homomorphism B Ñ A where B has no p-torsion, which gives
rise to a surjective ring homomorphism WpBq Ñ WpAq, we may reduce to the case where A has no p-
torsion. Then ΦA : WpAq Ñ AZ¥0 is injective: it is enough to check that ΦApF prasqq � ΦApra

psq, i.e. that

Φn�1prasq � ap
n�1

� Φnpra
psq.

(2) By induction on n P Z¥0, the case n � 0 following from the equality F0pXq � Xp
0 �pX1. Let n P Z¡0 be

such that FipXq � Xp
i mod pZrXs for i P t0, . . . , n� 1u: we have FipXq

pn�i

� Xpn�1�i

i mod pn�1�i ZrXs
for i P t0, . . . , n� 1u by lemma 2, hence

Φn�1pXq � Φn
�
F0pXq, . . . , FnpXq

�
�

ņ

i�0

piFipXq
pn�i

� pnFnpXq �
n�1̧

i�0

piXpn�1�i

i mod pn�1 ZrXs

As
n�1°
i�0

piXpn�1�i

i � Φn�1pXq � pnXp
n � pn�1Xn�1, this implies that pnFnpXq � pnXp

n mod pn�1 ZrXs i.e.

FnpXq � Xp
n mod pZrXs. �

De�nition 15. Let A be a ring. The Verschiebung of a � pa0, a1, . . .q PWpAq is

V paq � p0, a0, a1, . . .q

Proposition 16. Let A be a ring and a, b PWpAq.
(1) We have #

ΦApF paqq �
�
Φ1paq,Φ2paq, . . .q � fpΦApaqq

ΦApV paqq �
�
0, pΦ0paq, pΦ1paq, . . .q � vpΦApaqq

where fpXq � pX1, X2, . . .q and vpXq � p0, pX0, pX1, . . .q.
(2) F is a ring endomorphism.
(3) V is an group endomorphism of pWpAq,�q.
(4) FV � p IdWpAq and V F paq � p0, 1, 0, . . .q.a.
(5) V pa.F pbqq � V paq.b and V paq.V pbq � pV pa.bq.
(6) F paq � ap mod pWpAq.

(7) a � ra0s � V pa1q where a1 � pa1, a2, . . .q. In particular a �
8°
n�0

V npransq.

Proof. (1) is computation. Using the usual trick, the proof of properties (2)-(7) reduces to the case when
A has no p-torsion, hence after applying ΦA since the latter is injective. (2) (resp. (3)) follows from the
fact that f (resp. v) is a ring (resp. a group) homomorphism. (4) follows from the equality f � v � p
and ΦAp0, 1, 0, 0, . . .q � p0, p, p, . . .q. (5) follows from the corresponding statements on f and v in AZ¥0 . To
prove (6), we check that ΦApF paqq � ΦApa

pq mod p ImpΦAq, i.e. that fpΦApaqq � ΦApa
pq P p ImpΦAq. By

lemma 3, this follows from the congrucences

ϕ
�
Φn�1pXq � ΦnpXq

p
�
� Φn�2pXq � Φn�1pXq

p mod pn�2 ZrXs,

which are obvious since ϕpΦnpXqq � Φn�1pXq�p
n�1Xn�1. Finally, (7) follows from the equalities Φ0paq � a0

and Φnpaq � ap
n

0 � pΦn�1pa
1q for all n P Z¡0, which precisely mean that ΦApaq � ΦApra0s � V pa1qq. �

De�nition 17. Let A be a ring. For n P Z¥0, let

FilnWpAq � V npWpAqq �
 
p0, . . . , 0, an, an�1, . . .q ; pakqk¥n P A

Z¥n
(
�WpAq.

This de�nes a decreasing �ltration on WpAq.

As V npa� bq � V npaq � V npbq and V npaq.b � V npa.Fnpbqq, FilnWpAq is an ideal of WpAq.

De�nition 18. Let A be a ring. The ring of Witt vectors of length n is WnpAq :�WpAq{FilnWpAq.
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Remark 19. In general, we have V npWpAqqV mpWpAqq � V n�mpWpAqq, so the �ltration is not compatible
with the ring structure (however this is true if pA � 0).

Proposition 20. Let A be a ring such that pA � 0.
(1) FV paq � V F paq � pa � p0, ap0, a

p
1, . . .q (so p0, 1, 0, 0 . . .q � p).

(2) V npaqV mpbq � V n�m
�
Fmpaq.Fnpbq

�
.

(3) The p-adic and the V pWpAqq-adic �ltration are the same, and �ner than that de�ned by the �ltration.
In particular, WpAq is complete and separated for the p-adic topology.

