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ABSTRACT. These are the lecture notes from a M2 number theory course taught at the University of
Bordeaux. They have almost no originality. The main references used were [3], [20] and [18]. Some proofs
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1. NOTIONS ON COMMUTATIVE ALGEBRA
In what follows, A denotes a commutative ring with unit. Ring homomorphisms map units to units.
1.1. Rings.
1.1.1. Ideals.

Definition 1.1.2. An ideal of A is a subset I — A such that:

(1) (Vz,yeI)xz+yel (sothat Iis asubgroup of (A, +));

(2) WVae A)(Vxel)axel.
Given an ideal I c A, the quotient group A/I is endowed with a unique ring structure such that the
canonical map A — A/I is a ring homomorphism.

Example 1.1.3. (0) {0} is an ideal.

(1) Ais an ideal (called the unit ideal). We say that an ideal I < A is strict if T # A.

(2) Ideals of Z are of the form n Z for a unique n € Zxy.

(3) Similarly, if K is a field, nonzero ideals of K[X] are of the form P(X)K[X] for a unique monic polynomial
P(X)e K[X].

Definition 1.1.4. Let I ¢ A be a strict ideal.
(1) I is maxzimal if it is maximal (for the inclusion) among strict ideals in A.
(2) I c Ais prime if Vz,ye A)(zyel = (xeloryel)).

Example 1.1.5. e The ring A is an integral domain if and only if {0} is prime.
e nZ is prime in Z if and only if n Z is maximal if and only if n is a prime integer. Similarly, P(X)K[X]
is prime in K[X] if and only if P(X)K[X] is maximal if and only if P(X) is irreducible.

Remark 1.1.6. (1) A maximal ideal is prime.
(2) An ideal I ¢ A is maximal (reps. prime) if and only if A/T is a field (resp. an integral domain).

(3) Let A be a set and (I))xea be ideals in A. Then [ I is an ideal of A.
AEA

Theorem 1.1.7. (KRULL). Let I ¢ A be a strict ideal. There exists(’) a maximal ideal m c A such that
Icm.

Proof. Let & be the set of strict ideals J A containing I: it is non empty since I € &. We (partially) order
& with the relation given by J; < Jo < J; < Ja. The ordered set (&, <) is inductive: if (Jy)aea is a chain
(i.e. a totally ordered subset) of &, then J := ] Jy is an element in &, and an upper bound of (Jy)xea.

AEA
By Zorn’s lemma, (&, <) admits a maximal element m. If J ¢ A is a strict ideal containing m, then J € &,
hence J = m by maximality. This shows that m is a maximal ideal, that contains I by definition. O

Remark 1.1.8. One can show that Krull’s theorem is equivalent to the axiom of choice.

Definition 1.1.9. e If X c A, the ideal generated by X is the smallest ideal of A that contains X, this is
nothing but the intersection of all ideals(® of A that contain X.

e If ] c Aisanideal and X c I, we say that X generates I if the ideal generated by X is I. We sometimes
denote it by (X).

e A principal ideal of A is an ideal generated by one element. The ring A is called principal (PID) if it is
an integral domain and its ideals are all principal.

Example 1.1.10. (1) Z and K[X] are principal, more generally euclidean rings are principal.
(2) If K is a field, (X,Y") is not principal in K[X,Y]. Similarly, (2, X) is not principal in Z[X].
(3) Z[i~/5] is not principal.

Definition 1.1.11. e Let A be a set and (Ix)xea be ideals in A. Their sum is the ideal generated by |J I».
AEA

This is nothing but the set of finite A-linear combinations Y. a;x; with r € Zs¢, a1,...,a, € A and z; € I,
i=1
forall ie {1,...,r}.
e Let I,J c A be ideals. Their product IJ is the ideal generated by {xy}.er-
yeJ

Definition 1.1.12. Two ideals I, J c A are coprime (or I is prime to J) when I + J = A.

() This statement is equivalent to the axiom of choice.
(2)This makes sense by Remark 1.1.6 (3).
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Proposition 1.1.13. (1) Two distinct maximal ideals are coprime.
(2) If I1,...,1I, are prime to J, then I --- I,, is prime to J.
(3) If I, J c A are coprime and n,m € Z~q, then I"™ and J™ are coprime.

Proof. (1) AsIc T+ Jc A, wehavel +J=A.

(2) As I, +J=Aforallke{l,...,n},wehave A= (L1 + J)(Io+J) - (I, +J)=c Iy--- I, + J, whence
Li---I,+J=A.

(3) Applied to I, = I for all k € {1,...,n}, (2) implies that I™ and J are coprime. After replacing I by J
and J by I", we deduce that I™ and J™ are coprime. O

Theorem 1.1.14. (CHINESE REMAINDER THEOREM). Assume [1,...,I, € A are pairwise coprime ideals
(ZG 1 # j = Ii +Ij = A) Then:
(].) Il ﬁIQ ﬂ"'ﬁ[n 211[2"'In;

s

(2) the canonical ring homomorphism A/l I5--- I, — A/I is an isomorphism.

k=1

Proof. By proposition 1.1.13, the case n = 2 implies the general case: let I, J c A be coprime ideals. There
exist ey € I and ey € J such that e; + ey = 1.

(1) We have always IJ c InJ. LetaeIn J: we have a = ale; +e5) = aer +aey. Asa€e J and ef € I,
we have aey € IJ. Similarly ae; € I.J, hence a € I.J, proving the equality.

(2) Let p: A — (A/I) x (A/J) be the natural map. If z,y € A, we have p(ze; +yer) = (x+ I,y + J), s0 ¢
is surjective. As Ker(¢) =1 nJ = IJ, it induces an isomorphism A/IJ >(A/I) x (A/J). O

1.1.15. UFDs.

Definition 1.1.16. Assume that A is an integral domain.

e An element a € A\(A* U {0}) is prime (resp. irreducible) if the ideal oA is prime (resp. (Va,b € A) (ab =
a = (ae A or be A¥))). A prime element is always irreducible(®, but the converse is not true in general.
e The ring A is a unique factorization domain (UFD) if it is an integral domain in which every non-zero
element can be written as a product of or irreducible elements, uniquely up to order and multiplication by
units. More precisely, for any « € A\{0}, there exist n € Z>( and irreducible elements p1,...,p, such that

aAd = p1e pnA
and if A = q1 - - qnA with m € Z>q and qq, . .., g, irreducible, then m = n and there exists o € &,, such

that grA = py(ryA for all ke {1,...,n}.
There exists u € A* such that o = up; - - - p,: such an quality is called a prime decomposition of .

Example 1.1.17. (0) A field is a UFD.

(1) Z and K[X] (where K is a field) are UFD.

(2) The subring Z[in/5] = {x + iy\/5 € C; z,y € Z} of C is not a UFD, because 2, 3, 1 + /5 and 1 —i\/5
are irreducible, the unit are 1 and —1, but 2.3 = (1 + iv/5)(1 —iv/5) (i.e. there is no unicity for a prime
decomposition of 6).

Lemma 1.1.18. In a PID, irreducible element are prime.

Proof. Let p € A be an irreducible element. Let m — A be a maximal ideal such that p € m (¢f Krull
theorem, or use the noetherianity of A). As A is a PID, there exists @ € A such that m = aA, so p = «aa for
some a € A. As p is irreducible, we must have a € A* (because « ¢ A since m = aA # A). Thus pA =m
is maximal. g

Definition 1.1.19. Assume A is a UFD, and let p € A be an irreducible element. If « € A\{0}, the p-adic
valuation of « is

vp(a) = max{k € Zso; p* | a}

This is well defined and only depends on the ideals pA and a.A.

Proposition 1.1.20. (PROPERTIES OF VALUATIONS). Assume A is a UFD and let a,b € A.
(1) vp(ab) = vp(a) + vp(b) ;

(2) a | bif and only if v,(a) < v,(b) for all irreducible element p € A;

(3) a € A* if and only if v,(a) = 0 for all irreducible element p € A.

(4) vp(a + b) = min{v,(a), vy(b)} with equality when vy(a) # vp(b).

(3)Because A is a domain. Note that 2 is prime in Z /6 Z, but not irreducible since 2 = 2 x 4.
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Proof. (1)-(3) follow from the definition and the unicity of decomposition into a product of prime elements.
For (4), if v = inf{vp(a),vp(b)}, then p¥ | @ and p¥ | b, so p” | a + b, thus vp(a + b) > v. Assume
vp(a) # vp(b): we may assume that v = v,(a) < vp(b). Write a = p¥a’ with p ta’ and b = p”b with p | ¥/,
so that a + b =p“(a’ + V') and pta’ +b': we have v,(a +b) = v. O

Proposition 1.1.21. Assume A is a UFD and let p € A\{0}. Then p is irreducible if and only if p is prime.

Proof. If p is irreducible and p | ab, then v,(a) + v, (b) = vy(adb) = 1 so vy(a) = 1 or v,(b) = 1d.e. p|aor
p | b. Conversely, a prime element is always irreducible. O

Remark 1.1.22. It is easy to show that a noetherian ring (¢f definition 1.3.3) in which irreducible elements
are prime is a UFD. This said, there exist non-noetherian UFD (eg Z[ X} ]nez-,)-

Definition 1.1.23. Assume A is a UFD and let a,b € A\{0}. The ged (greatest common divisor) and the
lem (least common multiple) of a and b are the greatest lower bound (resp. smallest upper bound) of the
set {a, b} for the divisibility relation. They are denoted gcd(a,b) and lcm(a,d) respectively. We say that a
and b are coprime when gcd(a,b) = 1.

Remark 1.1.24. (1) Strictly speaking, gcd(a,b) and lecm(a,b) are only defined up to multiplication by a
unit: only the ideal they generate are well defined.

(2) Let a,b € A\{0} and an irreducible element p € A. Then v,(gcd(a,b)) = min{v,(a),v,(b)} and
vp(lem(a, b)) = max{v,(a),vy(b)}. Note that ged(a,b)lem(a, b)A = abA.

(3) By induction, one can easily extend the definition and consider gcd and lem of afinite family in A\{0}.

Lemma 1.1.25. (GAUSS LEMMA). Assume that A is a UFD and let a, b, c € A\{0} be such that gcd(a,b) = 1.
If a | be, then a | c.

Proof. If p € A is irreducible and divides a, then v,(b) = 0 since p { b (because a and b are coprime). This
implies that v,(a) < v,(bc) = vp(c). As this holds for any irreducible element p dividing a, we have a | ¢ (cf
proposition 1.1.20 (2)). O

Proposition 1.1.26. A PID is a UFD.

Lemma 1.1.27. Assume that A is an integral domain in which irreducible elements are prime (¢f proposition
1.1.21). If an element admits a prime decomposition, the latter is unique (in the sense of definition 1.1.16).

Proof. Assume o = upips - pn = VG142 - Gm, With n,m € Zsqg, u,v € A* and p1,...,Pn,q1,---,qm
irreducible elements. Possibly after exchanging the decompositions, we may assume n < m. We proceed
by induction on n. If n = 0, then a = v € A*: the product vgi1q2 - - - g, is invertible so all its factors are:
we must have m = 0. Assume n > 1. As p; is irreducible and divides the product vgiq¢s - - - gs, it divides
one of the factors (since it is prime). As v € A%, it is not divisible by p;: after renumbering the ¢;, we
may assume that p; | g1 i.e. p1A = ¢1 A. Dividing « by p1, we reduce to the case n — 1, and use induction
hypothesis. O

Proof of proposition 1.1.26. Assume A is a PID. By lemmas 1.1.18 and 1.1.27, it is enough to shows that
any nonzero element in A admits at least one prime decomposition. Let & be the set of elements in A\{0}
that do not admit a prime decomposition. Assume & is not empty. As A is noetherian, the set & admits a
minimal element « (for the divisibility relation). The element « can be nor a unit, nor irreducible: it can
be written a = ajas with ag, a0 € A\(A* U {0}). Then o7 and «y are strict divisors of «, so ay, s ¢ &
by minimality of a: they admit prime decomposition. This implies that their product o admits a prime
decomposition: contradiction. O

Remark 1.1.28. ¢ When A is a PID, there is an other characterization of gcd and lem of two element
a,be A: we have ged(a,b)A = aA + bA and lem(a,b)A = aA n bA. Let’s prove it for the ged (the proof for
the lem is similar). As A is principal, there exists d € A such that aA +bA = dA. As x € A divides a and b
if and only if aA c A and bA c zA i.e. dA c 2 A, so ged(a,b) = d.

e This characterization does not hold in any UFD. For instance, Q[X,Y] is a UFD (¢f theorem 1.1.41). As
X and Y are irreducible and coprime, we have ged(X,Y) =1, though X Q[X,Y]+Y Q[X.Y] # Q[X,Y]
(the LHS is the ideal of polynomials vanishing at (0,0)). Of course, this follows from the fact that Q[X, Y]
is not a PID.

Example 1.1.29. If K is a field and n € Z~, the ring K[X;,...,X,] is a UFD (¢f theorem 1.1.41) but
not a PID (¢f remark above). Similarly the ring Z[X] is a UFD (¢f loc. cit.) but not a PID (the ideal
generated by 2 and X is not principal).

Proposition 1.1.30. In a PID, nonzero prime ideals are maximal.
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Proof. Assume A is a PID, and let p = A be a nonzero prime ideal. Write p = {(a) with a € A\{0}: f Tc A
is an ideal containing p, we have I = (b) with b € A\{0} dividing a: write a = bc with c € A. As a is prime,
we have a |bor a|c If a|b (resp. a| c) there exists d € A such that b = ad (resp. ¢ = ad). Then we have
a = be = acd (resp. a = bc = abd), hence 1 = cd (resp. 1 = bd) because a # 0 and A is integral, so that
I =p (resp. I = A), showing that p is maximal. O

Definition 1.1.31. Assume that A is a integral domain.

e An euclidean function is a map ¢: A\{0} — Zs( such that if b | @ in A\{0}, then ¢(b) < ¢(a).

e An euclidean function ¢ defines an euclidean division if for all (a,b) € A x A\{0}, there exist ¢,r € A such
that a = bg +r and (r = 0 or ¢(r) < ¢(b)). “The” element ¢ is called the quotient and r the remainder of
the division.

e The ring A is euclidean if it admits an euclidean function that defines an euclidean division.

Remark 1.1.32. If A is an euclidean domain, there is not unicity for an euclidean function. Moreover,
unicity of quotient and remainder is not required.

Exemples 1.1.33. A field is an euclidean domain. The ring Z is euclidean domain, an euclidean function
being given by ¢(a) = |a| (absolute value). In that case, euclidean division is the usual one. When K is a
field, the ring of polynomials K[X] is euclidean, an euclidean function being given by ¢(P) = deg(P). Here
again, euclidean division is the usual one.

The ring Z[i] = {a + ib e C; a,b € Z} of Gauss integers is euclidean, endowed with the euclidean function
given by ¢(a +ib) = a? + b>.

Proposition 1.1.34. An euclidean domain is a PID.

Proof. Assume A is an euclidean domain, let ¢: A\{0} — Zs( be an euclidean function and I < A an ideal.
To prove that I is principal, we may assume that I # 0. In that case, ¢(I\{0}) is an nonempty subset
of Zzo, so it admits a smallest element: let b € I\{0} be such that ¢(b) is minimal. One has bA c I.
Conversely, let a € I. There exist ¢, r € A such that a = ¢gb+r with » = 0 or ¢(r) < ¢(b). Assume r # 0, so
that ¢(r) < ¢(b). Asr =a—gbe I and r # 0, we have ¢(b) < ¢(r) by minimality of ¢(b), which s absurd:
we must have r =0, i.e. a = ¢gb € bA. Thus I = bA is principal. |

Remark 1.1.35. There are PID that are not euclidean domains, for instance Z [1“2—‘/5]

Corollary 1.1.36. Let K be a field, the rings Z and K[X] are PID, hence UFD (¢f proposition 1.1.26).

A ring homomorphism f: A — B induces a ring homomorphism A[X] — B[X]. If A is a subring of B,
then A[X] is a subring of B[X].

Definition 1.1.37. Assume that A is a UFD and let P =ap + a1 X +--- +a, X" € A[X|\{0}. The content
of Pis
¢(P) = ged{a;; a; # 0}.

Lemma 1.1.38. (GAuss LEMMA). If A is a UFD and P, @ € A[X]\{0}, then ¢(PQ) = ¢(P)c(Q).

Remark 1.1.39. As gcd is defined up to multiplication by a unit, one should write ¢(PQ)A = ¢(P)c(Q)A.
In what follows, we will keep this abusive notation to avoid heaviness.

Proof. Write P = ¢(P)P and Q = ¢(Q)Q with ¢(P) = 1 and ¢(Q) = 1: we have PQ = ¢(P)c(Q)PQ.
Replacing P and @ by P and @ respectively, we may assume that ¢(P) = 1 and ¢(Q) = 1: we have to show
that ¢(PQ) = 1.

Assume instead that there exist a prime element p € A such that p | ¢c(PQ). Denote by P and @ the images
of P and Q in (A/pA)[X] respectively, this implies that PQ = 0 in (A/pA)[X]. As p is prime, the ring
A/pA is an integral domain: so is the ring (A/pA)[X]. This implies that P =0 or Q =0, i.e. p | c¢(P) or
p | ¢(@), contradicting ¢(P) = 1 and ¢(Q) = 1. O

Proposition 1.1.40. Assume that A is a UFD. Let K = Frac(A4) and P € A[X] such that ¢(P) = 1. Then
P is irreducible in A[X] if and only if P is irreducible in K[X].

Proof. e Assume that P is irreducible in K[X ] and write P = Q1Q2 with Q1, Q2 € A[X]. As P is irreducible
in K[X], possibly after exchanging @Q; and @2, the polynomial Q) is constant so Q1 = ¢(Q1). By lemma
1.1.38, we have 1 = ¢(P) = ¢(Q1)c(Q2), so Q1 € A*. Thus P is irreducible in A[X].

e Conversely, assume that P is irreducible in A[X] write P = Q1Q2 with Q1,Q2 € K[X]. There exist
a1, as € A\{0} such that a1Q; € A[X] and a2Q2 € A[X]. We have a1as = c(a1a2P) = c(a1Q1)c(a2Q2) by
lemma 1.1.38, because ¢(P) = 1. Write a1Q1 = c(alQl)él and asQs = c(agQg)ég with @1,@2 e A[X]:
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we have ajas P = c(alQl)élc(agQg)Qg = a1a2Q1Q2 whence P = Q1Q2 (the ring A is an 1ntegral domain).
As P is irreducible in A[X], we may assume, possibly after exchanging Q1 and QQ, that Q1 € A*. Then
@1 € K* and P is irreducible in K[X]. O

Theorem 1.1.41. If A is a UFD, then® A[X]is a UFD.

Proof. ¢ If p e A is an irreducible element, the constant polynomial p is irreducible in A[X]. Indeed, A/pA
is an integral domain: so is A[X]/pA[X] ~ (A/pA)[X] and p is prime hence irreducible in A[X].

o If P € A[X] is of degree > 1 and irreducible, then ¢(P) = 1. Indeed one can write P = ¢(P)P with
P € A[X], providing a non trivial factorization if ¢(P) is not invertible.

e Ezistence of a prime decomposition. Let P € A[X|\{0}. Write P = ¢(P)P with P € A[X] such that
c(]g) = 1. As A is a UFD, ¢(P) has a prime decomposition, so it is enough to show that P has a prime
decomposition: we may assume that ¢(P) = 1. If P € A, then P = 1: we may assume that deg(P) > 1.
Put K = Frac(4). As K[X]is a UFD (¢f corollary 1.1.36), we may write P = Py P, --- P, with P; € K[X]
irreducible for all i € {1,...,r}. For i € {1,...,r}, let a; € A\{0} be such that a;P; € A[X], and P, =
c(a;P;)"(a;P;) € A[X]. As P, has content 1 and is irreducible in K[X] (because P; is), it is irreducible in
A[X] (¢f proposition 1.1.40). We have ajag - ap = c(a1Py) -+ c(a-P) by lemma 1.1.38, because ¢(P) = 1,
hence the prime decomposition P = PPy P .

o Unicity of prime decomposition. Let P € A[X|\{0} and P = PiPy--- P, and P = @Q1Q2 - - Qs two prime
decompositions in A[X]. Possibly after renumbering the P; (resp. the Q;), there exist 7o < 7 (resp. sop < s)
such that P; € A\{0} for i < o and deg(P;) > 0 for ro < i < r (resp. Q; € A\{0} for j < sp and deg(Q;) > 0
for sg < j < s). By the second point above, we have ¢(P;) = ¢(Q;) = 1 forro < i < rand sp < j < s. Taking
contents in the equality PiPo - P = Q1Q2 - Qs, we get PiPo - Py = Q1Q2 -+ Qs,, which is an equality
of two prime decompositions in the UFD A: we have ry = sg, and after renumbering, we may assume that
P,A=Q;Aforallie{l,...,r9}. Dividing P by PiPs--- P, we get Py 11--- P A[X] = Qror1 -+ - Qs A[X].

This is a prime decomposition in K[X], which is a UFD: we have r = s and after renumbering, we
may assume that P,K[X] = Q,K[X] for all i € {ro +1,...,7}. As ¢(P;) = ¢(Q;) = 1, we have in fact
PA[X]=Q:A[X] forallie {ro+1,...,7}. O

Remark 1.1.42. (1) During the proof, we showed that a complete family of representative of irreducible
elements in A[X] is given by the union of a complete family of representative of irreducible elements in A
and that of a family of polynomials in A[X] with content 1 that forms a complete family of representatives
of irreducible elements in K[X].

(2) In general, A may be a UFD without A[X]| being one.

To summarize the relationships between the classes of rings recalled above, we have the following implications
(whose reverses are false):

fields = Euclidean domains = PID = UFD = integrally closed domains = integral domains
1.2. Modules and algebras.
1.2.1. Modules.

Definition 1.2.2. An A-module is a triple (M, +,-) where (M, +) is an abelian group and -: A x M — M
an external composition law such that :

(1) (Va,be A) (YmeM)(a+b)- m=a-m+b-m;

(2) (Va,be A) (Yme M) (ab)-m=a-(b-m);

(3) (Vae A) (VYmi,mee M)a-(mi+me) =a-my+a-ms;

(4) (YmeM)1l-m=m
This amounts to give a ring homomorphism A — End(M).

Remark 1.2.3. Elements in A are called scalars. As usual, we usually denote a module by the underlying
set and write am instead of a - m.

Example 1.2.4. (1) A Z-module in nothing but an abelian group.

(2) If K is a field, an K-module is just a K-vector space.

(3) If K is a field, a K[X]-module is a K-vector space endowed with a K-linear endomorphism (correspond-
ing to the multiplication by X).

(4) If I ¢ A is an ideal, then I and A/I are A-modules.

()The converse is true and easy.
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Definition 1.2.5. Let M be an A-module. A sub-A-module of M is an additive subgroup N ¢ M which is
stable under multiplication by scalars, i.e. such that

(Va € A) (Vni,n2 € N) ny +ang € N.

Exemples 1.2.6. Submodules of A are nothing but its ideals. When A is a field, submodules are sub-vector
spaces.

Operations on submodules of an A-module. Let M be an A-module and (M) )xea a family of sub-A-
modules of M. The intersection [ M) is a submodule of M. Put

AEA
My = { D mas (ma)en € @MA}
AEA AEA AEA
(the set of finite sums of elements in | J M)). This is a sub-A-module of M, called the sum of (M))xea.
AEA

Definition 1.2.7. Let M be an A-module.
(1) Let X ¢ M. There exists a smallest sub-A-module N of M such that X c N: it is called the sub-A-
module of M generated by X (it is the intersection of all sub-A-modules of M that contain X). It is also

the sum Y, Az (where Az = {ax, a € A}).
xeX
(2) A subset X ¢ M generates M when the sub-A-module of M generated by X is M itself.

(3) The A-module M is of finite type if it is generated by a finite part.
(4) The A-module M is called noetherian if all its sub-A-modules are of finite type.

Definition 1.2.8. Let A be a set and (My)xea a family of A-modules.

(1) The product [] My is the A-module of maps f: A — [ J M, such that f(A\) € M) for all A e A.
AEA AEA
(2) The (direct) sum @ M, is the sub-A-module of [] M, made of maps f: A — |J M) such that the
AEA AEA AEA
set {Ae A, f(N\) # 0} is finite.

(3) If My = M for all X € A, one writes M* and M) instead of [| M and @ M. When n € Z=( and
AEA AEA
A ={1,...,n}, one denotes it M™.

Remark 1.2.9. When A is finite, the A-modules [] My and @ M, are the same.

AEA AEA
Definition 1.2.10. (1) Let M and N be A-modules. An A-linear map from M to N is a group homomor-
phism f: M — N such that f(am) = af(m) for all a € A and m € M. The set of A-linear maps from M
to N is an abelian group denoted Hom 4 (M, N).
(2) The kernel of f € Homa(M, N) is the submodule Ker(f) = f~1(0) of M, and the image of f is the
submodule Im(f) = f(M) of N. The cokernel of f is Coker(f):= N/Im(f).
(3) We say that f is an isomorphism when f is bijective (the inverse map f~! is then A-linear). This is
equivalent to Ker(f) = {0} (i.e. f is injective) and Im(f) = N (that is Coker(f) = {0}, i.e. f is surjective).

Definition 1.2.11. Let M be an A-module and N a sub-A-module. The quotient group M /N is naturally
endowed with a A-module structure (because a(m + N) = am + aN < am + N for all m € M and a € A).
The A-module M/N is called the quotient of M by N. The canonical map n: M — M/N;m+— m + N is
A-linear, and has the following universal property: for all A-linear map fi+ M — M’ such that N c Ker(f),

there exists a unique A-linear map f: M/N — M’ such that f = for.

M—f>M/

| A

M/N

In particular, if f: M — M’ is A-linear, there is a canonical decomposition f = 1o for where ¢: Im(f) —> M’
is the inclusion, f an isomorphism and 7: M — M /Ker(f) the canonical projection.

Definition 1.2.12. (1) A free A-module is an A-module isomorphic to A®) for some set A.
(2) Let A be aset. For A€ A, let ey € A™) be the element defined by ey (n) = 8, (Kronecker symbol).
The family (ex)aea is called the canonical basis of AW
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Proposition 1.2.13. (1) If a € AN, then a = 3 a()\)ey (the sum is finite).
AEA
(2) If M is an A-module, the A-linear map

HomA(A(A),M) - M
f = (flex))rea

is an isomorphism. In other words, the data of an A-linear map f: A — M is equivalent to that of the
family (f(eA)),\eA.

Proof. (1) For n € A, one has ( > a()\)eA)(n) = a(n).

AEA
(2) Follows from f(a) = Y] a(\)f(ey) for all f € Homa(A®) M) and a € AW, O
AEA

Definition 1.2.14. Let M be an A-module and {my}xen © M. Form proposition 1.2.13 (2), there exists
a unique A-linear map f: A — M such that f(ey) = my for all A € A. The A-module Im(f) is the
submodule of M generated by {my}xea- In particular, the family {m)}rea generates M if and only if f
is surjective. When f is injective, we say that {mx}xea is free (or linearly independent). When f is an
isomorphism (so that M is free), we say that (mx)aea is a basis of M. In that case, any m € M can be

uniquely written m = . aymy with (ax)ea € AM  Such a family (my)aea is called a basis of M (this
AEA
generalizes the usual notion of basis of a vector space over a field).

Remark 1.2.15. When A is a field, any A-module is free (any vector space has a basis). This is not true if
A is not a field: there exists a non zero ideal I ¢ A such that I # A, and the A-module A/I is not free (if
e € A/T and a € I\{0}, then ae = 0). For instance, Z /2Z is a Z /4 Z-module, and it is not free. It can be
shown (this in not obvious) that Z%>° is not free over Z (though it has no torsion).

Proposition 1.2.16. Bases of a free modules have all the same cardinality.

Proof. We have to show that if A and A’ are sets such that the A-modules A and AN are isomorphic,
then A and A’ have the same cardinality. Let f: A®) — A®) be an isomorphism, and I ¢ A a maximal
ideal A (¢f Krull’s theorem). As f is A-linear, it induces an isomorphism® F: (A/I)®) — (4/1)A). As
I is maximal, A/I is a field: the A/I-vector spaces (A/I)™ and (A/I)*) are isomorphic, so Card(A) =
Card(A). O

Definition 1.2.17. From the preceding proposition, if M is isomorphic to A™ with n € Zq, the integer n
is an invariant of M, called the rank of M and denoted by rk(M).

Remark 1.2.18. When M and N are free A-module of ranks m and n, proposition 1.2.13 (2), implies that
the choice of bases of M and N provide an isomorphism

Hom (M, N) ~ Hom4(A™, A™) = M xm(A).

As for vector spaces over a field, after the choice of bases, the data of a A-linear map between free A-modules
of finite rank is equivalent to that of its matrix in the chosen bases.

Definition 1.2.19. Let M be an A-module and m € M. Put anna(m) = {a € A; am = 0}. This is an ideal
of A, called annihilator of m. We say that m is torsion if anns(m) # {0}, i.e. if it exists a € A\{0} such
that am = 0. We denote Mos the set of torsion elements in M, and we say that M is torsion-free (resp.
has torsion) if Mios = {0} (resp. Mios = M).

Put anng (M) ={a€ A; (Yme M) am =0} = [ anna(m) (the annihilator of A): this is an ideal. The
meM
A-module structure on M induces an A/ann4 (M )-module structure on M. Note that M may have torsion

even if ann4 (M) = {0}: for instance annz(Q /Z) = {0}.

Example 1.2.20. If I ¢ A is a non zero ideal, the A-module A/I has torsion. For instance, Z /2Z is a
Z /6 Z-module with torsion. Idem for the Z-module Q /Z.

Proposition 1.2.21. If A is an integral domain and M is an A-module, then Miys is a submodule of M
and the quotient A-module M /M,qs is torsion-free.

(5)Prove this using proposition 1.2.13 (2).
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Proof. If my,ma € Mios and « € A, there exist aj,as € A\{0} such that a;m; = 0 and agmg = 0. As A is
an integral domain, we have ajas # 0 and ajaz(mi + ams) = 0 so that my + ams € Migs.

Let m € M whose image m + Mo is torsion in M /Miqs: there exists a € A\{0} such that am + Miors = Miors
i.e. am € Myos, so that there exists b € A\{0} such that b(am) = 0. As A is an integral domain, we have
ab # 0, and m € Mios. O

Remark 1.2.22. (1) The previous statement does not hold if A is not an integral domain. For instance, if
A =M =7 xZ, then Myos = (Z x{0}) u ({0} x Z) is not a submodule of M.

(2) A free A-module is torsion-free, but the converse is false in general (it holds for modules of finite type
over principal rings).

1.2.23. Algebras.

Definition 1.2.24. An A-algebra is a ring homomorphism f: A — B (which may not be injective), whose
image lies in the center of B. We will often denote it by the underlying ring B. A morphism between two
A-algebras f1: A — By and fy: A — Bj is a ring homomorphism ¢g: B; — Bs such that go f; = fs.

Remark 1.2.25. (0) Any ring is a Z-algebra, in a unique way.

(1) If f: A — B is an algebra, then B is naturally endowed with an A-module structure, and the multipli-
cation law B x B — B is A-bilinear. Conversely, if B is a ring endowed with an A-module structure such
that the multiplication B x B — B is A-bilinear, then the map f: A —» B; a — alp is an A-algebra.

Example 1.2.26. (1) A field extension L/K is a K-algebra.

(2) If K is a field and V' a K-vector space, the (non commutative) ring Endg (V') is a K-algebra.
(3) If A is a ring, the polynomial ring A[X]aea is an A-algebra.

(4) If B and C are A-algebras, so is their product B x C.

(5) If B is an A-algebra and I ¢ B an ideal, then B/I is an A-algebra.

Definition 1.2.27. Let f: A — B an A-algebra.

(1) A sub-A-algebra is a subring B’ ¢ B such that f factors through a ring homomorphism A — B’ (in
other words such that the inclusion map B’ — B is a morphism of A-algebras).

(2) Let X := {zx}xea © B. There exists a smallest sub-A-algebra of B that contains X (this is nothing but
the intersection of all the sub-A-algebras of B containing X). This subalgebra is denoted A[zx]xen and is
called the sub-A-algebra generated by X. If it is B itself, we say that {z)}ren generates the A-algebra B.
(3) An A-algebra is of finite type if it is generated by a finite set. This is equivalent to the existence of a
surjective morphism of A-algebras A[Xy,...,X,] — B.

(4) An A-algebra is finite if it is finite as an A-module.

Remark 1.2.28. (1) A finite A-algebra is of finite type, but the converse does not hold (for instance the
polynomial A-algebra A[X] is not finite).
(2) Let B a finite A- algebra and M a B module of finite type. The M is an A-module of finite type. Indeed,

one can write B = Z biA and M = Z Bmj, so that M = Y, Abym,;.
i=1 j=1 %SiST
<‘]§5

1.3. Noetherianity.

Proposition 1.3.1. (1) Let M be an A-module. The following properties are equivalent;:

(i) M is noetherian (¢f definition 1.2.7 (4));
(ii) every ascending sequence of sub-A-modules of M is stationary;
(iii) every non empty subset of submodules of M contains elements that are maximal under the inclusion.

(2) Let M be an A-module and N ¢ M a submodule. Then M is noetherian if and only if the A-modules
N and M/N are.

Proof. (1) (i)=(ii). Let (My)ecz., be an ascending sequence of submodules. As the submodule 3, M,
n€Zxo
is of finite type, it is generated by a finite set {my,...,m,}: let N € Zs¢ be such that {m,...,m,} € My,
sothat My ¢ Y, M, c My, hence > M, =My, and M,, = My for all n > N.
neZ>o neZ>o
(ii)=(iii). Let & be such a subset. If it has no maximal element, one can inductively construct a strictly
ascending (for the inclusion) sequence of elements in &, contradicting (ii).
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(iii)=>(i). Let N ¢ M be a submodule and & the set of submodules of finite type in N. As {0} € &, we
have & # @: by (iii), the set & contains a maximal element Ny. Assume Ny # N: there exists © € N\Ny
and N' = Ng+ Az c N € &. As Ny € N’, this contradicts the maximality of Ny: we have Ng = N and N
is of finite type.

(2) o If M is noetherian, then N is noetherian. If N’ is a submodule of M/N, we can write N’ = N/N
with N = 77Y(N') (where 7: M — M/N is the canonical map). As M is noetherian, N is of finite type,
which implies that N’ = ]V/N is of finite type as well, and M /N is noetherian.

e Assume N and M /N are noetherian. Let (M, )nez., be an ascending sequence of submodules of M. The
sequences (M, N N)pez., and ((N + M,)/N)nez-, are ascending in N and M /N respectively. As they
are noetherian, those sequences are stationary: there exists ng € Z>¢ such that M,, n N = M,,, n N and
(N + M,)/N = (N + M,,)/N i.e. N+ M, =N + M,, for all n = ng. If m € M, there exists z € N
and y € M,,, € M,, suchthat m =z +y. Asze=y—me NnM, =N n M,,, we have m € M,,, hence
M, c M,, i.e. M, = M,,. The A-module M is thus noetherian. O

Corollary 1.3.2. If M; and M, are noetherian, so is their product M; x Ms.

Proof. As My ~ M; x {0} and My ~ (M; x Ms)/(M; x {0}) are noetherian, this follows from proposition
1.3.1 (2). 0

Definition 1.3.3. The ring A is noetherian if it is as an A-module. By definition, this means that every
ideal of A is of finite type. By proposition 1.3.1, this is equivalent to the fact that any ascending sequence
of ideals in A is stationary.

Proposition 1.3.4. If A is noetherian, every A-module of finite type is noetherian.

Proof. Let M be an A-module of finite type: there exists n € Z>¢ and a surjective A-linear map f: A™ — M.
As A is noetherian, so is A™ (corollary 1.3.2), and M = A™/Ker(f) (proposition 1.3.1 (2)). O

Example 1.3.5. (1) Let R be a ring and I an infinite set. The ring of polynomials A = R[X;]es is not
noetherian: the ideal generated by {X;}ics is not of finite type.

(2) Let A=1Z[2X,2X2%2X3 ...]=Z+2XZ[X] < Z[X]. Then A is not noetherian: the ideal I generated
by {2X%};cz_, is not finitely generated. Indeed, the ring homomorphism f: Z[X;]icz., — Z[X] defined by
f(X;) = 2X°* factors through an injective morphism Z[X;]iez.,/{2" ' X; — X{)iez., — Z[X], inducing an
isomorphism Z[X;)icz., /{2 1 X; — X1 )iez., = A, hence an isomorphism Fao[X;]icz_,/{X?) > A/2A: the
image of I in A/2A corresponds to the ideal generated by {X;}iez.,: it is not finitely generated. Moreover,
the ideal (2X) N (2X?%) = (4X?2,4X3,...) is not finitely generated: this gives an example of an intersection
of two principal ideal which is not finitely generated (same reasoning as above).

Theorem 1.3.6. (HILBERT) If the ring A is noetherian, so is A[X].

Proof. Let I ¢ A[X] be an ideal : we have to show that I is finitely generated. We may assume that
I # {0}. For n € Zxg, let A<,[X] be the sub-A-module of A[X] made of elements of degree < n, and J,
the set of coefficients of X™ of elements in I n A<, [X] (this is also {0} union the leading coefficients of
elements of degree n in I). As I ¢ A[X]is an ideal, I n A<, [X] is a sub-A-module of A<,[X], so J,, is an
ideal in A. If n < m and a € J,\{0} (so that there exists P € I of degree n whose leading coefficient is ),
then o € J,, (since « is the leading coefficient of X" ~"P): the sequence of ideals (Jp)nez., is ascending. As
A is noetherian, this sequence is stationary: let d € Zsq be such that n > d = J,, = J;. As A is noetherian,
the ideal Jy is of finite type (and non-zero since I # {0}): choose a1, ..., q, generators of J; that we may
assume all non-zero. These are the leading coefficients of Py, ..., P. € I, all of degree d. On the other hand,
Acq 1[X] is an A-module of finite type (it is free with basis (1, X, X2, ..., X9 1)), so it is noetherian (cf
proposition 1.3.4), hence M := I n A¢,—1[X] is of finite type: let Q1,..., Qs be generators of M. We have
of course

<P1,...,PT,Q1,...,QS>CI.
To prove that this inclustion is an equality, we show that if P € I then P € (P1,...,P.,Q1,...,Qsy by
induction on n = deg(P). Sin < d, then P € M < {(Q1,...,Qsy. If n > d, the leading coefficient «
of P belongs to J, = Jy: there exist ai,...,a, € A such that « = aga1 + -+ + ara,.. The polynomial

P — Y ;X" 9P, has degree < n and belongs to I: the induction hypothesis shows that this difference
i=1
belongs to (Pi,..., P, Q1,...,Qsy, so P does as well. a

Corollary 1.3.7. Let A be a noetherian ring and B an A-algebra of finite type. Then B is a noetherian
ring.
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Proof. As B is of finite type, there exist b1,...,b. € B such that B = A[by,...,b.]: there is a surjective
morphism of A-algebras f: A[X1,...,X,] = B defined by f(X;) =b; forie {1,...,7}. Put I = Ker(f):
we have B ~ A[Xy,...,X,]/I. As A is noetherian, so is A[X,...,X,] (apply theorem 1.3.6 r times), so
that B is a noetherian A[X7,..., X, ]-algebra: it is a noetherian ring. O

1.4. Modules of finite type over PIDs. In this paragraph, we assume that A is a PID. The ring A is
an integral domain: denote by K its fraction field. Recall that A is a UFD (¢f proposition 1.1.26): there
are gcd and lem. Moreover, as ideals in A are generated by one element, A is noetherian.

In what follows, empty entries in a matrix correspond to zeros. If n € Z~q and aq,...,a, € A, we put

diag(ar, ..., an) = ( ) € My, (A).

Definition 1.4.1. If n € Z.(, we put GL,(4) = {M € M,,(A4) ; det(M) € A*}. Cramer formulas imply that
this is the group of units in the (non commutative) ring M,,(A) (note that the det(A) # 0 is not enough).
Put SL,(A) = {M € M,,(A); det(M) = 1}: this is a subgroup of GL,,(4).

Proposition 1.4.2. Tet n € Z>5 and ayq,...,a, be elements in A generating the unit ideal. Then there
exists a matrix in SL, (A) whose first row is (a1, ..., a,).

Proof. Put X = (a1,...,a,): we have to build M € SL,(A) such that XM~! = (1,0,...,0). We work by
induction on n > 2.

Case n = 2. As A = Aaj + Aas, there exist u,v € A such that va; —uas = 1. The matrix M = (4} %) does
the job.

Case n > 2. Let dA = gcd(ag,...,a,) and b, ..., b, € A such that db; = a; for i € {2,...,n}. We have
gcd(ba,...,b,) = A: by induction, there exists M| € SL,_1(A) such that YM, * = (1,0,...,0) where

Y = (ba, ..., by). Let
M= (")

We have det(M;) = det(M]) = 1 and XM; "' = (a1,d,0,...,0). Use case n = 2: as gcd(ar,d) = A, there
exists M5 € SLo(A) with (a1, d)My ' = (1,0). Let

M2 = (M2 Infz)

(I,_2 € SL,,_2(A) is the unit matrix). We have det(Ms) = det(M}) = 1 and X M7 M;* = (1,0,...,0), i.e.
XM~1 = (1,0,...,0) with M = MyM; € SL,(A). O

Remark 1.4.3. This proof provides an effective procedure to construct the matrix provided one can deal

with the case n = 2 (which is the case, for instance, when A is euclidean).

Definition 1.4.4. If n,m € N+, we make the group SL,,(A) x SL,,(A4) act on the A-module M,,x,,(A) by
(P,Q)-M = P MQ.

Two matrices My, My € My, x.m (A) are equivalent if they are in the same orbit for this action. We write then
My ~ Ms (this defines an equivalence relation). Note that we may also make GL,,(A) x GL,,(A) act in a
similar way.

Remark 1.4.5. When n = m, one should not confuse this notion with the finer notion of similarity: two
matrices My, My € M,,(A) are similar if there exists P € GL,,(A) such that My = P~1M; P.

Definition 1.4.6. A reduced matrix is a matrix of the form

(al o ) € My, (A)

with 7 € {0,...,min{m,n}} and a1, ..., a, € A\{0} such that a; | a;;1 for all i € {0,...r — 1}.

Notation. (1) Fix a family (pa)aea of representatives of irreducible elements in A. Any element a € A\{0}
admits a unique decomposition as a product of irreducible factors:

a=u H 0%
AEA
where u € A and (n))xea is a family of integers, all but finitely many being equal to zero. We put

E(a) = Z ny € Z;O
AEA
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that we call the length of a. This is nothing but the number of irreducible factors in a (for instance, we
have £(a) =0 < a € A* and {(a) = 1 if and only if A is irreducible). If M = [m; ;] 1<i<n € Mpxm(A)\{0},
1<)<

<Jsm

we put

M) = min{ﬁ(miﬁj); 1<i<n, 1<j<m, my; # 0}.
(2) If o € 6, is a permutation, we put P, = (5U(i)’j)1$i,j$n € M,(A) (where 0;; is the Kronecker
symbol). We have det(P,) = e(o) (where (o) is the signature of o), so that P, € GL,(A). Put
P, = diag (1,...,1,2(0)) Py € SL,(A).
If M € My, xm(A), the matrix P, M is the element in M,y (A) whose i-th row is the o()-th row of M.
Similarly, if v € &,, is a permutation, the matrix M P, is deduced from M by permuting the columns

according to v. Multiplying M by P, on the left (resp. by 137 on the right), permutes rows according to o
(resp. columns according to ) and multiplies the last row (resp. column) by (o) (resp. (7)).

Theorem 1.4.7. Every matrix M € M,,«,,(A) is equivalent to a reduced matrix.

Proof. We may assume M # 0. We proceed by induction on d = min{m, n}.

Assume d = 1. Transposing if necessary, we may assume n = 1, so that M is a row. If m = 1, there is
nothing to do: assume m > 2. Let «; be the ged of the coefficients of M: we have M = o1 X where X is
a row vector whose entries generate the unit ideal. By proposition 1.4.2, there exists @ € SL,,(A) such that
the first row of Q! is X. Then XQ = (1,0,...,0) thus MQ = (a1,0,...,0) is reduced.

Assume d > 1. Recall that M # 0. Let § = min {¢(M’); M’ ~ M} € Z¢. Replacing M by an appropriate
equivalent matrix, we may assume that ¢(M) = 6. There exist ip € {1,...,n} and jo € {1,...,m} such
that €(m4, ;,) = 9. Let 714, € &), (resp. 71, € &) be the transposition of {1,...,n} (resp. {1,...,m})
that exchanges 1 and ig (resp. jo), and put M’ = IBT_I}iOMf’TL].O € My ym(A) (where P € SL,(A) and

T1,ig
]371’].0 € SL,,(A4) are the modified permutation matrices, ¢f definition 1.4.1 (2)). We have M’ ~ M and
m’l,1 = my, j,: replacing M by M’, we may assume that £(m11) = 9d. Put aq := mq 1.
e We first show that a; divides the coefficients of the first row and of the first column of M. Transposing if
necessary, it is enough to deal with the first column. Assume there exists i € {2,...,n} such that a3 f m; ;.
Exchanging the second and the i-th rows, we may assume ¢ = 2. Let &7 = ged(ag,ma,1). As &7 strictly
divides oy, we have £(&71) < . On the other hand, there exist a,b € A such that &3 = amq 1 + bmg 1. Put

p— *mz(,ll/&l mi,1/01

-

We have det(P) = 1 and the entry of index (1,1) in M’ = PM is &;: this implies that M’ ~ M and
(M) < 4(aq) < 6, contradicting the definition of 4.
e Multiplying M on the left by the matrix

1
Tl ) e sL,(4A)
—mn,.y1/o¢1 1

(1 —my2/o1 - —my /o
1

on the left, and by

> € SL,(A)

1

on the right, we may assume that m;; = 0 for € {2,...,n} and m;; = 0 for j € {2,...,m}. Indeed this
provides an equivalent matrix, with same length (the entry of index (1,1) was not modified).
e The matrix M is now of the form
(&5}
( My )

with M1 € M(,_1)x(m—1)(A4). By induction hypothesis, there exist P; € SL,,_1(4), Q1 € SL;,—1(A), r € N,
and elements aw, ..., a, € A\{0} such that «; | a;41 for allie {2,...,r — 1} and

a2 .
PflMlle( )

Multiplying M by (1 Pfl) € SL,(A) on the left and by (1 o ) € SL,,(A) on the right, we may assume that

(")
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It remains to check that o1 | as. Assume the contrary. Let o) = gcd(ai,az). As a1 1 a2, we have
() < £(a1) = §. There exist a,b € A such that ac; + bas = . The equality

ED " a) () = (3 )

imply that there exists M’ = (mi,j)llf?jfn € Myxm(A) equivalent to M and such that m5, = o}: we have
IJjm

L(M") < £(af)) < §, contradicting the definition of 6. O

Remark 1.4.8. (1) When A is euclidean, it is possible to make this statement constructive, using elementary
operations.
(2) When A is a field, one recovers the well known fact that the orbits for the equivalence relation are

1 .
characterized by the rank: every matrix M is equivalent to ( "1 ) (where the number of 1 is rk(M)).

Notation. Let M € My, ,,,(A). If k € {0,...,min{n, m}}, let I;(M) be the ideal generated by the minors of
order k of M (so this is the ged of those minors). The sequence of ideals (11, (M ))o<r<min{n,m} 19 decreasing(®),
and I (M) = {0} if k > rk(M). These are called the invariant factors of M.

Lemma 1.4.9. Two matrices that are equivalent have the same invariant factors.

Proof. Let M € M, ,,(A) and P € GL,(A). Put M’ = P 'M. Lines of M’ are A-linear combinations of
those of M: by multilinearity of the determinant, a minor of order k of M’ is an A-linear combination of
minors of M of order k. This implies that I(M') c I(M). As M = PM’, we have also I;;(M) c I (M’),
i.e. Iy(M') = I;(M). Similarly, we have I;;(M Q) = I;;(M) for all @ € GL,,(A) (using the fact that columns
of M@ are A-linear combinations of those of M). O

Theorem 1.4.10. With the notations of theorem 1.4.7, we have I(M) = ay---apA for k € {1,...,7}
(where r = rk(M)). In particular, the sequence of ideals ;A D asA D -+ D ;- A is unique.

Proof. By lemma 1.4.9, we have I (M) = Ix(diag(aq, ..., a,0,...,0)) =ai---apAfor ke {1,...,r}. O

Theorem 1.4.11. (ADAPTED BASIS THEOREM). Let M be a sub-A-module of an A-module L free of finite
rank n. Then M is free, and there exists a basis (eq,...,e,) of L, an integer » < n and ag,...,a, € A\{0}
such that

a; | ajpq  forallie{0,...r —1}
(a1e1,...,a.e.) is a basis of M.

Proof. As A is a PID, it is noetherian. As L is of finite type, it is noetherian (proposition 1.3.4): its

sub-A-module M is of finite type as well. Choose a generating family x1,...,2,, € M: we have an A-linear
map
f: A" > L
m
(@1,...,am) — 2 a;x;
j=1

whose image is nothing but M. After the choice of a basis 8 of L, this map is given by an n x m matrix
(whose j-th column consists in the coordinates of z; in 9B). By theorem 1.4.7, this matrix is equivalent to
a reduced matrix: after a change of bases in A™ and L, it has the form

C)

with r € {0,...,min{m,n}} and a1,...,a, € A\{0} such that «; | a;41 for i € {0,...r — 1}. Denote by
(e1,...,en) the new basis of L: the image M of f is then the free sub-A-module with basis (azeq, ..., are.).
O

Remark 1.4.12. The previous result is obviously false when A is not a PID. For instance Z/2Z is a
sub-Z /4 Z-module of Z /4 Z. Similarly, the sub-Z x Z-module Z x {0} of Z x Z is not free.

(6)This follows from the fact that minors of order k a linear combinations of minors of order k — 1, as can be seen by developing
determinant along the first row.
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Theorem 1.4.13. (INVARIANT FACTOR DECOMPOSITION). Let M be an A-module of finite type. There
exist integers d,r € Z>o and ay,...,aq € A\({0} U A*) such that

a; |a;4+1  forallie{0,...d—1}
M ~ (AJa1A) x --- x (AJagA) x A"

Moreover, the integers d,r and the ideals a1 A4, ... ,aqA are unique. The integer r is called the rank of M
and when r = 0, the elements (a1, ...,aq) “the” invariant factors of M.
Proof. ¢« We start, with the existence. As M is of finite type, we can choose a generating family myq, ..., my:

we have a surjective A-linear map

fA" > M
(Al, N ,)\n) = i )\ﬂ’)’LZ
i=1
As A" is free of finite rank, there is a basis (e, ..., e,) such that
Ker(f) = éAoqei
i=1

with s € {1,...,n} and ay,...,as € A\{0} such that a; | ;41 for all i € {0,...s — 1} (¢f theorem 1.4.11).
Taking the quotient, f induces an A-linear isomorphism

S

M ~ A"/Ker(f) = ((—B(A/aiA)ei) @( D Aei)
i=1 i=s+1
Lettzmax{ie{1,...,5};041-6/1*} (wehavet =0if oy ¢ A*). Pt d=s—1t,r =n—sand a; = 444
for i € {1,...,d}. We have ay,...,aq € A\({0} U A*) and a; | a;41 for all i € {0,...d — 1}. Moreover, as

0 ifi <t
Afa; A ift<i<s

A/OéiA = {

we have
M ~ (A/a1A) x -+ x (AfagA) x A".

e We now prove the unicity. We have Mios = (A/a1A) x -+ x (A/aqA) thus M /Mios ~ A". The integer

r thus depends only on M (¢f proposition 1.2.16). We are thus reduced to the case where M is a torsion
d

module. We have M ~ [](4/a;A) with a1 | az | -+ | aq in A\{0}. Let & be the set of irreducible
i=1

elements in A. If p € &, the ideal pA is prime an non-zero, hence maximal(”: the A-module M /pM is an
A/pA-vector space of finite dimension d,(M) (we have d,(M) = #{i € {1,...,d}; p | a;}). This shows in
particular that d = d(M) := max dy(M) only depends on M.

PEY

For all n € Zxo, we have d,(p"M /p" ™M) = #{i € {1,...,d}; vp(a;) = n + 1}. This implies that for all
n € Z-g, the integer

#lie{1,....d}; vp(ar) = n} = dpy(p" " M/p" M) — dp(p" M [p" ' M)

only depends on M and p. As vy(a1) < vp(az) < -+ < vp(aq), this implies that for all p € &7 and all
i€ {l,...,d}, the integer v,(a;) only depends on M and p. This means that the ideals a; A only depend on
M

Remark: an other way to conclude.

Lemma 1.4.14. If a,b e A\{0}, we have a(A/bA) ~ A/mA.

Proof. Write a = agecd(a,b) and b = Bged(a,b): we have ged(a, ) = 1. Let m: A — A/bA be the canonical projection. Then a(A/bA) is the
image of the composite m 0o mg, where mg: A — A is the multiplication by a. We have z € Ker(romg) & az € bA & ax € BA < x € BA (because
ged(a, B) = 1). The surjective morphism 7 o mg: A — a(A/ba) thus induces an isomorphism A/B8A 5 a(A/bA). O

(M1 A is a PID and p © A is prime and non-zero, then p is maximal. Indeed, let m © p be a maximal ideal (¢f Krull’s theorem,
¢f theorem 1.1.7). As A is a PID, there exist a,b € A\{0} such that p = aA and m = bA. As p < m, we have b | a: there
exists ¢ € A such that a = bc. As p is prime, we have b € p or ¢ € p. In the last case, there would exist d € A such that
¢ = ad, whence a = abd i.e. bd = 1 since A is a domain and a # 0. This would imply that b € A* i.e. m = A which is not.
We thus have b € p, hence m < p i.e. p = m is maximal.
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We prove the unicity of the ideals {a; A};<;<q by induction on d, the case d = 0 being empty. Assume that M =~ ]_[ (AJa;A) ~ ]_[ (A/b;A)
i=1

=

d d
with a; | ag | --- | ag and by | bg | --- | bg. Let s = max{i € {1,..., d}; a;A = a1 A}. We have a1 M ~ || aj(A/a;A) ~ || a1(A/b;A).
i=s41 =1
. - al - b; - R b; _
By lemma 1.4.14, this means that a1 M . ];[ A/ A ]_[ A/igcd(al,bi)A' By unicity of d(aj M), this implies that A/igcd(al,bi)A = {0},
i.e. b;A = ged(ay,b;)A whence a;A c b; A for all 4 € {1,..., s} Symmetrically, we also have b;A — a1A, so a;A = b;A for i € {1,..., s}.

Moreover, we have a1 M ~ [T{_ 4 A/2EA ~ [T, A/% A: the induction hypothesis implies that ©A = E%A and thus a; A = b; A for all

ie€f{s+1,..., d}, finishing the proof. O
Corollary 1.4.15. A torsionfree A-module of finite type is free.
Corollary 1.4.16. The ideals a1 A4,...,a, A in theorems 1.4.7 and 1.4.11 are unique.

Proof. It M = (—D Aase; C (—D Ae; = L, we have L/M ~ (—D(A/Oéz Je; x A"7". Let s be the number of
1=1 =1

indices i € {1,...,7} such that ;A=A (ie. a;e AX). We have L/M ~ (A/agi1A)x - x (Afa,A) x A",

By theorem 1.4.13, the integers r — s and n — r and thus s only depend on L and M, and the ideals

asi1A4, ..., arA as well, which implies unicity in theorem 1.4.11. This implies unicity in theorem 1.4.7. [J

1.5. Tensor product. Let M and N be A-modules.

Definition 1.5.1. Let L be an A-module. A map f: M x N — L is bilinear if it satisfies the following
conditions:

(1) f is left-linear, i.e. (Ya € A)(¥Ymyi,mae M) (¥Yne N) f(amy +ma,n) =af(mi,n) + f(msa,n) ;

(2) f is right-linear, i.e. (Va € A) (Ym e M) (Vni,n2 € N) f(m,any + n2) = af(m,n1) + f(m,nz).
The set Bil4(M, N; L) of bilinear maps M x N — L is an A-module.

Proposition 1.5.2. There exists a pair (M®a N, @) where M®4 N is an A-module and p: M XN — M®sN
a bilinear map, havmg the following universal property: if f: M x N — L is a bilinear map, there exists a
unique A-linear map f M ®a N — L such that f = f ©.

!

‘P\ 7
M®@sN '

M x N L

Remark 1.5.3. (1) The universal property of the pair (M ®4 N, ) implies its unicity up to a unique
isomorphism.

(2) One can slightly generalize the previous construction to cover the case where A may not be commutative
(this is useful for representation theory for instance).

Proof. Consider the A-module AM*N) of maps M x N — A having a finite support, and its canonical basis

(e(mﬁn))(m menrxy- Let K be the submodule of AMXN) generated by the following elements:

® C(myi+man) — €(mi,n) = €(ma,n) TOT M1, ma € M and ne N ;

® C(moni+ns) — €(m,n1) — E(m,ns) for m € M and ni,ng € N ;

® Clamn) — @€(m,n) AN €(1p an) — A€(m ) for a€ A, me M and ne N.
Put M @4 N = AMN) /K Tet i: M x N — AMXN): (;m n) €(m,n) and 7: AMXN) 5 M @4 N the
canonical projection. Put ¢ = moi: by definition of K, the map ¢ is bilinear. If f: M x N — L is bilinear,
we define an A-linear map f: AM*N) 5 [ by f(e(mﬁn)) = f(m,n) for all m € M and n € N. As f is
bilinear, we have K c Ker(f): the map ffactors through a map f: M®a N — L, so that f = fo p (we
have f~(7r(e(m7n))) = f(m,n) for all m e M and n € N).

M x N~ !
\ ~
i M@iN-->L
A(MxN) 7

Definition 1.5.4. M ®4 N is called the tensor product of M and N over A.

Remark 1.5.5. (1) The universal property of tensor product means that there is a functorial isomorphism

Bil(M, N; L) ~ Hom4(M,Hom4(N,.)) ~ Homs(M ®4 N, .)
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(2) If M is an A-module and B an A-algebra, then B ®4 M is endowed with a B-module structure (base
change).

Notation. With notations of proposition 1.5.2, put m ®@n = 7(e(m,n)) € M ®4 N for allme M and ne N.
Elements in M ®4 N of this form are called simple tensors. They generate M ®4 N as an A-module, but
in general, all elements in M ®4 N are not simple tensors.

Proposition 1.5.6. Let M be an A-module.
(1) If N is an A-module, there is an isomorphism M ®4 N S N ®a M sending z @y to y ® .

(2) If (Ny)xen is a family of A-modules, then M ® 4 ( P N,\) ~ @ (M ®a Ny) (distributivity of the tensor
AEA AEA

product).

Proof. Follow from the universal property of the tensor product. O

Proposition 1.5.7. If M and N are free, with bases (ex)xea and (fs)sea respectively, then M ®4 N is free,
with base (ex ® f5)(x,5)eaxA-

Proof. Write N = @ Afs. By proposition 1.5.6 (2), we have M ®4 N = @ M ®4 Afs. Similarly, we have
deA

dEA
M®aAfs = (—D Aey ®4 Afs. As Aey ®4 Afs = Aex ® fs, we get M ®4 N = (—D Aey) ® fs, whence the
2
result. O

Functoriality of tensor product. Let f: M — M’ and g: N — N’ be two A-linear maps. They induce
amap M x N - M'®x N';(m,n) — f(m)® g(n). It is bilinear, so factors uniquely through an A-linear
map

f®g: M@aN - M ®4N'.

In particular, if N an A-module, there is a natural A-linear map M ® 4 N RNy Ve ®a N. An important
special case is base change: if B is an A-algebra, f induces a B-linear map B®a M — B®4 M'.

Remark 1.5.8. If f: M — M’ is an isomorphism, then M ®4 N RN ®a N is an isomorphism. If f

is only injective, then M ®4 N TN ®4 N may not be injective. If f is surjective, then f ® Idy is
surjective (even better, Coker(f ® Idy) ~ Coker(f) ®4 N, see below).

Example 1.5.9. (1) (Z/aZ)®z (Z /bZ) ~ Z [ gcd(a,b) Z for all a,b € Z~o.

(2) (Q/Z)®z (Q/Z) =0.

(3) Q®zQ =Q.

(4) The maps CR®c C — C; 21 ® 22 — 2122 and CQr C — C?% 21 ® 20— (2122, 21Z2) are isomorphisms.
(5) Let K be a field, V and W be K-vector spaces, and let V'V = Homg (V, K) be the dual of V. The map
W ®k VY — Homg (V,W) sending w ® a (with w € W and a € V) to the rank 1 linear map given by
x +— az)v is an isomorphism (because it is surjective since any element in Homg (V, W) can be written as
a sum of rank 1 maps, and dimg (W ®x V") = dimg (V') dimg (W) = dimg (Homg (V, W))). In particular,
one has V ®x VvV S5 Endx (V). Note that the map V ®x VY — K; v ® a — «a(v) corresponds, via this
isomorphism, to the trace map Tr: Endg (V) — K.

1.5.10. Tensor product of algebras. Let B and C be A-algebras. The multiplication on B (resp. C) provides
maps mp: B®aB — B; xQ@y — zy and mg: C®4C — C; ®y — xy. Moreover, there is an isomorphism
e:C®1B>5B®AC; 2@y~ y®az. Consider the composite

Idp ®eRldc mp@mc
—_—

(B®4C)®4 (B®aC) (B®4B)®a(C®aC)

w

B®aC

(here we tacitly used the natural isomorphisms (B ®4 C) ®4 (B ®4 C) > B ®4 (C ®4 B) ®4 C and
B®4(BR®4C)®4C>(B®4 B)®4 (C®aC) i.e. the associativity of tensor product).

Definition 1.5.11. The preceding map p: (B®aC)®4 (B®a C) - BR®4 C endows the A-module B®4 C
with an A-algebra structure: the product law is simply given by

(b1 ®ci1) - (b2 ®ca) = (b1b2) ® (c1c2)
on simple tensors. This A-algebra is called the tensor product of the A-algebras B and C.

Remark 1.5.12. Note that this construction is functorial.

There are natural morphisms of A-algebrasip: B - B®2C; b— b®lc andic: C - BRsC; c— 1p®c.
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Proposition 1.5.13. (UNIVERSAL PROPERTY OF THE TENSOR PRODUCT OF ALGEBRAS). If X is an A-
algebra, then

Hom 4 a1 (B®AC, X) = {(f, g) € Hom 4 _a14 (B, X') xHom 4 a1z (C, X)) ; (Vb e B) (Yc e C) f(b)g(c) = g(c)f(b)}

In particular, if B and C are commutative, the tensor product (B ®4 C,ig,ic) is the coproduct of B and
C in the category of commutative A-algebras.

B ;
A/ \B®AC .......... > X
\CU

Example 1.5.14. (1) A[X4,...,X,]®4 B ~ B[X1,...,X,].

(2) If I c B is an ideal and [ © B ®a C the ideal generated by ig(I), then (B/I) ®4 C ~ (B®4 C)/I.
For instance, assume that Py, P> € A := C[X,Y], and let B = C[X,Y]/(P;) and C = C[X,Y]/{Ps). Then
B®sC ~ C[X,Y]/{(P1, P;). Geometrically, this corresponds to the functions on the intersection of the two
curves defined by Py and P, in the affine plane AZ.

(3) (Example 1.5.9 (4) continued) Let L/K is a finite Galois extension with group G, the natural map
LO®x L - @ L;z®y — (zo(y))sec is an isomorphism of L-algebras (for the left structure on the

oceG
LHS, and the diagonal structure on the RHS). Indeed, choose a primitive element o € L (i.e. such that

(1,a,0?,...,a%71) is a K-basis of L, where d = [L : K]), and let P(X) = [][ (X — o(a)) € K[X] be
oeG
its minimal polynomial over K. Then L ®x L ~ L @k K[X]|/{P) ~ L[X]|/{P) ~ @ L, the last map
oeG

sending the class of X to (o(a))sec (this is nothing but the Chinese remainder theorem). By L-linearity,
it is obvious that the composite maps z ® y to (20(y))seq (remark: in down to earth terms, (1 ® a')o<i<d

is an L-basis of L ®f L, which is mapped to ((6(a)")o<i<d)oec, which is an L-basis of (P L because the
oceG

Vandermonde matrix (o(a)")o<i<d € Mg(L) is invertible).
ceG

1.6. Tensor, symmetric and exterior algebras.
1.6.1. Graded algebras.

Definition 1.6.2. Let A — B be an A-algebra. A grading on B is a collection of sub-A-modules {B,}nez.,
such that

o0
.B=®Bn;

n=0
o (VYm,n € Zxo) BBy  Brim.

A graded A-algebra is an A-algebra endowed with a grading.
o0
Remark 1.6.3. If B= @ B, is a graded A-algebra, then By is an A-algebra.
n=0

Example 1.6.4. ¢ B = A[X4,..., X, ] has a natural grading, for which B, is the sub-A-module made of 0
and homogeneous polynomials of degree n.
e Idem for A[X,...,X,]-

Remark 1.6.5. By analogy with the previous example, elements in B,, are sometimes called homogeneous
of degree n.
0 0
Definition 1.6.6. Let B = @ B,, be a graded A-algebra. Anideal I c B is called graded if = @ (InBy).
n=0 n=0
Example 1.6.7. If B = A[X] and I = {1 + X) c B, then I is not graded (because I n B, = {0} for all
ne Z;()).

o0

Proposition 1.6.8. If B = P B, is a graded A-algebra and I c B an ideal generated by homogeneous
n=0

elements, then 7 is graded.

Proof. Write I = Y 8,B with )\ homogeneous of degree ny € Zso for all A € A. Let x € I: there exists

AEA
T

o0
M,...,Ar € Aand by,...,b. € B such that « = Y By bx. For k € {1,...,r}, write by, = > bg, with
k=1 n=0
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o0
bi.n € Bp, and by, = 0 for n » 0: we have ¢ = Y, z, with z,, = ] Bawbkn—ny, € I N By, so that
=0 keZ>
" nfk S%
%0
c @ (I n By). The reverse inclusion is trivial. O
=0

o0
Proposition 1.6.9. Let B = @ B, be a graded A-algebra and I ¢ B a graded ideal. For n € Zs, let
n=0

o0
(B/I), = (B, +I)/I ~ B,,/(I n By,) be the image of B, in B/I. Then B/I = @ (B/I)n, so that B/I is a
n=0

graded A-algebra.

0 0
Proof. The map B = @ B, —» @ (B/I), is surjective (because B,, — (B/I), ~ B,/(I n By,) is for each
n=0 n=0
o0

n € Zso) and its kernel is @ (I n B,) = I. O

n=0

Definition 1.6.10. Let B = (—B B, and C = (—B C,, be graded A-algebras.
=0
¢ A morphism of A- algebras w: B> Cis gmded if o(B,) c Cy, for all n € Zxy.

e The tensor product algebra B ®4 C is naturally graded by (B®4 C), = @ Br ®4 Cp—k.
k=0

[os) [os)
Remark 1.6.11. As B= @ B, and C = P C,, we have B, C = @ B, ®4 Cy, (cf proposition

n—O n=0 n,meZxgq
1.5.6 (2)), s0o B4 C = (—D (B®a C),. Moreover, if 0 < k < n and 0 < £ < m are integers, and = € By,

2’ € By,ye Cp_pandy' € Cm ¢, we have (z®y)(2'®y') = 22’ ®yY’ € Brit®aCrim—(k+e) © (B®AC)nim,
so the previous definition makes sense.

1.6.12. Tensor, symmetric and exterior algebras. In this section M denotes an A-module. If n € Zs(, we
put
M® = M@y M®a--®aM.

n t;'mes
(in particular M®° = A and M®! = M).
Definition 1.6.13. The tensor algebra of M is
o0
=P me"
n=0

where the A-algebra structure is characterized by
(T1® Q)N O OUYn) P11 Q- T, @Y1 @ ® Y-
It is a graded A-algebra, the n-th graded piece being M®",
Remark 1.6.14. In general, T4(M) is not commutative.
Example 1. 6 15. o If M = Az in free of rank 1, then M®" = Ax®" is of rank 1 for all n € Z=g, and
Ta(M) = 6—) Ax®" ~ A[X] is isomorphic to the ring of polynomials in one variable X corresponding to

(O,.’I],O )ETA(M)
o If M = Ax @ Ay is free of rank 2, then T4 (M) is isomorphic to the free A-algebra on two indeterminates
X and Y (that correspond to (0,z,0,...) and (0,y,0,...) respectively).

Definition 1.6.16. Let I, (M) c Ta(M) (resp. I, (M) c T4(M)) be the two-sided ideal generated by

elements of the form 1 ® - -+ 2, — 2,(1) ® -+ - @ T () With n € Zog, x1,...,2, € M and 0 € &,, (resp. of
the form 1 ®---® x,, where n € Z>5 and z1,...,x, € M are such that there exist 1 < ¢ < j < n such that
€Xr; = ZL'J').

Remark 1.6.17. As G, is generated by transpositions, a set of generators for Is(M) (resp. I,(M)) is given
by {z®y —y ® z}s yenm (resp. {x ® x}zenr)-

Being generated by homogeneous elements, the ideals I;(M) and I, (M) of Ta(M) are graded.
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Definition 1.6.18. The symmetric algebra (resp. exterior algebra) of M is
Symy (M) :=Ta(M)/Is(M) (resp. Alta(M) = Ta(M)/I,(M))

s} [os)

By proposition 1.6.9, these are graded A-algebras: Sym, (M) = 6—) Sym} (M) and Alta (M) = @ Alty (M)
=0 n=

where Sym); (M) = M®"/(I,(M) n M®") and Alt} (M) = M®"/( o(M) n M®™).

Remark 1.6.19. (1) As A-algebras, Sym, (M) and Alty(M) are generated by Symj (M) = Alty(M) = M.

As A is commutative, this implies in particular that the ring Sym, (M) is commutative, and that the graded

A-algebra Alta (M) is anticommutative, which means that yz = (—1)""zy if x € Alty (M) and y € Alty' (M).

(2) These constructions are functorial: an A-linear map f: M — M’ induces morphisms of A-algebras

Ta(f): Ta(M) — Ta(M’), Symy(f): Symyu (M) — Sym,(M’) and Alta(f): Alta (M) — Alta(M').

(3) Base change: if B is a commutative A-algebra and M an A-module, then Tg(B®a M) ~ B4 Ta(M),

Symg (B ®a M) ~ B®a Sym, (M) and Altg(B ®4 M) ~ B®y4 Alta(M).

Definition 1.6.20. The A-module Sym} (M) (resp. Alty(M)) is called the n-th symmetric power (resp.
exterior power) of M.

Notation. e Quite often, Alt} (M) is denoted by A} M

o Let t: M"™ — MO (z1,...,2,) > 21 Q-+ ®x, and s: M™ — Sym}}(M) (resp. a: M™ — Alt}(M)) be
the composite of ¢ with the natural projection. Then one writes 1 - T3 - - - Xx—1 * ,, instead of s(x1,...,z,)
and 1 A -+ A T, instead of a(z1,...,zy).

Example 1.6.21. ¢ If M = Az in free of rank 1, then Sym, (M) = Ta(M) ~ A[X], and Alta(M) = A® Ax.
o If M = Az @ Ay is free of rank 2, then Sym, (M) ~ A[X,Y], and Alty (M) = A@ Az ® Ay ® Az A y is
free of rank 4.

Definition 1.6.22. Let L be an A-module and n € Z-g. A map f: M"™ — L is n-linear if it is A-linear
with respect to each of its variables. A n-linear map f: M"™ — L is symmetric (vresp. alternating) if
f(@oqys o Tomy) = f(z1,...,2,) forall zy,...,2, € M and 0 € &, (resp. f(x1,...,2,) = 0 as soon as
there are 1 <7 < j < n such that m; = m;).

Remark 1.6.23. If f: M™ — L is an alternating n-linear map, then f it is antisymmetric, i.e.

f(.%'a(l), ceey xa(n)) = E(O’)f(.%‘l, cee ,.Tn)

for all z1,...,2, € M and 0 € &,,. When 2 € A*, the converse holds, i.e. an antisymmetric map is
alternating.

Proposition 1.6.24. The n-linear map t: M"™ — M®" (resp s: M™ — Sym}{ (M), resp. a: M™ — Alt} (M))
has the following universal property: if f: M™ — L is a n-linear map (resp. a symmetric, resp. an
alternating n-linear map), then there exists a unique A-linear map f: M®" — L (resp. f: Symj (M) — L,
resp. f: Alty (M) — L) such that f = fot (resp. f = f~o s, resp. f = f~o a), i.e. such that the diagram

f ) f

M ———L (resp. M" —— = L, resp. M”4>L)
t\ /N s\ / a\ /_Vf
M®n T Symi(M) ! Al (M) T

commutes.

Proof. By the universal property of tensor product, there exists a unique A-linear map f M® — L such
that f = fot. By definition, f is symmetric (resp. alternating) if and only if I,(M) A M®" c Ker(f) (resp.
I.(M)nM®" < Ker(f)), i.e. if and only if the map f factorizes through an A-linear map f: Sym% (M) — L
(resp. f: Alty (M) — L). O
Proposition 1.6.25. (UNIVERSAL PROPERTY OF THE SYMMETRIC ALGEBRA). Let f: A — B be a commu-
tative A-algebra. The map
Hom A -a1g(Symy (M), B) = Hom g moa (M, B)

is bijective. In other words, any A-linear map v: M — B extends uniquely into a morphism of A-algebras

b Sym, (M) — B.
b

Symy (M )
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Proof. If h: Sym, (M) — B is a morphism of A-algebras, and ¢ = hjys, then 1 is A-linear, and for n € Z,
we have

h(wy - g xn) = h(x1)h(w2) - Y(20)

for all x1,...,x, € M, which implies that h is entirely determined by 1) (we are just using the fact that M
generates Symy, (M) as an A-algebra). This shows that the map Hom 4 _a1g(Symy (M), B) — Hom g _med (M, B)
is well defined and injective.

Let v € Hom 4 .moda (M, B). If n € Z>g, the map M™ — B; (21,...,2,) = ¥(x1)(x2) - - - ¥ (x,,) is n-linear, so

~ ~ Do
factors through a map h,,: M®" — B. Themap h = @ h,,: T(M) — B is a morphism of A-algebras. As B

n=0
is commutative, we have I;(M) < Ker(h), so h factors through a morphism of A-algebras h: Sym, (M) — B
such that hyy; = 9, which shows the surjectivity of Hom 4 _a1g(Sym, (M), B) — Hom 4 _mea(M, B). |

Similarly:

Proposition 1.6.26. (UNIVERSAL PROPERTY OF THE EXTERIOR ALGEBRA). Let f: A — B be an anticom-
mutative A-algebra. The map

Hom 4 -aig (Alta (M), B) — Hom 4 _moa (M, B)

is bijective. In other words, any A-linear map v: M — B extends uniquely into a morphism of A-algebras
¥ Alta(M) — B.

Alty (M)
Corollary 1.6.27. Let M; and M5 be A-modules. There are natural isomorphisms
Symy (M1) @4 Symy (Mz) ~ Sym, (M1 @ Ma)
A|tA(M1) ®4 Alty (Mg) ~ A|tA(M1 &) Mg)
Proof. Let f: A — B be an A-algebra. Assume B is commutative: we have natural bijections
Hom 4 _aig (Symy (M1 @ M), B) ~ Hom A -mod (M1 @ M>, B)

~ Hom 4 -mod (M1, B) x Hom 4 moa(Ma, B)

~ Homa_aig(Symy (M1), B) x Hom 4 _aig(Sym, (M2), B)

~ Hom 4 aig(Symy (M1) ®a4 Symy (M2), B)

by the universal property of symmetric algebras and tensor product of A-algebras. Since this holds for any
commutative A-algebra B, we get an isomorphism Symy (M; @ M3) ~ Sym,(M1) ®4 Sym,(Ms2). The case
of the exterior algebra is similar. a

Remark 1.6.28. If n,k € Z>o and x1,...,25 € M1, y1,...,Yn—k € Mo, then
2@ k@Y @ @Yk € (M1 @ Mp)®"

so we get a map

k
P MPF @4 M — (My @ Mo)®"
k=0

This map is not an isomorphism in general. For instance, using proposition 1.5.6 (2) we have
(M1 @ M2)®? = MP* @ My ®4 Mz @ Mz ®4 My ® M3

and the factor Ms ® 4 M; is not included in the image.
If we add all those maps, we get a graded morphism of A-algebras

Ta(M1) ®a Ta(Mz) — Ta(My @ Mo)
(which is not an isomorphism in general). It induces graded morphisms of A-algebras
SymA(Ml) ®a SymA(Mg) 5 SymA(M1 &) Mg) A|tA(M1) ®a A|tA(M2) 5 A|tA(M1 &) Mg)

which are nothing but those provided by corollary 1.6.27.
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Considering the graded pieces of the graded isomorphisms of corollary 1.6.27, we get A-linear isomorphisms:
@ Symi (M) ®a Sym}y " (Ma) = Symi (M @ M)

k=0

@D Alty (M) ®a Alty (M) S Alty (M @ Mo).
k=0

d
Corollary 1.6.29. Assume M = @ Az is free of rank d.

k=1
(1) We have Symy (M) ~ A[X;,..., Xq] (where X}, corresponds to the image of (0,zy,0,...) € T(M)), so
in particular Symy (M) is a free module of rank (”+s_1) (a basis being given by homogeneous monomials
of degree n).

(2) The A-module Alty (M) is free of rank (i) with basis (z;; A+ AT, )o<iy <--<i, <d, SO Alta (M) is free of
rank 2.

Proof. The case d = 1 is nothing but example 1.6.21. The general case follows by induction, using corollary
1.6.27 for the symmetric algebra, and the second isomorphism above for the exterior power. O

Definition 1.6.30. Let M be a free A-module of rank d and f € End4(M). By functoriality, f induces an
A-linear endomorphism Altd(f): Altd(M) — Alt$ (M), which is the multiplication by a scalar det(f) € A
since Alt (M) is free of rank 1 over A by corollary 1.6.29 (2). This scalar is called the determinant of f.

Remark 1.6.31. This definition matches the “usual” one: let B = (e1,...,eq) be a basis of M and
d

(i j)1<ij<d € Mg(A) the matrix of f in 9B, so that f(e;) = 3 a; e;. We have Alt§(M) = Ae where
j=1

e=-¢e1 A - A eg, SO that:

Altg (f)(e)

d d
(Z a17j€j) VANRIRRAVAN (Z amjej)
j=1 j=1

Z Q1,51 02,55 " ** A, jg fjl A Cjyg At A ejn),
1<j1,..,Ja<d

~—
=0 if jr=j, with k#¢

Z A1 0(1) """ Od,o(d) fa(l) ANAY ea'(dl
7€8a E(Z)e

( Z g(o)al,a(l) "'ad,a(d))e

0eS,y

1.6.32. Symmetric and anti-symmetric tensors. Assume from now on that n € Z>s and that n! € A*.
If x1,...,2, € M", put fo(z1,...,2n) = X, Zo1) ® -+ ® Ty(y). This defines a map fs: M™ — M®

geSG,
which is n-linear and symmetric: it factors uniquely through an A-linear map ts: Symj (M) — M®" (the
symmetrization operator). Likewise, put fo(mi,...,mn) = >, €(0)My1)®- - @My (n): this defines a map
eSS,

fa: M™ — M®" which is n-linear and antisymmetrical (whence alternating given the hypothesis): it factors
uniquely through an A-linear map o : Alt} (M) — M®" (the anti-symmetrization operator).

Endow M®" with the action of &,, given by o(m1 ®---®@m,,) = Me(1) @+ - @Mgy(p). Then %LS oms (where
Ts: M®" — Sym}{(M) is the canonical map) is a projector onto the subspace (M’ ®")6" (of invariants under
the action of &,,). Similarly, £t 0 7, (where m: M®" — Alt}{(M) is the canonical map) is a projector
onto the subspace of anti-invariants, i.e. elements x € M®" such that o(z) = e(o)z for all o € &,,.

Remark 1.6.33. When n = 2, the previous projectors provide a decomposition M®2 = Sym3 (M)@AIt3 (M).
Indeed, as 2 € AX we have (S(M) n M®?) @ (A(M) n M®?) = M®? and they provide identifications
Sym3i (M) = A(M) n M®? and Alt; (M) = S(M) n M®2.

1.7. Flatness.

Definition 1.7.1. ¢ A complex of A-modules is a sequence of A-linear maps (fi: M; — Mi+1)iel (where
I ¢ Z is an interval) such that f;1q1 0 f; =0 for all i € I. It is ezact when Ker(f;1+1) = Im(f;) for all i € I.
o A short exact sequence of A-modules is an exact complex of the form

0->M LML M —o
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Remark 1.7.2. Tf0 —» M’ L M % M” - 0'is exact, then M’ ~ Ker(g) and M” ~ Coker(g).
Proposition 1.7.3. Let

(&%) M LM ES M o

be a diagram of A-modules. Then (&) is an exact sequence if and only if for any A-module N, the sequence
(®) 0 — Homa(M”, N) 2% Hom (M, N) 25 Hom 4 (M, N)

is exact.

Proof. The exactness of the sequence (#) for all A-module N means that for any A-linear map v: M — N,
the composite v o f is zero if and only if v factors through g, i.e. if and only if there exists a (unique)
A-linear map u: M” — N such that v = u o g, which precisely means that g: M — M"” has the universal
property of the cokernel of f. This is thus equivalent to the exactness of (é). O

Remark 1.7.4. (1) Proposition 1.7.3 implies in particular that if N is an A-module, the functor
Homa (., N): Mod(A) » Mod(A)

is left exact.

(2) Similarly, a diagram of A-modules 0 — M’ I M % M” is an exact sequence if and only if for any

A-module N, the sequence 0 — Hom 4 (NV, M’) HomA(N M) 2 HomA(N, M") is exact. This implies

in particular that for any A-module N, the functor Hom 4(N,.): Mod(A4) — Mod(A) is left exact.

Proposition 1.7.5. Let N be an A-module. The functor Mod(A4) — Mod(A4); M — M ®4 N is right

exact. This means that if 0 — M’ £> M % M” = 0 is an exact sequence of A-modules, then the complex

N J®dy, f®ldn

MI® TN, A @a N9®|dN M”@AN—)O

is exact.
Proof. By proposition 1.7.3, it is enough to check the exactness of the sequence
0 — Homa(M" ®4 N, L) — Homs(M ®4 N, L) — Homs (M’ ®4 N, L)
i.e. that of the sequence
0 — Bila(M",N; L) - Bila(M,N; L) — Bil4(M',N; L)

for any A-module L. This is trivial: an element ¢ lies in the kernel of Bil4(M, N; L) — Bil4(M', N; L) if
and only if ¢(., y) vanishes on M’ hence factors through M” for all y € N, i.e. if and only if ¢ = o (g®Idy)
for some unique ¢ € Bilo4(M", N; L). O

Example 1.7.6. The sequence 0 — Z ENY AN Z /27 — 0 is exact. After tensoring by Z /2Z, we get the
sequence

0—>Z/2Z Z/2Z—>Z/2Z—>O
Definition 1.7.7. An A-module N is called flat if the functor Mod(A) — Mod(A); M — M ®a N is exact,
that is if for all exact sequence 0 — M’ ERY VRS VNN 0, the complex
0 M @aN LY e, N 2E9Y v @ N -0
is a short exact sequence.
®ldn

Remark 1.7.8. By proposition 1.7.5, N is flat if and only if M'®4 N —— !
M' — M is injective.

M ®4 N is injective whenever

Proposition 1.7.9. An A-module N is flat over A if and only if for all ideal I c A of finite type, the natural
map I ®4 N — I[N is injective.

Proof. e Assume N is flat over A. As I — A is injective, sois I ®4 N — N.

e Conversely, assume that the natural map I®4 N — IN is injective for every ideal of finite type I — A. Let

I c A be any ideal. An element & € Ker(I ®4 N — IN) can be written § = >, o; ®x; with aq,..., . €T
k=1

and z1,...,2, € N. Let J c A be the ideal generated by aq,...,a,, so that £ € Ker(J ®4 N — JN). As

J is of finite type, the map J ®4 N — JN is injective, hence £ = 0in J®4 N,s0 & =0in I ®4 N. This
shows that the natural map I ® 4 N — IN is injective for any ideal I c A.
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Let M’ ¢ M be a submodule: we want to show that M’ ®4 N — M ®4 N is injective. As above, we
can reduce to the case where M is of finite type (this follows from the fact that tensor product commutes
with direct limits, and that M is the direct limit of its sub-modules of finite type), in particular where
M /M’ is of finite type, so that there exist my,...,m, € M such that M = M’ + Amy + --- + Am,.. For
ke{0,...,r}, put M = M' + Amq + -+ + Amy, so that M' = Moc My c---c M,y € M, = M. The
map M’ ®4 N — M ®4 N is the composite

Mo@AN > M QN — > M_1Q4N - M, Q@4 N

so it is enough to show the injectivity of each map My 1 ®4 N — My ®4 N: we can reduce to the case
where M = M’ + Am.

Put I ={a€ A; ame M'}: this is an ideal in A. The map 7: M'® A - M; (x,a) — x + am is surjective.
If (x,a) € Ker(r), then am = —x € M’, so a € I. This implies that the map ¢: I — Ker(m); A — (=Am, \)
is an isomorphism. Form the exact sequence 0 — I = M'@® A 5 M — 0 we get the exact sequence

I®a N 29 M @i NN 229 @i N -0
Let £ € Ker(M' ®a N — M ®4 N). Then (£,0) € Ker(m ® Idy), so there exists n € I ®4 N such that

(£,0) = (¢ ®1dn)(n). Projecting on the second factor, the image of n € I ®4 N in N is zero. As the map
I ®4 N — N in injective, we have n = 0, whence £ = 0, as required. O

Remark 1.7.10. There is a more natural proof of this result using derived functors of the tensor product.

Proposition 1.7.11. (1) If N is projective over A (i.e. a direct summand in a free A-module), then N is
flat. In particular, flatness is automatic when A is a field.
(2) If A is principal, that N is flat if and only if it is torsion-free.

Proof. (1) This is true when N is free by example 1.5.9 (2). In general, write N @® S = L with L a free
A-module. Let f: M’ — M be an injective map of A-modules. By example 1.5.9 (2) again, the injective
map f ® Id, identifies with (f ® Idy) ® (f ®Ids), so f ® Idy is injective as well.

(2) Assume N is flat and let a € A\{0}. The multiplication map a: A — A is injective: so is a®Ildy: A®a
N - A®a N. The latter identifies with the multiplication map «: N — N, so N has no a-torsion.
Assume N is torsion-free. If I ¢ A is a nonzero ideal, then I = oA with a € A\{0}. The map @4 N — IN
identifies to the multiplication by o on N : it is injective since N is torsion-free. This implies that N is flat
over A by proposition 1.7.9. O

Remark 1.7.12. There are flat modules that are not projective. For instance Q is flat over Z (since it is
torsion-free), but it is not projective (because it is divisible).

1.8. Localization.

Definition 1.8.1. A subset S ¢ A is called multiplicative if 0 ¢ S, 1 € S and if S is stable under multipli-
cation.

Example 1.8.2. (1) A*.

(2) {f"}nezs, where f € Ais not nilpotent.

(3) A\p where p c A is a prime ideal.

Proposition 1.8.3. Let S — A a multiplicative set. There exists an A-algebra A -> S~'A, unique up to
isomorphism, having the following universal property: if f: A — B is a ring homomorphism such that
(Vs € S) f(s) € B*, then there exists a unique ring homomorphism f: S~1A — B such that f = f o ..

!

A——>B

%
S—1A

Proof. Endow the set A x .S with the binary relation ~ defined by
(a1,s1) ~ (az,s2) < (At € S) t(ar1s2 —aszsy) =0
This is an equivalence relation. Denote by S™1A = (A xS)/ ~ the quotient set. If (a, s) € Ax S, we denote by

2 its image in S=LA. Let (ay, s1), (a2, s2) € Ax S. One checks easily that the elements S+2= %

and $+.¢% 1= £ only depend one ¢+ and %, and that this defines two internal laws + and . over ST1A,
making S~'A a commutative ring with unit % Moreover, the map
1t A— S7TA

a
al—)l
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is a ring homomorphism. Note that if s € S, then «(s) = { is invertible in S~1A, with inverse %
Let f: A — B a ring homomorphism such that (Vs € S) f(s) € B*. The map
f: S'A-> B

20 f(s)" f(a)

is a well defined ring homomorphism, and it is the unique one such that f = f~o t. The unicity of (S71A, )
follows from the universal property. a

Definition 1.8.4. The A-algebra S—!A is the localization of A with respect to the multiplicative set S.

Remark 1.8.5. (1) As usual, if a € A, we will write a instead of +(a) its image in S~ A.

(2) In some sense, S~!A is the “minimal” A-algebra in which elements in S are invertible.

(3) When A is an integral domain, ~ is nothing but the "usual" relation (a1, $1) ~ (a2, s2) < a152 = a251.
When A is not a domain, the latter is not an equivalence relation (why?), and the "t" is necessary.

(4) Ker(t) = {a € A; (s € S) sa = 0}, so ¢ is injective when A is an integral domain.

(5) Unless A is a factorial domain, there is no notion of “irreducible fraction”.

Example 1.8.6. (1) Assume A is an integral domain. Then A\{0} is multiplicative ({0} is prime), and
(A\{0}) 1A = Frac(A) is the fraction field of A. For instance, Frac(Z) = Q, and Frac(K[X]) = K(X) when
K is a field.

If moreover S c A is a multiplicative set, the universal property provides an injective ring homomorphism
S=1A — Frac(A): localizations of A identify with subrings of Frac(A).

(2) More generally, if we do not assume integrity of A, the set S = {f € A; f is not a zero-divisor in A} A
is multiplicative. In this case the localization Q(A) := S~ A is called the total ring of fractions of A.

(3) Let f € A. We denote by Ay the localization of A with respect to the multiplicative set {f"},ez.,-
One can easily show that Ay ~ A[X]/(fX —1). For instance, Z) is nothing but the ring of decimal
numbers.

(4) If p © A is a prime ideal, we denote by A, the localization of A with respect to the multiplicative set
A\p. When A is an integral domain and p = {0}, one recovers Frac(A).

(5) Exercise: find multiplicative sets S © Z other than Z\{0} such that S~'Z = Q.

Definition 1.8.7. Let S — A be a multiplicative set and M an A-module. The localization S™'M of M
with respect to S is defined similarly as S~ A: it is the quotient of the set M x S by the equivalence relation
given by (my, s1) ~ (ma, s2) < (3t € S) t(m152 —masy) = 0. This is a S~! A-module with the laws given by

My oy Mo MS2dMeS) and & M .= 4M ©[oreover, an A-linear map f: M — N induces a S~! A-linear map
S1 §2 5182 s s

fs: STIM — STIN (such that fg(2) = @ for all m € M and s € S). It enjoys the following property:
for any S~!A-module N, the natural map

Homg 14(S 1M, N) — Hom (M, N)

is an isomorphism.
In particular, if I < A, is an ideal (i.e. a submodule of A), S7'I is an ideal in S™'A.

Proposition 1.8.8. (1) (ldar)g = ldg-1p.
(2) If f: M > M' and g: M' — M" are A-linear maps, then (go f)s = gs o fs.
(3) If M c¢ N, then S™*M < S™'N and S™Y(N/M) ~ S™IN/S™1M.
(4) If f: M — N is A-linear, then Ker(fs) = S~! Ker(f) and Coker(fs) = S~ Coker(f).

Proof. (3) The composite M < N = S !N extends into i: S~'M — S~ !N (by S !A-linearity). Let
x e STIM: write z = 2 with m € M and s € S. If i(x) = 0, there exists ¢ € S such that tm = 0 in
M < N, which implies that x = = =0 in S~!M: the map i is injective. We consider it as an inclusion in
S~IM < STIN.

The canonical map 7: N — N/M induces a S~!A-linear map S™'N =% S~ (N/M). Tt is surjective: if

z € STY(N/M), there exists m € N/M and s € S such that z = Z. Let n € N lifting 7: we have 7g(2) = x.

Of course S™'M c Ker(rg). Conversely, if 2 = 2 € Ker(rg) (with n € N and s € S), we have @ =0 in
S~H(N/M): there exists t € S such that tw(n) = w(tn) = 0in N/M, i.e. tn € M, thus x = 2 e S~ M.
Hence Ker(rg) = S™'M and S™!N/S™'M S S~YN/M).