(4) If A is perfect, all these topologies are the same, and WpAq{pWpAq
�
ÑA, and(1)

a � pa0, a1, . . .q �
8̧

n�0

V npransq �
8̧

n�0

V nFn
��
ap

�n

n

��
�

8̧

n�0

pn
�
ap

�n

n

�
Proof. (1) Follows from proposition 14 (2): if a � panqnPZ¥0 P WpAq, we have F paq � pap0, a

p
1, . . .q, so

V F paq � p0, ap0, a
p
1, . . .q � FV paq, so that V F � FV � p IdWpAq.

By proposition 16 (5), we have V paq.b � V pa.F pbqq, hence V npaq.b � V npa.Fnpbqq by an immediate
induction on n P Z¥0. Applied to V mpbq instead of b, we get V npaq.V mpbq � V n

�
a.FnV mpbq

�
. As

FnV mpbq � V mFnpbq (by (1)), we have a.FnV mpbq � V mpFmpaq.Fnpbqq, hence the result.
For (3), one proves by induction that pV pWpAqqqk � pk�1V pWpAqq (using the second formula of proposition
16 (5)). As pWpAq � V F pWpAqq � V pWpAqq, one has pkWpAq � pV pWpAqqqk � pk�1

WpAq. Moreover,
we have

(�) pkWpAq � V nFnpWpAqq �
 
p0, . . . , 0, ak, ak�1, . . .q PWpAq ; p@n P Z¥0q an P A

pk
(
� FilkWpAq

so that the p-adic topology is �ner that that de�ned by the �ltration FilWpAq.
(4) follows from the fact that (�) is an equality when A is perfect. �

Exercises
(2)

Exercise 21. Let p be a prime number and A a ring of characteristic p.
(1) Show that WpAq is an integral domain if and only if A is an integral domain.
(2) Show that WpAq is reduced if and only if A is reduced.
(3) Show that A is perfect if and only if WpAq{pWpAq is reduced.

Exercise 22. Let A be a ring of characteristic p. Show that the V -adic and the p-adic topologies coincide
if and only if the map AÑ A; a ÞÑ ap is surjective.

Exercise 23. Let k be a �eld of characteristic p. Show that Wpkq is noetherian if and only if k is perfect
[hint: compute dimkpV pWpkqq{V pWpkqq

2q].

Exercise 24. Let A be a ring and p a prime number which is not a zero divisor in A. Let σ : AÑ A be an
endomorphism such that σpaq � ap mod pA for all a P A.
(1) Show that there exists a unique ring homomorphism sσ : A Ñ WpAq such that sσ � σ � FA � sσ and
Φ0 � sσ � IdA.
(2) Let B be a ring such that p is not a zero divisor in B, and σ1 : B Ñ B an endomorphism such that
σ1pbq � bp mod pB for all b P B, and u : AÑ B a ring homomorphism such that u � σ � σ1 � u. Show that
Wpuq � sσ � sσ1 � u.
(3) Let tσ : AÑWpA{pAq be the composite of sσ and the natural ring homomorphism WpAq ÑWpA{pAq.
Show that tσ induces a ring homomorphism tσ,n : A{pnAÑWnpA{pAq for all n P Z¡0.
(4) Show that tσ,n is an isomorphism when A{pA is perfect.
(5) Show that if A{pA is perfect and A is separated and complete for the p-adic topology, then tσ is an
isomorphism.

(1)Using proposition 16 (7).
(2)Mostly from Bourbaki.
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Exercise 25. Let A be a ring and p a prime number which is not a zero divisor in A.
(1) Show there exists a unique ring homomorphism sA : WpAq ÑWpWpAqq such that sA �FA � FWpAq � sA
and Φ0 � sA � IdW pAq. Show that it is the unique ring homomorphism such that Φn � sσ � FnA for all
n P Z¥0.
(2) Let A � ZrXnsnPZ¥0

and X � pXnqnPZ¥0
PWpAq. Write sApXq � psnpXqqnPZ¥0

, where snpXq PWpAq.
Show that sApaq � psnpaqqnPZ¥0

for all a � pa0, a1, . . .q PWpAq.
(3) For all ring homomorphism u : AÑ B, show that sB �Wpuq �WpWpuqq � sA.
(4) Show that the maps WpsAq � sA and sWpAq � sA from W pAq to WpWpWpAqqq are equal.

Exercise 26. Let K be a local �eld of characteristic p ¡ 0. Show that it has only one coe�cient �eld.

Exercise 27. Let pK, |.|q be a local �eld, K an algebraic closure of K, and k{κK a �nite �eld extension.
Denote by L the unique subextension of K{K that is unrami�ed and such that κL � k. Show that

L �

#
k bκK

K if charpKq � charpκKq

Wpkq bWpκKq K if charpKq � charpκKq

Exercise 28. Let Qur
p be the maximal unrami�ed extension of Qp in Qp. Show that the completion of Qur

p

for |.|p is WpFpqrp
�1s.
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