(4) Follows from (3). O

Proposition 1.8.9. Let M be an A-module and S < A a multiplicative part. Then ST!A®4 M > S~ 1M
as S~!A-modules. In particular, the A-algebra S—'A is flat.
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Proof. (1) The map S™1A x M — St M; (%,m) — %% is bilinear so factors through an A-linear map
u: STA®4 M5 STIM, such that (¢ ® m) = 22, Its inverse is nothing but the preimage of the
A-linear map M — S~'A®4 M given by m — 1 ® m under the isomorphism Homg—1,4(S™1M,S71A®4
M) Homa(M, S~ ®4 M) (¢f definition 1.8.7). It is in fact S~ A-linear. Assume ™ = ™" in S~ M: there
exists t € S such that t(s'm—sm’) = 0, so %@m = ttsssl, Xm = tsls,®(ts’m) = tsls,®(tsm’) = t’;‘z, m' = $®m’.
This implies that the map v: ST'M — ST'A®4 M given by v(2) = 1 @ m is well defined, and it is an
inverse of wu.

(2) This is a reformulation of proposition 1.8.8 (3) O

If S, S’ © A are multiplicative sets, then S5’ := {ss’; s€ S, s’ € §'} is also a multiplicative set of A.
Proposition 1.8.10. Let S be the image of S in S’~'A, then there is an natural isomorphism of rings
S—1(S'71A) S(SS") LA,

Proof. Let f: A — B be an A-algebra such that f(SS’) ¢ B*. As f(S') ¢ B*, the map f extends
uniquely into a ring homomorphism f: S'~'A — B. Similarly, f(S) ¢ B*, so f extends uniquely into a
ring homomorphism f: S~1(S'~1A) — B. This implies that S~1(S'~! A) has the universal property defining
(SS")~1A: there is an natural isomorphism of rings S~1(S'~1A4) 5(SS')~1A. O
Corollary 1.8.11. If M is an A-module, there is a natural isomorphism S~1(S'~1M) 5(SS") "1 M.

Proof. Tensored with M, the isomorphism S™1A®4 S 1A >(SS") 1 A provides an isomorphism (S~ 1A®4
STrA)@aM 5(SS") "L A®a M (cf proposition 1.8.9 (1)). As there are isomorphisms S’ 1 A®4 M = St M
and (SS")'A®s M 5(SS") "M (cf proposition 1.8.9 (1) again), we deduce a chain of isomorphisms

S_IA ®a (Sl_lA R®a M) T~ (S_lA ®a Sl_lA) ®a M

iZ 0

STLA®y (S'"1M) (SS)"1A®s M
0 }
S7HSIM) e _ (59)" 1M

O

Lemma 1.8.12. Let M be an A-module and N’ a sub-S~!A-module of S~'M. Then N’ = S~!N where
N is the inverse image of N’ under the natural map M — S—'M.

Proof. If x = ™ € N', then sz = 5, i.e. me N,soz € STIN. Conversely, z = Te S™IN (with n € N and

s € S), then % e N, thus z € N’ since N’ is a S~ ' A-module. a

Corollary 1.8.13. Let S — A is a multiplicative set. Ideals in S~'A are localizations of ideals in A. In
particular, A is noetherian implies S~ A is noetherian.

Notation. We denote by Spec(A) the set of prime ideals in A. It is called the spectrum of A.

Proposition 1.8.14. Let S ¢ A be a multiplicative set. The maps
{p e Spec(A); pn S =3} < Spec(ST*A)
p—S'p
qnA:=:"1(q) < g
are increasing (for the inclusion) bijections inverse one to the other.

Proof. Let p € Spec(A) such that p n S = @. Then S"1A/S 1p ~ S 1(A/p) (cf proposition 1.8.8). Let S
be the image of Sin A/p: as pn S = &, we have 0 ¢ S, and S is a multiplicative set in A/p. As A/p is an
integral domain, so is its localization S~1(A/p) = S~!(A/p) < Frac(A/p), so that S~'p is prime in S~ A.
Conversely, if q € Spec(S~A), then A/17!(q) — S~1A/q is an integral domain: we have q n A € Spec(A).
If se (qn A) n S, then s € q. As s is invertible in S™*A, we have ¢ = S~'A, which is not: we have
(qnA)nS=wa.

Let p € Spec(A) be such that p n .S = @. We have of course p ¢ S~ !p n A. Conversely, let a € S~1p n A:
write a = ¢ with o € p and s € S. As sa = a € p and s ¢ p (because p n S = @), we have a € p, which
proves the equality p = S~ 'p n A.

Let q € Spec(S~A). We have of course S™!(q n A)  q. Conversely, let € q : write z = ¢ with a € A and
s€S. Wehave st =a€qn A, sox=2eS (qn A), which proves the equality g = S~ (q n A). O
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Remark 1.8.15. In particular we have Spec(S~1A4) — Spec(A4). The set Spec(A) can be equipped with a
topological space structure (and even more...) and the bijection of proposition 1.8.14 identifies Spec(S~1A)
to an open subset of Spec(A), which explains the terminology of "localization".

Definition 1.8.16. A Jocal ring is a ring having only one maximal ideal.

Exemples 1.8.17. (1) A field is a local ring.
(2) If K is a field, the ring of formal series K[[X] is local, with maximal ideal X K[[X].
(3) Exercise: A is local if and only if A\A* is an ideal®: it is then the maximal ideal of A.

Definition 1.8.18. Let A and B be local rings with maximal ideals m4 and mp respectively. A ring
homomorphism f: A — B is local when f(m4) € mp.

Example 1.8.19. Let A be a local ring, m its maximal ideal, k¥ = A/m its residue field. Then the canonical
projection A — k is a local homomorphism. Assume moreover that A is an integral domain, and let
K = Frac(A) be its fraction field. Then the inclusion A — K is not local when A is not a field.

Corollary 1.8.20. If p € Spec(A), then Spec(A,) = {qA, ; q € Spec(A), q < p}. In particular, A, is a local
ring with maximal ideal pA,.

Proof. The equality follows from the equivalence q n (A\p) = & < q < p and proposition 1.8.14. Bijections
of loc. cit. being increasing (for inclusions), maximal elements correspond. O

Lemma 1.8.21. Let M be an A-module. Then M = {0} if and only if M,, = {0} for all maximal ideal
mc A

Proof. Assume My, = {0} for all maximal ideal m < A. Let me€ M. Put I = {a € A, am = 0}: this is an
ideal in A. Assume I # A: there exists m c A maximal such that / < m (theorem 1.1.7). Asm = 7 is 0 in
M.y, there exists t € A\m such that tm = 01in M, i.e. t € I. We have thus ¢t € I\m, which is a contradiction:
I=Aandm=0. O

Proposition 1.8.22. (LOCAL-GLOBAL PRINCIPLE). Let M be an A-module and M’, M” submodules of M.
Then M’ < M" (resp. M' = M") if and only if M| < M\ (resp. M} = M) in My, for all maximal ideal
m of A.

Proof. If M' € M", we already know that My, < My, for all maximal ideal m in A (proposition 1.8.8 (3)).
Conversely, assume that M;, < M. for all maximal ideal m in A. Put M = M/M" and 7: M — M the
canonical map, so 7(M’) ¢ M. By assumption, we have 7(M')y, = {0} (because the image of M, < M/

in My = My/M/! is zero, cf proposition 1.8.8 (3)) for all maximal ideal m in A. By lemma 1.8.21, this
implies that 7(M') = {0} in M, i.e. M' < M". O

Remark 1.8.23. An important special case of last proposition is the following: if I and J are ideals in A,
then I c J if and only if I, < Jy for all maximal ideal m in A.

1.8.24. Discrete valuation rings.

Definition 1.8.25. A discrete valuation ring (DVR) is a PID having a unique nonzero prime ideal. A
generator of this nonzero prime ideal is called a uniformizer of A.

Remark 1.8.26. Assume that A is a DVR. Its unique nonzero prime ideal m is maximal: the ring A is local.
Elements is m are not invertible: as m # 0, the ring A is not a field.

Proposition 1.8.27. Assume that A is a DVR, and denote by m its maximal ideal and 7 a uniformizer.
(1) Any element a € A\{0} can be written uniquely a = un*(*) with v € A* and v(a) € Zso;
(2) nonzero ideals in A are of the form m® = 7*A (with i € Zx¢);
) () m = {0}
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Proof. (1) As Ais a PID, it is a UFD. As m = 7 A is the only nonzero prime ideal, 7 is the only irreducible
element (up to multiplication by an invertible element). The prime decomposition of a € A\{0} is thus of
the form a = un¥(® where u € A* and v(a) = v,(a) € Zs is the m-adic valuation of a.
(2) If I ¢ A is an ideal, it is principal: we have I = aA with a € A. If I # {0}, then a # 0, so a = un® with
ue A* and i = v(a) € Zxo, thus [ = ' A = m’.

(8)1f A is local with maximal ideal m, then m ¢ A\A*, and if a € A\A*, the ideal aA is strict: it is contained in a maximal
ideal (¢f theorem 1.1.7), hence a € m, which proves the equality m = A\A*. Conversely, if m := A\A* is an ideal, and if
I c A is a strict ideal, we have I n A* = &, i.e. I — m and m contains all ideals in A.
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(3) If @ € A\{0}, we have a = ur® with u € AX and i = v(a), so a € m"\m**!, and a ¢ (| m’. Thus

i€Z 50

N m' = {0}. 0

i€Z 30
1.9. Integral extensions. In what follows, f: A — B is an A-algebra.

Definition 1.9.1. (1) An element b € B is integral over A if there exists a monic polynomial P € A[X] such
that P(b) = 0. The equality P(b) = 0 is then called an equation of integral dependence of b over A.
(2) We say that B is integral over A (or that A — B is integral) when all its elements are integral over A.

Example 1.9.2. /2 € C is integral over Z, but % is not.

Proposition 1.9.3. Let b € B. The following are equivalent;:
(i) b is integral over A;
(ii) A[b] is a finite A-algebra;
(iii) there exists a sub-A-module B’ ¢ B of finite type such that B’ contains an element which is not a
zero divisor, and bB’ < B’ (i.e. B’ is stable under multiplication by b).

Proof. e Assume (i): let P € A[X] monic and such that P(b) = 0. If deg(P) = n, the A-module A[b] is
generated by {1,b,...,b" !} (euclidean division), hence of finite type.

e Assume (ii): the A-module B’ = A[b] satisfies (iii).

e Assume (iii): let (f51,...,08,) be a generating family of the A-module B’. As bB; € B’, there exist

M = (ai7j)1<i7j<n € Mn(A) such that b3; = Z amﬂj for all 5 € {1, . ,n}. Put X = (ﬁi)lgisn € Mnxl(B):
j=1

we have M X =bX, i.e.

(%) (b1, —M)X = 0.

Let P(X) = det(X 1, —M): this is a monic polynomial of degree n, with coefficients in A. Multiplying
equality (*) by the transpose of the cofactors matrix of b1,, —M, we get P(b)X = 0, so P(b)B’ = 0, whence
P(b) =0 (since B’ contains an element which is not a zero divisor by hypothesis). O

Lemma 1.9.4. Let by,...,b, € B such that b; is integral over A[by,...,b;—1] for all i € {1,...,n}. Then
the A-algebra A[by,...,b,] is finite.

Proof. By induction on n € Z-g, the case n = 1 following from proposition 1.9.3. Let n € Z~; and put
A" = A[by,...,bp—1] € B. By induction, the A-algebra A’ is finite. As b,, is integral over A’, the A’-algebra
A’[b,] is finite: the A-algebra A[by,...,b,] = A’[b,] is finite. O

Proposition 1.9.5. The A-algebra B is finite if and only if it is integral and of finite type.

Proof. If B is finite over A, it is integral by proposition 1.9.3 (implication (iii)=>(i) with B’ = B). Moreover,
if {b1,...,b,} generates the A-module B, the morphism of A-algebras A[X7,...,X,] — B sending X, to b;
is surjective, so that B is of finite type (as an algebra) over A.

Conversely, assume B is integral and of finite type over A. We can write B = A[by,...,b,], and as by,...,b,
are integral over A, the A-module B is of finite type by lemma 1.9.4. g

Proposition 1.9.6. If A — B and B — C are integral, sois A — C.
Proof. Let ¢ € C and P(c) = 0, with P(X) = X" + by X""! + ... + b, € B[X], an equation of integral

dependence. As A — B is integral, the elements by,...,b, are integral over A: by lemma 1.9.4, B’ =
Alby,...,by] is finite over A. As B’[¢] is finite over B, it is finite over A, which implies that c is integral
over A (proposition 1.9.3, noting that 1 € B’[]). O

Corollary 1.9.7. Let b,1’ € B be integral over A. Then b — b’ and bb' are integral over A.

Proof. By lemma 1.9.4, the morphism A — A[b, V'] is finite hence integral: as b — b',bb’ € A[b, '], they are
integral over A. |

Remark 1.9.8. If b € B* is integral over A, the inverse b~! € B is not integral over A in general.

Definition 1.9.9. (1) By corollary 1.9.7, the set of elements in B that are integral over A is a sub-A-algebra
of B, which is called the integral closure of A in B.

(2) Assume A is an integral domain and put K = Frac(A). The integral closure of A is its integral closure
in K. We say that A is integrally closed if it is equal to its integral closure, i.e. when the only element in
K that are integral over A are elements in A.
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Proposition 1.9.10. UFD are integrally closed. In particular, PID are integrally closed.

Proof. Assume that A is a UFD, put K = Frac(A) and let € K integral over A. Write z = a/b with
a€ A and be A\{0} coprime. Let 2" + 12"~ ! + -+ + a;,, = 0 be an equation of integral dependence (with
at,...,a, € A). Multiplying by b", we get

a4+ a1a” b+ adb" =0
so that b divides a™. As a and b are coprime, this implies that b e A*, whence x = ab™! € A. O

Example 1.9.11. Let F be a field, ¢ an indeterminate, and put A = F[t?,t3] € B = F[t]. Then we have
Frac(A) = Frac(B) = F(t). As B is a PID, it is integrally closed by proposition 1.9.10. The element ¢ is
integral over A, but t ¢ A, so that A is not integrally closed (hence not a UFD by proposition 1.9.10).

Proposition 1.9.12. Assume that A is an integral domain, put K = Frac(A) and let L/K be an algebraic
field extension. Denote by B the integral closure of A in L. If 2 € L, there exists a € A\{0} such that
ax € B. In particular® L = Frac(B) and B is integrally closed.

Proof. Let X%+ X% ! +...+ a4 € K[X] be the minimal polynomial of z over K, and a € A\{0} such that
ac; € Aforallie {1,...,d}. The minimal polynomial of az over K is then X% +ac; X4 1+ -+aa, € A[X],
so ax € B. This implies that Frac(B) = L. If z € L is integral over B, then it is integral over A (proposition
1.9.6), i.e. x € B, and B is integrally closed. O

Proposition 1.9.13. (INTEGRAL CLOSURE COMMUTES TO LOCALIZATION). Under the hypothesis of propo-
sition 1.9.12, let S — A be a multiplicative part. The integral closure of S™'A < K in L is S~'B.

Proof. Let be B and b™ 4+ a1b" ! 4+ --- + a, = 0 an equation of integral dependence over A. If s € S and
z=2eS871B, then 2" + Lz" ! +... 4 2 = 0, which shows that = is integral over S~*A. Conversely, let
x € L integral over S™!'A4 and 2™ + a;2™ ! + -+ + o, = 0 an equation of integral dependence over S~ !A.

There exists s € S such that a; := sa; € A for all i € {1,...,n} (take a common denominator to the «;).
Put b = sz € L: we have b™ + a;0" ! + sa2b" 2 4+ - - + 5" 2q,_1b + s" " la, = 0, so that b is integral over
A. We thus have be B, and z € S~'B. O

Definition 1.9.14. Recall that a number field is a finite extension of Q (usually seen as a subfield of C). If
K is a number field, its ring of integers is the integral closure Ok of Z in K. By last proposition, it is an
integrally closed ring and K = (Z\{0}) 'Ok.

Proposition 1.9.15. Assume A is integrally closed, let K = Frac(A) and L/K be an algebraic extension.
An element in L is integral over A if and only if its minimal polynomial over K has coefficients in A.

Proof. Let x € L and P € K[X] its minimal polynomial over K. If P € A[X], the equality P(z) = 0 is
an equation of integral dependence, and z is integral over A. Conversely, if x € L is integral over A, fix an
algebraic closure L of L, and let x1,...,, be the roots of P in L (i.e. the conjugates of x, counted with
multiplicities). If ¢ € {1,...,n}, there exists a K-isomorphism of fields f: K(x) — K(z;) mapping = to
x; (isomorphism extension theorem). If Q(z) = 0 is an equation of integral dependence (with @ € A[X]),
then Q(z;) = Q(f(z)) = f(Q(z)) = 0, so that x; is integral over A for all s € {1,...,n}. From corollary
1.9.7, so are the coefficients of P (which are, up to a sign, symmetric polynomials in z1,...,z,). As those
coefficients belong to K and A is integrally closed in K by hypothesis, we have P € A[X]. a

Example 1.9.16. @ is not integral over Z (its minimal polynomial over Q is X2 — 1 ¢ Z[X]).
Exercise 1.9.17. Let d € Z\{0, 1} without square factor and K = Q(+/d). Then
{z [L¥4] ifd=1 mod4Z

2

O =
57z ifd#1 mod4Z

Proposition 1.9.18. Assume A — B is injective and that B is an integral domain'®) and integral over A.
then A is a field if and only if B is a field.

Proof. e Assume A is a field, and let b € B\{0}. As B is integral over A, there is an equation of integral
dependence b" + a;b" ' + - +a, = 0 with a1,...,a, € A. As B is an integral domain, we can assume
that a, # 0 (otherwise we can divide the equation by b): we have bc = 1 with

c=—a, (" P +ab"*+---4+a, 1)eB

(9)As the proof shows, we have in fact L = (A\{o)~'B.
(10)This implies that A is an integral domain.
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so that b is invertible in B, and B is a field.

e Conversely, assume that B is a field. If a € A\{0}, then a has a nonzero (by injectivity of A — B) hence
invertible image in B: let a~! € B be its inverse. As B is integral over A, there is a equation of integral
dependence (a=1)" + ag(a= )" + .-+ + a,, = 0 with a1,...,a, € A and

a7l =—a;—aga—--—aa"te A

so that A is a field. O

Proposition 1.9.19. Assume f: A — B is integral.

(1) If M < B is a maximal ideal, then M N A is a maximal ideal in A.

(2) If f is injective and m c A is a maximal ideal, there exists a prime ideal 9 ¢ B such that m = 9t n A,
and any such 9 is maximal in B.

Proof. (1) Assume 9 ¢ B is maximal, and put m = 9t n A. the morphism A/m — B/ is injective.
The A/m-algebra B/ is integral because B is over A (if b € B and P(b) = 0 is an equation of integral
dependence with P € A[X], we have P(b) = 0 where P € (A/m)[X] and b € B/9 denote the reductions
of P modulo mA[X] and of b modulo 91 respectively). As B/M is a field, so is A/m by proposition 1.9.18,
and m is maximal in A.

(2) Let m c A be a maximal ideal. Assume that mB = B, i.e. 1 € mB: we can write

(*) 1= i aibi
i=1

with aq,...,a, € m and by,...,b, € B. As B is integral over A, so is B’ = A[by,...,b,]. As B’ is of finite
type over A, the A-algebra B’ is in fact finite (¢f proposition 1.9.5): we can write B’ = A8 + -+ + AB,.
On the other hand, equality () implies that mB’ = B’: for all i € {1,...,n}, there exists A\;j1,...,Ain €M
such that

Bi = Y AijBi-
j=1

IfM = (/\i,j)lsi,an € Mn(A) and X = (ﬂi)lSiSn € Mnxl(Bl), we have M X = X, thus (In —M)X = 0: mul-
tiplying by the transpose of the cofactor matrix of I,, — M, we get det(I,, —M)X =0, i.e. det(I, —M)B’ = 0,
thus det(I, —M) = 0 in B since 1 € B’. Because f is injective, we have det(I,, —M) = 0 in A: as
det(L, —M) =1 mod m, we deduce that 1 € m which is absurd, so we necessarily have mB # B.

As the ideal mB < B is strict, there exists a maximal ideal 9t ¢ B such that mB < 9 (¢f theorem 1.1.7).
We of course m c 9 n A, whence m = 9t n A since m is maximal in A.

If P c B is a prime ideal such that m = B n A, the morphism A/m — B/ is injective. It makes B/
an integral A/m-algebra since B is over A, and B/ is an integral domain: as A/m is a field, so is B/ (cf
proposition 1.9.18), i.e. ¥ is maximal in B. O

1.10. Discriminants. Let A be a ring.

1.10.1. Traces and norms.

Definition 1.10.2. (1) Let M be a free'") A-module of finite rank and f € Enda(M). If B is an A-basis
of M, we can describe f by its matrix (a; ;)i<ij<n in B (where n = rka(M)). The trace, the determinant
and the characteristic polynomial of f are

Tr(f) = Z ai; € A, det(f) = det(aij)i<ij<n € 4,
i=1

and Xf(X) = det (X]:n — (aiyj)lgingn) € A[X]
respectively. They depend on f and not on the choice of the basis 8. Recall that Tr(f+ag) = Tr(f)+aTr(g),
det(fg) = det(f) det(g) and det(af) = @™ det(f) for a« € A and f, g € Enda(M).
(2) Let B be a free A-algebra(!?) of finite rank over A. If z € B, let m, € End4(B) be the map defined by
my(b) = ab for all be B. Put
TrB/A (‘r) = Tr(mm) € A, NB/A(-T) = det(mm) eA and Xz,B/A = Xmgy € A[X]
that we call the trace, the norm and the characteristic polynomial of x respectively (note that ., is monic).

Proposition 1.10.3. Let B be a free A-algebra of rank n, z,y € B and a € A. Then
(D1 is possible to extend the following definitions to the case where M is a projective module of finite rank. This generalization

is useful when working with extension of number fields whose ring of integers is not a PID for instance.
(12)] . such that B is free seen as an A-module.
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1) Trpja(z +y) = Trga(x) + Tre/a(y) ;

3) Np/a(ry) = Np/a(z) Np/a(y) ;

(4) Npja(a) =a
Proposit_ion 1.10.4. Let L/K be a finite field extension, x € L, and 1, ..., 2, the roots (in some algebraic
closure K of K, counted with multiplicities) of the minimal polynomial P of x over K. Then

n n [L:K(z)] .
Trpjw(x) = [L: K(2)] ). @i, Npjg(e) = (chz) and X, 1/ = P
1=1

i=1

Proof. Assume first that L = K(x). Let B = (1,z,...,2"~!): this is a basis of L over K. Let P € K[X] be
the minimal polynomial of z over K: write P(X) = X™ — X\ X" ! —... — \,,. The matrix of multiplication
by x in ‘B is the companion matrix:

0 o 0 An
1 . D, VY
C=CA,-- s ) =|o>- .1 = e M, (K)
10 AZ
0 01 A
We have y¢(X) = det(XI —C0)=X"— )\ X"l —...— )\, so that Xo,z/k = P. In particular, we have

Tror(x) =M = Z z; and Np /g (2) = (— DI\, = 17 s
i=1
In general, let d = [L K(z)] and (y1,...,yq) be basis of L over K(z), so that L = K(z)y1 ®---® K (2)yq
As the multiplication by z preserves each factor K(x)y;, we have Try x(x) = dTrg(p)k(r) = d X i,
i=1

n

Nz r(z) = Ng(ayx(x)? = ( [l

d
ZEZ') and X, /K = ngK(I)/K = pd, O
i=1

Corollary 1.10.5. Assume L/K is not separable. Then Try /i = 0.

Proof. We have char(K) = p > 0. Let x € L, and 21,..., 7, the roots (in some algebraic closure K of K,

counted with multiplicities) of its minimal polynomial P over K. If x is separable over K, then L/K(z) is

not separable, hence p | [L : K(z)], thus Trp x(z) = [L : K(z)] X, #; = 0. If z is not separable over K,
1=1

we have P(X) = Q(X?") with e € Zo¢ and Q € K[X separable each root of P has multiplicity p¢. This

|
implies that Y} z; = 0, hence Try x(z) = [L: K(z)] X, =; O
i=1 i=1
Example 1.10.6. (1) Let K be a field, = algebraic over K and P(X) = X" + a1 X + -+ + a, € K[X] its
minimal polynomial. We have Try ;) x(2) = —a1, Ng(2)/x (2) = (=1)"a, and x, /x = P.

(2) If L/K is a separable finite extension, K an algebraic closure of K and Homg.a1s(L, K) = {01,...,04},
we have d = [L : K], and

d
and  Np/g(z) = Haz’(iﬂ)
= i=1
(3) Let d € Z\{0,1} be a squarefree integer and K = Q(/d). We have K = Q@®Q+/d and Gal(K/Q) =
{ldg, 0} where o(\d) = —/d. If z = z + yv/d € K (with 2,y € Q), we thus have Trg/q(2) = 2z and
Nik/q(2) = (z +yvVd)(z — yvd) = 2* — dy*.
Corollary 1.10.7. Let A be an integrally closed domain, K = Frac(A4), L/K a finite extension and B the

integral closure of Ain L. If b € B, then Try/x(b),Nz/k(b) € A and x; 1)k € A[X]. Moreover, we have
be BX NL/K(b) e AX.

I'M@.

TrL/K

Proof. As the conjugates of b are also integral over A (because its minimal polynomial has coefficients in
A, ¢f proposition 1.9.15), so are their sum, their product, and more generally any symmetric polynomial
evaluated on these conjugates. This implies that Try, x (b), N,k (b) € A and x; 1/ € A[X].

Let b € B\{0} and P its minimal polynomial over K. By proposition 1.9.15, we have P € A[X]. Write
P(X) = X%a; X% '4-..4a4: the minimal polynomial of b~! over K is then Xd+a2—;le’1+- . -+Z—;X+a—1d.

By proposition 1.9.15, we have thus b € B* < a4 € A*. We conclude since N,/ (b) = ((—l)dad) [LKEON o

Exemples 1.10.8. (1) Let d € Z\{0, 1} be a squarefree integer and K = Q(\/d). If d # 1 mod 4 Z, we have
Ok = Z[Vd]. If z = x + yv/d € Z[d], then N, q(2) = 2% — dy? (cf example 1.10.6 (3)). As Z* = {+1},
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we thus have z € Z[\/d]* < 2% — dy? € {+1}. When d < 0, this is equivalent to 2% — dy? = 1: if d < —2,
we have Z[\/d]* = {+1} and when d = —1, we have Z[i]* = {+1, +i}.

(2) Let p be an odd prime number, ¢ € C a primitive p-th root of unity and K = Q(¢). The minimal
polynomial of ¢ over Q is P(X) = XP~! 4+ XP=2 4 ... + X + 1. We thus have Trx,q(¢) = —1 and
Ng/Q(€) =1,50 Trg,q(C —1) = Trg/q(¢) — Trx/q(1) = —p. The minimal polynomial of { — 1 over Q is
P(X +1), whence Ng/q({ —1) = P(1) = p. Similarly, the minimal polynomial of { 4+ 1 over Q is P(X —1),

thus Ng (¢ +1) = P(—=1) = 1 (which shows that ﬁ is integral over Z by the preceding corollary).

Proposition 1.10.9. (TRANSITIVITY). If L/K and K /F are finite field extensions, we have
TrL/FzTrK/FOTrL/K and NL/F:NK/FONL/K

Lemma 1.10.10. Let L/K and K /F be algebraic extension, and F an algebraic closure of F. There exists

a bijection

Homp_alg(L, F) = Homk a1 (L, F) x Homp o (K, F).

Proof. For each p € Homp_as(K, L), fix an extension p € Homp.ae(F,F) (use Steinitz’ theorem). If
1

o € Homp_ag (L, F) let o denote its restriction to K and put o = ox ~ ©o. By construction, the field
K is invariant under o¥: we have 0% € Homg _14(L, F'). We thus have a map

Homp_alg(L, F) = Homg a1g(L, F) x Homp a1 (K, F)
o (0 oK)

It is injective because o = G o 0. It is surjective since (p, 7) € Hom g aig(L, F) x Homp_a1o (K, F), and if
o =por,then we have ox = p and 0¥ = 7. O

Proof of proposition 1.10.9. e Case where L/F is separable. Keep notations from lemma 1.10.10. Let = € L:
by example 1.10.6, we have

Trpp(z) = Z o(x) (because L/F is separable, ¢f example 1.10.6 (2))

geHomp_a1g (L, F)

- > p(r(x)) (by lemma 1.10.10)
T€Hom k- a1g (L, F)
pEHomp,alg(K,ﬁ)

oo Y W)
pEHomF_.d]g(K,F) TEHomK_.d]g(L,ﬁ)

= Z p(Trr K (z)) (because L/K is separable, ¢f example 1.10.6 (2))
peHom a1 (K, F)

As Trp/k(z) € K, we have p(Try x(x)) = p(Try x(x)) for all p € Homp_ag(K, F), which implies that
Trryr(x) = Trg)p(Tro/x (z)) (cf example 1.10.6 (2)). The proof is the same for the norm, replacing sums
by products.

o Case where L/F' is not separable. By corollary 1.10.5, we have Try/z = 0. Also, one among L/K and
K/F is not separable, so Trr /i = 0 or Trg,p = 0 (¢f corollary 1.10.5), so the statement on traces is clear.

Let € L. By proposition 1.10.4, we have Ny /p(z) = NF(I)/F(:C)[L:F(I)] = (NF(I)/F(x)[K(I):F(I)])[L:K(z)]
and Ny (x) = Ne(a) (@)K

(%) N p(y/ () @ F O = N o (N (/5 ().

When z € K, we have K(z) = K so the equality follows from proposition 1.10.4 in that case. In general,
let P(X) = X"+ a,1X" '+ +a1X +ap € K[X] be the minimal polynomial of z over K, so that
N (2)/k () = (=1)"ao, whence Ng/p(Ng () () = (—1)”dNK/F(a0) where d = [K : F]. Fix a basis

#)]; the statement on norms is equivalent to the equality

B = (e1,...,eq) of K over F. Then B = (¢;27)1<i<q = (e1,...,€q,T€1,...,2€q,..., 2" ey, ..., 2" Ley) is
0<j<n
a basis of K(x) over F. As 2" = —ag — a1x — - ++ — a,_12" "}, the matrix of the multiplication by z in the
basis B is
0 e e 0 —Mo
L, LMy
M=1o9 : ; € Mpq(F)
-0
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(companion matrix by blocks), where M; is the matrix of the multiplication by a; in the basis B. Then*?)
we have TrK(z)/F(x) = det(M) = (_1)("d_d)d det(—Mo) = (_1)(n_1)d2(_1)d NK/F(aO) = (‘D"d NK/F(aO)

(because det(Mo) = Ng/p(ao) and (—l)d2 = (=1)9), proving equality (). O
1.10.11. Discriminant.

Definition 1.10.12. Let B be a free A-algebra of rank n and xzi,...,2, € B. The discriminant of
(X1, . 2p) 18

D(SCl, .. .,ZL'n) = det ((TrB/A(xizj))lsi,an) e A
Proposition 1.10.13. Under the hypothesis of definition 1.10.12, let M = (a;;)1<ij<n € Mn(4) and

n
y; =, a;jz; € Bforie{l,...,n}. Then
j=1

D(y1,...,yn) = det(M)?D(z1,...,2,)

Proof. Put X = (TrB/A(-Ti-Tj))1<i __and Y = (TrB/A(yiyj))1<ij<n' For all 4,5 € {1,...,n}, we have

Jjsn
YilY; = (2 ai,kxk) (Z aj,lirz) = 2 Z Q4 kTRX1AG 1
k=1 =1 k=11=1
hence
Trppa(ivy) = >, D) ik Trja(zez)ag,
k=11=1
thus Y = M XM, hence det(Y) = det(M)?det(X) i.e. D(y1,...,yn) = det(M)?D(z1,...,2,). O

Corollary 1.10.14. Under the hypothesis of definition 1.10.12, let (x1, ...
B over A. Then

,Zn) and (y1,...,Yn) be bases of
D(y1,..yn)A =D(x1,...,2,)A

Proof. There exists M = (a;;)i<ij<n € GLn(A) such that y; = > a;;2; € B for i € {1,...,n}. We
=1

J
have then D(y1,...,yn) = det(M)?D(z1,...,2,) (1.10.13): as det(M) € AX, we have D(y1,...,yn)A =
D(z1,...,2,)A. O

Remark 1.10.15. When B = (z1,...,x,) is a basis of B over A, the element D(x1,...,x,) is the discrim-
inant of the bilinear form B x B — A; (z,y) + Trg a(xy) in the basis B.

Definition 1.10.16. By corollary 1.10.14, under the hypothesis of definition 1.10.12, the ideal D(x1, ..., x,)A
does not depend of basis (x1,...,2,) of B over A. This principal ideal is called the discriminant of B over
A and is denoted 0 /4.

Proposition 1.10.17. Under the hypothesis of definition 1.10.12, let S © A be a multiplicative part. then
S~IB is free over ™14 and

DS—lB/S—lA = S_le/A.

Proof. This is obvious since a basis of B over A provides a basis of S™'B over S71A. g

Remark 1.10.18. The previous proposition shows that the definition of the ideal 9,4 sheafifies: one can
define it for locally free sheaves on a scheme. This shows in particular that it generalizes to the case where
B is projective over A.

Proposition 1.10.19. Under the hypothesis of definition 1.10.12, if 95,4 contains an element which is not

a zero divisor, and if x4, ...,z, € B, the following conditions are equivalent:
(i) (x1,...,2,) is a basis of B over A ;
(ii) D(z1,...,z,) generates 0/ 4.

(13)This follows from the equality det (IOT ¥) = (=1)7®det(X) whenever X € My(F), an equality which follows from a
straightforward induction on r (developing the determinant along the first column).
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Proof. Tmplication (i)=(ii) follows from definition of the ideal 95/4. Conversely, assume that D(z1,. .., 2,)
generates 0p/4. Let (b1,...,b,) be a basis of B over A and d = D(by,...,b,) so that 9p/4 = dA. There

n
exists M = (a;;)1<ij<n € Mp(A) such that x; = > a;;b; for all 4 € {1,...,n}. By proposition 1.10.13,
j=1

we have D(z1,...,2,) = det(M)?d. As D(z1,...,x,) generates 05/4 = dA, there exists u € A* such that
D(z1,...,2,) = ud, so that d(u — det(M)?) = 0. As d is not a zero divisor (otherwise d5/4 would only

contain zero didisors, which is excluded by the hypothesis), we have det(M)? = u thus det(M) € A%, so
that M € GL,(A), which implies that (z1,...,2,) is a basis of B over A. O

Corollary 1.10.20. Under the hypothesis of definition 1.10.12, assume moreover that A is a UFD. Let
Z1,...,Tn € B be such that d = D(x1,...,x,) € A\{0} is squarefree. Then (z1,...,z,) is a basis of B over
A, and 04 = dA.

Proof. Let (e1,...,en) be a basis of B over A: there exists M = (a;;)i<ij<n € Mn(A) such that for all
ie{l,...,n},wehavex; = Y, a; je;. Wehave D(z1,...,2,) = det(M)?D(ey,...,e,) (proposition 1.10.13),
j=1

t.e. dA = det(M)QOB/A. As d is squarefree by hypothesis, we have det(M) € A*, so that (z1,...,2z,) is a
basis of B over A. O

Theorem 1.10.21. (DEDEKIND). Let K/F and L/F be extensions. Then elements in Homp.,14(K, L) are
linearly independent in the L-vector space Hom gy, (K, L).

Proof. Assume the contrary. Let Z Aio; = 0 with A\; € L and o; € Homp_ag (K, L) for i € {1,...,7} be

a non trivial linear dependence relatlon such that r is minimal. By minimality, we have A\; # 0 for all
i € {1,...,r}, and the o; are pairwise distinct. After dividing the relation by \,, we may assume that
A = 1. For all x € K, we have thus

r—1

(%) 2 Xioi(x) + or(z) = 0.

i=1

Equality (#) applied to the product of z,y € K gives

Z:)\aZ y) + or(x)or(y) =0

Subtracting o, (y) times (#) to the preceding equality gives

2 Nioi(2) (o5 (y) — o (y)) =0

for all z,y € K. In particular, y being fixed, we have

r—1

3 Xi(oi(y) = ov(y))oi = 0.

i=1
By minimality of r, the coefficients of this linear combination are all zero: we have o;(y) = o0, (y) for all
y € K. The o; being pairwise distinct, this implies » = 1, which is impossible. O

Proposition 1.10.22. Let L/K be a finite separable field extension, K an algebraic closure of K, and
x1,...,Z, a basis of L over K. Write Homg_as(L, K') = {01,...,0,} (this has n elements since L/K is
separable). Then

D(l‘l, .. ,.Tn) = det ((O’i(xj))lgi7jgn)2 # 0.

Proof. Recall that Try/x(z) = Y, ox(z) for all z € L (exemple 1.10.6 (2)). We have
k=1

n

n
Tro i (ziz;) = 2 or(xizj) Z (xi)ok(xj)
k=1

so that (TrL/K(.’I]ixj))1<ij<n = MM where M = (0;(z))1<ij<n € My (K). We have thus

D(z1,...,2,) = det (‘MM) = det(M)* = det ((O'i(xj))1<i,j<n)2.

5
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It remains to check that det(M) # 0. Let X = (\)i<i<n € Mixn(K) such that XM = 0. We have
then Y, \jo;(z;) = 0 for all j € {1,...,n}. By K-linearity, this implies Y, \;o; = 0 in Homg-1in(L, K).

=1 i=1
Dedekind’s theorem (theorem 1.10.21) implies that X = 0: the matrix M is invertible, and det(M) # 0. O

Corollary 1.10.23. Let L/K be a separable field extension of degree n. A family (x1,...,2,) € L™ is a
K-basis of L if and only if D(z1,...,z,) # 0.

Proposition 1.10.24. (TRANSITIVITY OF DISCRIMINANT). Let K/F and L/K be two finite separable field

extensions, x1,...,x, a basis of K over F' and (y1,...,ym) a basis of L over K. Then
D(ziy;) 1<i<n = D@1, .., ) EFINg /2 (D1, - ym))-
1<j<m

Proof. Write Homp_alg(K,F) = {p1,...,pn} and HomK_alg(L,F) = {71,..., 7} (where F is an algebraic
closure of F). Fix liftings p1, ..., pn € Homp_ag(F, F) of p1, ..., pn: we have Homp_ag (L, F) = {ﬁﬂ‘j} 1<i<n
L=

<js<m

(¢f lemma 1.10.10). On the other hand, we have D(z;y;)1<i<n = det(M)? where M € M,,,(F) is the
1=

<jsm
matrix with entries p;7;(zrye) = pi(@i)pit; (ye) for (i,7), (k,0) € ({1,...,n} x {1,... ,m})2 (¢f proposition
_ (Pl(ﬂﬂl)ﬁl(y) Pl(ln?ﬁl(y)

11022) Put Y = (Tj(yg))1<j7g<m € Mm(F) we have M =

) = M1M2 (blOCk

(1) P (V) pu(@n)pn (Y)
P1 (11) I = p1 (In) I

matrix) where M; = diag (p1(Y),...,pn(Y)) € My (F) and Mo = ( ) € Myn(F). We

pn(m;)InL~~ pr(@n) Im
have det(M;)? = [T etiom. oy P(K.F) p(det(Y)?) = Ng/p(D(y1,- .., ym)). On the other hand, there exists a

permutation matrix P € GL,,,(Z) such that P~1MyP = diag(X, ..., X) with X = (p;(z))1<i k<n € M (F).

We thus have det(Ms) = det(X)™, whence det(Ms)? = D(z1,...,2,)"K] (because [L : K] = m). At the

end, we have D(z;y;) 1<i<n = det(M)? = det(M;)? det(Ms)? = D(x1,...,2,)H K] Ni/r(DW, - Ym)).
s

<jsm
O

Corollary 1.10.25. (TRANSITIVITY OF DISCRIMINANT). Let A be an integral domain, F' = Frac(A) and

K/F and L/K finite separable fields extensions. Let B (resp. C) be the integral closure of A in K

(resp. L). Assume B is free over A and C is free over B. Then dc/a4 = Og‘/ﬁc) Np/a(dc/B) (where('%)

Np/a(dB) =Npgja(d)A).
1.10.26. Discriminant of polynomials.

Definition 1.10.27. Let K a field, P € K[X] monic and a1,...,a, € K the roots of P in an algebraic
closure K of K (counted with multiplicities). The discriminant of P is

disc(P) = ] (w—a;)?=(=0""" [] (ai—ay
1<i<j<n 1<i#j<n

It is a symmetric polynomial in the roots of P, hence a polynomial in the coefficients of P, and disc(P) € K.
By definition, P is separable if and only if disc(P) # 0.

Lemma 1.10.28. With notations of definition 1.10.27, we have

disc(P) = (—1)% le(ai)

Proof. We have P'(X) = Y (X — «j), hence P'(e;) = ] (a; — ;) which implies that
i=11<j#i<n 1<j#i<n

[TP()= TI (ai—ay)=(=1)"" disc(P). 0

i=1 1<i#j<n

Example 1.10.29. (1) The discriminant of X2 + aX + b is a? — 4b. That of X3 + pX + q is —4p> — 274>

(exercise).

(2) Let n € Z~p and P(X) = X" —1€ Q[X]. Put u, = {2z € C; 2" = 1}: we have P(X) = ] (X = ().
CEn

For ¢ € jin, we have P'(¢) =n¢" ': as [[ ¢ = (=1)"*1, we have [ P'(¢) =n"(—1)"""1, and thus

CEUR CEpn
. n(n=1) , nl4n—2
disc(P) = (—1)*5 [] P/(Q) = (<1)* ¥ "n
CEpn

(149)This does not depend on the choice of the generator d.
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Remark 1.10.30. Up to a normalization, the discriminant is nothing but the resultant of P and P’.

Proposition 1.10.31. Let L/K a separable field extension of degree d, a € L such that L = K[a] and
P € K[X] the minimal polynomial of o over K. Then (1,,a?,...,a" 1) is a basis of L over K and

n(n—1)

D(1,a,0?,...,a" ") =disc(P) = (=1)" = Np/x(P'(®))

Proof. Let K be an algebraic closure of K and Hom g (L, K) = {01,...,0,}. the conjugates of a are the
a; :=o;(a) for i € {1,...,n}. The extension L/K is separable: by proposition 1.10.22, we have

D(l, Q... ,Oznil) = det ((O'i(ajil))lgi,jgn)Q = det ((Oé',g_l)lgi,jgn)2

As det (o "i<ijen) = [1 (@ —a;) (Vandermonde determinant), this proves the first equality.
1<i<j<n

n(n—1)

By lemma 1.10.28, we have disc(P) = (—1)" z  [] P'(as). For i € {1,...,n}, we have a; = 0;(), hence
i=1

TP ()= ]:[1 o(P'(a)) = Nk (P'(a)), proving the second equality. O

i=1

Example 1.10.32. Let K be a field and P(X) = X" + aX + b € K[X], that we assume irreducible and
separable. If a is a root of P in an algebraic closure of K, we have('?)
D(1,a,02,...,a" ) = disc(P) = (~1)"F Ngayie (P'(a)
= (_1)n(n271) (n"bn_l + (_1)71—1(,” _ 1)n—1an)

For n € {2, 3}, we recover formulas of example 1.10.29 (1).

1.10.33. Integral closure in a separable extension.

Proposition 1.10.34. Let L/K be a finite separable field extension.
LxL—>K
(@,y) = Tre/x(zy)

is a non degenerate pairing.

Proof. Bilinearity follows from proposition 1.10.3. Let x € L be such that Try,/x (zy) = 0 forally € L. Let K
an algebraic closure de K and Homg_aig(L, K) = {01,...,0,}, we have Trp i (zy) = ] 04(x)03(y), so that

i=1

S oi(z)oi. As {o1,...,0,} is linearly independent in Homy jin(L, K) (Dedekind’s theorem, c¢f theorem
=1

1.10.21), this implies o;(z) = 0 for all 7 € {1,...,n}, thus z = 0. The kernel of the bilinear map is zero: it
is non degenerate. O

Remark 1.10.35. By corollary 1.10.5, the preceding proposition is an equivalence.

Corollary 1.10.36. Let L/K be a finite separable field extension. The map
L — HomK_ lin(L7 K)

z = (y = Trp/i(ry))
is an isomorphism of K-vector spaces. If (z1,...,2,) is a basis de L over K, there exists a unique basis
(Y1, -+, yn) of L over K such that Trp x(z;y;) = 0;; for all 4,5 € {1,...,n}: it is called the dual basis of
(1'15 s 51'71)‘

Proof. The map f: L — Hompg_1in(L, K) is is the linear map associated to the symmetric bilinear map
(z,y) = Trp i (wy). As the latter is not degenerate, the map f is injective: it is an isomorphism since
dimg (Homg.iin(L, K)) = dimg (L). If (21,...,2,) is a basis of L over K, the family (f(z1),..., f(zy)) is
a basis of Homg_1in (L, K) over K. The family (y1,...,yn) satisfies Trp x(2iy;) = f(2i)(y;) = d;; for all
i,7 €{1,...,n} if and only if it is the dual basis of (f(z1),..., f(z,)) in L: it exists and is unique. a

Proposition 1.10.37. Let A be an integrally closed domain, K its fraction field and L/K a finite separable
field extension. Let B be the integral closure of A in L. Then B contains a basis of L over K, and it is a
sub-A-module of a free A-module of rank [L : K] contained in L.

(15)We have P'(a) =na" ! +a= n%*b +a= —%b — (n — 1)a. The minimal polynomial of a~! being X™ + %Xn—l N %’
that of f%b is Q(X) = X" —naX""1 +(—n)"b" ! and that of P’(c) is thus Q(X + (n —1)a): we have N (q)/x (P'(a)) =
(=1)"Q((n — 1)a) = n"b"=" + (~1)"~ (n — 1)"~La".
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Proof. If (e1, ..., ey,) is a basis of L over K, there exists a € A\{0} such that x; := ae; € Bforallie {1,...,n}
(¢f proposition 1.9.12). The family (z1,...,2,) is still a basis of L over K, made of elements in B.

Let (y1,...,yn) be the dual basis of (z1,...,z,) for the trace form, and B’ the sub-A-module of L generated
by {y1,...,yn}. As (y1,...,yn) is a basis of L over K, the A-module B’ is free of rank n = [L : K]. If

x € B, write x = Y}, A\jy; with Ay,..., A, € Kt as xyw € B thus Try g (ziw) = X N Trp g (2iy;) = i€ A
Jj=1 j=1
for all i € {1,...,n} (corollary 1.10.7), we have x € B’. O

Proposition 1.10.38. Under the hypothesis of proposition 1.10.37, we have in fact the following more
explicit statement. If (x1,...,2,) is a basis of L over K made of elements in B, we have

B c é(Axl(-B---(-BAzn)

where d = D(x1,...,xq4).
Proof. By the proof of proposition 1.10.37, if (y1,...,y,) is the dual basis of (z1,...,x,), we have
BcB =Ay1®---@ Ay,

n
Write y; = o, ;x; with o ;€ K for all 4,5 € {1,...,n}. We have
j=1

0ij = Tro(2iy;) = Z ok Tro (zizy)
k=1

so that if M = (TrL/K(xixj))1<ij<n € M,,(A) and N = (a; j)1<i,j<n € M, (K), we have M'N =1, i.e.
IN=M"'le é M,,(A) by Cramer’s formulas: we have o, ; € éA for alli,5 € {1,...,n}. O

Corollary 1.10.39. Under the hypothesis of proposition 1.10.37, we have:

(1) if A is noetherian, then B is a finite A-algebra (in particular, B is noetherian);
(2) if Ais a PID, then B is a free A-module of rank [L : K].

Proof. By proposition 1.10.37, there exists a sub-A-module B’ of L which is free of rank [L : K] and such
that B c B'.

(1) If A is noetherian, so is B’ (proposition 1.3.4): the A-module B is of finite type (thus noetherian by
proposition 1.3.4).

(2) If Ais a PID, B is free of finite rank as a sub-A-module of the free A-module of finite rank B’ (theorem
1.4.11). As it contains a basis de L over K (proposition 1.10.37), its rank is [L : K]. O

Remark 1.10.40. Under the hypothesis of proposition 1.10.37, assume moreover that A is a PID. By
corollary 1.10.20, if x1,...,z, € B are such that D(x1,...,x,) is squarefree in A (which is a PID hence a
UFD), then (x1,...,2,) is a basis of B over A.

1.11. Inverse limits.

1.11.1. Generalities. Let € be a category and (I, <) a directed set'® (i.e. a preordered” set in which
every pair of elements has an upper bound: (Vi,jeI)(3kel)i <k, j<k)).

Definition 1.11.2. e A inverse system in ¢ indexed by I is a pair ({Xi}ie], {Uiyj}iz‘ie‘[) where {X;}ier is a
1

family of objects of ¢, and {u; ; }i,_je_f a family of morphisms X ENS'¢ (called tmnsijfion morphisms) such

that u; r = u; j o ujr whenever ¢ ?] < kin I. As often, it will be denoted by (X;):es alone.

o Let ({Xi}ier, {uij}ijer) be a inverse system in ¢ indexed by I. Its inverse limit("® (or simply limit)

is an object X € ¥ \lzvgljth morphisms m;: X — X, for all ¢ € I such that (Vi < j € I) m = w;; omj,

(16)Which can be seen as a category whose objects are elements of I and there is exactly one arrow ¢ — j if ¢ < j, and no
arrow otherwise.

(IMReflexive and transitive i.e. an order without the antisymmetry condition.

(18)7Limite projective” in French.
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having the following universal property: whenever ¥ € € and ;1Y — X, are morphisms such that
(Vi <jel); =u;,o01j, then there exists a unique morphism ¢:Y — X such that (Vi€ I)¢; = m; o).

b

Being the solution of a universal problem, the inverse limits of ({X Vier, {ui ; }”61), if it exists, is unique
1<y
up to isomorphism: it is denoted lim X;.

I
e A direct system in € indexed by I is an inverse system in ¥°P indexed by I. Its inductive limit (or colimit)
is the corresponding inverse limit.

Remark 1.11.3. An inverse system in % indexed by I is nothing but a contravariant functor I — %. There
is the obvious inclusion functor i: € — €'” that maps an object to the corresponding constant inverse

system. If ({X Vier, {ui; }”61) is an inverse system in % indexed by I, its inverse limits, if it exists, is
i<
characterized by

HomchOP (Z(Y), (Xz)zel) 5 Hom(g (Y, @Xl)
I
for all Y € €, i.e. is a final object in the category of pairs (Y,1) where Y € € and ¢: i(Y) — (X;)ier (one
can also say that it represents the contravariant functor ¥ — Homesror (i(Y), (Xi)ie])).

Example 1.11.4. (1) When [ is trivial (i.e. i < j < i = j), the inverse limit is the product [ ] Xj;.
1

(2) If € is preabelian'®) and u € Home (X, Y), the kernel of  is the inverse limit of X 5 Y « 0.
(3) Assume that € is a subcategory of Set that admits products indexed by I. Then
@Xi = {(xi)ie[ € 'I_EXZ'; (V’L,j € I) 1< j = um(acj) = $i} C lle
T i€ i€

The map 7 : lim X; — X is the restriction of the projection on the factor of index k. In particular, inverse
I
limits exist in Set, Gr, Modp (where R is a commutative ring) and Top.

(4) An inverse limit lim X; in Gr (resp. Modg, resp. Top) coincide with the inverse limit in Set,
I
endowed with the structure of group (resp. R-module, resp. topological space) induced by the inclusion

I el

Remark 1.11.5. Assume [ = Zso (endowed with the natural order). The data of an inverse system is
equivalent to that Of a sequence of sets (X, )nez.,, and for each n € Z>¢, a map p,: X,,41 — X,,. The
inverse limits is then simply:

o0

o0
liﬁan = {(xn)nezw € H Xn; (Yn € Zxo) pn(Tni1) = xn} < H Xn.

n =

Definition 1.11.6. A morphism of inverse systems ({X;}ier, {u;; }mel) ({Yilier, {vi,j}ijer) is a family
Z\j ’L<J

of morphisms (f;: X; — Y;)ier such that f; ou; ; = u; j o f; whenever ¢ < j.

Proposition 1.11.7. (FUNCTORIALITY OF INVERSE LIMITS). Let (f;: X; — Y;)ier be a morphism of inverse
systems in a category €. Assume that the inverse limits X = lim X; and YV = limY; exist in ¢". Then there

iel iel

exists a unique map f: X — Y such that fiomx; = my; 0 f (where 7x;: X — X, and 7y;: ¥ — Y are
the projections).

Proof. This follows from the universal property of Y:

X, — sy,
WV Ui, WY/
X e f ..... >Y Vi, j
W& WYN
At fi Yi

(19)Which means that % is additive and has kernels and cokernels.
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O

1.11.8. Ezactness properties. References for this section are [12, §1.12] and [24, Section 0594]. Here, we
assume that ¢ is a subcategory of Gr that is stable under inverse limits (hence under kernels) and cokernels
(hence under images).

Definition 1.11.9. An ezact sequence in € is a sequence of morphisms (f,,: X, = X,11)nes (where J € Z
is an interval)
fn fnt1
o Xy o Xppr T Xy o -
such that Im(f,) = Ker(fn+1) for all n € J. A short exact sequence is an exact sequence of the form

0—-X'-X > X">0.

Proposition 1.11.10. The inverse limit functor lim: E1" — € is left exact.
I

Proof. Let 0 — ({Xz(}iela{u;,j}iJEI) M ({Xi}ief,{ui,j}i,jel) M’ ({Xl{l}iela{ugl,j}i,jel) — 0 be an
5 JE JE

1<] 1<)
exact sequence of inverse systems of groups. The first row in
f g
0 [1X; [[Xn ——[]X] ——0
iel iel il

. f . g .
lim X! —— lim X; —— lim X/
Pa——— «— Pa———
iel iel iel

is exact. This implies the injectivity of f: mXZ' — lim X;. Let x = (4)ier € lim X; be such that g(z) =e¢

iel iel iel
(the unit in lim X}'). By the exactness of the first row, we have x = f(z') for a unique 2’ = (});er € [ X].
el el
Ifi < jin I, we have z; = u; (7)) i.e. fi(z}) = ui;(f;(x})) = fi(u; ;(2})), thus ] = u ;(2;) by injectivity
of f;. Since this holds for all i < j in I, we get x’ € @X;, and the proposition follows. a
iel

Remark 1.11.11. The inverse limit functor is not exact in general. For instance, passing to the inverse
limit on the exact sequences 0 — p"Z — Z — Z /p™ Z — 0 gives the exact sequence 0 - 0 — Z — Z,,, and
Z — 7, is not surjective.

Definition 1.11.12. Let ({X;}ier, {ui;}ijer) be an inverse system in Set. If i € I, the family (u;;(X;))jer
i<

of subsets of X; is decreasing, in the sense that ¢ < ji1 < jo = u;;,(Xj,) € i, (Xj,) © X;. We say that
({Xi}ier, {uij}ijer) satisfies the Mittag-Leffler condition if for any i € I, the family (u; ;(X;))jer stabilizes,

1<
i.e. there exists n(i) > ¢ such that

(V5 = n(d) uij(X;) = i n(i)(Xngy) © Xi
Remark 1.11.13. If the maps u; ; are all surjective, then ({X;}ier, {ui ;}i jer) satisfies the Mittag-Leffler
i<

condition. Conversely, assume that ({Xi}ie], {ui; }i,jej) satisfies the Mittag-Leffler condition. If i € I, let

1<]
n(i) = i be such that j = (i) = u;j(X;) = wsne (Xnw) = X; € Xi. i <jin I and z € X, let k€ I be
such that k > n(i) and k > n(j): we can write z = u; (y) with y € Xy, and w; j(z) = w;k(y) € X; (since
k = n(i)). Moreover, if z € X;, there exists 3 € X}, such that z = Uik (2) = uij(u;x(2)) € uiﬁj()?j), which
shows that the maps u; ;: X; — X; induce surjective maps u; ;: X i X;. By functoriality, the inclusions
)?1- c X, induce an injective map mf(l — @Xl The latter is in fact an equality: if (x;)ier € @Xi, then
iel iel iel

x; = wij(x;) € u; ;j(X;) for all j >4, hence x; € X, foralliel.

Lemma 1.11.14. Assume that I is countable. Let ({Xi}ie[, {uiﬁj}i,jel) be an inverse system of nonempty
1<
sets satisfying the Mittag-LefHler condition. Then lim X; # &.
iel
Proof. This is obvious when (I, <) = (Zxo,<): we reduce to this case as follows. Write I = {iy,}nez,:
one constructs inductively a strictly increasing map ¢: Zso — Zx( such that ¢(0) = 0 and ¢ =1, and
> Xi

are nonempty, so are the sets )?Zn As the transition maps of the inverse system

w(n)

ip(n) = Gp(n—1) for all n € Z-o. Using notations of remark 1.11.13, we have )?in = Uiy iy (Xiy(my ) fOT sOMeE

m » n. As the sets Xi
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({X Yiers {uq, j}wg) are surjective, we can find inductively a sequence (&, )nezs, € lim sz(n): choose any
1<] n€Z>o
o € Xo, and &, ..., &, being constructed, choose {,11 € Xi,,,,, such that Uiy ipintn) (€ns1) = &n. If
i€l let m =i, (§n) for n € Z>q large enough so that i < i,(,). Then (z;)ier € lim X; = lim Xj, so the
iel iel
latter is nonempty O

Remark 1.11.15. Some examples that show that the hypothesis are really necessary in the previous lemma.
(1) Put I = Zso, X, = Zso, and Uy, m: Zso — Zxzo; x =z +m —nif n <m. An element in X = lim X,

n
is thus a sequence (zy,)nez., such that z,, = z,41 + 1, so that x,, = xg —n for all n € Z>(. Such sequences

do not exist, so X = @.

(2) Put I = Zso, X,, =]0,1[, and unm X = Xps © = o=, Then ugn(X,) = ]0,2%[, so that if

(Tn)nezso € X = hIan, we have zg € ﬂ 10,5 [=2.

(3) For each finite subset AcR,let XA be the set of injections A — N. If A c B, the restriction provides a
surjective map Xp — X 4, s0 we get an inverse system (indexed by the finite subsets of R, partially ordered
by the inclusion) with surjective transition maps. However, the inverse limit is the set of injections from R
to N: it is empty (this example is due to Waterhouse).

Proposition 1.11.16. Let

0— ({Xz(}’iEI’ {u;,j}i,jel) (fi)iEI’ ({X }zeL {ulj}Z,JEI) (9:)ise ({X }1517 {uw}WGI) -0
1<g 1<y 1<]
be an exact sequence of inverse systems indexed by I in Modg (where R is a commutative ring). Assume
that I is countable and that ({X[}icr, {t} ;}i jer) has the Mittag-Leffler property. Then the sequence

<]
. . g .
0— th{ SHlimX; S lim X! -0
«— — «—
iel iel iel
is exact.

Proof. By proposition 1.11.10, it is enough to show the surjectivity of g. Let 2" = (x7)icr € lim X/ For
iel

iel,put B; = g; '({"}) © X;: the set E; is nonempty since g; is surjective. If j > iin [ and { € E

then g;(u; ;(€)) = uj ;(g;(€)) = ui ;(=7) = x] so that u; ;(§) € E;. This implies that (E;,u; g, )ijer is a

G\

sub-inverse system of (X;,u; ;)i jer: we have an inclusion E := 1imE c lim X;, and g(z) = 2" for any
lEI

z € lim F;. We have thus to show that E is nonempty. As Iis countable it is enough to check that the

zEI

inverse system ({E;}ier, {u; j, }tijer) satisfies the Mittag-Leffler condition (cf lemma 1.11.14).
(]
As ({X[}ier, {u} ;}ijer) has the Mittag-Leffler property, for each i € I, there exists n(i) > i in I such that
1<
wi j(X}) = Ui (i) (X:l(i)) for all j > n(i). Let j = n(i). We have u; ;(E;) C wipn(i)(Eng))- Conversely, let

£ € E,(;)- If nis any element in Ej, we have g, ;) (un(s),; (1)) = ;lz(z) i(gi) =y ;@) =270 = g (§),
so that & —up(s),; (1) € Ker(gn@y) = Im(fn()): we can write § —upq) ;(n) = fr Z)( ) with A € X:L(Z) We have
Ui, (i) (5) = Uj ;5 (77) T Ui n(4) (fn(z ( )) = ui,j( )+fl( z’,n(i ( )) As ul (i) ()‘) € Uiﬁn(i) (X:l(i)) = uli,j (Xgl)v there
exists u € X such that ] A =1 i), hence w; iy () = wij(n) + fi(ui (1) = wij(n+ fi(n)). As
n+ f;(p) € Ej, this shows that Ui (i) (§) € ui j(E;), showing that the inverse system ({Ei}ier, {ui g, }wel)

i<

satisfies the Mittag-Leffler condition indeed.

1.11.17. Profinite groups.

Definition 1.11.18. A inverse limit of finite sets (resp. groups) is called a profinite set (resp. a profinite
group). We endow these finite sets with the discrete topology, their product with the product topology and
their inverse limit with the induced topology. Let p be a prime integer. A pro-p-group is an inverse limit of

p-groups.

Proposition 1.11.19. Profinite sets are compact(®?).

(20)Recall it means Hausdorff (i.e. separated) and quasi-compact.
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Proof. Let ({X el {u”}”el) be a inverse system of finite sets. Being finite, each X; is compact: by

1<

Tychonoff’s theorem, the product [] X; is compact as well. If J < [ is finite, let 7;: [[X; — [] X;
el el i€J
be the projection on factors of index € J, and th the inverse limit of ({X;}je, {uw}”e]) Then
<]
my(lim X;) € lim X, and lm X; = (] 7, (th ). Since [] X is finite, lim X; is closed, so 7 * (lim X;)
S P kT s z z
is closed in [] X; (by definition of the product topology). Being an intersection of closed subsets, lim X; is
iel I
closed in [] X;, hence compact V). O
J

Remark 1.11.20. If G is a profinite group and H < G an open subgroup, then H is closed as well: indeed
G\H = |J gH is a union of open subsets, so it is open. Similarly, if H < G is a subgroup of finite index,

g¢H
it is open if and only if it is closed in G.

Proposition 1.11.21. Let G be a topological group. Then G is profinite if and only if it is compact, and
admits a basis of neighborhoods of 1 consisting of normal subgroups.

Proof. Assume G is profinite: G’ = limG;. Since [TG: is separated (each G; is), so is G. Moreover G is
I I
compact thanks to the previous proposition. Finally, a basis of neighborhoods of 1 is given by {Ker(m;)}icr

where 7; is the projection to the factor of index i, which consists of normal subgroups.

Conversely, assume G is Hausdorff, compact, and admits a basis of neighborhoods of 1 consisting of normal
subgroups. Let {N;}:er be the family of open normal subgroups. As G is compact, the quotient G; := G/N;
is finite for all s € 1. Write ¢ < j if N; © Ny, so that I becomes a directed set (an upper bound of N; and N;
is given by N; n Nj). The family {G;}:cr is then a inverse system. The canonical maps m;: G — G; induce
a canonical morphlsm Pv: G — hmG Its kernel is ﬂ N; = {1} (since {N,}er is a basis of neighborhoods of

1), so % is injective. A sub-basis of neighborhoods of 1in H G, is given by Us = [] G; x [[{1}, where S
€I\S i€S
runs through the finite subsets of I. As 1~'(Us) = (| N; is open, the map %) is continuous. In particular,
ieS
as (G is compact, ¥(G) is compact hence closed inside 1imG- In fact, 4 is surjective, because ¥ (G) is dense

in hmG Indeed, let g = (g:)ier € hmG and S a ﬁmte subset of I; let k € I be such that N = [ N;, and
€S

g€ G a lift of g, € Gy, = G/Ny. Then gi =g mod N; for alli € S, s0 9(g) € g(Us n¢(limG;)). As ¢ is a

I
continuous and G is compact, it maps closed subsets to closed subsets: it is open. This shows that 1 is an
isomorphism and a homeomorphism. O

Remark 1.11.22. If G is any group, its profinite completion is the natural map G —  lim G/N. In the

NG
[G:N]<w
previous proof, we have seen that G is profinite if and only if this is an isomorphism and a homeomorphism.

Example 1.11.23. (1) If p is a prime number, Z, := lim Z/p"Z
neNso
(2) If we endow N~ with the order given by n < m < n | m, then {Z /nZ},en., is an inverse system,

whose inverse limit is denoted by Z. This is the profinite completion of Z.

Remark 1.11.24. The maps Z — Z, and Z — Z are injective, but are not isomorphisms: their image is
only dense (because Z /p" Z — Z,, /p" Z,, and Z /nZ — Z/nZ are isomorphisms for all n € N).

Example 1.11.25. The natural map y A [1 Z, is an isomorphism and a homeomorphism. This follows
peP
from the Chinese remainder theorem.

(21) Another way of formulating it: X = () (s, u;,; om;)1(Ap) where P = [[ X and Ap = {(z,z); = € P} is the diagonal
i<j kel
of P. As Ap isclosed in P x P, the sets (m;,u;,; om;) "1 (Ap) are closed in P for all i < j, so that X is closed in P. As P
is compact (by Tychonof’s theorem), this shows that X is compact as well.
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1.11.26. Completion of a ring with respect to an ideal. References for this section are [17, §8] and [21, II
§5]. Let I — A be an ideal.

Definition 1.11.27. Let M be an A-module.

(1) The I-adic topology on M is the topology for which {I"M},ez_, is a basis of neighborhoods of 0.

(2) The I-adic completion of M is M = lim M/I"M. The A-module M is I-adically complete when the
neZso

natural map M — M is bijective.

o0
Remark 1.11.28. (1) The I-adic topology on M is separated if and only if (| I"M = {0}.
n=1

(2) The addition M x M — M and the multiplication A x M — M are continuous*?). In particular, the

ring operations are continuous on A for the I-adic topology.

(3) Each I"™M is open in M, hence also closed since its complement in M is the open |J (m + I"M):
me¢I™ M

the quotient module M /I™M is discrete. ’

(4) M is an A-module.

(5) If f: My — M> is an A-linear map, then f(I"M;) c I"Ma, so f induces a map My/I" My — My /I"™ M,

for all n € Z~g, hence a map f: M\l — ]/\-4\2 between the I-adic completions.

(6) In general, M is I-adically separatgsl, but if n € Z~g, the natural map M/I"M — Z\/Z/I"]T/[\ may not be

an isomorphism, and the map M — M not an isomorphism, i.e. M may not be complete for the I-adic
topology.

Lemma 1.11.29. Let A be a ring, m © A a maximal ideal. Denote by A (resp. f/l;) the completion of
A (resp. Ay) with respect to the m-adic (resp. mAp-adic) topology. The natural map A — A, is an
isomorphism.

Proof. Let n € Z~g. As localization is an exact functor, we have Ay, /m"Ay, = S~1(A/m") where S denotes
the image of S = A\m in A/m". If x € S, the image of  in A/m is nonzero, hence invertible since m is
maximal: there exists y € A/m™ such that xy =1 mod m/m”, so that xy — 1 is nilpotent. This implies
that zy hence x is invertible in A/m™. In particular, the map A/m”™ — A, /m™A,, induced by A — Ay, is
an isomorphism for all n € Z~: passing to the limit, the map A //l; is an isomorphism. O

Example 1.11.30. Assume my, ..., m, are pairwise distinct maximal ideals in A and e1,..., e, € Zsg. Put
€1

I =m{" ---m¢. Denote by /Almi the completion of the local ring A,,, with respect to the m;A,,-topology.
The natural map

Ao @A,
i=1
is an isomorphism. Indeed, for all n € Z-(, the natural map
A/I"A — (—B Ajmie
i=1

is an isomorphism (by the Chinese remainder theorem, ¢f 1.1.14). Passing to inverse limits provides an
T

isomorphism A — @ lim 4/m

i=1 " n

ne; .

. we conclude by lemma 1.11.29.

Lemma 1.11.31. An A-module M is separated and complete for the I-adic topology if and only if Cauchy
sequences in M converge.

Proof. The A-module M is separated and complete if and only if for any sequence (my)rez., such that
(Vk € Z=o) mir1 — myp € I¥M, there exists a unique m € M such that (Yk € Zw¢)mi = m mod I*M.
This certainly holds if Cauchy sequences converge. Conversely, assume that M is separated and complete
and let (x;)ez., be a Cauchy sequence in M. If k € Z, there exists ¢(k) € Z~o such that i,j > ¢(k) =
T; — T € I*M. We can assume that the map ¢ is strictly increasing. Put mj = Ty € M: we have
Mys1 —my € IFM for all k € Z-q, so there is a m € M such that m; = m mod I*M for all k € Z~y. If
i = @(k), we have thus x; — my(gy, MyE) —m € I*M, whence z; = m mod I*M, showing that (z;)icz.,
converges to m. g

(22)rf z,z’',y,y’ € M are such that z —z/,y —y' € I"M, then (z + y) — (¢’ + ') € I"M; moreover, if a,a’ € A are such that
a—a €I, then ax — a'z’ = a(x — ') + (a — a')x’ € I"M.
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Corollary 1.11.32. If M is an A-module which is separated and complete for the I-adic topology, then a
o0

series >, m, converges in M if and only if its general term m,, tends towards 0.

n=0
Theorem 1.11.33. (HENSEL'S LEMMA). Let A be a local ring, m c A its maximal ideal and k = A/m its
residue field. Assume that A is m-adically separated and complete, and let F' € A[X] be a monic polynomial.
Assume there are monic polynomials g, h € k[X] such that ged(g,h) = 1 and gh = F', where F is the image
of F in k[X]. Then there exist monic polynomials F,G € A[X] such that FF = GH, and whose images in
k[X] are g and h respectively.

Proof. Note that the assumption imply that deg(g) + deg(h) = d := deg(P). Let i € {0,...,d —1}. As
ged(g, h) = 1, there exist u;, v; € k[X] such that gu; — hv; = X'. Replacing u; by its remainder modulo h
and v; by its remainder modulo g, we may further assume(®®) that deg(u;) < deg(h) and deg(v;) < deg(g).
Choose lifts U;, V; € A[X] of u; and v; respectively such that deg(U;) = deg(u;) and deg(V;) = deg(v;).
Let Gy, H; € A[X] be monic lifts of g and h respectively (so that G; = g and H, = h). We construct by
induction monic polynomials G, H,, € A[X] such that

GnH, =P mod m"[X]
(%) Gni1 =G, mod m"[X]
H,1 =H, modm"[X]

for all n € Z~o. Let n € Z~¢ be such that {G;}1<i<n and {H;}1<i<n have been constructed. Conditions (*)
imply that G, = g and H,, = h, and that®®® deg(G,) = deg(g) and deg(H,) = deg(h). This implies in

d—1
particular that deg(G,U;— H,V;) < d and that G,,U;— H,,V; = X* mod m[X]. Write P—G,H, = Y a;X*
i=0
d-1
with ag,...,a4—1 € m": we have P — G, H, = Y. «;(G,U; — H,V;) mod m"*1[X]. Put
i=0

d—1
CT‘n+1 = Gn - Z ai‘/;
1=0

d—1
Hypi=Hy+ Y ouU;
i=0

so that G,+1 = G,, mod m"[X] and H,,+1 = H,, mod m"[X]. We have

d—1
Gri1Hp1 = GuHy + Y. 0i(GUi — HyV;) mod m**[X]
i=0
=P mod m”H[X]

(as n + 1 < 2n), which completes the construction of the sequences (Gy)nez., and (Hp)nez.,. As A is
separated and complete for the m-adic topology, these sequences converge in A[X] (note that both are given
by d sequences of coefficients): denote by G and H their limits. By construction we have F = GH. O

From now on, A is assumed to be noetherian.

— 0
Notation. » Put A = (P I™: this is naturally an A-algebra (the product of x in the factor I"™ with y in the
n=0
factor I™ is xy in the factor I"*™). As I is of finite type, so is A as an A-algebra: it is noetherian.
e More generally, let M be an A-module endowed with a decreasing filtration, i.e. a decreasing sequence
of sub-A-modules (M, )nez., such that IM, c M, for all n € Z>o. The associated graded group is

. ® _

M = @ M,. It is naturally endowed with an A-module structure (the product of a in the factor I"™ with
n=0

m in the factor M, is am in the factor M, ,).

Lemma 1.11.34. Assume M is of finite type over A. The following properties are equivalent;:
(i) My4+1 = IM, for n sufficiently large;
(ii) there exists ¢ € Zsq such that M, .. = I"M, for all n € Zxo;
(iii) M is a finitely generated A-module.

(23)Let indeed %; and 9; be these remainders: we have u; = @i; + hd; with &; € k[X], so that g(@; + hd;) — hv; = X1, i.e.
g; — h(v; — g8;) = X' This implies that deg(h(v; — g6;)) = deg(gti; — X?) < d, thus deg(v; — gd;) < deg(g), i-e.
Vi 7951‘ = 172', and gﬂi — hﬁi = Xi.

(24)The degree of a monic polynomial is equal to that of its reduction modulo m.
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Proof. (i)<(ii) is trivial. If (ii) holds then M is generated by Y, M;, so that we have (iii). Conversely,

i=0
assume (iii): the A-module M can be generated by finitely many elements 1, ..., z,, with z; homogeneous,
i.e. belonging to some factor M,,, € M forie {1,...,r}. Then M, 11 = IM, for alln >c¢:= max n;. O

1<i<r

Theorem 1.11.35. (ARTIN-REES LEMMA). Let M be an A-module of finite type. If N ¢ M is a submodule,
there exists ¢ € Zxq such that for every n € Zsq, we have I""M n N = ["(I°M n N) for all n € Zx,.

Proof. Yor n € Zzo, put M,, = I"M and N,, = M,, n N: we have N c M. As A is noetherian and M
finitely generated as an A-module (by lemma 1.11.34), so is N: by lemma 1.11.34 again, there exists ¢ € Zxg
such that Nyi. = I"N, i.e. "M n N =1"(I°M n N). O

Remark 1.11.36. This theorem essentially says that the [-adic topology on N coincides with the topology
induced on N by the I-adic topology on M.

Corollary 1.11.37. Let 0 > M’ - M — M"” — 0 be an exact sequence of A-modules of finite type. The
sequence 0 — M’ — M — M"” — 0 is exact.

Proof. By right exactness of the tensor product (¢f proposition 1.7.5), the sequence
M'/I"M' — M/I"M — M"/I"M" — 0

is exact (recall that M/I"M ~ M ®4 (A/I™)) for all n € Zzo. On the other hand, there exists ¢ € Zxg
such that I"M n M' = I""¢(I°M ~ M') for integers n > ¢ (Artin-Rees lemma, ¢f theorem 1.11.35). This
implies that for n € Z>., we have

I"M' c I"M A M =I"°(I°M n M') I °M’
and the sequence
0— M'/(I"°(I°M ~ M')) = M/I"M — M"/I"M" — 0
is exact. This gives an exact sequence of inverse systems. The inverse system (M'/(I"°(I1°M " M")))nez-,
has the Mittag-Leffler property (the transition maps are surjective): by proposition 1.11.16, the sequence
0 — lim M'/(I""°(I°M n M")) > M — M" -0
am

is exact. Moreover, the surjective maps
M'/T"M" — M"/(I"°(I°M ~n M")) - M'/T" M’
provide surjective maps M’ — lim M'/(I"=¢(I°M ~ M")) — M (here again the surjectivity follows from

the Mittag-Leffler condition satisfied by the kernels of these maps), whose composite is the identity: we
have lim M'/(I"=¢(I1°M ~ M")) = M’ hence the result. O

n

Corollary 1.11.38. Let M be an A-module of finite type. Then A@A M 5 M.

Proof. This is obvious when M is free. In the general case, let L1 — Ly — M — 0 be an exact sequence
where Lo and L; are free of finite rank (such a sequence exists since M in of finite type and A noetherian).
The exactness of completion on short exact sequences of A-modules of finite type imply that the sequence
L — Lo — M — 0 is exact. We thus have the following commutative diagram with exact rows

A@aL) —= A®sLo—= AQs M —0

o1l pol o)

le io M\ 0

As ¢y and ¢; are isomorphisms, so is ¢. O

Corollary 1.11.39. A is flat over A.

Proof. This follows from corollaries 1.11.37 and 1.11.38. g
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1.12. Exercises. The following two exercises show that the ring Z [%ﬁ] is not euclidean, though a PID.

Exercise 1.12.1. Put A = Z[¢] where ¢> —( +5 = 0. We denote by N the norm of the number field Q[(].
(1) Compute N(x + y(¢) for z,y € Q an determine Z[(]*.

(2) Let a,b € Z[¢]\{0}. Show that there exist ¢,r € Z[(] such that: (r =0 or N(r) < N(b)) and (a = bg +r
or 2a = bqg + 7).

(3) Show that the ideal 2 Z[(] is maximal in A.

(4) Show that A is a PID.

Exercise 1.12.2. Let A be an integral domain which is not a field. We construct (by induction on n € Zxg)

a sequence of subsets of A by: Ag = {0} and A,,11 = A, u{x e A; A =x2A+ A,} for all n € Z>(. For
7;\

ze |J An, weput ¢(z) =inf{n € Zso; x € A, }.

n=0
o0
(1) Assume that A = |J A,. Show that A euclidean for the euclidean function ¢.

n=0
(2) Assume that A is euclidean for a euclidean function ¢: A\{0} — Z~. Show that:
(i) o(z) <y(z)forallze (J An;

neN
o0
(i) A= |J A, [Hint: reductio ad absurdum using (i));

)
n=0
(iii) A is euclidean for the euclidean function ¢;
(iv) if a divides b in A, then ¢(a) < ¢(b);
(v) there exists x € A\A* such that the restriction of the projection A — A/zA to A* U {0} is surjective.
(3) Determine ¢ in the following cases: A = Z and A = k[X] (where k is a field).
(4) Let A = Z[¢] € C where (2 — ¢ +5 = 0.
(i) Show that the equation z? — z + 5 = 0 has no solution in Fs nor in Fj.
(ii) Deduce that A is not euclidean [Hint: reductio ad absurdum using (2-v)].

Exercise 1.12.3. Let A be a domain.

(1) Show that if A is a UFD if and only if non-zero elements can be factored into a product of irreducible
elements, and irreducible elements are prime in A.

(2) Show that if A is noetherian, non-zero elements can be factored into a product of irreducible elements.
(3) Give an example of non noetherian UFD.

Exercise 1.12.4. Let A be a UFD, and S c A a multiplicative part. Show that S~1'A is a UFD.

Exercise 1.12.5. Let A be a domain and f,g € A such that A[%] N A[é] = A c Frac(A). Show that the
map A[X] — A[g];P — P(g) (resp. A[X, %] — A[g, %];P — P(g)) is surjective, with kernel (g X — f)

(resp. (gX — f, £ —g)).

Exercise 1.12.6. Let A be a ring, M an A-module of finite type and ¢: M — A™ a surjective morphism.
Show that M = N @ Ker(p), where N is a submodule of M isomorphic to A™ through ¢. Show that Ker(y)
is of finite type.

Exercise 1.12.7. Let A be an integral domain and M an A-module. Assume that M can be generated by
n elements, and contains a submodule which is free of rank n. Show that M is free of rank n.

Exercise 1.12.8. (1) Let L/K is a finite Galois extension with group G. Show that the natural map
Lok L—->@PL
oceG
Ty (z0(y))oec
is an isomorphism of L-algebras (for the left structure on the LHS, and the componentwise on the RHS).
(2) More generally, let L/K be a finite separable extension, and F/K be any extension. Show that L ®x F
is isomorphic, as an F-algebra, to a finite product of separable extensions of F.
(3) Is it still true when L/K is not assumed to be separable?
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Exercise 1.12.9. (NAKAYAMA’S LEMMA). Let A be a ring, I ¢ A an ideal and M an A-module of finite
type such that IM = M.

(1) Show that there exists an element a € A such that a =1 mod I and aM = {0}.

(2) Deduce that if I < rad(A), then M = {0}.

(3) Assume that A is local and denote by k its residue field. Show that if k ®4 M = {0}, then M = {0}.
(4) Give a counter-example of (3) when M is not assumed to be of finite type.

Exercise 1.12.10. (NAKAYAMA’S LEMMA, CONTINUATION). Assume that A is local, with residue field k,
and let M be an A-module of finite type, N an A-module.

(1) If N is of finite type over A and M ®4 N = {0}, show that M = {0} or N = {0}.

(2) Let f: N > M be an A-linear map such that Id; ®f: k ®4 N — k®a M is surjective. Show that f is
surjective.

Exercise 1.12.11. Let A be a ring and I — A be an ideal of finite type such that I? = I. Show that I is
generated by an element e € I such that e? = e.

Exercise 1.12.12. Let A be a ring, M an A-module of finite type and f € End4(M) a surjective endomor-
phism. Show that f is injective.

Exercise 1.12.13. Let A be a ring. Show the following:

(i) if A™ ~ A™ then n =m,;

(ii) if there exists a surjective A-linear map A™ — A™ then n = m;

(iii) [difficult] if there exists an injective A-linear map A™ — A™, then n < m.

Exercise 1.12.14. Let A be a domain and M an torsion-free A-module. Let X be a set of maps o: M — M,
each of which is semi-linear with respect to a ring endomorphism o of A, i.e. such that o(am) = o(a)o(m)
for all a € A and m € M. If Frac(A)* = A*, show that the natural map a: B ®gs M> — M is injective.

Exercise 1.12.15. Let A be a ring. An A-module P is projective if the functor Hom4(P,.) is exact, i.e.
whenever a sequence
0->M ->M->M" -0
is exact, so is the sequence
0 — Hom4 (P, M') — Hom s (P, M) — Hom4(P, M") — 0.

(1) Show that a free module is projective.
(2) Show that an A-module is projective if and only if it is a direct factor of a free module.

Definition 1.12.16. Let A be a ring. An A-module M is of finite presentation if there exists an exact
sequence

L'>L—->M-=0
where L, L' are free A-modules of finite rank, i.e. if there exists a surjective A-linear map u: L — M such
that L is free of finite rank and Ker(u) of finite type. Being of finite presentation implies being of finite
type, but the converse is false in general. It holds true when A is noetherian.

Exercise 1.12.17. (SNAKE LEMMA). Let A be a commutative ring.
(1) Assume there is a commutative diagram of A-modules

M M M 0
0 N’Cide”

with exact rows. Show that there is an exact sequence of A-modules
Ker(u) % Ker(v) 2 Ker(w) 2> Coker(u) % Coker(v) <% Coker(w).

(2) Let 0 > M" > M — M” — 0 be an exact sequence of A-modules with M of finite type and M” of
finite presentation. Show that M’ is of finite type.
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Exercise 1.12.18. Let A be a local ring, with maximal ideal m and residue field k¥ = A/m.
(1) Let 0 > M’ - M — M"” — 0 be an exact sequence of A-modules with M” flat over A. Show that the
sequence 0 > k@4 M' - k®a M — k®4 M"” — 0 is exact.
(2) Let M be an A-module. Show that the following are equivalent:
(i) M is flat of finite presentation;
(ii) M is free of finite rank.
(in particular, when A is noetherian, then M is free of finite rank if and only if it is flat of finite type).
(3) Deduce that an A-module is projective of finite type if and only if it is free of finite rank.

Exercise 1.12.19. Let A be a ring and M an A-module. Show that the following are equivalent:

(i) M is projective of finite type over A;
(ii) M is flat and finitely presented over A.

Exercise 1.12.20. Let A be a local ring with maximal ideal m and k = A/m its residue field. Let u: M — N
be an A-linear map such that M is of finite type, N is projective, and k®u: k®a M — k®4 N is injective.
(1) Show that M is free of finite rank.

(2) Show that w is left invertible (i.e. there exists an A-linear map v: N — M such that vowu = Idys).

Exercise 1.12.21. Let R be a ring, M = R%>° and A = Endp(M): this is a noncommutative ring. Use the
maps

(pliM—>M (.Tl,l'g,. ) ($1,$3,$5,...)
po: M — M; (z1,xa,...) — (T2, 24, X6, . ..)
Y12 M — M; (z1,22,...) = (21,0,22,0,...)

’lﬂg: ]\4—>]\47 (.’L‘l,.’L'Q,...) [and (0,.%'1,0,,(62,...)

to show that A% ~ A (as left A-modules), so that the rank of a free module is not well defined in the non
commutative setting.

Exercise 1.12.22. Let K be a field and A the sub-K-algebra of K[X,Y] generated by {X*Y*+1} 5 .
Show that A[XYT] is included in a sub-A-module of K[X, Y] of finite type, but that XY is not integral over
A.

Exercise 1.12.23. Let A — B be a ring extension with A noetherian, x € B*, and y € A[z] n A[z71].
Show that there exists n € Zx( such that the sub-A-module M = A + Ax + --- + Ax™ c B is stable under
multiplication by y, and that y is integral over A.

Exercise 1.12.24. Let A be a domain and a € A\{0}. Assume that A/aA is reduced and that A[a~'] is
integrally closed. Show that A is integrally closed.

Exercise 1.12.25. Let A — B be an integral morphism of rings, p; C po prime ideals in B such that
p1 N A =pyn A. Show that p; = pa.

Exercise 1.12.26. Let A be a ring, A c B a finitely generated integral extension, and p A a prime ideal.
Show that B has only a finite number of prime ideals lying over p.

Exercise 1.12.27. (1) Let (X, pn)nez., be an inverse system of finite and non empty sets. Show that
X =lim X,, is non empty. [Hint: reduce to the case where the maps p,, are surjective.]

n
(2) Give an example of an inverse system (indexed by Zx() of non empty sets whose inverse limit is empty.

Exercise 1.12.28. Prove that any continuous bijection from one profinite group to another is a homeomor-
phism.

Exercise 1.12.29. Let G and H be profinite groups, and let f: G — H be a continuous group homomor-
phism. Prove that Ker(f) is a closed normal subgroup of G, that f(G) is a closed subgroup of H, and that
f induces an isomorphism G/ Ker(f) = f(G) of profinite groups (here G/ Ker(f) has the quotient topology
induced by the topology on G, and f(G) has the relative topology induced by the topology on H.
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Exercise 1.12.30. The profinite completion of a group G is the profinite group G = @G/N, with N
N
ranging over the set of normal subgroups of G of finite index in G, ordered by containment, the transition

maps being the natural ones.

(1) Prove that there is a natural group homomorphism ¢¢: G — (A?, and that its image is dense in G. Find
a group G for which it is not injective.

(2) Prove that ¢ is an isomorphism if and only if G is profinite.

(3) What is the profinite completion of the additive group of Z?

Exercise 1.12.31. Let p be a prime number.

(1) Show that there is a group G whose profinite completion is isomorphic to the additive group Z,. Can
you find such a G that is countable?

(2) Let A be the product of a countably infinite collection of copies of Z /p Z. Is there a countable group G
such that A is isomorphic to the profinite completion of G?

Exercise 1.12.32. Show that for a profinite group G the following are equivalent:

(i) the topology of G is induced by a metric;
(il) G ~ lim G, with Gy, finite and G, 11 — G,, surjective for all n € Zx;

(iii) the number of open subgroups of G is countable.

Show that the equivalent conditions (i)-(iii) imply that G contains a countable dense subset (so G is separable
as a topological space), and give an example showing that the converse does not hold.

Exercise 1.12.33. Let p be a prime. Give examples of groups that are not separated for the p-adic topology.

Exercise 1.12.34. Let A be a topological group. We say that A is profinite when the underlying abelian
group is profinite.
(1) Show that if A is profinite, then the natural map A — lim A/ is an isomorphism (where I runs through

I
the closed ideals of finite index in A).

(2) Assume that A is noetherian, local and that its topology is given by the powers if its maximal ideal.
Show that A is profinite if and only if its residue field is finite.

Exercise 1.12.35. Find examples where Artin-Rees lemma’s conclusion does not hold because one of its
assumptions is not fulfilled [Hint: try A = Q[X, Z, Y1, Ya,...]/{X — ZY:)icz_, for the non noetherian case.]

Exercise 1.12.36. Let A be a ring, 1 s A and f: N — M a surjective A-linear map. Show that the map
induced on the I-adic completlons f N = Mis surjective. Deduce that if M is an A-module of finite type,
the natural map A®s M — M is surjective.

Exercise 1.12.37. Let A be aring, a € A and M < N two A-modules. Assume that M is complete and N
separated for the a-adic topology and that the induced map M — N/aN is surjective. Show that M = N.

Exercise 1.12.38. (1) Let A be a ring, @ € A and N a torsion-free A-module which is separated and
complete for the a-adic topology Let M — N be a sub-A-module: the inclusion extends into an A-linear
map f: M — N where M = lim M /a™M is the a-adic completion of M. Show that if «'N n M < aM for

'n/
some i € Z~o, then f is injective [hint: show that «'**N n M ak“M for all k € Zxo].

(2) Let p be a prime, A = Z,, N = Z,[X] and M = Z,(pT) ® (—BZ (pT"*! + T") ¢ N. Show that
x=pt—p(T?+T)+p*(pT3 +T?) — -+ defines a non-zero element in M, whose image in N is zero.
Exercise 1.12.39. Let A be a ring, I ¢ A an ideal and 0 - M; — My — M3 — 0 an exact sequence

of A-modules. Assume M3 is annihilated by a power of I. Then completion produces an exact sequence
0—> M; > My - Mz — 0.
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Exercise 1.12.40. Let A be a ring, I ¢ A and M an A-module. Denote by M the I-adic completion of M.
(1) Show that M is I-adically separated.
(2) Show that the following are equivalent:
(i) the A-module MisT -adically complete;

(ii) for all n € Z~¢, the natural map M/I"M — M\/I"ﬁ is surjective;

(iii) for all n € Z~q, we have "M = Ker(m,,) where 7, : M- M /I™M is the canonical map.
(3) Let K be a field, A = K[X;]icz., and I = (X, >z€Z>o c A. Show that A is not I—adlcally complete.
(4) Assume that I is finitely generated. Show that I"M = Ker(M - M/I"M) = I"M for all n € Zso and
that M is I- adically complete.

Exercise 1.12.41. Let A be ring, I — A an ideal and M an A-module.

(1) Show that if A is I-adically separated and complete, then I < rad(A).

(2) Show that if M is [-adically separated and complete and a € I, the multiplication by 1 + a is an
automorphism of M.

Exercise 1. 12.42. (COMPLETION IS NOT AN EXACT FUNCTOR.) Let K be a field, A = K[X], M = A(%>0)
and C = 6—) A/X™A. Show that the completion for the X-adic topology of the natural exact sequence
0—>M—>M—>C’—>Olsn0texact

Exercise 1.12.43. (FORMAL NAKAYAMA’S LEMMA). Let A be a ring, I < A an ideal such that A is
I-adically separated and complete, and M an A-module of finite type.

(1) Show that if M = IM, then M = {0}.

(2) Assume that f: M’ — M is an A-linear map such that f®(A/I) is surjective. Show that f is surjective.

Exercise 1.12.44. Let A be a ring, I ¢ A an ideal and M an A-module. Assume that A is [-adically
separated and complete, and that M is separated for the I-adic topology. Assume there are mq,...,m,. € M
whose images M1, ..., m, € M/IM generate M /IM. Show that mq,...,m, generate the A-module M.

Exercise 1.12.45. Let A be a noetherian local ring, with maximal ideal m and residue field ¥ = A/m. Show
that the m-adic completion A of A is a local ring with maximal ideal mA, and residue field k.

Exercise 1.12.46. Let A be a DVR, m its maximal ideal, and A the m-adic completion of A. Show that A
is a DVR.

Exercise 1.12.47. Let A be a complete DVR with uniformizer 7 and M an A-module. Let K = Frac(A)
and k = A/mA the residue field. Put Mg := K ®4 M and M = K ®4 M. Assume that M is flat (i.e.
torsion-free) and that dimg (My) = dimg(My) < +00. Show that M is free of finite rank over A. Give a
counter-example without the flatness assumption.

Exercise 1.12.48. (KRULL INTERSECTION THEOREM). Let A be a noetherian ring and I ¢ A an ideal.
o]

(1) Let M be an A-module of finite type and N = (| I"M. Then there exists a € A such that a = 1
=0

mod I and aN = 0.
(2) If I c rad(A), then any A-module of finite type is I-adically separated, and its submodules are all closed.
(3) If A is a domain and T a proper ideal, then ﬂ " = {0}.

n=0

Exercise 1.12.49. Let A be a noetherian ring and I = {¢;,...,&,) be an ideal. Let A be the I-adic
completion of A. Then there is a isomorphism

ALX 1, o Xa KX =61y X = 6D S A
that maps X; to & for all i € {1,...,n}.

Exercise 1.12.50. Let A be a noetherian ring and I,J c A ideals. Assume that A is both I-adically and
J-adically separated and complete. Show that A is I + J-adically separated and complete.
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Exercise 1.12.51. Let A be a noetherian ring and J c I < A ideals such that A is I-adically separated and
complete. Show that A is also J-adically separated and complete.

Exercise 1.12.52. Let A be aring, I ={f1,..., fry € A a finitely generated ideal, M an A-module and M
its I-adic completion.

(1) Show that if M — lim M/f* M is surjective for each i € {1,...,7}, then M — M is surjective.

(2) Let J c A be an ideal such that I < J. Show that if M is J-adically complete, then M is I-adically
complete.

Exercise 1.12.53. (1) Let g € Z-1, and define Z; = UmZ /g"Z. Prove that Z, is a profinite group

n
isomorphic to [ [ Z,, the product ranging over the primes p dividing g.

plg
(2) Prove that Z ~ [ Z,, the product ranging over all primes p.
p
~ 0
Exercise 1.12.54. (1) Prove that each a € Z has a unique representationas a = Y, ¢,n!, with ¢, € {0,...,n}
n=1
for all n € Z~(. Give this representation for a = —1.

(2) Let b € Zxo, and define the sequence (a,)nez., of non-negative integers by ap = b and a4 = 2%".
Prove that (an)nez., converges in Z and that the limit is independent of the choice of b.

o0
(3) Let a = 1i_r)nf ay, be the limit of the sequence in (2), and write a = Y, ¢,n!. Determine ¢, for 1 < n < 10.
n—L n=1

Exercise 1.12.55. Show that Z ~ End(Q/Z) and Z" ~ Aut(Q/Z).

Exercise 1.12.56. (1) Prove that for every positive integer n the natural map Z/nZ — Z/nz is an
isomorphism.

(2) Prove that there is a bijection from the set of positive integers to the set of open subgroups of Z mapping
n to nZ.

(3) Can you classify all closed subgroups of 77

o0
Exercise 1.12.57. Let p be a prime number and view Z,, = lim Z /p" Z as a closed subset of A = ITZ/p" 2.
n n=1

(1) Prove that A/Z, ~ A as profinite groups.
(2) Prove that A and Z, x(A/Z,) are isomorphic as groups, but not as profinite groups.

S

Exercise 1.12.58. Prove that ZX ~ 7 x

—

Z /nZ as profinite groups.
1

n
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2. DEDEKIND RINGS
2.1. Definition, first properties.

Definition 2.1.1. Assume that A is an integral domain. We say that A is a Dedekind ring if:

(0) A is not a field;

(1) A is noetherian;

(2) A is integrally closed;

(3) nonzero prime ideals of A are maximal.

Proposition 2.1.2. PID that are not fields are Dedekind rings.

Proof. If A is a PID, it is an integral domain and noetherian by definition. It is integrally closed by
proposition 1.9.10. Its nonzero prime ideals are maximal by proposition 1.1.30. (|

Theorem 2.1.3. Let A be a Dedekind ring, K its fraction field, L/K a finite separable field extension, and
B the integral closure of A in L. Then B is a Dedekind ring.

Proof. The ring A is noetherian: by corollary 1.10.39 (1), the ring B is noetherian. It is integrally closed
by proposition 1.9.12. Finally, if 8 B is a nonzero prime ideal, the ideal p =B n A is prime and nonzero
(it contains Nz /g (b) # O for all b € ‘B\{0}), hence maximal. This implies that 9 is maximal (cf proposition
1.9.19). 0

Corollary 2.1.4. The ring of integers of a number field is a Dedekind ring.
2.2. Local characterization of Dedekind rings.

Proposition 2.2.1. Let A be a Dedekind ring and S — A a muliplicative part. Then S~!A is a field or a
Dedekind ring.

Proof. The ring S~!A is noetherian by corollary 1.8.13. As A is integrally closed, so is S™!A by proposition
1.9.13. Also, proposition 1.8.14 provides an increasing bijection (for inclusion)

{p e Spec(A); pn S =2} < Spec(S'A)
P STlp
qnA:=1"(q) <q
As nonzero elements in Spec(A) are maximal, so are nonzero elements in Spec(S™1A). O
Lemma 2.2.2. A local Dedekind ring is a DVR.

Proof. Assume that A is a local Dedekind ring: we have to show that A is a PID (¢f definition 1.8.25). As
A is not a field: its maximal ideal m is nonzero, so Spec(A4) = {(0), m}.
e Let o € m\{0}. We first show that there exists r € Z~( such that m" c aA. As A is noetherian, the ideal

m is of finite type: there exists f1,..., fn € A\{0} such that m = ] f;A. Let ¢ € {1,...,n}. By proposition

=1
1.8.14, we have Spec(Ay,)) = {p € Spec(A4); fi ¢ p} = {(0)}, hence Ay, is a field (thus A4,y = Frac(A)).
The element « is thus invertible in A(y,): there exists r; € Z>o and a; € A such that é = ;TZ We have of

course 7; > 0 (because a ¢ A* since aem), and f* e aA. Ilf r=ri +--- +r, € Zs, we hz;ve indeed
m' = (f1A+ -+ LA C f[PA+--+ fir A C aA.

e Next we show that m is principal. Let a € m\{0} and r € Z-¢ minimal such that m" < aA. We have
m’ ! ¢ aA: take fem” '\aA and let 7 = § € Frac(A). we have

B

TTlm=Lmcalm"c A

and 7 'm is an ideal of A. If this ideal was not the unit ideal, we would have 7~'m c m, implying that
71 is integral over A (cf proposition 1.9.3 (iii) = (i)). As A is integrally closed, this would imply 7! € A
i.e. B € aA which is not: we necessarily have 7~ !m = A, so that m = 7 A is principal.

e Now let I — A be any strict nonzero ideal: we have I  m. Let a € I\{0}: we have oo € m\{0}. By what
precedes, there exists r € Zwq such that m" c a4 c I. If we had I ¢ m"*!, this would imply 7" € 7" +1 A4,
i.e. 1 ¢ TA = m which is absurd. The set {n € Z>¢; I € m"} is thus bounded above. As it is nonempty (it
contains 1), it has a greatest element n;. We have I ¢ 7™/ A i.e. #~"™ ] c Ais anideal of A, but 7™ 1 ¢ m

(otherwise I € m™ 1) thus 7" = A, i.e. [ =n"A. O
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Theorem 2.2.3. Let A be a noetherian integral domain which is not a field. Then A is a Dedekind ring if
and only if for all maximal ideal m c A, the localization Ay, is a DVR.

Proof. If A is a Dedekind ring and m ¢ A a maximal ideal, the localization Ay, is a local Dedekind ring (by
proposition 2.2.1). As A is not a field, m is nonzero, and A, is not a field: this implies that A, is a DVR
(lemma 2.2.2).

Conversely, assume that for all maximal ideal m c A, the localization A, is a DVR.

Let € K = Frac(A) be integral over A. Write = ¢ with a,b € A and b # 0. For every maximal ideal
m c A, the element x is a fortiori integral over A,,. As the latter is a Dedekind ring, we have x € Ay, i.e.
aAn C bAy. By the local-global principle (proposition 1.8.22), this implies aA < bA, i.e. x € A, proving
that A is integrally closed.

Let p = A be a nonzero prime ideal. By Krull’s theorem (theorem 1.1.7), there exists a maximal ideal m ¢ A
such that p € m. By proposition 1.8.14, the ideal p Ay, is prime in A,. Being nonzero by assumption, it is
maximal, i.e. pA, = mAy, which implies that p = m (thanks to proposition 1.8.22), and p is maximal. O

2.3. Factorization of ideals, class group. Theorem 2.2.3 implies that Dedekind rings are locally PIDs,
hence locally UFDs. Nevertheless, there are Dedekind rings that are not UFDs.

Example 2.3.1. Let K = Q(iv/5): we have O = Z[in/5]. Assume 2 = zy with z,y € O: write
x =a+iby/5 and y = c+id\/5. We have N/ q(2) = Ng/q(z) Nk, q(y) i.e. 4 = (a®+5b%)(c? +5d?), which
implies b = d = 0 whence z,y € Z, i.e. x € {+1} or y € {£1}. The element 2 is thus irreducible in Og. On
the other hand, we have (1 +iv/5)(1 —i/5) = 6 € 20k but 1 +i/5,1 — i/ ¢ 20k, i.e. 2 is not prime.
This implies that Ok (which is a Dedekind ring) is not a UFD (¢f proposition 1.1.21).

As we will see, Dedekind rings have nevertheless a unique factorization property, not for nonzero elements
into a product of prime elements, but for nonzero ideals into a product of prime ideals.

Lemma 2.3.2. Let A be a noetherian ring and I < A a nonzero ideal.
(1) The ideal I contains a product p; - - - p,, of nonzero prime ideals (non necessarily distinct).
(2) If A is a Dedekind ring, there are only finitely many maximal ideals of A that contain 1.

Proof. (1) We use a noetherian induction: let & be the set of nonzero ideals in A that do not contain a
finite product of nonzero prime ideals. Assume & # &: as A is noetherian, it admits an element I which is
maximal for the inclusion (¢f proposition 1.3.1 (1)). We have of course I # A (because A contains at least
a prime ideal by Krull’s theorem, ¢f theorem 1.1.7), and I itself is not prime: there exists x,y ¢ I such that
xy € I. The ideals I +x A and I +yA strictly contain I: by maximality of  in &, we have [ +zA, [ +yA ¢ &,
which implies the existence of p1,...,p, and q,...,q,, nonzero prime ideals such that p;---p, c I +zA
and q1 - qm © I + yA. We have then

P Padr o qm © (L +2A) +yA) 1

contradicting I € &. It follows that & is empty.

(2) By (1), there exists p; - - - p,, nonzero prime ideals (hence maximal since A is a Dedekind ring) such that
p1---pp © I. If mis a maximal ideal in A such that I < m, we have a fortiori p1 -+ - p, < m. If p; # m for all
i € {1,...,n}, there exists a; € p;\m, and a; - --a,, € p1 - -+ p,\m which is absurd: there exists i € {1,...,n}
such that p; = m. |

Theorem 2.3.3. Let A a Dedekind ring and I c A a nonzero ideal. There exist pairwise distinct nonzero
prime ideals p1,...,p, and integers ay, ..., a, € Z~¢ such that

— X1 «a
I_pl Py

This decomposition is unique up to the order of factors, and the set of nonzero prime ideals containing [ is
precisely {p1,...,pn}-

Proof. e Let {p1,...,pn} be the set of prime ideals containing I (¢f lemma 2.3.2 (2)). For i € {1,...,n},
the ring Ay, is a DVR (¢f theorem 2.2.3). The ideal TA,, < A,, is strict: there exists o; € Z~ such that
IA,, = pjiAp,. Put J = p{"---p%. By construction, we have IA,, = JA,, for alli e {1,...,n}. On
the other hand, if m ¢ {p1,...,p,} is a maximal ideal in A, we have IAy, = Ayn = JAn. The local-global
principle (¢f proposition 1.8.22) implies that I = J.

e It remains to prove unicity up to the order. Assume that I = qfl - qglm where q1, ..., 4, are pairwise
distinct nonzero prime ideals and B, ..., Bm € Zso. For i € {1,...,n}, we have q;'---q%" < p;: there
exists j € {1,...,m} such that p, = q;. This implies that {p1,...,pn} < {q1,...,9m}. Exchanging the
factorizations, we have the reverse inclusion, i.e. {p1,...,pn} = {q1,...,9m}, hence m = n, and after
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runumbering, p; = q; for all ¢ € {1,...,n}. Also, we have pfiApi = IA,, =p;"A,,, which implies a; = ;
forallie {1,...,n}. O

Remark 2.3.4. A way to formulate unicity is to say that the ideals p1, ..., p,, that appear in the factorization
are exactly the nonzero prime ideals that contain I (indeed its prime divisors), and that for all i € {1,...,n},
the multiplicity «; is the valuation of the ideal IA,, in the DVR A,,.

Example 2.3.5. With the notations of example 2.3.1, we have the isomorphism
Z[X]{X?+5)5 0k
X —iV5

It induces an isomorphism Fo[X]/{(14 X)?) 5 Ok /20 let p be the ideal generated by 2 and 0 := 1+i/5
(it is the image of the maximal ideal {1 + X) of Fo[X]/{(1 + X)?) by the preceding isomorphism). The
induced isomorphism is an isomorphism Ok /p = F2, so that p is maximal. On the other hand, the image
of p? in Ok /20 is zero: we have p? c 20k < p. As 20k is not prime, we have 20y # p, showing that
20K = p2.

Definition 2.3.6. Let A an integral domain and K its fraction field.

(1) A fractional ideal is a sub-A-module I < K such that there exists d € A\{0} with I < d~!A.

(2) Operations on fractional ideals. Let I, J < K be fractional ideals: there exists d,d € A\{0} such that
Icd'Aand Jc §71A. Let I +.J (resp. I.J) be the sub-A-module of K generated by I u.J (resp. elements
of the form®® zy with 2 € I and y € J). Then I.J ¢ (d6) 'Aand I nJ c I 4+ .J c (d§) ' A so that I.J,
I nJ and I + J are fractional ideals.

(3) If I c K is a fractional ideal, we put

I''={zeK;alc A}
it is a sub-A-module of K. If I # {0}, then I~! is a fractional ideal (if a € I\{0}, we have al~! c A4, so

that I=! c a1 A).
(4) A nonzero fractional ideal I < K is called invertible if the inclusion I1~! < A is an equality.

Remark 2.3.7. (1) A fractional ideal is nothing but a set of the form d'a where a © A is an ideal and
d € A\{0}. In particular, every ideal in A is a fractional ideal. Also, for all z € K*, the set A is a
fractional ideal. Such a fractional ideal is called principal. A principal fractional ideal is invertible, and
(xA)~! =27 1A

(2) If I ¢ J c K are fractional ideals, we have J~! ¢ I~!. In particular, if I — A, we have A c I71.

(3) If I, J c K are invertible fractional ideals, so is the product I.J, and (IJ)~! = 1-1J~L.

(4) If S < A is a multiplicative part and I ¢ K a invertible fractional ideal over A, then ST is an invertible
fractional ideal over S™1A, and (S71I)~! = S~1I~! (indeed we have (S~ 1)(S71I) = S~ = S71A).

Corollary 2.3.8. In a Dedekind ring, every nonzero fractional ideal is invertible.

Proof. Let A a Dedekind ring, K its fraction field and I ¢ K a nonzero fractional ideal. Assume first that
I c Ais an ideal. Let z € I\{0} < A\{0}. By theorem 2.3.3, there exists nonzero prime ideals py,...,p,
and a1,...,a, € Zsg such that x4 = pf*---p¥. As 2A c I, we have necessarily I = p?l coopBn with
0<pi<ajforalie{l,...,n}. Put J = p?‘l*m oop2n=Bn < A: we have I.J = zA, thus I(z~1J) = A,
proving that I is invertible and I=! = 271J. In the general case, we have I = d~'a with d € A\{0} and
a ¢ A. By what precedes, the ideal a is invertible: we have aa=! = A, hence I(da™!) = A, so that I is
invertible, with inverse da~". O

Theorem 2.3.9. Let A be a Dedekind ring, &4 the set of its nonzero prime ideals and K its fraction field.
If I ¢ K is a nonzero fractional ideal, there exists a unique family (v, (1 ))pe 2, € Z?4) guch that

I = 1_[ pUP(I)
PEP A

(the product is finite since only finitely many v,(I) are nonzero).

Proof. There exists a nonzero ideal a © A and d € A\{0} such that I = d 'a. By theorem 2.3.3 applied to
the ideals a,dA c A, the existence of the decomposition follows. For unicity, assume that

[T e>=1]] o™

PEL A pPEF A

n
(25)We have thus 1J = {x €K, (AneZso) a1,...,an€l) Ay1,...,yn€ )z =3 ackyk}.
k=1
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with (np)pesa, (Mp)pess € Z(74) We have [] p™ ™ = A, i.e.
PEP A
H pnp—mp _ 1_[ p_np+mp c A
PEP A pPEP A
ny—myp =0 ny—myp <0

By unicity in theorem 2.3.3, this implies that n, —m, =0 i.e. n, =m, for all p € &4 (note that the sets
{pe Pa, np —my =0} and {p e P4, n, —m, < 0} are disjoint). O

Notation. If A is an integral domain, we denote by Fr(A) the set of its nonzero fractional ideals, and
Princ(A) the subset of its nonzero principal fractional ideals.

Proposition 2.3.10. Let A be a Dedekind ring and £24 the set of its nonzero prime ideals.
(1) Endowed with the law (I,.J) — I.J, the set Fr(A) is an abelian group with unit element A and with
inverse map I — I~!. Moreover, the map

fa: yASEYN Fr(A)
(Np)peza — H pre

PEP A

is a group isomorphism, with inverse I — (v (I )) . In particular, we have

b PEP A
(LJ) = vp(I) + vp(J)

Up
Up(l 1) = _Up(l)

for all I,J € Fr(A) and p € P4.
(2) IfI,J € Fr(A), we have I ¢ J < (Vp € P4) vy(I) = vp(J). In particular I is an ideal in A if and only
if v, (I) > 0 for all p e P .

Proof. (1) By definition 2.3.6, if I,.J € Fr(A), then I.J € Fr(A) and 1! € Fr(A). The law (I,J) — IJ is
associative, commutative and admits A as unit element. Moreover, every element is invertible by corollary
2.3.8: Fr(A) is an abelian group. The map fa is a group homomorphism, with inverse I — (vp (I))peg,A
(theorem 2.3.9): it is thus an isomorphism.

(2) by theorem 2.3.3, if I < A is an ideal, we have v,(I) > 0 for all p € &?4. The converse is obvious. If

I,JeFr(A),wehavethus I c J < [J ' c Ae (Vpe P4) vy(I) —vp(J) = vp,(IJ71) > 0. O
Definition 2.3.11. Let A be a Dedekind ring. The set Princ(A) is a subgroup of Fr(A4). We denote

CI(A) = Fr(A)/Princ(A)
the quotient group, that we call the ideal class group of A.

Example 2.3.12. Let A be a Dedekind ring.

(1) Ais a PID if and only if CI(A) = {1}.

(2) Let I be a nonzero fractional ideal. The class of I in CI(A) is of finite order if and only if there exists
n € Z~o such that I"™ is principal.

Definition 2.3.13. A ring is semi-local if it has only finitely many maximal ideals.

Remark 2.3.14. (1) A local ring is semi-local.

(2) If A is a Dedekind ring and I < A a nonzero ideal, then A/I is semi-local: let T = p{* ---p®" be the
decomposition of I into a product of nonzero prime ideals; the Chinese remainder theorem implies that
AJI ~@)_; A/ps, and each factor A/p$" is local, with maximal ideal p,/pf.

Proposition 2.3.15. Let A be a Dedekind ring, pi,...,p, € A nonzero prime ideals and I ¢ A an ideal.
There exists a € A such that (Vi € {1,...,n})IA,, = aA,,. In particular, a semi-local Dedekind ring is a
PID.

Proof. We have I = p{* ---p&J with aq, ..., a, € Zx and J prime to py - - - p,, (theorem 2.3.3). By lemma
2.2.2, for all i € {1,...,n}, the ring A,, is a DVR: let m; € p; be such that p;4,, = mA,,. We have
IA,, =7ntA,, forallie{l,...,n}. As p1,...,p, are pairwise coprime, so are pdr o pontl by the
chinese remainder theorem (¢f theorem 1.1.14), the natural morphism

AfpSHL gt (Afp ) x e x (Afpent)
is an isomorphism: there exists a € A such that a = 7% mod p$**! hence aA,, = Ay, foralli e {1,...,n}.

If A is semi-local, take {p1,...,p,} the set of maximal ideals of A. By the local-global principle (proposition
1.8.22), we have I = aA. As A is an integral domain by definition, it is a PID. a
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Corollary 2.3.16. Let A be a Dedekind ring, I — A a nonzero ideal and a € I\{0}. There exists b € A such
that I = aA + bA.

Proof. Let p1,...,pn © A be the nonzero prime ideals containing a (lemme 2.3.2 (2)). By proposition
2.3.15, there exists b € A such that (Vi e {1,...,n})[A,, = bA,,. Put J =aA+bA c A If p is a maximal
ideal that does not contain a, we have aA, = Ap: as a € I and a € J, this implies that A, = JA, = A,.
If i e {1,...,n}, we have aA,, c IA,,, hence IA,, = bA,, c JA,, c IA,,, so that JA,, = IA,,. By the
local-global principle (proposition 1.8.22), we have I = J. a

2.4. Factorization in an extension, ramification. Let A be a Dedekind ring and K = Frac(A). The
aim of this section is to explain the decomposition of the ideal generated by an ideal of A in the integral
closure of A in a finite separable extension of K. If p is a nonzero prime ideal in A, we denote x(p) = A/p
the residue field of A at p.

Definition 2.4.1. Let A be a Dedekind ring, and L/K a finite separable field extension. Let B be the integral
closure of A in L. By corollary 1.10.39 (1) and theorem 2.1.3, B is a finite A-algebra and a Dedekind ring.
(1) If p € A and P c B are nonzero prime ideals, we say that B divides p, or that P lies above p (and we
denote P | p) if P A =p.
(2) As B is a Dedekind ring, we have

pB = [T

Blp

with eqy = v (pB) € Z~o. The integer eq is called the ramification index of p en .
(3) If B | p, the field x(P) = B/P is a finite extension of x(p) = A/p called the residual extension at .
We put fo = [£(3B) : k(p)]: this integer is called the residual degree of p at .
(4) If ey = 1 and the field extension x()/x(p) is separable, we say that p (or even L/K) is unramified
at B, and ramified at P otherwise. If p is unramified at every prime ideal dividing it, we say that p is
unramified, or that L/K is unramified at p.
(5) When there is only one prime ideal 3 above p and fiz = 1, we say that L/K is totally ramified at p.
(6) If the ideal pB is prime in B, we say that p is inert in L/K. If ey = fip = 1 for all B | p, we say that p
is totally split in L/K.

Theorem 2.4.2. Under the hypothesis of definition 2.4.1, we have

ity (B/pB) = [L: K] = 3 e fip
PBlp
Proof. There are isomorphisms A/p > A, /pA, and B/pB > S~ 'B/pS~!'B (with S = A\p): replacing A by
A, (which is licit by proposition 1.9.13), we may assume that A is a DVR, with maximal ideal p (¢f lemma
2.2.2). The ring A is a PID: the A-module B is free of rank [L : K] (¢f corollary 1.10.39 (2)). This implies
that dlmn(p)(B/pB) = [L : K]
For 9B | p, the ideals B°* are pairwise coprime: the Chinese remainder theorem provides an isomorphism
B/pB = B/ || B** > D B/P*
PBlp PBlp
Consider the filtration B ¢ P*~1 ¢ ... ¢ P? ¢ P < B. As By is a DVR (lemma 2.2.2), we have
isomorphisms By /BBy — B* By P+ By < P /PE+1L (the first isomorphism is induced by the multipli-
cation by m’%, where 7y is a uniformizer of By). This implies that P*/B*+1 is a x(P)-vector space of
dimension 1, hence a x(p)-vector space of dimension fy. This shows that

ep—1
dim, () (B/P*) = EO dim,, () (B /BHH) = e fip
hence dlmn(p)(B/pB) = >, dim,i(p)(B/‘Be‘*‘) =), ey fy. O
Blp Blp
Lemma 2.4.3. (PRIME AVOIDANCE). Let R be a ring, p1,...,p, € R prime ideals and I < |J p; an ideal.

i=1
There exists ¢ € {1,...,n} such that I c p;.

Proof. Removing some p; if necessary, we may assume that (Vi € {1,...,n})p; & |J p;: let a; € p,\ U p;-
J#i J#i

Assume moreover that for all 4 € {1,...,n}, we have I ¢ p;: let x; € I\p;. Put © = X z; [[a; € [. If
i1 j#i
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i e {l,...,n}, we have a; € p; hence z = z; [[ a; mod p;. As z; ¢ p; and a; ¢ p; for j # i, we have
Jj#i
z; || a; ¢ p; whence x ¢ p;, so that x € I\ U pi, contradicting the hypothesis. O
VE) i=1

Remark 2.4.4. The terminology comes from the contrapositive.

Theorem 2.4.5. Under the hypothesis of theorem 2.4.2, assume moreover that the field extension L/K is
Galois. The group Gal(L/K) acts transitively on the set of prime ideals that divide p. The integers ez and fip
only depend of p and not of 3: we denote them e, and f, respectively. If Gal(L/K)q denotes the stabilizer of
P, then Gal(L/K ), ) = 0 Gal(L/K)gpo~! for all o € Gal(L/K): the integer g, = [ Gal(L/K) : Gal(L/K)x|
only depends of p and not of B. We have [L : K| = e fygp-

Proof. Let P and P’ be prime ideals above p such that P’ # o(P) for all o € Gal(L/K). As the ideals
P’ and o(P) are maximal, we have P’ ¢ o(P) for all o € Gal(L/K): there exists z € P’ such that
x ¢ o(P) for all o € Gal(L/K) (cf lemma 2.4.3). This implies that y = Ny /x(z) = [T o(z)¢ P,
o€eGal(L/K)
contradicting the fact that y € A nP’ = p < P. The action of Gal(L/K) on the set of prime ideals that
divide p is thus transitive, and the integers eq and foz thus only depend of p and not of 3. We also have
Gal(L/K), ) = 0 Gal(L/K)po~" for all o € Gal(L/K). Moreover, we have #{9 € Spec(B); B | p} =

[ Gal(L/K) : Gal(L/K)q| = gp: this shows that

[L:K]= % epfp = #{P € Spec(B); B | plepfy = epfpgp
p

thanks to proposition 2.4.2. O

Proposition 2.4.6. Under the hypothesis of theorem 2.4.2, assume that B = A[f]. Let F' € A[X] be the
minimal polynomial of # over K. For a nonzero prime ideal p — A, the factorization of the reduction F

of F in s(p)[X] has the form F(X) = [] f:(X)™ with fi,..., fs irreducible and pairwise coprime. The
i=1

decomposition of pB is then

pB = 1;[1 B!
with P; = pB + F;(0) B (where F; € A[X] is any lifting of f;). Moreover, we have B/B; ~ x(p)[X]/{fi(X)).
Proof. By hypothesis, there is an isomorphism

A[X]KF(X))—>B
X—0

It induces isomorphisms #(p)[X]/{F (X)) = B/pB thus x(p)[X]/{fi(X)) > B/%B; forallie {1,...,s}. This
shows that 93; is maximal in B, divides p, and that fq;gl [£(B:) : k(p)] = deg(f:)-

On the other hand, if ¢ # j, we have k(p)[X] = fi(X)x(P)[X] + f;(X)k(p)[X] (because f; and f; are
coprime), hence A[X] = F;(X)A[X] + F;(X)A[X] + p[X], which implies that 9B, +9B; = B: the ideals

PBi1,...,Ps are pairwise coprime.
S

Conversely, let 8 € B be a maximal maximal ideal such that B | p. As F(X) = [] Fi(X) mod p[X],
i=1

we have ]_[ F;(0) € B: there exists ¢ € {1,...,s} such that F;(0) € B, hence P; < P, i.e. P; =P by
=1
max1mahty of ;. The set of prime ideals of B that divide p is thus precisely {J31,...,Bs}.

It remains to show that for all s € {1,...,s}, the ramification index egq, is r;. By the Chinese remainder
theorem, there is an isomorphism

B/pB ~ k(p)[X]/F (X)) > 1;[1 R(P)XT/CFi(X)™)

For j # i, we have F;(0) ¢ B; by what precedes: the localization of the factor x(p)[X]/{f;j(X)"7) at B, is
zero. This shows that

By, /pBp, ~ w(p)[X]/{fi(X)™)
hence eq, fop; = dimy (B, /pBy,) = dimy, (x(p)[X]/{fi(X)7*)) = rideg(fi) = rify,, i-e. e, =74 0
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2.4.7. Relative norm. If I — K is a nonzero nonzero fractional ideal, then IB is a nonzero fractional
ideal: this provides a group homomorphism Fr(A) — Fr(B). If I = xA is principal, so IB = zB: this
homomorphism induces a group homomorphism

ipsa: CI(A) - CI(B)

We want to built an homomorphism in the reverse direction. Recall that we denote by &4 (resp. £p)
the set of nonzero prime ideals of A (resp. B). If B € Pp, we have p := P n A € H4, and we have
fo = [K(B) : £(p)]. We put

Np/a(B) = pl»

As valuations induce group isomorphisms Fr(A) > Z(74) and Fr(B) > Z?’%) (proposition 2.3.10), this
defines a unique group homomorphism

Npja: Fr(B) — Fr(A)

Proposition 2.4.8. (1) (Transitivity) Let M /L be a finite separable field extension and C' the integral
closure of A in M (or of B, this is the same). We have Ng/4(N¢/5(J)) = N¢ya(J) for all nonzero fractional
ideal J = M.

(2) If I c K is a nonzero fractional ideal, we have Ng/4(ip/a(1)) = I™ (where n = [L/K]).

(3) If z € L™, we have N 4 (2B) = Ny /i () A.

Proof. (1) We may assume that J is a nonzero prime ideal. Put f = BnJ and p = AnJ = AnP.

We have extensions x(J)/k(P) and (PB)/k(p), so that [£(J) : k(B)][+(B) : ()] = [(J) : &(p)]. As
Neys(J) = Pl and Np/a(B) = plFF)a] we get

Np/a(Ne/s(J)) = Npya(BUC O = N () 140
= plr®)rle()):m(F)] = plr(Dn®)] = Neya(J)

(2) We may assume that I = p is a nonzero prime ideal: we have ig 4 (I) = pB = [ [ ¥ hence
PBlp

. . > exfy
NB/A(ZB/A(I)) = HNB/A(q}) ¥ = p‘BIp =7
Blp

by theorem 2.4.2.
(3) ® Assume that L/K is Galois with group I'. We first show that ig/a(Np/a(J)) = Np/a(J)B = [] v(J)
el

for all nonzero fractional ideal J — L. As above, we may assume that J =B is a nonzero prime idgal. Put
p = A nP: by theorem 2.4.5, the group I' acts transitively on the set of prime ideals of B above p, and
the integers e and fy only depend of p and not of P (they are denoted e, and f, respectively). Let I'y
be the stabilizer of §3: we have #I' = [L : K| = e, fyg, with g, = [F : Fcp], so #l'y = e, fp. Moreover, we
have pB =[] ~(3B)c, which implies

YET /Ty
Npa()B=pB= [ ~®)>" =[] B =]]P)
~el'/T'p ~el'/Tp yer
as wanted. Applied to J = 2B with x € L*, this formula gives Ng/4(2B)B = [[ v(z)B = Nk (z)B. This
vyel’

shows that the valuations of the fractional ideals Np/4(vB) and N x(7)A are the same at every nonzero
prime ideal of A: they are equal.

e In the general case, let M be a normal closure of L/K and C the integral closure of A in M. The field
extensions M /L and M /K are Galois: by what we have seen above, if x € L we have

Nag/x (2)A = Neya(aC) = Ngja(Neyp(xC)) = Npja(Nar/r(2)B) = Npja(z?B) = Ngj4(aB)?

(where d = [M : L]). On the other hand, we have N/ (z) = Np/i(Nas/r (@) = Npyg(z?) = Ny (2)? by
proposition 1.10.9: we have Ny (#)*A = N 4(zB)?, which implies N7k (2)A = Np/a(zB) (looking af
p-adic valuations). O

Corollary 2.4.9. The group homomorphism Np,4: Fr(B) — Fr(A) induces a group homomorphism
Np/a: CI(B) — CI(4)
Proof. Follows from proposition 2.4.8 (3), which implies that N/ (Princ(B)) < Princ(A). O
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Remark 2.4.10. (1) By proposition 2.4.8 (2), the morphism ig/4: Fr(A) — Fr(B) is injective. The induced
morphism ig/4: CI(A) — CI(B) is not injective in general (non principal ideals may "become" principal in
an extension). Similarly, the map Np/4 is not injective in general.

(2) If S c A is a multiplicative part and J < L a nonzero fractional ideal, we have

Ng-1p/5-14(S7"J) = S Nga(J).
2.5. Different and discriminant. Let A be a Dedekind ring, K its fraction field, L/K a finite separable
extension, and B the integral closure of A in L. By corollary 1.10.39 (1) and theorem 2.1.3, B is a finite
A-algebra and a Dedekind ring. Let
B*={yeL; (Vxe B) Trok(zy) € A}
By definition, it is a sub-B-module of L.
Lemma 2.5.1. B* is a fractional ideal of L that contains B.

Proof. Put n = [L : K]. Let (e1,...,e,) be a basis of L made of elements in B, and (x1,...,2,) in L

the dual basis. Let € B*: we can write © = Y] Ajz; with A1,..., A, € K. For i € {1,...,n}, we have
=1

Ai = Try k (eixz) € A. This implies that B* ¢ Az; @@ Az, © d~' B for any element d € B\{0} such that

dx; € Bforallie{l,...,n} (we can in fact take d in A\{0}). This shows that B* is a fractional ideal of L.

We have obviously B < B* because Try/k(B) < A by corollary 1.10.7. |

Remark 2.5.2. Of course, the proof is very close to that of proposition 1.10.37.

Definition 2.5.3. The different of B/A is the inverse of the fractional ideal B* (the latter is called the
inverse different). It is an ideal of B denoted Dp/4.

Remark 2.5.4. When there is no ambiguity on A, the different is often simply denoted D k. Similarly,
the discriminant is often denoted 0 /.
Proposition 2.5.5. Let a (resp. b) be a fractional ideal in K (resp. L). The following are equivalent:

(i) TrL/K(b) ca;

(i) b c a@g}A.
Proof. This is obvious if a = {0}: assume a # {0}. Then we have the equivalences

Trp k(b)) cas a”! Try k(b)) c As TrL/K(a_lb) cAealbc @g}A < bc 5@15},4-

Remark 2.5.6. The previous proposition is a characterization of the different.

Proposition 2.5.7. Let A be a Dedekind ring, K = Frac(A) and L/K a finite separable field extension of
degree n. Denote B the integral closure of A in L. Fix x € B such that L = K(z), put C' = A[z] € B and
let P € A[X] the minimal polynomial of x over K.

0 fo<k<n-2
1 ifk=n-—1 '

k

(1) We have Try (%) = {
(2) The A-module C* is free with basis (%)ngn.
(3) For all c € C, we have cB c C < c € P'(2)D ), (so that D/, divides P'(z)B).

B/A
(4) We have B = C' < Dp/4 = P'(z)B, in which case Qp , ~ B/Dp/a.

Proof. (1) e Let K be an algebraic closure of K, and z1,...,7, € K are the conjugates of z over K:
as L = K(z), we have [L : K| = n. As L/K is separable, the polynomial P is separable: we have

K
n n
P(T) = [[(T — ;) where the roots x1, ..., x, are pairwise distinct. We have thus #T) = > ;‘TE, so that
i=1 ‘

i=1
1=> N ;g;) Evaluation at z; gives 1 = \;P'(x;) whence P(lT) =Y, P,(I_)}T_m).
i=1 ‘ i=1 ‘ ‘
. 1 1 zi —1 L " =M1 . .
e For all i € {1,...,n}, we have T = T(l — T) = kgo TFreT € K[[T]] What precedes implies that
k

o0 n 2* L = n n—
Py = X 7o 1wty = 2 T () per: On the other hand, P(T) = T7 + a7+ + an,

so that P(T) = T”(l + 5+t T—ln), which implies that ﬁ € T—ln + Tn1+1 I?[[%]] Identifying coefficients
gives the required formulas.
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. 7 27
(2) It is enough to show that M := (Trp/x (¢ prgy

))0<i,j<n € GL,,(A). By (1), we have Trp (mi%) =0

ifi+j<n—1andTrL/K(xi%) =1ifi4+j =n—1. Moreover, if n < i+ j < 2n — 1, then we have

Tro/k (ﬂ%) =Trp/k (x”ﬂ) € A since z" is an A-linear combination of 1,x,...,x2™ — 1. This shows

P(z)
that
1
M= (1 - I) e M,,(A)

so that det(M) = (—1)"»=1/2,
n—1

(3) Note that (2) means that C* = 5~C (since C' = A[z] = @ Az*). If c € O, we have thus
k=0

P(z)

¢Bc Ce P'(z) '¢cBc C* & Tryi(P'(x)'eB) c As P'(z) 'ce Dy

B/Ac)ceP’(x)@*l

B/A

(because P’'(z)~'cB is a sub-C-module of L). The set of such c is a sub-B-module of B i.e. an ideal in B
by its very definition, so is P’(z)@E}A: we have P'(2)B c Dp/y4, i.e. Dy divides P'(z)B.

(4) « We have C' < B, so that B=C < 1€ {ce C; ¢B c C}. By (3), this is equivalent to 1 € P’(x)@E}A,
i.e. BcC P’(x)@E}A that is Dp/4 = P'(x)B. As the reverse inclusion always holds, this is equivalent to the
equality Dp/ 4 = P'(x)B.

o If B = C, we have A[X]/{P)> A[z] = B, which implies that Q}g/A is the B-module generated by dz,

and that the annihilator of dz is P/(z)B: we have Q}g/A ~ B/(P'(z)) ~ B/Dp/a. O
Proposition 2.5.8. Let S © A be a multiplicative part. Then Dg-15/5-14 = S*1©B/A.

Proof. Recall that the integral closure commutes with localization: the integral closure of S™1A in L is
S~'B (cf proposition 1.9.13). As SilfD]_g}A = (S7'®pja)"" (¢f remark 2.3.7 (4)), it is enough to show
that 5L, /g1, =5 105,

IfzeB,ye @;}A and s,t € S, we have Try /i (s 1ot 'y) = (st) ' Trp i (zy) € S™1A: as this holds for all
x € B and s € S, this shows that ¢t 'y e @gllB/S_lA, showing that S’WD;}A c @gllB/S_lA.

Conversely, let {b1,...,b.} be a generating family of B as an A-module, and let 8 € 33;13/571,4‘ for all
ie{l,...,r}, we have Try /k(b;3) € S~!A. Taking a common denominator, there exists s € S such that

sTrp k(b)) € A forall i e {1,...,r}, which implies that s3 € Dp/4, hence § € S_1©B/A. O

Proposition 2.5.9. Assume®®) that B is free over A. Then /4 =Np/a(®p/a)

Proof. As integral closure, discriminant, different and relative norm commute with localization (¢f propo-
sitions 1.9.13, 1.10.17, 2.5.8 and remark 2.4.10 (2)), this can be checked after localizing at nonzero prime
ideals of A. We thus may assume that A is a DVR, with maximal ideal p.

e Let (e1,...,e,) be a basis of B over A, and denote by B = (ef,...,e¥) the dual basis for the trace

map. Then we have B* := QE}A

n
= Aef®- - D Aek. Forall i € {1,...,n}, we have e¢; = z; jef where
Jj=1

M = (ziﬁj)lgingn € Mn(A) Then €;e; = Z ziﬁkezej so that TrL/K(eiej) = T j for all ’L,] € {1, ,n}

k=1
This implies that 05,4 is the ideal generated by det(M). On the other hand, M is the matrix, in the basis
B of an A-linear endomorphism u of B*, whose image is B. By theorem 1.4.7, there exist P,Q € SL,,(A)
such that M = P~ !diag(as,...,a,)Q where ay,...,a, € A are such that a;A > --- > a,A. Changing the

n

basis B, we may assume that P = I,: this implies that Coker(u) ~ @ A/a;A. Writing a;A = p%, we have

i=1

0p/a = det(M)A = ay ---an,A = p*, where £ = ] {; is the length of Coker(u) ~ B*/B.

i=1
On the other hand, write ®5/4 = [[ B**: we have Ng/4(Dp/a) = p? with § = Y fypasgs. Moreover, we
Blp Blp
have B*/B = @;}A/B ~ B/®p/a ~ @ B/P*¥: as the length of B/P** as an A-module is fyposp (cf
Blp
proof of theorem 2.4.2), that of B*/B is £ = §, proving the equality. a

Proposition 2.5.10. (TRANSITIVITY OF THE DIFFERENT). Let M /L be a finite separable field extensions,
and C' the integral closure of B in M. Then Dc/4 =Dco/pDp/a-

(26) A5 observed earlier, this condition is not really necessary.
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Proof. Let ¢ € M be a nonzero fractional ideal. We have

cC @513 = TrM/L(c) cBe @glA TrM/L(c) c @;114 = TrL/K(QélA TFM/L(C)) c A
/ / / /

=4 TrL/K(TI’]\J/L(@é}AC)) cAe Tr]\/I/K(Qg}AC) cAs @;}AC C :DE'}A < cC 33B/ABDE‘}A

(here we used the transitvity of the trace, ¢f proposition 1.10.9) which shows that ’DE}B = @B/AQE}A, i.€e.

Deoja =Dc/pPp)a-
This allows to recover 1.10.24 in a special case.

Corollary 2.5.11. Under the assumtions of proposition 2.5.10, assume that C' is free over B and B is free

over A. Then 0¢/y4 = NB/A(DC/B)DgAL]'

Proof. We apply Ng/a to the equality Deja = De/pDpja (¢f proposition 2.5.10). By proposition 2.5.9,
this shows that 9c/4 = Ne/a(®e/s) Noja(®p/a)- The equality the follows from Neyq = NgjaoNeyg,
which implies NC/A(QC/B) = NB/A(OC/B) and NC/A(:DB/A) = NB/A(:DE;\?AL]) = Dg\ﬁf]. O

2.6. Rings of integers of number fields. In what follows, Q denotes the algebraic closure of Q in C.
Recall that a number field is a finite extension of Q, and that if K is a number field, we denote by O the
ring of integers of K, i.e. the integral closure of Z in K.

Proposition 2.6.1. Let K be a number field and n = [K : Q]. The ring of integers Ok is a free Z-module
of rank n.

Proof. Follows from the fact that Z is PID and from corollary 1.10.39 (2). O
Example 2.6.2. (1) Let d € Z\{0, 1} be a square free integer, and K = Q(+/d). Then

0. _ 1Z[*57] ifd=1 mod4z
K= Z[\/d] otherwise

(2) If p is an odd prime integer, ¢ € C a primitive p-th root of unity and K = Q(¢), then Ox = Z[(].

Proposition 2.6.3. Let (z1,...,x,) be a basis of Og over Z and M = (m; ;)1<ij<n € Mp(Z) such that

det(M) # 0. Forie {1,...,n},put y; = >, m;jx;. Y R =Y Zy, € Ok, then [Ok : R] = #(Ok/R) is

j=1 i=1
finite and D(y1,...,yn) = [Ok : R]?D(z1,...,2x).

Proof. The hypothesis det(M) # 0 implies that R is a free Z-module of rank n. It is a sub-module of Ok
which is also of rank n (proposition 2.6.1), it is of finite index (this follows from the adapted basis theorem,
cf 1.4.11), i.e. [Ok : R] = #(Ok/R) < +o0. We have D(y1, . ..,yn) = det(M)?D(z1,...,x,): it is enough
to show that |det(M)| = [Ok : R], which follows from theorem 1.4.7. O

Definition 2.6.4. Let (z1,...,2,) and (y1,...,yn) be Z-bases of Ok. Let M = (m; ;)i<i j<n € GLn(Z) be

n

the change of basis matrix, i.e. such that y; = ] m; jz; for all ¢ € {1,...,n}. Proposition 2.6.3 implies
j=1

that

D(y1,...,yn) = det(M)?*D(z1,...,2,) = D(x1,...,2,)
(because det(M) € {1} = Z™). The integer
dg =D(z1,...,25)

does not depend on the choice of the basis (x1,...,2,). It is called the absolute discriminant of K.

Corollary 2.6.5. If (z1,...,2,) is a basis de K over Q, made of elements in Ok, and R = @ Zz; c Ok,
i=1
then

D(x1,...,7,) = [Ok : R*dxk.
Corollary 2.6.6. A prime p ramifies in K if and only if p | dk.

Proof. This is a special case of theorem 3.5.24. g
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Example 2.6.7. (1) Let d € Z\{0, 1} be squarefree and K = Q(\/d). If d =1 mod 4Z, then O = Z[a]
with a = HT‘/E: the family (1, «) is a basis of Ok over Z (¢f example 2.6.2 (1)). The minimal polynomial
of awover Q is P(X) = X2 — X — %1: we have thus dx = D(1,«) = disc(P) = d (can be checked by direct
computation). If d # 1 mod 4Z, we have Ox = Z[+/d]: the family (1,+/d) is a basis of O over Z. The
minimal polynomial of \/d over Q is P(X) = X2 — d: we have thus dx = D(1,/d) = disc(P) = 4d. At the

end, we have

4d ifd#1 mod4Z

(2) If p is an odd prime integer, ¢ € C a primitive p-th root of unity and K = Q((¢), we have O = Z[(] (¢f

example 2.6.2 (2)) and thus dx = (—1)"z pP=2. By corollary 2.6.6, p is the unique prime which is ramified
in K.

{d fd=1 mod4Z
dy =

Proposition 2.6.8. Let K be a number field and n = [K : Q].
(1) A family zq,...,z, € Ok is a basis of Ok over Z if and only if D(z1,...,z,) = dk.
(2) If 21, ...,2, € Ok is such that D(z1,...,2,) # 0 is squarefree, then (x1,...,x,) is a Z-basis of O.

Proof. Follows from proposition 1.10.19 and corollary 1.10.20. O

It is usually difficult to compute the ring of integers of a number field K. Using the primitive element
theorem, we can start from an element « such that K = Q(«). After multiplying o by an appropriate
integer (as small as possible), we may assume that « € O, so that Z[«a] € Ok. In general, the inclusion is
strict, but Z[«] is of finite index in Ok . More precisely, by proposition 1.10.38, we have Z[a] € Ok é Z[«o]
with d = D(1,a,...,a" ') (where n = [K : Q]), which is easily computed using the minimal polynomial
of a over Q and proposition 1.10.31. This reduces a lot the number of possibilities for Og. From this, on
can search conditions on coordinates in the basis (1,a,...,a"” 1) for an element 2 € K to belong to Of.
To find such conditions, one uses the trace and the norme. For instance, if z € K is integral over Z, so is
o'z, hence Try,q(a'z) € Z for all i € {0,...,n —1}.

Remark 2.6.9. Unlike number fields, rings of integers of number fields are not monogen in general: if K is
a number field, in general, there is no a € K such that O = Z[«a].

Example 2.6.10. Let p be an odd prime integer, ¢ € C a primitive p-th root of unity and K = Q(¢). We
have of course Z[(] € Ok. The minimal polynomial of ¢ over Q is

—1 -2 XP—1
D (X)=XP 14 XP 24 4 X +1=
X -1
We have (X — 1)@, (X) + ®,(X) = pXP~!, thus ®/,(¢) = pép%ll: by exemple 1.10.8 (2), we have thus
N N Pl p—1 _ .
Nic/Q(@)(¢) = MLqEmaldr — — 2 — pp=2 (we have Nig/q(¢) = 1 and Ni/q(¢ — 1) = p), which

implies that

D16, %+, ¢772) = disc(®,) = (—1) 73 2 = (-1) T pr 2
(proposition 1.10.31). We thus have

Z[(] ¢ Ox © 2 Z[C].

Let’s prove that Ox = Z[(].
First observe (1 —{)Ox N Z = pZ. Indeed we have p € (1 — ()Ox because 1 —( | Ng/q(¢ — 1) = p. If the
inclusion pZ < (1 — ()Ok N Z was strict, we would have (1 — {)Ox nZ = Z, thus 1 € (1 — {)Ok: there
would exist z € Ok such that 1 = (1 —()z, whence 1 = pNg,q(2) in Z, which is absurd.

Ifx =20+ z1( + - +3p-2(P"2 € Ok (with x,...,2p—2 € Q), we have
(1=Qz =01 = Q) +a1(¢ = %)+ +apa(¢P> = (P71
As Trg (1 —¢) =pand Trg,q(¢" —¢* ') =0for 1 <k <p—1, we have
TrK/Q((l —()x) = pxo

As conjugates of (1 — ¢)z are of the form (1 — ¢¥)y with k € Z and y € Ok, hence dividible by 1 — ¢, we
have Trg,q((1 — ¢)z) € (1 = ()Ox NnZ = pZ. This implies that zo € Z.
If we have xq,...,x,_1 € Z with kK < p — 2, then

C_k (.T — (xo +x1(+--+ .Tk_lgk_l)) =xp +Tp1C+ 0+ ZCp_ng_Q_k € Ok

which implies that x € Z from what precedes. At the end, we have xzo,...,z,—2 € Z and x € Z[(].
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Proposition 2.6.11. (STICKELBERGER). Let K be a number field. We have dx =0 mod 4Z or dx =1
mod 4 Z.

Proof. Write Homq-a1g(K, Q) = {01,...,00}: if {a1,...,a,} is a basis of Ok over Z, we have dx = det(M)?
with M = (0i(c;))1<i,j<n (proposition 1.10.22). We have det(M) = S — A where S = >, [] oi(a ()

TES,, 1=1
e(r)=1
and A= Y oi(or(;y). We thus have dg = (S + A)? —45A: we have to see that S+ A, SA € Z. As
766, =1
e(r)=-1

S and A are polynomials in o;(c;) € Ok, we have S, A € Og: it is enough to show that S + A, SA € Q.
Let L < Q be the Galois closure of K. If g € Gal(L/ Q), the map

HomQ—alg (K, 6) - HomQ—alg (K, Q)

o> goo

is a permutation. If the latter is even, we have g(S) = S and g(A) = A, if it is odd, we have g(S) = A and
g(A) = S: in all cases we have g(S + A) = S + A and g(SA) = SA, hence S + A,SAe [&/Q) =qQ. O

Corollary 2.6.12. (Refinement of proposition 2.6.8 (2)). If K is a number field of degree n and {z1,...,2,}
a family whose discriminant is 4a with a = 2,3 mod 4 Z and squarefree, then (x1,...,x,) is a basis of Ok
over Z.

Proof. Let B be a basis of Ok over Z and M € M,(Z) the matrix whose columns are the coordinates
of (x1,...,7,) in the basis B. By proposition 1.10.13, we have 4a = D(xzy,...,2,) = det(M)?dg. If
(21,...,2n) was not a basis, we would have det(M) > 1 thus det(M) = 2 since a is squarefree. This would
imply dg = a = 2,3 mod 47Z, contradicting proposition 2.6.11. g

2.7. Exercises.

Exercise 2.7.1. Let L/K be an extension of number fields. Denote by n its degree and fix p € Ok a

maximal ideal: we know that O /pOp is a k(p)-vector space of dimension n (where k(p) = Ok/p is the

residue field of p). A family of elements in Oy, is called independent modulo p if its image in Op/pOr

is linearly independent over k(p). Let Pi,...,J, be the nonzero prime ideals of Oy, above p. For each

ie{l,...,r}, fix B; c O, whose image modulo 9B, is a basis of O, /P; (so that B; has f; elements, where

fi = fa,/p 1s the residul degree at *B;). Let e; = eg,, be the ramification index at B;.

(1) Let N > max{ey,...,e,}. Forie {1,...,7} and j € {1,...,e;}, show there exist c; j € B/ ' n ) PV
k#i

such that oy ; ¢ ‘Bz

(2) Put £ ={a,;B;i€{l,...,r}, je{l,...,e;}, 8 € B;}. Show that #£ = n.

(3) Assume Y A\l € pOy, with Ay € Ok for all £ € £. Looking modulo ; for all i € {1,...,r}, then modulo
el

B2 for all i € {1,...,r}, etc, show that (V£ e £) A\, € p, and deduce that £ is independent modulo p.
We assume henceforth that K = Q, so that p = pZ where p is a prime number.
(4) Let {a1,...,a,} € O be an independent family modulo p. Show that it is a basis of L over Q.

(5) Let A be the sub-Z-module of Oy, generated by {a1,...,a,}. Show that Op/A is finite, then that
p1[Or : A] [hint: reductio ad absurduml].

(6) Deduce that disc(aq, ..., an) = mdy with p{m.

(7) Assume now that {aq,...,ay} is the family constructed in question (3). Show that p® | disc(aq, ..., an),

then that p® | dr, with s = Y. (e; — 1)fi =n— 3] fi.
i=1

i=1

Exercise 2.7.2. Let f(X)=X"+a; X" ' +---4+a, 1X +a, € Z[X] and p a prime number dividing a,,.
Write a,, = p?b,, with p{ b,. Assume that p? | a; for all i € {1,...,n} and that f(X) is irreducible®") in
Z[X]. Let a € C be aroot of f(X) and L = QJ«].

(1) Show that o™ = p?B3 with 3 € O, prime to p.

(2) Deduce that p?Oy, is the n-th power of an ideal of Oy,.

(3) Show that if d is prime to n, then pQp, is the n-th power of an ideal of Oy, and conclude that p is totally
ramified in L in that case.

(4) Show that if d is prime to n, then p"~! | dz, [hint: use exercise 2.7.1].

(5) What can be said when ged(d,n) > 17

(27)By Eisenstein’s criterion, this is automatic when d = 1.
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Exercise 2.7.3. Let A be a commutative ring. Show that A is a DVR if and only if A is local, noetherian,
and its maximal ideal is principal, generated by a non nilpotent ideal.

Exercise 2.7.4. A Dedekind ring which is a UFD is a PID.

Exercise 2.7.5. Show that the ring of integers of Q(+/10) (i.e. the integral closure of Z in Q(+/10)) is a
Dedekind ring but not a PID [hint: show that the ideal generated by 3 and /10 — 1 is not principal].

Exercise 2.7.6. Show that a module over a Dedekid ring is flat if and only if it is torsion-free.

Exercise 2.7.7. Let R be a Dedekind ring and I ¢ R a nonzero ideal. Show that R/I contains only finitely
many ideals.

Exercise 2.7.8. Let R be a Dedekind ring, and I, J nonzero ideals of R. Show that there exists an integral
ideal I; © R which is prime to both I and J and such that IT; = {a) is principal in R [hint: use the Chinese
remainder theorem|. Prove also that there exists a nonzero element o € Frac(R) such that af and J are
coprime integral ideals in R.

Exercise 2.7.9. Let A be a Dedekind ring, K its fraction field, and I, J < K nonzero fractional ideals.

(1) Let X be a finite set of nonzero prime ideals of A, and (n,)pex a sequence of integers. Show that there
exists « € K such that vy(z) =n, for all pe X and vp(z) > 0if p ¢ X.

(2) Show that there are z,y € K* such that I and yJ are coprime ideals of A.

(3) Deduce that I®J ~ A IJ.

(4) Let I,J c K be nonzero fractional ideals in K, and n,m € Zso. Show that A" ®I ~ A™ @ J if and
only if n = m and [I] = [J] in CI(A) (i.e. if and only if there exists z € K * such that J = z2T).

Exercise 2.7.10. Let A be a Dedekind ring, and M an A-module of finite type.

(1) Show that if M is torsion-free, then it is projective.

(2) Show that if M is torsion-free, then M is isomorphic to a direct sum of ideals [hint: induction on the
rank of a free A-module containing M].

(3) In general, show that M ~ A*®Da®T where k € Z-y, a c Ais an ideal and T is the torsion of M.

(4) Show that T, k and [a] € CI(A) are uniquely determined.

Exercise 2.7.11. Let A be a Dedekind ring, and M a nonzero finitely generated torsion A-module.
(1) Put I =anna(M) ={ae A; (Ym € M)am = 0}. Show that I is a nonzero ideal in A. Let py,...,p, be
nonzero the prime ideals of A that divide I.

(2) Show that S := A\ | p; is a multiplicative part in A, and that S7'A is a PID.
i=1

(3) Let N be an A-module such that IN = 0. Show that N ~ (A4/I) ®4 S~'N.

(4) Show that there are uniquely determined ideals I; > Iy D --- D I,;, # 0 such that

M ~ é A/Iy.
k=1

Exercise 2.7.12. Let A = Z [\/=5] and K = Frac(4) = Q(v/—5). Explain why I =34+ (1++/-5)Ac K
is a projective A-module. Show it explicitely as a direct factor of A2. Show that it is not free.

Exercise 2.7.13. Let A be an integral domain which is not a field and such that for each ideal I < A and
each a € I\{0}, there exists b € I such that I = {a,b). Show that A is a Dedekind ring [hint: show that for
each nonzero prime ideal p, the ring A, is a DVR].

Exercise 2.7.14. Let A be a ring. Show that A is a Dedekind ring if and only if A is a noetherian integrally
closed domain such that A/I is artinian®*® for every non-zero ideal I c A.

Exercise 2.7.15. Let K be a field, A = K[X,Y] and I = XA + Y A. Show that I~ = A, hence I is not
invertible.

(28)] ¢. satisfies the descending chain condition on ideals; that is, there is no infinite descending sequence of ideals.
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Exercise 2.7.16. Let A =7Z [\/—3] c K =Q(v/-3) and I = A+ Aj c K the fractional ideal generated by
land j = % Is I invertible?

Exercise 2.7.17. Let A be an integral domain in which every nonzero ideal is invertible. Show that A is a
field or a Dedekind ring [hint: start by showing that A is noetherian, then that every nonzero ideal has a
unique (up to the order) factorization as a product of maximal ideals].

Exercise 2.7.18. Let A be a noetherian integral domain in which every maximal ideal is invertible. Show
that A is a field or a Dedekind ring.

Exercise 2.7.19. Let B = C[X,Y]/Y? — (X3 — X)). The aim of this exercise is to show that B is a
Dedekind ring. Put A = C[X] and K = C(X) = Frac(A). Let y € K be a root of Y2 — (X3 — X) € A[Y],
L = K[y] and Op, the ring of elements in L that are integral over A.

(1) Show that B is isomorphic to A[y].

(2) What is dimg (L)? Show that Frac(A[y]) = L and that A[y] € Or.

(3) Let z = a(X) +b(X)y € Or. Using the trace, show that a(X) € A and that there exists P € A such that
b(r) = 3%
(4) Using the norm, show that X3 — X divides P2. Deduce that b(X) € A.
(5) Show that B is a Dedekind ring.

Exercise 2.7.20. Let A be a Dedekind ring, K its fraction field and X an indeterminate.
(1) The content of a polynomial P € A[X] is the ideal ¢(P) generated by the coefficients of P. Show that
(PQ) =¢(P)c(Q) for all P,Q e A[X].
(2) Let S = {P € A[X]; ¢(P) = A}. Show that S is a multiplicative part in A[X]: let

B = S YA[X]) c Frac(A[X])
be the associated localization. Show that if P,Q € A[X] and Q # 0, then g € B if and only if ¢(P) < ¢(Q).
(3) Show that K n B = A. Let J ¢ B be an ideal: show that J = IB where I = J n A, and that the map

I — IB is a bijection between the set of ideals of A onto the set of ideals of B.
(4) Prove that B is a PID.

Exercise 2.7.21. (1) Let R be a noetherian local ring with maximal ideal m and residue field x. Show that
m/m? is a k-vector space of finite dimension, and that d = dim, (m/m?) is the minimal number of generators
of the ideal m.

(2) Let A be a noetherian integral domain which is not a field. Show that A is a Dedekind ring if and only
if for every maximal ideal p of A, there are no ideals I — R such that p2 < I < p.

Exercise 2.7.22. Let m,n € Z\{0,1} be coprime squarefree integers. Assume that m,n =1 mod 4Z and
put K = Q(\/m,/n) where a = % and 3 = #

(1) Show that [K : Q] = 4.

(2) Compute Trq(/m)/q(v/m), and deduce Trx/q(+/m). Likewise, compute Trg/q(+/n) and Trg,q(v/mn).
(3) Show that D(1, a, 3, a3) = m?n?2.

(4) What are the rings of integers of Q(1/m), Q(+/n) and Q(y/mn)?

(5) Let z = a +by/m +cy/n +dy/mn € K (with a,b,¢,d € Q). Compute Try)q(m) (%), Tri/q(ym)(2) and
T/ q(ymm (7)-

(6) Show that 40k < Z[«, 3], and that O = Z[«, 8]

We assume henceforth that m,n =1 mod 8 Z.

(7) What is the minimal polynomial of « (resp. ) over Q (resp. over Q(x/m))?

(8) Deduce an isomorphism

A= (Z2Z2)[X,Y]({X?-X,Y?-Y) s Ok /20K
(9) Show that there are exactly four ring homomorphisms A — Z /2 Z.
(10) Deduce that A is not isomorphic to (Z /2Z)[X]/(P(X)) with P(X) € (Z /2Z)[X] of degree 4 [hint:
the ring homomorphisms (Z /2 Z)[X]/{P) — Z /2 Z are in bijection with the set of roots of P in Z /2 Z].
(11) Deduce that there is no 2 € Ok such that Ox = Z[z].
(12) What is the decomposition of 20k as a product of nonzero prime ideals of Ok? Same question for
pOk where p is a prime number dividing m.
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Exercise 2.7.23. Let A be a Dedekind ring, K = Frac(A) and L/K a finite separable field extension of
degree n. Denote B the integral closure of A in L. Fix x € B such that L = K(z), put C = A[z] € B and
let P € A[X] the minimal polynomial of x over K.

(1) Show that ﬁ =Y W where x1,...,2, € K are the conjugates of  over K.
~ P :

2) Show that Tryx (72
(2) Show that Try,x (7 1 sik=n—1

k _ 0 lfOSkSTL—Q
(r))_ )

k

(3) Show that the A-module C* is free with basis (Pg,”(l))0<k<n.

(4) Show that for all ce C, we have cBc C & c€ P’(z)@E}A (so that D, 4 divides P'(x)B).
(5) Deduce that B = C & D4 = P'(x)B.

(6)

6) Assuming that B = C, show that Q}B/A ~ B/®p/a.

Exercise 2.7.24. Let A be a Dedekind ring, K = Frac(A) and L/K a finite separable field extension of
degree n. Denote B the integral closure of A in L. If 3 is a nonzero prime ideal in B above p < A is
such that #(B)/k(p) is separable, show that vp(Dp/4) = ep — 1, with equality if and only if eg is prime
to char(k(p)) [hint: localize an complete to reduce to the case where A and B are complete DVRs, and use
previous exercises].

Exercise 2.7.25. Let A ¢ B be DVRs with fraction fields K ¢ L. Assume L/K that the residual extension
k1 /KK is purely inseparable of height 1 (i.e. such that % < kg, where p = char(kx)), and not monogenic.
Show that Q}B/A is not monogenic.

Exercise 2.7.26. Let A be a Dedekind ring, K = Frac(A) and L/K a finite and separable field extension.
Denote by B the integral closure of A in L, and &4 the set of nonzero prime ideals of A. An A-order of L
is a subring R of L such that A ¢ R and R is an A-module of finite type.
(1) Let R be a subring of L such that A ¢ R. Show that R is an A-order of L if and only if R ¢ B.
(2) Assume that R is an A-order of L.
(i) Show that for all p € &4, the localization R, is an A,-order of L.
(ii) Show that R = B if and only if R, = B, for all pe Z4.
(iii) Show that nonzero prime ideals of R are maximal.
(3) Let R be an A-order of L and 6 € R such that L = K(¢). Denote by P(X) the minimal polynomial of
O over K. Let p e P4 and P the image of P in x(p)[X], where x(p) = A/p. Show that if P is separable,
then R, = B, and the prime ideals of B above p are unramified [hint: recall that A[f]* = P,l(e)A[H]].
(4) Let R c R’ be an extension of rings, the conductor of R'/R is ¢p)p = {r € R; rR' c R}.
(i) Show that cg//p is the largest ideal of R’ that is contained in R.
(ii) Let R be an A-order of L and S ¢ R a multiplicative part. Show that ¢g-15/5-1r = S™'c¢p/p [hint:
use the fact that B is finite over R].
(iii) Let R be an A-order of L. Show that ¢ := c¢p/r # {0} if and only if Frac(R) = L.
Assume henceforth that Frac(R) = L.
(5) Show that ¢R* c @;}A (where R* = {y € L; (Yx € R) Try/k(zy) € A}), and that this inclusion is an
equality when R = A[0] for some @ € L such that L = K(6).
(6) In this question we assume that A = Z.
(i) Let a be an ideal of O, and put R = Z +a. Show that R is a Z-order of L, with conductor d Z +a,
where d € Z~ is such that Z na c dZ.
(ii) Assume that L = Q(+/5). Show that R = Z[\/5] is a Z-order of L. What is its conductor?
(7) Let q € Pp. Show that ¢ c q if and only if ¢ € q n R. Deduce that if Frac(R) = L, there are only
finitely many prime ideals of R that contain c.
(8) (hard) Let p be a nonzero prime ideal of R. Show that the following are equivalent:

(a) p does not contain c;

(b) R={x e L;zpcpl;

(c) p is invertible;

(d) Ry, is a DVR.
[hint: to show (a)=>(b), use the fact that p + ¢ = R; to show (b)=>(c), use the fact that if « € p\{0}, there
exists r € Z-¢ such that p"R, < aR,; to show (c)=(d), show that nonzero ideals of R, are powers of pR,,
then that R, is integrally closed.]
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(9) (hard) Show that under the equivalent conditions of question (8), pB is the only maximal ideal of B
that contains p [hint: take q € &g such that p  q, and show that R, = By.]
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3. VALUED FIELDS
In this section, K denotes a field.
3.1. Absolute values.

Definition 3.1.1. An absolute value on K is a map |.| : K — Ry such that:
(1) Vze K)(Jz| =0« x =0);
(2) (Vz,y € K) |zy| = |z| ly| (multiplicativity);
(3) (Vz,y e K) |x +y| < |z| + |y| (triangle inequality).
If it satisfies the stronger requirement
(3) (Va,y € K) |z +y| < max{|z|, |y|} (strong triangle inequality),
the absolute value is called non archimedean. It is called archimedean otherwise.
The pair (K, |.]) is called a valued field. We say that (K, |.]) is archimedean (resp. non archimedean) if |.| is.

Example 3.1.2. (0) The trivial absolute value on K is given by [0] = 0 and |z| = 1 for all x € K* (it is non
archimedean).

(1) The “usual” absolute value |.| , on K = R, and the modulus |.| , on C are archimedean.

(2) Let p be a prime number, and v,: Z — Zzo u{+w} the p-adic valuation. It extends into a map
vp: Q> Zuftool: if e Q, put |zf, =p7* () This defines a non archimedean absolute value called the
p-adic absolute value.

Remark 3.1.3. (1) Let |.| be an absolute value on K. By (2), we have [1]* = [1], so |1 = 1 since [1] # 0 by
(1). In particular, we have |z~1| = || ™" for all z € K%, and |.| : K* — Ry is a group homomorphism.
(2) Assume |.| is a non archimedean absolute value on K. If z,y € K are such that |z| # |y|, say |z| < |y],
then |y| < max{|z|, |z + y|} by (3), so |y| < |z + y| whence |« + y| = |y|. This shows that (3’) is an equality
whenever |z| # |y|.

(3) The group of the absolute value |.| is |[K*|: this is a subgroup of R~(. There exist notions of absolute
values with groups more complicated that subgroups of R, but we will not need these. The absolute value
|.| is called discrete if |[K*| is a discrete subgroup of R~g. Note that |K*| is dense in R~ otherwise.

Definition 3.1.4. Let (K1, |.|;) and (K3, |.|,) be valued fields. A morphism of valuation fields from K; to
K, is a morphism of fields f: K1 — K (so it is automatically injective) such that |f(z)|, = |z|, for all
x € K1. It is an isomorphism when f is surjective.

Definition 3.1.5. An absolute value on K defines a topology on K (indeed a metric space structure): a
basis of open neighborhoods of a € K is given by B(a,r) = {x € K ; |x — a| <} for r € R~y.
Two absolute values are equivalent when they define the same topology on K.

Example 3.1.6. The topology defined by the trivial absolute value is the discrete topology.

Proposition 3.1.7. Two absolute values |.|; and |.|, on K are equivalent if and only if there exists v € R~g

such that |.|, =|.|].

Proof. Assume |.|; and [.|, are equivalent. If |.|; is trivial, then the topology defined by |.|, is discrete. If
z € K and |z|, < 1, then hm " =0,s0x =0. If z € K*, then |z|, > 1, and also |gc|2_1 |:z:|_1 > 1,
e |z|ly <1,s0 |z|, =1, and | |2 is discrete as well. Assume from now on that |.|; and |.|, are not trivial:
there exists zo € K such that 0 < |zg|; < 1. If |z|; <1, then lim 2™ =0, so |z|, < 1 as well, in particular

n—o0
. _ In(lzoly)
0 < |zoly < 1: put v = 1n(|x§|f) € R.o.
Let € K be such that 0 < |z|; < 1 and put A = % € Roo. If r € Qn]A, +oo[, then r = 7% with
1
m,n € Zsg, and the inequality A < 2 is equivalent to |z|; < |zo|}", i.e. f—l‘ < 1. This implies that
o I
Z-1 < 1 from what precedes, i.e. liln((‘follz)) < @ = r. Since this holds for all » € Q n]A, +oo[, we have
2

0
In(|z],) : In(Jz],) In(Ja], In(z|,) _ In(jz];)
W(woly) SN 46 il S ilrol; (lzoly) — In(lxol,)
thus lngm ; =1, i.e. ||, = |z|], whenever z € K* satisfies ||, < 1. Replacing by ™! shows that it holds
true also when |z|; > 1. Exchanging |.|, and |.|,, we have similarly the implication |z|, # 1 = |z|; # 1, so

lz], =1=|z|, =1, i.e. |z|, = |z|] for all z € K.

) As |.|; and |.|, play symmetric roles, we have in fact

Remark 3.1.8. If |.| is an archimedean absolute value on K, the map |.|” is not an absolute value for any
~v € Rsg in general, for the triangle inequality might not be satisfied by |.|” (it is when 0 < v < 1 by
convexity of the map ¢ — t7).
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Definition 3.1.9. Let K be a field. A place of K is a class of equivalence of non trivial absolute values on
K. The set of place is denoted V(K).

Theorem 3.1.10. (OSTROWSKI). A non-trivial absolute value on Q is equivalent to either the “usual”
absolute value or to a p-adic absolute value.

Proof. Let |.|: Q = Rx( be a non trivial absolute value. Let a,b € Z~. For n € Z>, let
a*=oag+arb+--+a,b"

be the writing of a™ in base b: we have r = |nlogy(a)] and «; € {0,...,b—1} for i € {0,...,r} (and . # 0).

Then |a|” < 120 || [b]" < ( + 1) My max{1, b|"}, where M = Jnax 7], so that

|a] < (nlog,(a) + 1)1/anl/n max {1, |b|1°g”(a) }.
As 1i11[1/ (nlog,(a) + 1)1/"Mb1/” — 1, we get |a| < max {1, |b|10gb(¢l) }.

o First case. |a| > 1. This implies that |a| < [b]°8*(®, so in particular |b| > 1, and |a|"/™@ < [p]/™®), As
Ib] > 1, we have [b]"/™®) < |a|"/™@ as well, so that |z ™), hence ¢ := % does not depend on z € Z-.
This implies that |z| = ¢ for all € Z~;. The axioms of absolute value imply that |z| = |z|, for all z € Q,
and [.| is equivalent to the “usual” absolute value.

e Second case. For all a € Z-4, we have |a| < 1 (so that |z| < 1 for all z € Z). As |.| is non trivial, there
exists a € Z-1 such that |a| < 1. Factoring a into a product of primes, we get at least one prime p such
that |p| < 1. If ¢ is an other prime and n € Zx(, we have gcd(p™, ¢") = 1: there exist u,v € Z such that
up™ +vg"™ =1, so that 1 < |u| |p|" +|v]|q|" < |p|" + |q|"- As lim Ip|" = 0, this implies that |g| > 1, whence

lg| = 1. This shows in particular that |z| = 1 whenever x € Z\pZ, so that |z| = ||} with ¢ = —11;1(‘?) for all

x € Z, whence for all z € Q, so that |.| is equivalent to the p-adic absolute value.

Remark 3.1.11. We have the product formula

[T lal, =1

vev(Q)
for all x € Q™.

3.1.12. The approzimation theorem. Let K be a field.
Lemma 3.1.13. Let |.| be an absolute value on K and xz € K. Then

) xm 0 if |[¢| <1
lim = .
mow 1+ zm 1 if jz| > 1
Proof. We have & — — 1= —L_. O
Lemma 3.1.14. Let |.|;,...,|.|, be pairwise non equivalent non trivial absolute values on K. There exists
a € K such that |a|; > 1 and |a|; < 1 for all i € {2,...,n}. For each € € R, there exists a € K such that
o —1|; <ecand |a|, <eforallie{2,...,n}.

Proof. We use induction on n € Zxo.

¢ Assume n = 2 and that such an a does not exist: for all € K, we have |z|; > 1 = |z|, > 1. Applied
to 7! when z # 0, this implies that |z|, < 1 = |z], < 1. Taking contrapositives, we have the same
implications after exchanging |.|; and |.|,. As |.|; and |.|, are non trivial, there exists y;,y> € K* such that
ly1]; <1 and |ya|, < 1: this implies that |y|; < 1 and |y|, < 1 where y = y1y2. If z € K and n € Z-( are

such that |z|, < |y|}, we have ‘y%

< 1, which implies that ‘y%‘ < 1i.e. |z|, <ly|,. This shows that for
1 2

all a € K, we have By (a, [y|") < Ba(a, [y3) < Ba(a, |y|3~"). As the balls By(a, |y[3~") for a basis for the
topology on K defined by |.|5, this shows that the topology defined by |.|; is finer than that defined by |.|,.
Symmetrically, the topology defined by |.|, is finer than that defined by |.|;: they are the same, so |.|; and
.|, are equivalent, contradicting the hypothesis.

e Assume that n > 2. By the induction hypothesis, there exists b € K such that |b|; > 1 and |b|; < 1 for all
i€ {2,...,n—1}. By the case n = 2, there exists ¢ € K such that |¢|; > 1 and |¢|, < 1.

Case where |b], < 1. For m € Z~o, put a,, = cb™. We have |a,,|, = |c|; |b]]" > 1 and |a.|, = ||, b < 1.
If i€ {2,...,n— 1}, we have |a,,|, = |c|, |b]." — 0,50 we can take a = a,, with m is large enough.
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Case where |b|,, > 1. For m € Z~q, put a,, = %. As |b|; <1 and |b|, > 1, lemma 3.1.13 implies that
lim a,, = c for the absolute values |.|, and |.|,. As |¢|, > 1 and |¢|,, < 1, this implies that |a,,|, > 1 and
m—>0

lam|,, < 1 whenever m is large enough. On the other hand, if i € {2,...,n — 1}, we have lim a,, = 0 for

m—0
the absolute value |.|;, so that |a,,|, < 1 for m large enough. Here again we can take a = a,, with m is large
enough.
¢ Using the a we constructed, we have lim

2 =1 for the absolute value |.|, and lim “—amm = 0 for the
m—0

m—on 1+a 1+
absolute values |.|;, if i € {2,...,n}: we can take a = 11% with m large enough. O
Theorem 3.1.15. (APPROXIMATION THEOREM). Let |.|,,...,]|.|,, be pairwise non equivalent non trivial
absolute values on K. Given ¢ € R~ and yi,...,y, € K, there exists € K such that |z — y;|, < e for all
ie{l,...,n}
n
Proof. Let M = max > |ykl;- By lemma 3.1.14, there exist a1, ...,a, € K such that |o; — 1|, < 57 and
<i<n 2
n
|| ; < 57 for all j e {1,... . n}\{i}. Put z = % agyx. Forie {1,...,n}, we have
k=1

n
|z —vil, = (i — Dy + X o] <o —1; |uil; + 25 Jowl; lyel; < e >kl <e.
ki i k#i k=1

3.2. Valuations.

Definition 3.2.1. A valuation® on a field K is a map v: K — R u{+o} such that:

(1) v(z) = 400 & x = 0;

(2) (Va,y € K)v(zy) = v(z) + v(y);

3) (Va,y € K)v(z +y) = minfo(z), v(y)}-
Remark 3.2.2. Tn condition (3), we have®®) v(z 4 y) = min{v(z),v(y)} as soon as v(z) # v(y) (cf remark
3.1.3 (2)).

Definition 3.2.3. (1) The valuation v is trivial if v(K*) = {0}. Condition (2) in definition 3.2.1 implies
that v(K*) is a subgroup of (R, +). It also implies that v(1) = 0. The valuation v is called discrete when
v(K*) is a discrete subgroup of R: it is then of the form AZ for some A € Rxp. A discrete valuation v is
called normalized when v(K*) = Z.

(2) Let K be a field and v: K - R u{+00} be a valuation. Then

Ok ={reK;v(x) >0}
is a subring of K called the ring of integers of v. Similarly,

mg ., ={x € K;v(z)>0}
is an ideal in Ok .
Proposition 3.2.4. An element x € Ok, is invertible in O, if and only if v(z) = 0. In particular, Ok,
is a local ring with maximal ideal mg,. For all z,y € Ok ,\{0}, we have = | y in Ok, if and only if
v(z) < v(y). Moreover K = Ok ,[a1] for all a € mg ,\{0}, and Ok, is integrally closed.
Proof. ¢ Ifz € O, then 7t e Ok, ice. v(x™t) = 0. Asv(z)+v(z™!) = v(1) = 0, we must have v(z) = 0.
Conversely, assume that v(z) = 0: as v(z) + v(z™!) = v(1) = 0 we have v(z~!) =0, i.e. 27! € Ok, and
z€ O,
o Let v € Ok ,\mg,,: we have v(z) = 0, so that x € OIX(JJ by what precedes. This implies that Ok , is a
local ring with maximal ideal mg .
o Let 2,y € Ok, \{0}. If y = x2z with z € Ok, then v(y) = v(z) + v(z) = v(z) since v(z) = 0. Conversely,
assume that v(z) < v(y). Put 2 = 2 'y € K. We have v(z) = v(y) — v(z) = 0, hence z € Ok, i.e. x| y.
e Assume a € mg ,\{0}. We certainly have Ok ,[a"!] € K: let z € K. As lim v(z) + nv(a) = +o0 (since

n—o0

v(a) > 0), there exists n € Z>o such that v(a™z) > 0, i.e. a"x € Ok, so that x € Ok ,[a"1].
o Let z € K be integral over Ok ,,: write z = % with z,y € Ok ,\{0}. Let 2" +a12" '+ -+ap_12+a, =0
be an equation of integral dependence over Ok ,. We have 2™ + a1z 1y + - -+ + a,y" = 0, so that nv(z) >

(29)Some authors call “valuation” what we called “absolute value”.
(30)The proof is the same: if v(z) # v(y), say v(z) < v(y), then v(y) > v(z) = v(z + y — y) = min{v(z + y),v(y)}, so
v(z +y) =v(x) =v(r +y) e vz +y)=v()
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min (v(a;)+(n—i)v(z)+iv(y)): there exists ig € {1,...,n} such that nv(z) = v(a;, )+ (n—ip)v(z) +iov(y),

1<i<n
hence igv(z) = iov(y) i.e. v(x) = v(y), so that v(z) =0 ie. z€ Ok . O

Corollary 3.2.5. The valuation v is non trivial and discrete if and only if O, is a DVRGD,

Proof. e Assume v is non trivial and discrete: write v(K*) = aZ with o € R~¢. Let 7 € Ok, be such that
v(T) = a : if 2 € Ok y\{0}, we have u := zr~"(®) ¢ Ok, (because v(u) = 0, ¢f proposition 3.2.4). This
implies that Ok, is a PID (its ideals are {0} and (7)™ with n € Zs(), whose only nonzero prime ideal is
{r), so that Ok, is a DVR (¢f definition 1.8.25).

¢ Conversely, assume that Ok , is a DVR: let 7 € K be a uniformizer. Any non-zero element z € K* can
be written in a unique way x = un™ with u € O, and n € Z: we have v(z) = v(u) + nv(r) = nv(r), so
that v(K*) = v(w) Z. O

Remark 3.2.6. The map v induces a group homomorphism K* — R. By proposition 3.2.4, its kernel is
Ok, = {z € K; v(x) = 0} (this is the unit group of v), so that v induces a group isomorphism

KX/(’)IX(W:»U(KX) cR.
Definition 3.2.7. The quotient field ki, = Ok, /M, is called the residue field of K at v.

Proposition 3.2.8. Let A be a UFD, p € A a irreducible element and v,: A — Zx( the p-adic valuation
(¢f definition 1.1.19). Then v, extends uniquely into a normalized valuation v,: Frac(4) — Z u{+oo}. If
x € Frac(A), then x € A if and only if v,(x) > 0 for every irreducible element p € A.

Proof. (1) If x = ¢ € Frac(A), with a € A and b € A\{0}, then vy(z) = wvy(a) — vp(b) € ZuU{+o0},
proving unicity. If z = ‘g—,' is an other writing, then ab’ = a’b (because A is an integral domain), so
vp(a) + vp(b') = wvp(a’) + vy (b) (by proposition 1.1.20) i.e. vy(a) — vy(b) = wvy(a’) — v,p(b'), proving the
existence. The fact that this map is a valuation on Frac(A) follows from proposition 1.1.20.

(2) Let © = § € Frac(A) with a € A and b € A\{0}. Assume that v,(z) = 0 i.e. vy(a) = vp(b) for every
irreducible element p € A. Then b | a (¢f proposition 1.1.20 (2)), so z € A. The converse is trivial. O
Example 3.2.9. Let A be a DVR with maximal ideal m and 7 a uniformizer. The m-adic valuation map
v: A\{0} - Z>( extends uniquely into a normalized discrete valuation v: Frac(4) — Z u{+o0}, and we
have A = {z € Frac(A); v(x) = 0} and m = {x € Frac(A); v(x) > 0}.

Proposition 3.2.10. Let v be a valuation on K and p €]0, 1[. Then the map
K — R;O
z s p'®)

is a non archimedean absolute value. Conversely, if |.| is a non archimedean absolute value on K, then
—In|.|: K - Ru{+ow} (with the convention that —In(0) = +o0) is a valuation on K.

Definition 3.2.11. (1) A valuation v on K defines a topology on K for which a basis of neighborhoods of
0 is given by {x € K ; v(x) = 7},er-

(2) We say that two valuations v and v’ are equivalent if they define the same topology. By propositions
3.2.10 and 3.1.7, this is equivalent to the existence of a constant v € R~¢ such that v’ = yv.

Remark 3.2.12. (1) The topology defined by a valuation v and the absolute value p¥ (for any p €]0,1[) are
the same.

(2) If v is a valuation on K and o € mg,\{0}, the a-adic topology coincides with that defined by v on
Ok,» (because a"Ogk ., = {zr € Ok, ; v(x) = nv(w)}). Note that in general, the mg ,-topology does not
coincide with that defined by v on O ,,: when v(K *) is a divisible group for instance, one has m% , = mg. ..
Nevertheless, these topologies coincide when v is discrete.

Example 3.2.13. (1) On Z the p-adic valuation induces a valuation v, on Q for every prime number p. The
associated p-adic absolute value is defined by |x|p = p~ @) for all # € Q. The ring of integers of Q with
respect to v, is the localization Z,) with respect to the prime ideal p Z. Its residue field is F,.

(2) Let F be a field and K = F(X) = Frac(F[X]) the field of rational fractions with coefficients in F. The
map —deg: F[X] — Zso u{o} extends into a valuation on K (with the convention that deg(0) = —0), so
that for any r € R~1, the map R — r4°8(%) defines a non archimedean absolute value.

(31)Obviously, the terminology well thought-out.
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3.3. Complete valued fields. Assume K is endowed with an absolute value |.|.

Definition 3.3.1. (1) A sequence (zy)nez., With values in K is a Cauchy sequence if for every ¢ € R~g
there exists N € Zx such that for all m,n > N, we have |z, — x| < €.

(2) A convergent sequence is a Cauchy sequence, and we say that K is complete (for |.|) when the converse
holds.

Example 3.3.2. The field Q is not complete for the archimedean absolute value |.| , nor for the p-adic
absolute values.

Proposition 3.3.3. There exists a complete valued field (IA(, |.]) and a morphism of valued fields ¢: K — K
such that ¢((K) is dense in K.

Proof. Let €(K) be the set of Cauchy sequences with values in K. This is a ring when endowed with
componentwise addition and multiplication. Denote by #(K) the set of sequences with values in K that
converge to 0. This is an ideal in € (K): : put K = C(K)/7(K), and let 1: K — K be the map defined by
t(z) =7(z,x,x,...) where m: €(K) — K is the projection. The map ¢ is a ring homomorphism making K
into a K-algebra.

e The ring K is a field. Let z = (n)nezso € C(K)\SI (K ): we have to show that 7(z) is invertible. There
exists g9 €]0, 1[ such that for all N € Zs¢, there exists n = N such that |z,| > 9. As z is Cauchy, there
exists Nog € Z>¢ such that n,m > No = |z, — z,,| < §. By what precedes, there exists Ny > Ny such that
|zn, | = €o. This implies that |z, > ¢ for all n > N;. Now changing finitely many terms in z does not
modify 7(z): we may assume that x,, = 1 for all n < N;. This implies in particular that |x,| > % hence

x, # 0 for all n € Z>o: we may consider the sequence y = (2, )nezs,- Let’s show it is a Cauchy sequence:

fix e € R~o. There exists N € Zso such that n,m = N = |z, — T | < %TE. Then |z,;! — a2l = % <e
for all n,m > N. Thus y € ¢(K), and zy = 1.
e The field K is valued. Let z = (Tn)nezs, € €(K). For all n,m € Z>, we have ||z, | — [zp|| < |2p —2m]:

this implies that (|gcn|)m_:z>0 is a Cauchy sequence in R: it converges. Its limit in R depends only on m(x):
this defines a map |.| : K- R>o. The absolute value axioms pass to the limit: the map |.| : K — Ry is
an absolute value. It extends |.| on K, so ¢ is a morphism of valued fields.

o If £ = (Zn)nezs, € €(K), the sequence (t(xn))nezs, converges to m(x) in (K, |.|). Indeed, let € € R~q:
there exists N € Zx¢ such that n,m > N = |z, — x.,,| < ¢, so that |¢(x,) — 7(z)]| = hm |2 = 2| < e for

all n > N. In particular, ((K) is dense in K.

. (IA(, |.]) is complete. Let (&, )nezs, be a Cauchy sequence in K. For each n € Zs, choose x,, € K such that
|&n — L(.Tn)| < n#“ Let ¢ € Rxo: thereexists N € Zxq such that n,m > N = |, — §,,| < 5. We can assume
that g < 5: then |2, — 2| = |(zn) — v(@m)] < € — (@n) |+ €0 — Eml +|Em — (zm)] < & the sequence
T = (xn)nez>0 is Cauchy in K. Put £ = 7(z) € K: we have |€n — €] < |&n — tlan)|+ |e(xn) — £ — 0. O

Definition 3.3.4. The valued field (K, |.|) has the following universal property: if (L, |.| 1) is a complete
valued field and f: K — La morphism of valued fields, there exists a unique morphism of valued fields
f K — L such that f = f ot. In particular, the valued field (K |.|) is unique up to unique isomorphism.
It is called the completion of (K, |.|).

Remark 3.3.5. The completion of Q with respect to the “usual” absolute value |.| , is nothing but R (this
is in fact the very definition of R). Note that the proof of proposition 3.3.3 uses R (essentially to define the
absolute value on K), so rigorously, one has to build the ordered field R first.

Definition 3.3.6. Let p be a prime integer. The completion of Q with respect to the p-adic absolute value
is denoted by Q,,. It is called the field of p-adic numbers.

Lemma 3.3.7. Let A be a ring, o € A and A= @A/Q"A its a-adic completion. Then Ais separated and
complete for the a-adic topology.

Proof. For all integers 0 < n < m, the sequence 0 - K,, - A 2% a"A - 0 is exact: tensoring by
AJa™A gives the exact sequence K, @4 (A/a™A) — A/a™A = a"A®a (A/a™A) — 0. By right
exactness of the tensor product, the maps K, ®4 (A4/a™"1A) - K, ®4 (A/a™A) are surjective, so that
the inverse system {K, ®4 (A/a™A)}mez., has the Mittag-Leffler property. This implies that the map
A and = lima™ A ®a (A/a™A) is surjective.

m
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On the other hand, the sequence 0 — a"A/a™A — A/a™A — A/a™A — 0 is exact for all m > n. The
inverse system {a" A/a™ A},,>n has the Mittag-Leffler property: the sequence 0 — a"d — A - Ala™A -0
is exact. L R R

Put together, this provides an exact sequence AL A A/a™A — 0, so that A/a"A S A/a™A: passing

to inverse limit gives an isomorphism AS :4\, whence the result. O

Proposition 3.3.8. (ALGEBRAIC CONSTRUCTION OF THE COMPLETION IN THE NON ARCHIMEDEAN CASE).
Assume |.| is a non archimedean valuation on K, and let v be an associated valuation. Let o € mg ,\{0},

and @KJJ be the a-adic completion of Ok ;. Then O =~ @KJJ and K ~ @Kﬁv[ofl].

Proof. e Let @ = (n)nez., € @Kﬂf = lim Ok /o™ Ok. For each n € Zg, let Z,, € Ok, be a lift of z,,.
Assume that x # 0: there exist N € Z~( such that Ty ¢ « OKU If n>N, wehave I, — Ty € « OKU,

so that v(Z,) = v(Zn) (¢f remark 3.2.2). This implies that v(Z,) does not depend on n large enough.

Likewise, v(Z, ) does not depend on the choice of the lifting when n is large enough. This implies that the

map v: Ok, — R u{oo} defined by x — lim v(Z,) is well defined. The valuation properties extend to
n—9w0

v on @K,U. Condition (2) imply in particular that @K,U is an integral domain.

o Let z € @Kyv\{()}: we have v(z) € Rxzo. Let m € Zz( large enough such that v(z) < mov(a). Using
previous notations, we may assume that v(Z,) < mwv(a) for all n > m. By proposition 3.2.4, we have
Tm+1 | @™ in Ok 4 let y € Ok, be such that Z,,+1y = o™. This implies that zy € o™ + a’"“(’)K there

exists z € @KJJ such that zy = o™ (1 —az). As 1 —az is invertible in OK v (the series Z (az)™ converges),
n=0

we deduce that x | @™ in @K,'ua which implies that z is invertible in OKﬁv[oz_l], which thus is the field of
fractions of Ok -
e The valuation v extends uniquely to OK,U[Oz_l]. The natural map Ok, — Ok, localizes into a morphism

of valued fields K — @K,U[a’l]. Ifze @K,U[a’l], there exists m € Zs( such that o™z € @Kﬂ,: if NeZsy,
we can choose y € O, such that v(a™z —y) = N + m, so that v(x —a ™y) = N. As o ™y € K, this

shows that the image of K in O w[a™t] is dense.

o Let (zn)neZ>0 be a Cauchy sequence in OKU[ ~1]. Tt is bounded: there exists m € Zs( such that

a™mx, € OKU for all n € Z>p. The ring OKU is complete for the a-adic topology (¢f lemma 3.3.7), hence

for the topology defined by v (¢f remark 3.2.12 (2)). This implies that (o™, )nez-, iS convergent in @K,U,

so that @Km[a_l] is complete for v. By the universal property, we have K ~ @Kﬂ,[a_l]. Henceforth, we

identify them and write abusively K = @K,u[ofl].

e We certainly have @Kﬂ, c (’)A . Let z € (’)A . Fix m € Z>q such that y = o™z € @KU' we have

v(y) = mv( ) +v(x) = mo(a). By proposition 3 2.4 applied to the valuation ring OKU, we know that
o™ |yin (’)K v, Which means that = € Ox v, showing the equality Oz = (’)K,U O

Example 3.3.9. Algebraic construction of Q,,. The ring of integers of Q with respect to the p-adic valuation
is Z,), the localization of Z at the prime ideal pZ. Then Q, = Z, [p~!] where

Z, =lmZ, /p" Zy) <lImZ/p"Z

The ring of integers Z,, is called the ring of p-adic integers.

Theorem 3.3.10. (NEWTON’S LEMMA). Assume that (K |.|) is a complete non archimedean valued field
with ring of integers Ok . Let P € Ox[X] and o € O. Assume that there exists € € [0, 1] such that

2
|P(a)] < e|P'(a)]”.
Then there exists a unique & € Ok such that P(&) =0 and |&@ — o] < € [P/ ().
Proof. ¢ If P(a) =0, we take @ = «: assume that P(a) # 0, the hypothesis imply that P’(«) # 0. We have

P(a+ X) = P(a) + P'(a)X + PPl(a)X? + --- + Pl"l(a) X" where n = deg(P) (here Pl is the divided
i-th derivative, which formally is &P 1t is (”)X"’i € Z[X] when P = X", so Plll € Og[X]). Put
r] = — (( )) € K. We have |z1] = ||£, e|P'(a)] <e <1 (since P’ € Ok, whence P'(a) € Ok). This

implies that x1 € Og,s0 a1 = a+x1 € (’)K Moreover, we have

P(ay) = PPl (a)a? + - + P ()2
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so that |P(a;)| < max {|PF(a)||z1['}. As [PF(a)| < 1 (because PIl(a) € Ok) and |z1| < 1, we deduce

2<i<n
that |P(oq)| < |a1|* < €2 |P'(a)|”. Note also that

P'(a1) = P'(a) + PP (a)zy +--- + (P ()2t
so that |P'(aq) — P'(e)] < |z1] < e|P'(a)|: as € € [0, 1], this implies that |P'(aq)| = |P'(a)].
What precedes show that we can construct inductively a sequence (am)meZ>0 of elements in Ok such
that ap = a, |Plam)] < €2 [P/(0)]?, |tma1 — o] < €27 [P/(@)] (and i1 = am if P(am) = 0) for all
m € Z. By construction, the sequence (o, )mez-, is Cauchy, hence converges to a limit & € Ok (since K is
complete). Passing to the limit we have P(&) = 0 and |& — a| < ¢ |P'(a)|.
e The unicity of & is obvious if P'(«) = 0 (we must have & = «): assume that P'(«) # 0. Let & € Og
be such that P(&’) = 0 and |&' — a| < ¢|P'(«)|. What precedes shows that |P'(&)| = |P'(«)|. We have

0=P@)—P(@) = Y PH(@) (@ —a)’. Assume that &’ # &: dividing the preceding equality by & —a gives
i=1

—P'(a&) = Y Pll(@)(& — &)1, so that |P'(&)] < Joax |PU(@)]|a" — &' '. As P e Og[X] and & € Ok,
i=1 i
we have |P[i] d)| < 1, and as &,& € Ok, we have [&/ —&| < 1. This implies that [P'(&)] < |&' — dl,

contradicting the 1nequaht1es |&/ — & < max{|a’ —al,|a—«a|} <e|P'(a)| and e < 1.
Remark 3.3.11. The convergence of the sequence (am)mez, 8 quadratic.

Example 3.3.12. (RoOTS OF UNITY IN Q,). Let p be a prime number. If o € K is a root of unity: assume
d — 1 with d € Z~,. We have |a|* = 1,50 [a| =1 ie. a € Z;. Let @ be the image of a in F), = Z,, /pZ,.
. Assumethatd p. AsaP =@, we have @ = 1, i.e. a— l+zwithzepZ, Thenl=aof =(1+2x)P =

1+px+ Z (P)a' +aP. If & +# 0, this implies that p+ Z (P)at =t 2Pt = 0: as v, ((P)x) = 2 (since p | (V)),

we have v (:I:P 1y =1, thus p = 2 and « e {£1}. ThlS shows that if p # 2, we have a=1.

e Assume d = 4 and p = 2. We have o € {+1} by what precedes. If we had a? = —1, this would imply
that (1 + a)? = 2, hence 2va(1 + o) = 1 (because v2(a) = 0), so that va(1 + ) = 1 ¢ Z, which is absurd.
This shows that a? = 1. More generally, if a®" = 1 with r € Z~g, then o = {+1}.

e Assume that pfd. As@ # 0, we have @~ ! = 1, so that a?~! = 1 + 2 for some z € pZ,. Here again we

have 1 = oP=14 = 1 4 dz + Z (9)2? + 2. If z # 0, this implies that d + Z (Da'=! + 2971 = 0: thisis a

contradiction since p | Z (D=t + 971, So we must have x = 0, i.e. aP~! =1.

e What precedes impl;' t2hat a? =1if p=2and a? ! = 1if p # 2. Conversely, let’s show that roots of
unity in Q,, are {£1} if p = 2 and p,,—1 if p # 2. This is trivial if p = 2: assume that p # 2. Consider the
polynomial P = XP~! — 1. It splits with simple roots in F,. For any a € Z, lifting an element of F;, we
have P'(a) = (p —1)a?~? € Z);, so that |P'(@)], = 1, whereas |P(a)], < %. Newton’s lemma applies (with
€= %): there exists a root & € Z,, of P such that |&@ — a| < 1, so that & and « have same reduction mod p.
This means that the p — 1 elements in F; can be lifted by p — 1 roots of unity.

3.4. Normed vector spaces. Let (K, |.|) be a valued field.

Definition 3.4.1. e Let V be a K-vector space. A norm on V is a map
[V = R0
such that
(1) (Vv eV) |v| =0« v =0 (separation);
(2) (VAe K)(YveV) ||Av|| = |A]|v]| (multiplicativity);
(8) (Yui,v2 € V) |u1 +va| < |or]| + |Jve| (triangle inequality).
When (K, |.|) is not archimedean, we require the stronger:
(3) (Yuy,v2 € V) o1 4+ v2|| < max{|vi], |ve|} (strong triangle inequality),

The pair (V, |.]) is then called a normed vector space.
e A normed K-algebra is a K-algebra A endowed with a norm |.|| such that:

(4) (Va,be A) |ab|| < a0

Example 3.4.2. (1) If (L, |.|) is a valued field and K < L a subfield, endowed with the restriction of |.|,
then the absolute value |.| endows L with a normed vector space (even a normed K-algebra) structure.
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(2) Let X be a set and #(X, K) the space of bounded maps on X with values in K. If f € Z(X, K), put
| fll, = sup |f(z)|. Then (A(X,K),|.||,,) is a normed vector space over K.
reX

As a special case, x = (z1,...,2,) — %], = max |z;| is a norm on K.
N

1

0
(3) Let (Y(K) = {x = (Tn)nezsy € K220 Y |z,] < +oo}. For x = (zn)nezs, € ((K), we put
0

n=

o0
Ixll; = X |zn]. The map |.||; satisfies conditions (1), (2) and (3) of definition 3.4.1, but not condition
n=0

(3’) (even when (K, |.]) is non archimedean). Thus (¢!(K), |.|,) is a normed vector space over K when K
is archimedean, but not when (K, |.|) is non archimedean.

Definition 3.4.3. Let (V,|.|) be a normed K-vector space. Then the open balls B(v,r) (with v € V' and
r € Rsg) form a basis for a topology on V. In what follows, V' will always be endowed with this topology.
Assuming that K is complete, we say that (V,||.||) is a Banach space when (V] |.|) is complete.

Proposition 3.4.4. If (K, |.|) is complete, then (#(X, K), |.[,) is.

Proof. Let (fn)nezs, be a Cauchy sequence in (#(X,K),|.|,): for x € X, the sequence (f,())nezs,
is Cauchy in K, hence converges to a limit f(z) € K. Let ¢ € Rxg: there exists N € Z>( such that
N <n<m=fa—ful, <z Forze X, we have |[f(2) — fa(@)] < [f(@) — fm(@)] + |fin(2) — fule)] <
|f(z) = fm(z)| + €. Passing to the limit as m — oo, we get |f(z) — fn(z)| < e. As this holds for all z € X,
we thus have |f — f,|, < € as soon as n > N. This shows that f € #(X, K), and also that (f,)nez.,
converges to f for |.||_ . O

Example 3.4.5. The space (K™, |.|, ) is complete.

Definition 3.4.6. Let V be a K-vector space. Two norms |.||, |.| on V are equivalent when they define the
same topology on V.

Form now on, we assume that the absolute value |.| is non trivial.

Proposition 3.4.7. Two norms |.|, .|  on V are equivalent if and only if there exist constants ci,cz € R
such that
(VoeV)er o] < ol < ez vl

Proof. Assume |.|, .|| are equivalent. The ball B(0,1) is open for the topology defined by ||.|: there exists
r € Rg such that B(0,7) < B(0,1). Let m € K be such that®? 0 < |r| < 1. If v € V\{0} there exists n € Z

such that |x|r < |z|" o] < r. Then we have |a[" [v] = |7"v] < 1, i.e. [ o] <1, s0 that e1 o] < o]

with ¢; = |r|r. This also holds when v = 0. Similarly, there exists ¢z € R~ such that |v|" < ca ||v|| for all
v € V. The converse is obvious. O

Remark 3.4.8. Assume that |.| is the trivial absolute value, and let V be a K-vector space. If |.| and |.|’
are two equivalent norms on V, there might not exist constants c;,ce € R~ as in the previous statement.
For instance, if V' = K[X]], and p €]0,1[, let |||, be the norm on V' defined by [f|, = p° () where
ord(f) = inf{n € Z>0; a,, # 0} (this corresponds to the X-adic norm, with X[, = p). If r €]0, 1[, there

exists ¢ € R~ such that » = pf, so that [.|, = HHZ, so that the norms |[.|. and [.[, define the same

balls hence the same topology: they are equivalent. Assume r > p, and that we have ¢ € R~ such that
Il < cllll,: applied to X™, this gives 7" < cp", i.e. (%)n < ¢: this is a contradiction.
Nevertheless, proposition 3.4.7 is still valid when |.| is trivial if V has finite dimension: let (e1,...,eq) be

d d d
a basis of V over K and ||.|| anorm on V. If v = Y N\je; € V, we have |v|| < X |\ [les] < 2 := 3] Jed-
i=1 i=1 i=1

On the other hand, for n € Z~, let V,, be the span of vectors v € V such that |v| < 1. The sequence of
sub-spaces (Vj,)nez., is decreasing: V being finite dimensional, there exists N € Z- such that V,, = Vy
forallm > N. If v e Vy and n > N, then v can be written as a linear combination of elements in V,,:
the previous computation implies that |v| < 4. As n is arbitrary, we have |[v[| = 0, hence Viy = {0}: this

implies that if v 5 0, then ¢1 := & < o] < co.

Proposition 3.4.9. Let (V,|.||;,) and (W, |.[;;,) be normed vector spaces over (K, |.|), and ¢ € Homg (V, W).
The following are equivalent;:

(1) ¢ is continuous;

(2) @ is continuous at 0;

(3) there exists ¢ € Rxo such that (Yv e V) o)y < c|v], -

(32)Recall that |.| is not trivial.
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Proof. (1)<(2) and (3)=(2) are obvious.

Assume (2): there exists r € R~ such that ¢(B(0,7)yv) < B(0,1)w, thus ¢(B(0,1)v) < B (0, %)W Let
v € V\{0}. There exists n € Z such that || < |7|" [v];, <1, so that [o(7"0)[y, < L, ie. o)y < cllvly
with ¢ = . This also holds when v = 0. O

Definition 3.4.10. We denote by Homg cont (V, W) the set of elements in Homg (V, W) that are continuous.
If ¢ € Homg cont(V, W), we put

@(v)
Ioll = sup 0w (g
veV\{0} H HV

This is the smallest constant ¢ € R>g such that (Vv e V) |¢(v)|, < c|vl, -

Proposition 3.4.11. If (V. |.|,,) and (W, |.];,) be normed vector spaces over (K, |.|), then Hom g cont (V, W)
is a sub-K-vector space of Homg (V,W). The map ||.| : Homg cont(V, W) — Rysp is a norm. Finally
(Homg cont (V. W), [I.|[) is @ Banach space when (W, |.[) is.

Proof. The first point is obvious. We certainly have ||| =0 = ¢ = 0, and || ¢|| = |A|[|¢]| for all A € K.
If ¢, € Hompg cont(V, W) and v € V, we have

[+ ) @)l < lle@)lw + 19w < llellloly + llHvly when (K, [.]) is archimedean,
[+ )W)y < max{le@)ly  |P@) ]y} < max{ie]l o]y, [[¢]l vy} otherwise,

which implies that [l + 6| < llell + [l it (K,|]) is archimedean and |lp+ vl < max{loll, Il
otherwise.

Assume now that (W, |.||;,) is complete, and let (¢, )nez., be a Cauchy sequence in (Homg cont (V, W), [|.[])-
If veV, then [on(v) — 0m (V)| < llon — @mll |v]y, for all n,m € Zq, so that the sequence (¢, (v))nezs,
is Cauchy in (V, .| ): it converges to a limit p(v) € W. The linearity of the maps ¢, imply that of
¢. Moreover, a Cauchy sequence is bounded: there exists C' € Rs¢ such that (Vn € Zso) [lon]l < C,
so that for any v € V, we have ||, (v)|y, < C v, thus |e(v)|y < C vl + [|e(v) — @n(v)|},, whence
le()|y < C v, (passing to the limit as n — 00). This shows that ¢ € Homg cont (V, W).

Let € € R-g: there exists N € Zsg such that N < n < m = |[|lon —omll < e. If v € V, we have
1£(0) = 2n (@)l < 19() = 2m @l +Ion(0) = 2 (@)l < 19(@) = m(@)llyy + 0], This implies that
lo(v) —en ()|l < e|vly (passing to the limit as m — o0) for all v € V, whence [|¢ — ¢,|| < e. This
shows that the sequence (¢p)nez., converges to ¢ in (Homg cont(V, W), || -]I)- O

Theorem 3.4.12. Assume (K, |.|) is complete. Let (V,||.||) be a normed vector space of finite dimension over
K, and B = (ey,...,e,) a basis of V. Then the dual basis B* = (ef,...,e*) is made of continuous linear

forms. Moreover, all norms on V are equivalent, and V is a Banach space. In particular, sub-K-vector
spaces are closed in V.

Proof. We proceed by induction on n = dimg (V). This is trivial when n € {0,1}: assume n > 1. Let
H = Vect(ey,...,e,—1): by induction hypothesis, this is a Banach space when endowed with the restriction
of ||.|. Assume that e} is not continuous. This implies that there exists a sequence (v;)iez., in V such that
lim v; = 0 but (e} (v;))iez., does to converge to 0: after extracting a sub-sequence, we may assume that

1—> 0
there exists € € R such that |eX(v;)| = ¢ for all i € Z>. For i € Zxo, put u; = e*”(;v): we have e (u;) =1

i.e. u; —en € H, and |Ju;|| < "“” —— 0. This implies in particular that the sequence (u; — €n)iczs,,
—> 0

which has values in H, converges to —en But H being complete, this shows that e, € H, which is absurd.

Thus we have shows that e is continuous. Permuting the elements in 98, we deduce that e}, ..., e} are all

continuous.

Consider the map ||.|g : V' — Rxo given by [[v|ly = [f(v)],, where f(v) = (ef(v),...,e5(v)) € K" for

all v € V: this defines a norm ||.|y on V. We have |jv|| = HZ ef(v)e; Z lef (V)] leill < c|v|g where
i=1 i=1

n
c= Z les]| € R0, whence ¢ ||v|| < |v] with ¢; = ¢! for all v € V. On the other hand, the linear forms
i=

ef,...,ek, hence f, are continuous: there exists c; € R such that (Vv € V) |v] = [|f(v)], < c2|v].
This shows that the norms |.| and |.|4 are equivalent, so all norms are equivalent to |. |-
As f: V — K™ is an isometry for the norms |.|y and |.|, and since (K™, .| ) is a Banach, soin V. O

Remark 3.4.13. Theorem 3.4.12 is not valid without the assumtion of completeness. For instance consider
Q(v/2) © R as a Q-vector space, endowed with the restriction |.| of the “usual” absolute value |.| ., and
let B = (1,4/2). Pell’s equation 22 — 2y? = +1 has infinitely many solutions: one can construct a sequence
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. 2 .. . .
(Un;Vn)nezs, in ZZ, such that |un —vn\@|% < m and up, v, — +00. This implies that if

Ty, = up — vaN/2 € Q(V/2), the sequence (7, )nez., converges to 0 in (Q(+/2), |.||), whereas the sequences of
coordinates (u,)nezs, and (vn)nezs, do not. In particular, the norm = + yv/2 — max{|z|,|y|} and |.| are
not equivalent on Q(+/2).

3.4.14. The Hahn-Banach theorem. What follows is taken from [7]. Assume (K, |.|) is complete and let
(V,|.]l) be a normed K-vector space.

Theorem 3.4.15. Let W — V be a closed sub-K-vector space and z1,...,z, € V. Then W+ Kz1+ - -+ Kz,
is a closed sub-K-vector space of V. In particular, every finite dimensional sub- K-vector space of V' is closed.

Proof. The second statement follows from the first. By induction, it is enough to show the first statement
when n = 1: write z = x1. If x € W, there is nothing to do: we may assume that x € V\W. Let (wy,)nez.,
and (A, )nezs, be sequences in W and K respectively, such that (wy, + An)nez., convergesin V. Let £ € V
be its limit: we have to show that £ € W + Kx. As W is closed in V, it is enough to show that the sequence
(An)nezs, converges in K (indeed, if A € K is its limit, the sequence (wp)nez., converges in V', hence in W
since W is closed in V: let w € W be its limit; passing to the limit, we have { = w + Az € W + Kx).

e Assume ¢ = 0, and that the sequence ()\n)nez>0 does not converge to 0 in K: there exists e € R~y and a
strictly increasing map ¢: Zxo — Zxo such that |)\¢(n)| > ¢ for all n € Z>y. We have

Pty @) + A = Peoi| ™ T + Apme] < &7 [wam) + Apz]

which converges to 0. This implies that lim A;(ln)wv(n) = —x: as W is closed, this shows that z € W,
n—oo

contradicting the hypothesis. We thus have shown that if £ = 0, then lim A, = 0.

n—aL

e General case. For n € Zxq, put w), = wp41 — wy, and A, = A1 — A As lim (wy, + A\pyz) = ¢, we have
n—o0

lim (w], +\/,z) = 0: by the special case treated above, we have lim A/, = 0. This implies that the sequence
n—x0 n—oo

(An)nezs, is Cauchy, hence converges (since (K, |.|) is complete). O

Theorem 3.4.16. (HAHN-BANACH). Assume that |.| is non archimedean and discrete. Let W < V be a
sub-K-vector space and ¢: W — K a continuous linear form. Then there exists a continuous linear form
$: V — K such that ¢ = gy and [|5]]| = [l«]l.

Proof. We of course may assume that ¢ # 0, so that M := ||¢|| > 0.

e Case where || is trivial. Let E = {z € V; |z] < M~'}: as || is trivial, this is a sub-K-vector space
of V. If x € En W, we have |p(z)| < M |z|| < 1, hence ¢(x) = 0: the map ¢ factors through a linear
form @: W/(W n E) — K. We can extend @ into a linear form : V/E — K (by the axiom of choice).
Let w: V' — V/E be the projection and @ = Dom: V — K: this is a linear form such that ¢ = Sw- If
x € V\Ker(®), we have z ¢ E, whence ||z]| > M1, i.e. |§(z)] =1 < M |jz/|. As this obviously holds for
z =0, we have 3] = [l

¢ Case where |.| is not trivial. Using Zorn’s lemma as usual, we reduce to the case where V.= W + Kz
with z € V\W. As (K, |.]) is complete, we can extend ¢ by continuity to the closure of W: we may assume
that W is closed. Put p = inf (|K|n]1, +o0[): as |.| is discrete and non trivial, we have p > 1, and there
exists A € K such that [A| = p. Let d = J?év |z — w| be the distance form x to W: as W is closed and

x ¢ W, we have d > 0. Let k € Z be such that p*1 <dM < p*, i.e. M~1p*~1 <d < M—1pF: there exists
wo € W such that |z —wg| < M~1p*. Replacing = by x — wp, we may assume that |z| < M~1p* (and
d < ||l — w| for all w e W as before). If v € V, we can write uniquely v = w + Az with w e W and A € K.
Put $(v) = p(w). This defines a linear form @: V' — K such that ¢ = @jyy. Moreover, we have

[P = [p(w)] < M |w]
so that |P(v)| < M |v| as soon as |w| < |jv|. Assume now that |w + Az| = ||v|| < |w]|: this implies that
A # 0 and [w| = [[Az|, whence [A"'w| = |z < M~'p*, so that |\~ p(w)| < p¥. As the absolute value
is discrete, this implies that |\ p(w)| < p"' < Md, i.e. |P(v)] = |p(w)| < Md|A|. Now A'w € W, so
d < o+ X w|, so d|A| < [|Az + w| = |v], so we get |F(v)] < M |v||, as required. O

Remark 3.4.17. A counterexample when the absolute value is not discrete. Let V be the set of all power
series v = a1t* + ast®? + --- where a; < aip -+ is a strictly increasing sequence of rational numbers and
ai,az, ... € Q,. Put |v|| = e~*. Defining addition and multiplication in the obvious way, V' is a field, and
||| is an absolute value on V. Let K be the subfield consisting of all elements a1t“! + a2t*? + - - - such that
lim a; = 400, and denote by |.| the restriction of ||.|| to K. Consider V' as a normed K-vector space. K is

1—> 0

itself a subspace of V, and ¢(A\) = A (for A € K) defines a linear form on K such that [|¢|| = 1.
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Assume there exists a linear form ¢: V' — K such that ||| = 1. Consider v = a1t** +a2t®? +--- € V such
that lim a; = . Write
1—>0

P(v) = crt™ + et + -+ € K.
As [§(v)| < |v], we have aq < 71. If we had ay < 1, we could write
(,B(agtDQ + - ) = _altoq + Clt’vl + Cgt'yz +.--

so that [@(agt® +---)| =€ > e 2 = |lagt® +---| (since oy < a2), contradicting ||| = 1. We thus
have oy = 71, and

@(athZ + - ) = (01 — al)tm + cot™ +

which again implies that ¢; = a;. By induction, one thus shows that a; = v; and a; = ¢; for all i € Z,,
which is impossible since lim a; = @ and lim ~; = 4o00.
10 10

3.5. Extensions of absolute values. Let (K, |.|) be a non archimedean valued field, and L/K an extension.
Lemma 3.5.1. For P(X) = a9+ a1 X + -+ +a, X" € K[X], put

I1P] = mas [a].
Then |PQ| = ||P| Q| for all P,@ € K[X]. In particular, ||.| extends into an absolute value on K (X) that
extends |.|.

o0 o0
Proof. Write P(X) = Y a; X" and Q(X) = Y b; X7 with (a;)icz-,, (b))jezs, € K%>0). Then we have
i=0 j=0

0 n

P(X)Q(X) = ) cpX™ with ¢, = ) aibp—i, 50 |cn| < Jnax laibn—i| < |P|||Q|: as this holds for all

n=0
n € Zxo, we get [PQ| < [P [Q]|-
Assume now that PQ # 0, and let iy = min{i € Z>o; |a;| = |P||} and jo = min{j € Zxo; |b;| = |Q|}
so that |a;| < |P|| if ¢ < 4o and |bj| < |Q| if j < jo. Then ¢;y4j5, = > abj. Ifi,j e Zyg are
iwz,j]:eizoiojo

such that ¢ + j = 49 + jo and ¢ < ip or j < jo, we have |a;b;| < |P||Q]. As |ai,bj,| = |P|||Q|, we have
ICio+jo| = |P|| |Q] (because |.| in non archimedean, ¢f remark 3.1.3 (2)). Thus we have |PQ]| = ||P| |Q].
We certainly have |[P| = 0= P =0, and |P, + P|| < max{|Py|,|Pz|} for all P, P» € K[X]. Extend |.|
to K(X) = Frac(K[X]) by putting

12|

HQ el

for all P,Q € K[X] with @ # 0. The multiplicativity proved above implies that ||.| is multiplicative
on K(X). Moreover, if R € K(X), we have |[R| = 0 = R = 0, and if Ry, Ry € K(X), there exists
Q € K[X\{0} such that P, = QR1,P» = QRy € K[X]: as |P1 + P2| < max{[|P1],|P:|}, we deduce
|R1 + Ra|| < max{|Ry|,|Rz]|}, so that |.| is an absolute value on K (X), that obviously extends [.|. O

Definition 3.5.2. The norm |.| on K[X] defined in lemma 3.5.1 is called the Gauss norm, and we will
henceforth denote by ||, the absolute value it induces on K (X).

Theorem 3.5.3. (KRULL'S EXISTENCE THEOREM, ¢f [18, Theorem 14.1](3)). There exists an absolute
value on L that extends |.|.

Remark 3.5.4. Of course, any extension of |.| to L is non archimedean.

Proof of theorem 3.5.3. This is obvious if |.| is trivial: assume from now on that it is non trivial.

e Case where L/K is finite. Consider the set ¥ of maps v: L — R3¢ having the following properties:
(1) (VA€ K) (Vo e L)v(Ar) = [A|v(z);

(2) (Vz,ye L) v(zy) < v(x)v(y);

(3) v(1) =

(4) (Vze L) (Vk € Zzo) v(zh) = v(z)k;

(5) (Vz,y e L)v(z +y) < max{v(z),v(y)}-

2l

(33)The sentence “Obviously p satisfies properties (2)-(7)
explains why we modified the latter.

on the last line of [18, p.38] is fishy, because of property (7), which
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Observe that if v € ¥ and 2 € L*, then 1 = v(zz 1) < v(z)v(x™1), so v(x) > 0, whence v(z) = 0 < x = 0.
d

® We first show that ¥ is non empty. Let (e1,...,eq) be a basis of L over K. If z = Y \e; € L, put
1=1

lxll; = 1maamxd|/\i|. This defines a norm ||.|; : L - Rxo. If 2 = Z Aie; € L and y = Z wie; € L, we have
<i<

1=
zy= X Aipgeie, so |zy| < max |l lleies, de. Jlzy] < CH$\| lyll where €' = max [leje;| € Reo.
1<i,j<d <e4LJS 1<ig<

If |.|, = C|.|;, then |.|, is a norm on L such that |zy|, < |z|, |y|, for all ,y € L. Now put

vo(x) = lim sup VA 2 P

— 0

for all z € L. As |z* H2 < ||:c\|]2C for all k € Zxo, this definition makes sense, and 0 < vy(z) < |z|, for all

rzelL.

Let z € L anda = inf /%], If € € R, there exists d € Zq such that |24, < (a +e)%. If k € Zso,

€40

let k = q(k)d + r(k) with g(k) € Zzo and 0 < r(k) < d be the euclidean division of k by d: we have

o], < [+7]2*) |7 ®)], < (@ + )20 |27 ®)|,, which implies that a < 4/[eF], < (a + &)1 /kp1/E where

b= Jnax, [x"[|,. As klim @ 1 and khm b'/k = 1, this implies that hm {/|z*|l, = a, so that in fact
sr< — 0

hm VA S mf qk/ ¥,

As |Az|, = |Al||lz|, for all A € K and x € L, the map v satisfies (1). As ||zy[, < |z|l5 |y, for all x,y € L, it
satisfies (2). Moreover (1) = hm {/T1]l, = 1 so vy satisfies (3). Also, vo(z*) = Tim 1/ zFm ], = vo(x)*

—> 0
so v satisfies (4). To prove it satlsﬁes (5), let x,y € L*. By symmetry, we may assume that vo(z) < vo(y).
After scaling x and y by some appropriate A € K, we may further assume that v(y) > 1 (recall that |.| is
non trivial). Let € € R~g: there exists N € Z=s such that i > N = HJU’H2 < (wo(z) + )t < ((y) +e)t.
As vg(y) > 1, we may also assume that N is large enough so that k > N = 1 < |y*], < (w(y) +e)*. If

n € Zxq, we have
n n
:Cnfk k
% (1)
2

k=0
Assume n > N2 >4, so that n > 2\/n. If 0 < k < \/n, we have 0 < k < \/n = n —k > /n = N, which
implies that H:c”*k”2 | H2 < (vo(y)+e)" k ||y\|]2€ < (vo(y) +¢)™ max {1, ||y||5/ﬁ }oIf\/n <k <n,thenk >N,
SO Hyk”2 < (n(y) +e)*. If N < n—k, then ||:E"’kH2 < (vo(y) + )" %, whence H:c”*k”2 ||yk H2 < (vo(y) +e)™.
If n — k < N, we have |z"~%|, < max{1, ||V}, so that [|z"*|, [y*], < max{1, 2| }ro(y) +e)". Al
together, we get |(z + )", < (vo(y) + )" max {1, Jy¥™ ]2} }, thus

V@ + )71y < (vo(y) +2) max {1yl 21" ).

Passing to the limit as n — o0, we get vo(x + y) < vo(y) + &. As this holds for all ¢ € R~g, we have
vo(x +y) < vop(y): we have proved that vy satisfies (5), i.e. v € 3.

® If 1,15 € 0, we write 11 < 1o if 11(z) < vo(zx) for all z € L. This endows ¥ with a partial order. If
(Ux)xea 18 a chain in X, then v: z — }\Iellf\ va(x) defines an element in ¥. Indeed, properties (1), (3) and

< mex =", v,

I +y)"l, =

(4) are obvious. Property (2) follows from the fact that (v))xea is a chain. Assume z,y € L are such that
v(z) < v(y): if € € Ry, there exists A\g € A such that vy,(z) < v(z) +e. If A € A is such that vy < vy,,
we have v(z + y) < va(z + y) < max{vy(z),va(y)} < max{v(z) + &, vA(y)} < max{r(y) + &, vA(y)}, which
implies that v(z + y) < v(y) + € by taking the infimum on A. As this holds for all ¢ € R~(, we have
v(z +y) < v(y) = max{v(x),v(y)}, showing that v has property (5). Thus v is a lower bound for (vy)aea
in X: by Zorn’s lemma (¢f theorem 9.1.1), ¥ contains a minimal element v.
® Fix a € L* (so v(a) > 0) and let z € L*: for all k € Z~¢ we have v(za®) < v(za*~!)v(a), hence
v(zaF)v(a)™* < v(za*1)v(a)=*=Y: the sequence (v(za*)v(a)*)rez., is decreasing in R-q: it converges
to a limit 7(x) € Rxo, and 7(z) < v(x).
The map 7 obviously satisfies (1). As v(zya®*)v(a)™2* < v(za®)v(ya*)v(a)=2F for all k € Z=(, we have
7(zy) < 7(x)7(y) for all z,y € L, so 7 satisfies (2). As v satisfies (4), 7 satisfies (3). If z € L and k,n € Z~o,
we have v(z*a*™)v(a)~*" = (v(za™)v(a)™")* so 7(x*) = 7(xz)* by passing to the limit as n — oo, showing
that 7 satisfies (4). Finally, if z,y € L, we have

v((z +y)a®)w(a) ™ = v(zd® + ya®)v(a)™F < max{v(za®)v(a) %, v(ya®)v(a)*}
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(since v has property (5)). Passing to the limit as k — oo gives 7(z + y) < max{7(z), 7(y)}.

This implies that 7 € ¥. As 7 < v, we have 7 = v by minimality of v. This shows that the inequalities
7(x) < v(za)v(a)~! < v(x) are equalities, so that v(za) = v(x)v(a), which implies that v: L — R is an
absolute value. As it has properties (1) and (3), it extends |.|.

e General case. Let S be the set of pairs (F,|.|n) where F' is a subfield of L containing K, and |.| an
absolute value extending |.|. We endow S with the partial order given by (Fi,|.|;) < (F3,]|.|,) if and only

if F1 © Fy and ||yp = [ ;- I (F),[-]))xea is a chain in S, then F' = |J F) is a subfield of L, contains
AEA
K, and the map |.|, : F' = Rx¢ given by |z|, = |z|, whenever z € F) is well defined, and is an absolute

value on F'. The pair (F,|.|) is an upper bound for (Fj, |.|,)xea- We may apply Zorn’s lemma (cf theorem
9.1.1): there exists an maximal element (F,|.|z) in S. If F # L, choose oo € L\F'. If « is algebraic (resp.
transcendant) over F, the absolute value |.|, extends to F(a) by what precedes (resp. by lemma 3.5.1),
contradicting the maximality of (F,|.|). This means that F' = L. O

Remark 3.5.5. The situation is completely different for archimedean valued fields. If L/ C is a complete
valued extension of C, then L = C (this is a consequence of a theorem of Gel’fand-Mazur). As a consequence,
a complete archimedean field is topologically isomorphic to R or C.

Theorem 3.5.6. Assume (K, |.|) is complete and L/K is algebraic. Then there is a unique absolute value
extending |.| on L.

Proof. We already know the existence of such an absolute value |.|;.

e Assume that || is trivial. If z € L*, then 2" +a12" ! +--- +a, = 0 for some n € Z>¢ and ay,...,a, € K.
This implies the existence of 0 < i < j < n such that |az"*|, = |a;z" 7|, > 0 (with the convention
ap = 1), so that [z[7~" = |z|777, i.e. 25" =1, whence |z|, = 1, and |.|, is the trivial absolute value.

o Assume that |.| is non trivial. Let |.|; be a other absolute value extending |.| on L. As L is a finite
dimensional K-vector space and (K, |.|) is complete, the norms ||, and ||, are equivalent (cf theorem
3.4.12): they define the same topology. This implies that the absolute values |.|; and |.|; are equivalent:
there exists v € Rw¢ such that |.|; = |.|7 (cf proposition 3.1.7). As |[A|, = |A]; = ||, we have |A| = |A|
for all A e K. As || is non trivial, this implies that v = 1, whence ||IL =1 a

Corollary 3.5.7. Assume (K, |.|) is complete and let K an algebraic closure of K. Then |.| extends uniquely
to K.

Corollary 3.5.8. Assume (K, |.|) is complete and let L/K and L’/K be finite extensions. Denote by |.|,
(resp. |.|;,) the unique absolute value on L (resp. L’) extending |.|. Then |o(z)|;, = |z|, for all z € L and
all K-morphism o: L — L’.

Proposition 3.5.9. Under the hypothesis of theorem 3.5.6, assume L/K is finite. Then the unique absolute

value |.|; extending |.| is given by:
x|, = [L:K\]/ |NL/K(~’C)|

Proof. Let N be a normal closure of L/K. Denote by z1,...,24 € N the conjugates of x over K (i.e.
the roots of the minimal polynomial of z over K'), counted with multiplicities, so that d = [K(x) : K].

for all z € L.

For each 7 € {1,...,n}, there exists a unique K-morphism o;: K(x) — N such that o;(z) = x;: by
corollary 3.5.8, we have |z;|,, = |z|,, where |.|, is the unique absolute value on N extending |.|. Then
d
|NK(z)/K($)| = H-Tz = |$|dL As NL/K(.T) = NK(m)/K(NL/K(z)(-T)) = NK(z)/K(x)[L:K(I)], we deduce
i=1
d[L:K (x L:K
N ()] = el = a1,

O

Corollary 3.5.10. Assume (K, |.|) is complete, let L/K be a finite extension and denote by |.| the unique
absolute value on L extending |.|. Then (L,|.|) is complete, and the ring of integers Of, is the integral
closure of Ok in L.

Proof. e As (K, |.|) is complete and (L, |.|) is a finite dimensional normed vector space over K, it is complete
by theorem 3.4.12.

e Let x € L be integral over Ok. Its conjugates over K are integral over Ok (apply an automorphism to
an equation of integral dependence for z over Ok): their product Ny i (z) € K is integral over Ok. As
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the latter is integrally closed (c¢f proposition 3.2.4), we have Ny x(z) € Ok, so |NL/K(x)| < 1, whence
|| = {/INL/k(@)| < 1, ie. € Op.

e Conversely, let © € Op. The coefficients of its minimal polynomial P are (up to a sign) elementary
symmetric polynomials in the conjugates of = (replacing L by its normal closure, we may assume that L/K

is normal). As each of these belongs to the ring Oy, so do the coefficients of P, which thus belong to
K n Op = Ok, and = is integral over Ok O

Remark 3.5.11. The ring of integers of a valuation thus deserves its name.
Until the end of this section, we drop the assumption on |.| (i.e. we allow it to be archimedean).

Proposition 3.5.12. Assume |.| is not trivial, and that L/K is finite. There are finitely many absolute
values |.|;,...,|.|, extending |.| on L. The map

~ o~

i=1

induced by the diagonal map (where L; denotes the completion of L with respect to |.|;) is surjective. In

particular, we have )] [E\Z : IA(] < [L : K] and there are at most [L : K] absolute values extending |.| on L.
i=1

When |[.| is non archimedean, Ker(¢) is the radical of K QK L

n no_~_
Proof. e Let |.|,,...,]|.|, be distinct absolute values extending |.| on L. The composite L 2, @PL->PL;
i=1 i=1
(where A is the diagonal map) is K-linear: as L; is a K-vector space for all i € {1,...,n}, it extends into
the K-linear map ¢. Note that the absolute values |.|, ,...,|.|,, are pairwise nonequivalent, otherwise there
would exist integers 0 < i < j < n and 7 € R~g such that [.|; = |.[7, and we would have 7 = 1 (because

|.] =|.[" and |.] is not trivial), contradicting the hypothesis.

o Let (21,...,2n) € @L for ¢ € Rso, there exists (y1,...,yn) € L™ such that |z —y;|, < € for all

ie{l,...,n}. By theorem 3.1.15, there exists z € L such that |z —yi|; < e, whence |z — 2|, < 2¢ for all
i€ {l,...,n}. This shows that the image of J is dense in (—D L;. As dlmf(\(l? ®x L) = [L : K] < oo, this
i=1
image is also a finite dimensional sub- K-vector space: by theorem 3.4.12, it is closed in the finite dimensional
K -vector space &) L; (since [E : IA(] < oo for all i € {1,...,n}), so ¢ is surjective.
i=1
e As § is K-linear and surjective, we have dimz (6—) L, ) < dim?(f( ®k L), i.e. >, [E : IA(] < [L: K]
i=1
this shows that there are finitely many absolute values extending |.| on L.
e Assume that |.| is non archimedean. Take n maximal, i.e. so that |.|,,...,|.|, are exactly the absolute

values extending |.| on L. The K -algebra K ® L has finite dimension: its prime ideals are maximal, and

~ T
there are only finitely many of them, that we denote my, ..., m,. This implies that rad(K ®x L) = (| m; is
i=1

the nilradical of K @ L. If z € rad([A(®K L), there exists m € Z~¢ such that ™ = 0: if 6(z) = (z1,...,2zn),

we have x;” = 0in L;, hence z; = 0 for all i € {1,...,n}, so that x € Ker(d). Conversely, let i € {1,...,r}.
Put L; := (K ®k )/ml this is a finite field extension of K: by theorem 3.5.6, there exists a unique
absolute value |.||; on L; that extends |.|: there exists a unique o (i) € {1,...,n} such that Iz = o

Moreover, LZ- is complete (by theorem 3.5.6 again) and L is dense in LZ-: we have Zl = Li,}; This implies
in particular that if « ¢ m;, then the image of x € Ij,(\z) is nonzero, so that x ¢ Ker(§). We thus have

Ker(§ ﬂ m; = rad(K Qg L). O

Corollary 3.5.13. Under the hypothesis of proposition 3.5.12, the following are equivalent;:
(i) K ®x L is reduced;
(if) 4 is an isomorphism;

(i) S [L: K] =[L:K].

i=1
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If these conditions are satisfied, then x, r/x(X) = [] x, f/}?(X) so in particular Trp/x(z) = 3, Trf/K(z)
/L=1 9 K . 3

and Ny /i (2) = ] NL\-/K(‘T) for all z € L. Moreover, we have |Np/x (z)| = [T |:z:|z[L“K] for all z € L.
i=1 " i=1

Proof. The equivalence between the three statements is obvious, as is the equality of characteristic polyno-

mials, that imply the equalities of traces and norms. Taking the absolute value of Ny x(x) = [[ N /K(:E)
i=1

provides the last equality, noting that ‘N ‘ = |x| K] by proposition 3.5.9. O

L/K

Corollary 3.5.14. Under the hypothesis of proposition 3.5.12, if L/K is separable, the conditions of corollary
3.5.13 are satisfied.

Proof. If L/K is separable, there exists a € L such that L = K(a) (primitive element theorem). Let
P € K[X] be the minimal polynomial of o over K: we have L ~ K[X]/{P), so that K ®x L ~ K[X]/{P).
As P is separable, the ring K [X]/{P) is a product of finite extensions of K (corresponding to the irreducible
factors of P in K[X]): it is reduced. O

Proposition 3.5.15. Under the hypothesis of proposition 3.5.12, assume that L/K is Galois. Then the
extensions L;/K are Galois, and

Gal(L;/K) ~ {0 € Gal(L/K) ; (Vz € L) |o(x)|, = |z|,}
(the RHS is the decomposition subgroup of L/K relative to |.|,).

Proof e By hypothesis, L is the decomposmon field of a separable polynomlal P(X)e K[X] c A[ X]. As
L c Ll, the polynomlal P is split 1n L Let L be the subextens,lon of LZ/K generated by the roots of P:
we have L < L;. As L; is closed in L; with respect to |.|; (since L; is finite dimensional) and L is dense in
LZ, we have L = LZ, implying that L; /K is Galois.

e Put D; := {0 € Gal(L/K); (Vo € L) |o(x)|, = |z|,}: any o € D; extends by continuity into an automor-
phism of LZ-, so we have an injective group homomorphism D; — GaI(LZ-/IA(). Ifoe GaI(LZ—/IA(), we have
o) = ldg and o(L) = L (since L/K is Galois), so the restriction o}, belongs to Gal(L/K). As (IA(, l.]) is
complete, corollary 3.5.8 implies that |o(z)|, = |z|, for all z € Li, so a fortiori for all v € L, so that o), € D;,
and showing that D; — GaI(Li/I?) is an isomorphism. O

3.5.16. Completion of Dedekind rings. Let L/K be a finite separable field extension, |.| a non archimedean
discrete absolute value on K and A = Ok || its ring of integers (this is a DVR). We have K = Frac(A4)
(¢f proposition 3.3.8). Let B be the integral closure of A in L: this is a Dedekind ring by theorem 2.1.3.

Denote by p the maximal ideal of A and let pB = ]_[ P;* if factorization in B (so that the nonzero prime
ideals of B are {1,...,%,}). In particular, B is semi-local: by proposition 2.3.15, it is in fact a PID.

Proposition 3.5.17. There are exactly r absolute values |.|,,...,|.|. extending |.| to L. If L; denotes the
completion of L with respect to |.|;, there is an isomorphism
T

inducing an isomorphism
A®sB> @ B;
i=1

where E is the ring of integers of L\Z for all i € {1,...,7}. Moreover, we have [L\Z : IA(] = e;f; where
fi = [5(B) : 6(p)]-

Proof. e Let i € {1,...,r}. The localization By, is a DVR: let m; € B be a uniformizer. As 3; By, = By,
if j # i, we have pBy, = P;' By, = ;" By,: there exists u; € By, such that ;7" is a uniformizer of
A. Denote |.|; the unique absolute value on L = Frac(Bsy,) whose ring of integers is By, and such that

" = |u;m;"|: this normalization implies that |.|; extends [,| on L. We have B; = B nmy, ||, showing
that the absolute values |.|; ,...,|.|, are pairwise distinct.
e Let |.| be an absolute value extending |.| on L. As Oy, is integrally closed (cf proposition 3.2.4) and
contains A, it contains B, and B nmp | is a nonzero prime ideal of B: there exists i € {1,...,r} such

that B nmy | = P;. This implies that B\'P; = Of ||» SO that By, < Op . As |- extends |.|, we must
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have |m;|* = |usmi’|, so that |.| and |.|; coincide on Bgy, hence on L. This shows that the absolute values

extending |.| on L are exactly |.[;,...,|.|,.

e We have p"B = [[ B;“: by the Chinese remainder theorem, the natural map B/p"B — @ B/ is an
i=1 =1

isomorphism. As A is a DVR, it is a PID, so B is a free A-module of finite rank, so LillB/p”B ~ A@A B:

n

~ ~ T —~ —~
passing to the limit provides a natural isomorphism A®y B > @ B;, where B; = lim B/B™. Note that for
i=1 m

alli € {1,...,r}, we have B/ = By, /B By, , so that B; coincides with the completion of the DVR By,
Moreover K®u B =K®g L (because L = KB) and similarly K ®4 B, is a field: this is the completlon L;

of L with respect to |.|,. The preceding isomorphism thus induces a K-linear isomorphism K@y L> 6—) Li.
i=1
o The statement on rings of integers follows, noting that B; = lim By, /9B]" By, is the ring of integers of L;
m

since By, is that of L for the absolute value |.|,.

o We have seen that p By, = P By,: this implies that e~ R
and Kz = A/p = k(p), so that ffi/? = [k(B;) : k(p)]: the equality [E : I?] = ¢, f; follows from theorem
3.8.4. (|

= ¢;. Similarly, we have k7~ =g, /Pi = £(P;)

Remark 3.5.18. (1) Taking dimensions, the isomorphism ¢ implies the equality of theorem 2.4.2.

(2) As A is noetherian and B is of finite type, A®4Bis nothing but the p-adic completion of B (¢f corollary
1.11.38).
(3) The previous proposition is a special case of proposition 3.5.12 and its corollaries.

Corollary 3.5.19. If z € L, we have Try /i (z) = 3, Trf/g(x) and Ny g (2) = ] Nf/f{\(x).
i=1 ‘ i=1

Corollary 3.5.20. If L/K is Galois, so is E\Z/IA(, and Gal(z\i/f() identifies with the decomposition subgroup
={o e Gal(L/K); o(B;) = P.}.

Proof. Any o € D; extends by continuity into an element in Aut?(a): the statement follows from the
equalities #D; = e;f; = [f,: : I?] (¢f theorem 2.4.5). |

Proposition 3.5.21. Let 3 be a nonzero prime ideal in B and p = A 3. Denote by B (resp. A\) the
PB-adic (resp. p-adic) completion of B (resp. A). Then Vi = B®sDpja (i.e. "the different of the
completion is the completion of the different").

Proof. As A coincides with the p-adic completion of A, (and similarly for B) by lemma 1.11.29, and as

taking integal closure commutes with localization (c¢f proposition 1.9.13), we may replace A by A,, and

assume that A is a DVR. We use the notation of sectign 3.5.16. .

By proposition 3.5.17, the isomorphism IA(®KL > @ E\Z induces an isomorphism /A1®AB >P B\i, where
i=1 i=1

E\i is the ring of integers of E\Z The K-bilinear form L x L — K defined by the trace Try x induces a

K -bilinear map 1 (IA(®K L) x (IA(®K L)—> K by extension of scalars. Then we have (/A1®A B)* = AQ.B*

(this can be seen using dual bases of B and B*). Moreover, ¢ induces the bilinear map attached to Try R

on L; x L; for all i € {1,...,7r}. With obvious notations, this implies that @(A ®a Bf) = A®4 B* =
i=1
TN T~ ~ —~ —~
( &) Bi) =@ Bz-*, hence A®Q4 B} = Bi* forallie {1,...,r} (since the factors L; are pairwise orthogonal
i=1 i=1

for v). Taking inverses, this gives @E/g = A\®A QB%/A = E ®BDp/a- O

Corollary 3.5.22. Let p be a nonzero prime ideal in A, and SB/A the ideal of A = @A/p” generated by

n

dp/4- Then dp/4 = [T 05 5 (where By = lim B/").
Blp

n

Proof. Follows from proposition 3.5.21 by taking the norm (¢f proposition 2.5.9). O

Theorem 3.5.23. Let P8 be a nonzero ideal of B and p = A nB. The extension L/K is unramified at P if
and only if ‘B does not divide the different D g/ 4.
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Proof. Normalization and the different ideal are compatible with localization (¢f propositions 1.9.13 and
2.5.8): we may replace A by A, and assume that A is a DVR with maximal ideal p. By proposition 3.5.21,
we may also replace A (resp. B) by its p-adic (resp. P-adic) completion, and assume that B is a DVR with
maximal ideal 9. In that case, L/K is unramified (at ‘B) if and only if B/pB is a separable field extension
of r(p) = A/p: we have to prove this is equivalent to D /4 = B, i.e. to 0g/4 = A (c¢f proposition 2.5.9).
Let (z1,...,74) a basis de B over A (so that 05/4 = D(z1,...,74)A). As 0(p/pBy/r(p) = D(T1,...,24)A/p
(because (z1,...,24) is a basis de B/pB over k(p)), it is enough to show that B/pB is a separable extension
of x(p) if and only if 0(p/pB)/w(p) # {0}. If B/pB is a separable extension of x(p), then 0(g/p)/w(p) # {0} by
proposition 1.10.22. Conversely, assume that g/, )/x(p) # 0. We have pB = ¢ assume that e > 1. We
may assume that some elements in the basis (Z1,...,Z4) belong to B/pB. By definition, this implies that
0(B/pB)/r(p) € B/PB hence 0(p/pp)/x(p) = {0}, which is not: we have necessarily e = 1, so that B/pB = k(*B)
is a field, and a finite extension of x(p). If it was not separable, we would have Tr,i(;m /s(p) = 0 (cf corollary
1.10.5), so that 0, (q)/k(p) = 0, which is not: x(3)/k(p) is separable. O

Theorem 3.5.24. Assume®*) that B is a free A-module. Nonzero prime ideals of A that are ramified in
the extension L/K are precisely the divisors of the discriminant ideal 9,4. In particular, there are only
finitely many such ideals.

Proof. Follows from theorem 3.5.23 since 95,4 = Np/a(Dp/a) (¢f proposition 2.5.9). |

3.6. Hensel’s lemma. Let (K, |.|) be a complete non archimedean valued field. Recall that K(X) is
endowed with the Gauss absolute value |.|q, . defined by

|P|Gauss = 01113.<X |al|

for P=ag+a1 X + - +a, X" € K[X] (¢f lemma 3.5.1 and definition 3.5.2)
For n € Zx, we put W), = {P € K[X]; deg(P) < n}. If F,G € K[X] are such deg(F') = n and deg(G) = m,
the determinant of the K-linear map
O: Wn @Wm g Wn+’m
(f,9) = fG +gF
is, up to a sign, the Sylvester resultant Res(F, G) of F' and G (in the canonical bases of W,,, W,,, and W,,1.,,).

Theorem 3.6.1. (HENSEL’S LEMMA). Assume P, F,G € Ok[X] and € € [0, 1] are such that:
(i) deg(F) =n, deg(G) = m and deg(P) = n + m;
(i) |P — FG|gau < € [Res(F,G)|%;
(iii) P— FG e Wyim, i.e. deg(P —FG) <n+m.
Then there exist F', G € Ok [X] such that:
° B = ﬁé, N
e F—FeW,and G—GeW,,;
o |F — Flgauss < € |Res(F, G)| and |G — G|gauss < € |Res(F, G)|.

Proof e We can of course assume that |Res(F,G)| > 0. Put V,, = {f € Wy ; | flgauss < € |Res(F,G)[} and

{g € Wm? |g|Gduss = |ReS(F G)|} a‘nd H(fﬂ )” - ma’X{|f|Gauss ) |g|Gauss} for a‘ll (f7 ) € V @ V
Property (iii) implies that the map

O:V, &V = Woim
(f.9) = P—FG—fg
is well defined, so we can consider the map @~ o ®: V,, @ V;,, — W,, ® W,,,. By condition (ii), we have
[P = FG = fglgauss S max{|P = FG|gay s 1f9lgauss}
< max{e [Res(F, Q)| , % |Res(F, G)|*} = e |Res(F, G)|*.

As F,G e (’)K[ ], the matrix of © in the canonical bases has coefficients in Og. By Cramer’s formulae,
we have [[©7!]| < Res(F.O| FG)| so that [(©7 o ®)(f,g)| < c|Res(F,G)|, i.e. (©7'o®)(f,g) €V, ®V,,. This

implies that © ! o ® induces a map A: (V,, ®V,,) = Vi, ® V..

(34)Again, this is not really necessary once the discriminant ideal has been properly defined.
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o Let (f1,91), (f2,92) € V;, @ V.. We have

IA(f1,91) = A(f2,92)| = [©7 " (faga — f191)]
= |07 (falg2 — 91) + g1 (f2 — f1))|

< m max{|f2|Gauss |g2 - gl|Gauss ’ |gl|Gauss |f2 - f1|Gauss}

< EmaXﬂgQ - 91|Gauss ) |f2 - f1|Gauss}
which shows that A is a contractive map. Now W,, and W, are finite dimensional K-vector spaces: they
are complete (¢f theorem 3.4.12). The same holds for the closed subsets V;, and V;,,. We may thus apply
the fixed point theorem: there exists (f,g) € V,, @ Vi, such that A(f,g) = (f,9), i.e. ®(f,g9) = O(f,9),
which means that P — FG — fg = fG + gF, in other words P = (F + f)(G + g), so that P = FG where
F=F+ f and G=0G+ g satisfy the contition of the statement. a

Remark 3.6.2. Newton’s lemma (theorem 3.3.10) is a special case of theorem 3.6.1: let a € Ok be such that

|P(e)] < e |P'(a))’. Put F(X) =X —a and G(X ):M: z PM( )X —a) ! in Og[X]. The

X—«a

assumption (i) of theorem 3.6.1 is satisfied with n = 1 and m = d—1 Where d = deg(P). As P—FG = P(«),
the assumtion (iii) is also satisfied. As Res(F,G) is the determinant

10 - 0PlH(a)

L0 = P'(«)
"1 PRl(a)
0 - 0 P'(a)
(we made the change of variable Y = X — «), the hypothesis |P(a)| < e|P’(a)® translates into the

1nequahty |P — FG|gauss < € |Res(F, @)|?, which is precisely assumtion (i ) of theorem 3.6.1. We thus have
F,G € Og[X] satisfying the conclusion thereof: we have P = FG and F(X) = X — &, so that P(d) = 0,
and |&@ — af = |F — Flgauss < € [Res(F,G)| = ¢|P'(a)].

Corollary 3.6.3. Let P, F,G € Og[X] be such that:

(i) deg(F) =n, deg(G) = m and deg(P) = n +m;
(ii) P = FG has degree n +m and gcd(F,G) = 1 (where P denotes the image of P in kx[X]);
(i) P— FG e Wyim,

Then there exist ﬁ, Ge Ok[X] such that:
o P= ﬁé,
e F—FeW,and G—GeW,;
o |F — F|Gauss <1 and |G— G|Gauss < 1.

Proof. As F,G € Og[X], we have Res(F,G) € Or. As deg(P) = n + m, we have deg(F') = n and
deg(G) = m, so that Res(F,G) = Res(F,G). As gcd(F,G) = 1 by hypothesis, we have Res(F,G) € k5, so
|Res(F,G)| = 1. As P = FG, we have ¢ := |P — FG| € [0, 1[: the result follows from theorem 3.6.1. O

3.7. Structure of complete discrete valuation fields. In this section, we assume that (K, |.|) is a
complete and discrete non archimedean valued field. This implies that O is noetherian. Let vx be the
normalized valuation associated to [.|, i.e. such that v (K*) = Z, and 7k a uniformizer of K.

3.7.1. Structure of the additive group.

Proposition 3.7.2. (STRUCTURE OF THE RING OF INTEGERS OF A FINITE EXTENSION). If L/K be a finite
separable extension of degree d, then Oy, is a free Ox-module of rank d.

Proof. As Oy, is the integral closure of Ok in L (¢f corollary 3.5.10), it is noetherian hence of finite type
over Ok (¢f corollary 1.10.39 (1)). As Ok is a PID and Oy, is torsionfree, it is a free Ox-module (cf
corollary 1.4.15). Its rank is d = [L : K] since L = Oy, [é] ~ K ®o, Or. O

We have the filtration
{O}c--cmi'cm}c-- cmg c O

and fractional ideals in K are of the form m} = 7% Ok with n € Z.
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Proposition 3.7.3. Let ¥ < Og be a complete set of representatives for kg containing 0. For each
n € Z, let m, € K* be such that vk (m,) = n (for instance one may take m, = 7% for all n € Z). Put
& = {(xn)nez € £%; x, = 0 for n « 0}, and

f: &> K
(xn)nEZ = Z TnTp.

nez

Then f is a bijection.

Proof. First observe that f is well defined, because K is complete for vy .
o Let x = (Tp)nez and y = (Yn)nez be distinct elements in &: there exists N € Z such that zny # yn

and (Vi < N)z; = y;. We thus have f(y) — f(x) = > (yn — zn)m € K. As yny # xy, we have
n=N

v (yn —xn) = 0, hence v ((yv —zn)7n) = N <n < vg((yn — 2n)my) for all n > N. This implies that

v (f(y) — f(x)) = N < 4+, so that f(y) — f(x) # 0, showing that the map f is injective.

o Let x € K*. There exists a unique ng € Z such that 2 € T2 Ox\n10 ' Ok, i.e. © € 1, 0% (we have

vk (r) = novk (7K )). By definition of X, there exists a unique z,,, € X\{0} such that x —z,,7n, € Tne+10k.

m
Let m = ng be such that x,,, ...,z € ¥ have been constructed such that x — >} z,7, € T +10k: write
n=ngo

m
T— Y TpTn = Tm4+1Ym+1 With ymi1 € Ok. By definition of ¥ again, there exists a unique 11 € ¥ such

n=ngo
m+1
that ym+1 = Tmy1 mod mg, and we have © — Y, z,m, € Tm120k. By induction, we thus construct a
n=ngo

m
sequence X = (Z,)nez € & such that x, =0 for all n < ng and z — Y 2,m, € 410k for all n € Zs,,.
n=ng
Passing to the limit an m — o0, we get = f(x), showing that f is surjective. O

Corollary 3.7.4. We have Card(K) = Card(kx)N. In particular, K is uncountable.
Corollary 3.7.5. The restriction of f induces an homeomorphism
f:X%0 50
where %> is endowed with the product topology, each copy of ¥ being endowed with the discrete topology.

Proof. « We know that f: ©%>0 5 O is bijective by proposition 3.7.3.
e Let a € Ok and N € Zz(. Write f~!(a) = (an)nez-,- By construction we have

fHa+7ROK) = {(Tn)nezso ; (Y0 < N) iy = an}.

This implies that via f, the open subsets {a + T¥ O} sco, (which form a basis for the topology on Of)

NEZ;U
correspond to the open subsets {{(zn)nezs, ; (Y0 < N) &, = ay}} aco, (which form a basis for the product
NeZzxo
topology on $.%>0). This precisely means that the bijection f is an homeomorphism. O

Example 3.7.6. If K = Q,,, we have kg = F, and we can take ¥ = {0,1,...,p — 1}. An other choice is
given by X = {0} U 1,1 (cf example 3.3.12). In particular, we have Card(Q,,) = Card(Z,) = pN = Card(R).

3.7.7. Structure of the multiplicative group. The sequence
{1} > O > K* =5 Z — {0}
is exact. The choice of the uniformizer wx provides a splitting for this sequence: we have
K* ~OF x 1%

Definition 3.7.8. For i € Z>(, we put
U}?:{Ofxf | ifi=o

1+ml ={zeK;vg(x—1) =4 ifi>0
This defines a filtration of O by subgroups

{l}c"‘CUI((i-H)CUI((i)C---CUI((l)CUI(?)=OIX(
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Remark 3.7.9. As Ok =B(0,1) = B (0, ﬁ) is both open and closed in K, so are the subgroups Uﬁ(i) in
TK

K*. Note that as open balls are both open and closed, the topology on K is totally disconnected, i.e. its
connected components are its points.

Proposition 3.7.10. (1) The canonical projection O — ki;  — (r mod mg) induces a group isomor-
phism

v

(2) The map Ug) — kg 1+ mhx — (r mod mg) induces a group isomorphism

DO 5
Proof. (1) As © € Og is invertible if and only if + mod mg € kj, the canonical map UI((O) — Ky is
surjective. Its kernel is {x € O ; x =1 mod mg} = Uf((l), whence the result.
(2) The map UI(;) — kg; 1+ 7z — (r mod mg) is surjective (because Ox — ki is) and its kernel is
Uiy, 0

3.8. Ramification. Here again, we assume that (K, |.|) is a non archimedean valued field.

Definition 3.8.1. Let L/K be a finite extension, and |.|; an absolute value extending |.| to L. As (K, |.|) is
non archimedean, so is (L, |.|; ). Denote by Ox and Oy, (resp. ki and k1) the rings of integers (resp. the
residue fields) of (K, |.|) and (L, |.|, ) respectively (note that O and k1, depend on the extension |.|, ).
The inclusion Og < Oy, induces a field extension k1, /kx, whose degree

fL/K = [FJL : HK]
is called the residual degree of the extension (L, |.|;)/(XK,|.]). As |.|; extends |.|, the subgroup |[K*| c Rsg
is a subgroup in |L*|,. The index
ey = [|1L7], + [KX]
is called the ramification index of the extension (L, |.|,)/(k,|.]).
Theorem 3.8.2. ey /i fr/x < [L: K].

Proof. Let n,m € Z=o be such that n < ep/x and m < fr)x. Fix x1,...,2, € L such that the cosets
{lzil; |K*|}1<i<n are pairwise distinct. Similarly, let y1,...,ym € Or whose images 7,,...,7,, € KL are
linearly independant over kx: we have to show that {z;y,} 1<i<n are linearly independent over K.

1<j<m

m
o We first prove that if Ai,..., A\, € K and o = }, \jy; € L, then ||, = | max |A;]. This is obvious if
j=1 <jsm
A1 =+ =)\, = 0: assume the contrary. Renumbering if necessary, we may assume that |\1| = max [Aj]-
IJjsm

Dividing a by A1, we reduce to the case where Ay =1 and A\; € Ok for all j € {1,...,m}. As the elements
Y1s---,Um € k1 are linearly independant over kg, the image of « in k7, is non zero, so |a|, = 1, proving
the claim.

n m
e Let (i ;) 1<i<n be elements in K such that >, X; jz;y; = 0: we have > a;2; = 0 with o = 3] A\ ;5

Isjsm 1<i<n i=1 j=1
1<j<m

for i € {1,...,n}. If one among the ai,...,q, is non zero, there exist 1 < i; < is < n such that

|, @iy |, = |au,@iy|;, > 0. Then oy, a,, # 0, so |a;, |, = max |Xiy ;] € |[K*|, and similarly |a,|; € |[K*],

contradicting the fact that the cosets |x;, | |[K*| and |z;,|; |K*| are distinct. This implies that we have
a1 =+ =ay =0, whence \;; =0 foralli e {1,...,n} and j € {1,...,m} (since |o;| =  max |Ai ;| by
Jsm

what precedes). O

Remark 3.8.3. The theorem implies the finiteness of e;/x and fr /. Note that the inequality in theorem
3.8.2 can be strict.

Theorem 3.8.4. Assume (K, |.|) is complete and |.| is discrete. Then ey /x fr/x = [L: K].

Proof. Put e = ep/x and f = fr /. We know that |.|; is unique (cf theorem 3.5.6). As e is finite and |.|
is discrete, so is |.|,: let 7, € O be a uniformizer. As |L*|, and |K*| are isomorphic to Z, the quotient
group |L*|; /|K*| is cyclic of order e. This implies that |7rL|iZ = |K*|.
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Let y1,...,yr € O whose images ¥y,...,y; € £ are linearly independant over sx. This implies that
Or =410k +--- +yyOk + 7 Or: an immediate induction shows that

Op = Z WiijK-i-ﬂ'iOL = Z WiijK + 7 Of

0<i<e—1 0<i<e—1
1<j<f 1<j<f
where g is a uniformizer of K. By induction, we have Op, = 3, ﬂiijK + 7% Op forall ne Z-g. As
0<i<e—1
1<j<f
O, is complete for the mx-adic topology, we deduce O, = >, 7yy;Ox, whence L = > Kn}y;,
0<i<e—1 0<i<e—1
1<j<f 1<j<f
so[L:K]=ef. O

Proposition 3.8.5. Assume that (K |.|) is complete, |.| discrete, and let L/K be a finite extension such that
kL/kK is separable. Then there exists o € Of, such that O, = Ok|[a].

Proof. e As k1/kK is separable, there exists a € O whose image @ € xr, is a primitive element, i.e.
such that k; = kx(a). Let 7 € Or be a uniformizer. Put e = e /x and f = fr/x. The proof of

previous theorem shows that {W%O&j}ogi<e generates the Ok -module Op. As Ok is a DVR hence a PID,
o<j<f o
the Ox-module Oy, is free (of rank n = ef): this shows that {7} a}o<i<e is an Og-basis of O.
o<j<f

e Denote by vy, the normalized valuation on Op. Let P € Ox[X] be a monic polynomial (necessarily of
degree f) lifting the minimal polynomial of @ over kx = A/m4: we have P(a) € my.

Assume that vp(P(a)) > 1. As kL/kk is separable, we have P’'(@) # 0 (where P € kx[X] denotes the
image of P mod my[X]), i.e. P'(a) € OF. Now we have P(a + 1) = P(a) + P'(a)ry, + B} (where

f ) )
8= _§2P[Z](a)ﬂ'52 € Op). As vy (P'(a)mr) = 1 < min{vg(P(a)),vr(B72)}, we have vy (P(a + 7)) = 1:

replacing « by « + 71, if necessary, we can assume that vy (P(«a)) = 1, i.e. that 7 := P(«) is a uniformizer
of L.

e As above, {m'a’}o<i<c is an Og-basis of Op. As 7'ad € Ok[a] for all i,j € Zso, this implies that
o< f
O, € Okla]. The reverse inclusion is trivial since a € Oy,. O

Definition 3.8.6. Assume that (K, |.|) is complete, and let L/K be a finite extension: the absolute value |.|
extends uniquely into an absolute value |.| on L.

(1) The extension L/K is unramified when k1 /kk is a separable extension of degree [L : K]. By theorem
3.8.2, this implies that ey x = [|[L*]: [K*|] = 1 (the converse holds automatically when |.| is discrete and
ki perfect by theorem 3.8.4).

(2) The extension L/K is totally ramified when k1, = ki (i.e. fr)x =1).

Theorem 3.8.7. Assume that (K |.|) is complete, let L/K be a finite extension, and k a subextension of
kr/kk such that k/kk is separable. Then there exists a unique subextension M of L/K such that M /K is
unramified and ks = k.

Proof. e Existence. By hypothesis, there exists @ € xr, such that k = xx[@] and the minimal polynomial P
of @ over k is separable, whence P’(@) # 0. Let P € Ox[X] be any monic lift of P, and a € Of, any lift
of @. Put € = |P(a)| € [0, 1] (since the image of P(a) in s, is P(@) = 0). We have |P’(a)| = 1 since the
image of P'(a) in ky, is P'(@) # 0. As |P(a)| < ¢ |P'(@)]*, Newton’s lemma (¢f theorem 3.3.10) implies the
existence of a root & of P in L, such that |& — «| < ¢|P'(a)| = € < 1, so that the image of & in k, is @.
Replacing a by &, we may assume that P(a) = 0. Put M = K(a) < L. Note that since P is monic and P is
irreducible in kx[X], the polynomial P is irreducible in Ox[X], hence in K[X] (assume P = P; P, in K[X]:
rescaling P; and P, we can assume that P, and P, are monic, so that |P1|q, . = 1 and |Pa|q, e = 15 as
|P1|Gauss |P2|Gauss = |P|Gauss = 1, we have in fact |P1|Gauss = |P2|Gauss = 1, i.e. Pl,PQ € OK[X]) This
implies that [M : K] = deg(P) = deg(P) = [k : kx]- As @€ ks, we have k Ky, whence

[M:K|=[k:kg]<[cm: k] <[M: K]

(the second inequality follows from theorem 3.8.2), so kpr = k and [kpr : kx| = [M : K], whence M /K is
unramified.
e Unicity. Let M’ be an other subextension of L/K such that M’/K is unramified and x(M') = k. As

@ € k = k(M'), Newton’s lemma (¢f theorem 3.3.10) applied to P € M'[X] provides a root 8 € M’ of
deg(P) .
P, whose image in x(M’) is @ Then we have 0 = P(3) — P(a) = Y. (8 —a)'Pl(a). If B # «a, we

i=1
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deg(P) , , ,
can divide this equality by 8 — a, and get 0 = P'(a) + Y. (8 — )" 'Pl(a). As Pl e Og[X] for all
=2

i € Z~o and o, € O, we have P'(a) € (8 — a)OL, thus_|P’(a)| < 1 since f — o € my, (because 5 and
« both lift @). This contradicts the fact that |P’(«)| = 1: we have 8 = «, so that M = K(«a) € M'. As
[M': K| =[k:kk]=[M: K], we have M’ = M. O

Proposition 3.8.8. Under the assumptions of theorem 3.8.7, if &« € Oy maps to @ € k such that k = kg (@),

d-1
then Oy = Ok[a]. Moreover, if z = 3, \ja' € M = K(a) (with d = [M : K] and ), ..., \¢—1 € K), then
i=0
|z] = max |A;|.
0<i<d

Proof. We have a € M thus K(a) € M, and k © kg (q), thus [M : K] = [k : kk] | [K(a) : K] | [M : K]:
d—1
this implies that [K(a): K] =[M : K], i.e. M = K(a). Let z = . \ija® € M with )\g,...,\q_1 € K. Fix

=0
d-1 ,
iop € {0,...,d—1} such that |\; | = Jnax, |As|: if z # 0, we have A;, # 0. Then A\, 'z = 3 A, '\ € Ok[a]
<i< i=o
because |A; ' A;| < 1, with equality for i = do: as (1,@,@%,...,@%"!) is a basis of k over kg, this implies that
the image of \; '@ in kp = k is not zero, whence |A; 'a| =1, i.e. || = |2, proving the second assertion.
If © € Oy, this implies that |\;| < |z| < 1ie N\ € Ok forall i€ {0,...,d—1}, so that 2 € Ok [a]: we have

Oum < Ok[a]. The reverse inclusion is obvious. O

Corollary 3.8.9. Assume that (K, |.|) is complete, and let L/K be a finite extension such that kr/kx is
separable. There exists a unique subextension 7' of L/K such that T'/K is unramified and L/T is totally
ramified. If M is a subextension of L/K such that M/K is unramified, then M < T. Conversely, any
subextension M of T/K is unramified over K.

Proof. By theorem 3.8.7 applied to k = ky,, there exists a unique subextension T of L/K such that T/K is
unramified and kp = k1. This last property means that L/T is totally ramified.

Let M be a subextension of L/K such that M /K is unramified. Theorem 3.8.7 applied to the extension T /K
and k = k), implies that there exists a unique subextension M’ of T'/K such that M’/K is unramified and
Ky = k- Similarly, it implies that M is the unique subextension of L/K such that M /K is unramified
and whose residue field is xps: by unicity, we have M’ = M, so that M c T.

If M is a subextension of T/K, we have [kr : kyp| < [T : M] and [k : ki ] < [M : K]. The product of
these inequalities is the equality [kr : kx] = [T : K]: these inequalities must be equalities, in particular
[ka: ki) = [M : K. As kpr/kK s separable since kr/kg is, the extension M /K is unramified. O

Definition 3.8.10. The subextension T of L/K is called the mazimal unramified subextension®® of L/K.

Corollary 3.8.11. Under the assumptions of corollary 3.8.9, if M; and M, are two subextensions of L/K
that are unramified over K, their compositum M7 M, is unramified over K.

Theorem 3.8.12. Assume that (K |.|) is complete, and let L/K be a finite Galois extension such that
k1 /KK 1s separable. Then k;/kk is Galois, and there exists a natural, surjective group homomorphism
Gal(L/K) — Gal(kr/kK), whose kernel is Gal(L/T), where T is the maximal unramified subextension of
L/K. Tt induces a group isomorphism Gal(T/K) = Gal(k /K ).

Proof. As we have seen during the proof of theorem 3.8.7, if @ € x is such that k;, = xg(a), and if
P € Ok[X] is any monic polynomial lifting the minimal polynomial P € kx[X] of @ over rf, then P is
irreducible in K[X], has a unique root « € L lifting @, and T = K («).

e As L/K is Galois and P(a) = 0, the polynomial P is split in L[X] with simple roots in L (since «

d
is separable over K since L is): we can write P(X) = [[(X — «;), where a = a1,...,aq are pairwise
i=1
distinct elements in L. If ¢ € {1,...,d}, there exists o € Gal(L/K) such that o; = o(«), which implies
that |a;| = |o(a)| = |a, so that a; € Or: let @; be its image in k1. The factorization above induces the
d

factorization P(X) = [[ (X —@;). This implies in particular that k7, = rx (@) is a splitting field for P over
i=1

ki: as P is separable over rf (since « is, because k1 /kx is), the extension xr/kx is Galois.

e Let 0 € Gal(L/K). We have ¢(Or) = Or, and o(my) = my, (because o is an isometry by unicity of the

absolute value on L extending |.| on K). This implies that ¢ induces a ring homomorphism 7: kK, — K,

(35) Tragheitskérper in German.
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i.e. a field automorphism of k7. As 0| = ldg, we have 7|, = Id,, so that & € Gal(xr/k ). The induced
map Gal(L/K) — Gal(kp/kK) is obviously a group homomorphism.

e Let v € Gal(kL/kK) : there exists i € {1,...,d} such that y(@) = @; (since the conjugates of @ over kg
are @y, ..., aq because P is irreducible). As o and «; are conjugate over K (being roots of the irreducible
polynomial P), there exists o € Gal(L/K) such that o(a) = a;. This implies that v and 7 coincide on @:
they are equal since kj, = ki (@). This shows the surjectivity of the map Gal(L/K) — Gal(kL/kK).

e Let 0 € Gal(L/K) be such that @ = Id,;, . This implies that o(«) maps to @ in k1. As the only root of P
lifting @ is «, we have o(a) = «, and o € Gal(L/T). The converse is obvious.

e As Gal(L/T) = Ker(Gal(L/K) — Gal(kr/kK)), the subgroup Gal(L/T) is normal in Gal(L/K), so that
T/K is Galois (a fact that can be checked directly by observing that 7' = K («) contains all the conjugates
ai,...,aq of a over K), thus Gal(T/K) = Gal(kr/k k) passing to the quotient. O

Definition 3.8.13. Under the assumptions of theorem 3.8.12, the subgroup Ik := Gal(L/T’) is normal in
Gal(L/K). Tt is called the inertia subgroup of the extension L/K. We thus have an exact sequence

{1} e IL/K - GaI(L/K) i Gal(mL/mK) e {1}

Proposition 3.8.14. Assume that (K, |.|) is complete, and let L/K and L'/K two finite and unramified
extensions. The natural map

HomK_alg(L, Ll) - HomKK_alg(nL, KLI)
is a bijection.

Proof. e The extension 1 /kk is finite and separable: there exists @ € k such that k = kg (@) (primitive
element theorem). Let P € kx[X] be the minimal polynomial of @ over rx, and P € Ox[X] a monic lifting
of P. As @ is separable over rx, we have P'(@) # 0: we can apply Newton’s lemma (cf theorem 3.3.10),
so there exists a unique element « € O, mapping to @ in ky, and such that P(a) = 0.

e Let 0 € Homg aig(L, L'): we have o(Or) © Ops, so that o induces a morphism 7: kK, — Kp of Ki-
algebras. As P(a) = 0 in L, we have P(o(a)) = 0 in L’ as well (since P € Og[X]). The image of o(«a) in
k1 coincides with 7(a@). Again, we can apply Newton’s lemma to P in Oy the unicity implies that o(«)
is the unique element o/ € Or, mapping to (@) in xz+ and such that P(o’) = 0. This shows that there is a
bijection between the possible values for 7(@) (these are the roots of P in xz/) and the possible values for
o(a) (these are the roots of P in L'). As & and o are uniquely determined by (@) and o(«) respectively,
this proves the bijectivity. O

Theorem 3.8.15. Assume that (K, |.|) is complete, and let k/kx be a finite and separable extension. There
exists a finite unramified extension L/K such that x; ~ k. This extension is unique up to isomorphism.

Proof. e As k/kk is finite and separable, there exists @ € k such that k& = kg (@) (primitive element
theorem): let P € kx[X] be its minimal polynomial over k. Let P € Ox[X] be any monic lift of P: as
P is irreducible in kx[X], so is P in Og[X], hence in K[X]. This implies that L = K[X]/{P(X))is a
finite field extension of K, and that [L : K] = [k : kx]. Put A = Og[X]/{(P(X)): as P € Ok[X], the
inclusion Og c K[X] induces a morphism of Ok algebras A — Op, whence a morphism of kx-algebras
kr[X]/{P) — Or/mxgOr. Composed with the canonical map Or/mxOr — k1, we deduce a morphism
k — k1, of extensions of kx. This implies in particular that [kr : kx| = [k : kx] = [L : K]: we must have
[k : ki) =[k: kK] =[L: K], so that the map k — kr, is an isomorphism, and L/K is unramified.

¢ The unicity follows from proposition 3.8.14. g

Corollary 3.8.16. Assume that (K, |.|) is complete. The functor L +— k1, is an equivalence of categories
between the category of finite unramified extensions of K and that of finite and separable extensions of k.

Proof. This is proposition 3.8.14 and theorem 3.8.15. g

Remark 3.8.17. The preceding statement is a special case of a very general result (on finite étale coverings
of schemes).

3.8.18. The case of a finite residue fields. Here we assume that (K, |.|) is a non archimedean complete valued
field, such that kx = F, is a finite field (so that ¢ is a power of a prime p). If L/K is a finite extension, then
k1 /kK is a finite extension of degree f, so kr, = Fyr = Fy (C,s 1), where (s, is a primitive (¢/ —1)-th
root of unity, i.e. a root of the separable polynomial ®s_;(X), the latter has a root in L, and T' is a
splitting field of ®,;_; (X): we have T' = K ((,r_1) where (,s_; is a (any) primitive (¢/ —1)-th root of unity
in L.
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The extension k1 /kk being Galois, T/K is Galois as well, and Gal(T/K) = Gal(F; /F,) is cyclic of order
[, generated by the Frobenius automorphism @ defined by @(z) = 2¢ for all x € F ;. This means that
Gal(T/K) is generated by the Frobenius automorphism ¢, which is characterized by

o(x) =27 mod mp

for all x € T. Note that by unicity of lifts of roots of X4’ =1 — 1 in T, we have ©(Cyro1) = Cgfil.

Proposi_tion 3.8.19. Let K be an algebraic closure of K. For f € Z~g, there exists a unique subextension
Ky of K/K which is unramified and whose residue field is F .

By what theorem 3.8.15, K is the splitting field of x9 - XinK.

Notation. We denote by Q, the unique unramified extension of Q, (in some fixed algebraic closure of Q,))
whose residue field is F,. Its ring of integers is denoted Z,.

Definition 3.8.20. (TEICHMULLER REPRESENTATIVES) Let Qp be an algebraic closure of Q,. If f € Z¢

and z € F s, then z is a root of the polynomial X »" _ X. As the latter is separable modulo p, Newton’s

2
lemma (cf theorem 3.3.10) implies that there is a unique element [x] € Z,,; which is a root of X »' — X, and

whose image in F,s is z. Put together, those maps provide a canonical map

[] Fp - 06,,
which is a section of the canonical projection OQ, — F,. Note that by unicity, we have [zy] = [2][y] for
all x,y € F,. The element [z] is called the Teichmiiller (or multiplicative) representative of z.
Of course, we have [0] = 0 and [1] = 1. If z generates F,;, then x is a primitive (p/ — 1)-th root of unity
in F,, hence [z] is a primitive (p/ — 1)-th root of unity in Qp.
3.8.21. Totally ramified extensions. If L/K is a finite extension whose residual extension k. /k i is separable,
there is a unique subextension T of L/K such that T/K is unramified with residue field s, and L/T is
totally ramified. We have [T : K] = f1/k, whence [L : T] = ey )k (because [L : K] = ey k f)x by theorem

3.8.4). As unramified finite extensions are well understood by corollary 3.8.9 and theorem 3.8.12, we now
explain the structure of totally ramified finite extensions, in the case where the value group |K*| is discrete.

We henceforth assume that (K, |.|) is a complete and discrete non archimedean valued field.

Let K be a fixed algebraic closure of K and E(X) = X¢+a; X¢ ' +---+a,_1X +a. € K[X] an Eisenstein
polynomial, i.e. such that a; € mg for all i € {1,...,e} and a. € mg\m% (in other words vk (a;) > 0 for
ie{l,...,e} and vk (a.) = vk (nK)). Let Il € K be a root of E and L = K(I). As [L : K] = e is finite, |.|
extends uniquely to L by theorem 3.5.6 (i.e. vk extends uniquely into a valuation vy, on L).

Lemma 3.8.22. The extension L/K is totally ramified, II is a uniformizer of L and O, = Ok [II].

Proof. e Note that L is complete since it is finite dimensional over K (¢f theorem 3.4.12). As P(II) = 0,
we have [T e Op, and

(%) I1° = urk

where u = (ae + @e—rIl + -+ + a111°71). For i € {1,... e}, we have ““H%i‘ < 1 since |a;| < |7k]

_1
T T

(because a; € mg = T Ok) and [II| < 1 since IT € Op. This implies that u € Or: equation (#) implies that

I1|° = |u| |7k | < 1, showing that II € my. This implies that Wl 1ifje 1,...,e—1}. On the other
g TK

hand, we have | 2=| = 1 because a. € Tk O (since E is an Eisenstein polynomial). As |2=| > —aig;_l‘ for
all i € {L,....e — 1}, we have [u] = max || — 1, s0 that u € O This implies that |II| = |nx|"",
<i<e

showing that §/|K*| c |L*|, whence [|L*|: |[K*|] = e = [L: K]. By theorem 3.8.4, this implies that L/K
is totally ramified, and |L*| = [II|* = {/[K*|. In particular, IT is a uniformizer of L.

e As II € Oy, we have O[Il] € Op. Conversely, let z € O \{0}. As (1,II,112,... II°7!) is a K-basis of
L, we can write © = \g + M IT 4+ -+ + Ao (II¢71 with \g,..., s 1 € K. If 0 < i < j < e are integers, we
have |\II| # [A\;II/| unless A; = \; = 0, because |II’* ¢ |K*|. This implies that |z| = Jnax Il As
z € Op, have thus |\ | |T]° < 1, d.e. [N < |T|7" < |mg| ' forallie {0,...,e—1},de |N| <1ie A\eOgk
for all i € {0,...,e — 1}, hence x € Ok [II]. O

Theorem 3.8.23. A finite extension L/K is totally ramified if and only if L = K(n), where 7y, is a
uniformizer of L, and a root of an Eisenstein polynomial over K. Then O = Ok|[n].
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Proof. o Assume L/K is totally ramified, and let 7, a uniformizer of L. We have |[L*| = |r.|* and
|[K*| = |7TK|Z: as [|[L*] : |K*|]] = e := [L : K], we have |7x| = |rz|°. The family (1,7,72,...,75 ")
is linearly independent over K: if we had a non trivial relation A\g + A7 + -+ + )\e,lﬂz_l = 0 with
A0, -5 Ae—1 € K, there would be 0 < i < j < e integers such that 0 < |)\Z-7r2| = ‘)\ﬂr%
fact that w77~ ¢ |K*|. This implies that (1,7, 72,...,75 ') is a basis of L over K, so that L = K (7).

Let E(X) = X+ a1 X'+ -+ 4+ ac_1X + a. € K[X] be the minimal polynomial of 77, over K. As 7,
belongs to O, it is integral over Ok (c¢f corollary 3.5.10): we have E(X) € Og[X]. Ifi e {1,... e}, the
coefficient a; is, up to the sign, the i-th elementary symmetric polynomial in the conjugates of 7wr. Since all
of these belong to my (where N is a normal closure of L/K), we have a; € my n K = mg. Moreover, the

, contradicting the

constant term satisfies ae = + N (1), so that |ac| = [Np/k(mL)| = |72|” = |7k | (¢f proposition 3.5.9),
which shows that E' is an Eisenstein polynomial.
e The converse and the statement on Oy, are nothing but lemma 3.8.22. O

3.8.24. Tame and wild ramification. Here again, we assume that (K, |.|) is a complete and discrete non
archimedean valued field.

Definition 3.8.25. A finite extension L/K is tamely ramified when its residual extension is separable and
er/k is prime to char(kx ), and wildly ramified otherwise.

Remark 3.8.26. When char(kx) = 0, every finite extension is tamely ramified.
In what follows, we put p = char(kg) if char(kg) > 0 and p = 1 if char(kx) = 0.

Lemma 3.8.27. Let L/K be a totally ramified extension. Write [L : K] = p"m with ged(p,m) = 1. It
z € L is such that 2z =1, then z € K.
e—1

Proof. Put e = [L : K], and let 7 be a uniformizer of L: we have O = é—) Okmt. As |z| = 1, we have
=0

e—1 .
z € Of: there exists a unique y € Ok such that z —y € @ Ogn’: we have |z —y| < ||, so in particular

=1
|yl =1. Let P(X) = X™ — 1€ Og[X]. We have |P(y)| = |P(y) — P(2)| = |y"™ — 2| < |y — 2| < |7L]- On
the other hand, we have P’(y) = my™ !, so that |P’(y)| = 1 since gcd(p,m) = 1 and |y| = 1. Newton’s
lemma (¢f theorem 3.3.10) implies that there exists a unique element § € K such that P(y) = 0 and
|7 — y| < |mp|- This implies that |§ — 2| < |7z|. Applying unicity in L then shows that z = € K. O

Theorem 3.8.28. Let L/K be a totally ramified extension of degree e = p"m with gcd(p,m) = 1. There
exists a unique subextension V of L/K such that V /K is tamely ramified and [L : V] = p". Moreover, there
exists a uniformizer m of K such that V = K( /).

Proof. e Existence of V. Let mx (resp. m) be a uniformizer in K (resp. L). As the extension L/K is
e—1 )

totally ramified, we have O, = @ Ok}, and 7§ = ung, with u € OfF. As k1, = ki, there exists ug € O%
i=0

such that u and ug have same image in r, so that z = 3~ € Oy, satisfies [z — 1| < 1.

Now let P(X) = X™ — 2z € OL[X]: as |z —1] < 1, we have |P(1)] < 1. Also, |P'(1)] = |m| = 1 since

ged(p, m) = 1: by Newton’s lemma (¢f theorem 3.3.10), there exists a unique w € Oy, such that P(w) = 0

and |w—1| < |P(1)] = |z —1|. We thus have 7T€Tm = wow™rg, so that my = 7:% € Oy is such that
T = wymig =: 7 is a uniformizer of K. Let V = K(my): as my is a root of the Eisenstein polynomial
X™ — 7 e Ok, we have [V : K] = m: the extension V/K is tamely ramified, and [L: V] = [[‘L/I;]] =p".

e Unicity of V. Let V' be a subextension of L/K such that [V : K] = m. Applying the construction above

inside V' instead of L provides an element 7y € V' such that 7{}, is a uniformizer of K: if z = :—“//’ € Op, we
have X := 2™ € O. There exists y € Ok such that |z — y| < |7z |, then [y™ —a™| < ||, i.e. |Q(y)] < |7,
where Q(X) = X™ — X € Ok. As |Q'(y)| = |my™ | =1 (since ged(p,m) = 1 and |y| = |z| = 1), Newton’s
lemma again provides an element § € O such that g™ = \. If z = % € Or, we have 2™ = 1. Lemma 3.8.27

implies that z € O, so that © = yz € Oj;, showing that my» € V, whence V' = V. O

Remark 3.8.29. In the previous theorem, one cannot take any uniformizer .

Definition 3.8.30. Let L/K be a finite field extension such that xj,/kk is separable. Let L/K be a finite
extension whose residual extension is separable. What precedes shows that there are unique subextensions



92 Number theory

T c V such that T/K is unramified, L/T is totally ramified, V/K is tamely ramified and L/V is totally
ramified of degree a power of p.

totally ramified
/\
L

unramified tame wild

The subextension V' of L/K is the maximal subextension of L/K which is tamely ramified over K: it is
called the mazimal tamely ramified subextension*®) of L/K. Note that by theorem 3.8.28, there exists a
uniformizer 7 of T such that V = T'( ®/7), where ey, /i = p"m and gcd(p, m) = 1. Note that in general, one
may not take 7 in K.

3.9. Exercises.

Exercise 3.9.1. Let k be a finite field. Show that the only absolute value on k is the trivial one.

Exercise 3.9.2. Let (K, |.|) be a valued field.

(1) Show that if |.| is non archimedean, then |.|” is an absolute value for all v € R~o.
(2) Show that if |.| is archimedean, then |.|” is an absolute value for all v €]0, 1].

(3) What are the vy € R~ such that |.|7 is an absolute value on Q?

Exercise 3.9.3. Let p and g be two distinct prime numbers. Show that the absolute values |.|, and .|, are
not equivalent. Show also that |.|, and |.|,, are not equivalent.

Exercise 3.9.4. (INCOMPLETENESS OF Q). Let (K, |.|) be a complete valued field, such that |.| is non
trivial. Using Baire’s theorem, show that K is uncountable. Deduce that Q is non complete any of its non
trivial absolute values.

Exercise 3.9.5. Let (K, |.|) be a non archimedean valued field. Show that Card(K) < Card(sx )K",
Exercise 3.9.6. Let p be a prime number. Show that Q,, is not algebraically closed.

Exercise 3.9.7. Show that Q,/Z, ~ Z[p~']/ Z.

Exercise 3.9.8. Show that if p # 2, then 1 is the only p-th root of unity in Q,,.

Exercise 3.9.9. (APPROXIMATION). Let K be a field.
(1) Let |.| and |.|" be two absolute values on K. Show that the following are equivalent:
(i) || and |.|" are equivalent;
(ii) for all z € K, we have |z| <1< |2 < 1.
Let vo, ..., v, be pairwise distinct places, and |.|,,...,[.|,, absolute values representing vy,. .., v,.
(2) Show by induction on n € Z~ that there exists x € K such that |z|, > 1 and |z|, <1 forie {1,...,n}.
(3) Deduce that the diagonal morphism K — [] K,, has dense image, where K, denotes the field K

1=1
endowed with the topology defined by v;.

Exercise 3.9.10. Let K be a field, r1,...,r7, € Rand |.|;,...,|.|, non-trivial inequivalent absolute values
on K. Assume that |z[]" -+ |z|." =1 for all z € K*. Prove that ry = --- =, = 0 (in other words, there is
no finite product formula).

Exercise 3.9.11. Let (K, |.|) be a valued field.
(1) Show that the following are equivalent:
(i) |.] is ultrametric;
(ii) |n| < 1forall ne Z.
(iii) [2] < 1.
[Hint: to prove (ii)=>(i), use the binomial expansion.]
(2) Deduce that if char(K) # 0, then every absolute value on K is ultrametric.

(36) Verzweigungskdrper in German.
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Exercise 3.9.12. Let K be a field, |.| a nontrivial non archimedean absolute value on K, and Ok its ring
of integers.
(1) Show that Ok is integrally closed.
(2) Show that the following are equivalent:

(i) Ok is a DVR;

(ii) Og is noetherian;

(iii) the maximal ideal mg := {z € K ; |z| < 1} is principal,

(iv) |K*|is a discrete subgroup of R~g.

Exercise 3.9.13. Let K be a field. A subring A ¢ K is a valuation ring of K when (Vz € K)z ¢ A =
-1 € A (this implies in particular that K = Frac(A)).

(1) Show if A is a valuation ring of K and I, J are ideals in A, then either I < J or J < I. Deduce that A
is local (we denote henceforth its maximal ideal by m4).

(2) Let F be a field, A = F[[X, Y] the ring of formal series and K = F(X,Y")) = Frac(A) the field of formal
Laurent series. Is the local ring A a valuation ring of K7

(3) Show that a valuation ring of K is integrally closed.

(4) Let A ¢ K be a subring and p € A a maximal ideal. The aim of this question is to show that there
exists a valuation ring R of K such that A€ R and A nmp = p.

(a) Show that the set & of subrings B ¢ K such that A ¢ B and 1 ¢ pB contains an element R which
is maximal for the inclusion [hint: Zorn].

(b) Show that R is local, and that its maximal ideal mp satisfies A n mp = p [hint: consider the
localization of R at maximal ideal m ¢ R such that pR c m].

(c) Let z € K* be such that #,27! ¢ R. Using the fact that R[z], R[z~!] ¢ &, show that there exist
relations 1 = a1z + -+ + a,z™ and 1 = bz~ + -+ + b,z ™ with ay,...,an,b1,...,b, € mg.
Assuming n, m € Z~( minimal, derive a contradiction an deduce that R is a valuation ring.

(5) Let A ¢ K be a subring, B ¢ K the integral closure of A in K, and B’ the intersection of all the
valuation rings of K that contain A.

(a) Show that B c B'.
(b) Let z € K such that = is not integral over A. Show that z='A[z~!] is a strict ideal in A[z~!].
Conclude that there exists a valuation ring R such that = ¢ R [hint: use question (4)].

(c) Conclude that B’ = B.
(6) Let A be a PID, K = Frac(A4). Show that the valuation rings of K that contain A and are distinct from
K are the localizations A,4 where p is a prime element in A.
(7) Let A ¢ K be a valuation ring such that there exists a prime ideal p € A such that {0} € p € m4.
Show that the ring R = A[X] is not integrally closed [hint: take a € m4\p and b € p\{0}, and show that
the polynomial T2 + aT + X has a root f such that bf € XR but f ¢ R].

Exercise 3.9.14. Let A be a complete DVR, m € A a uniformizer, and > c A a complete set of representatives

for A/mA. Show that any element in A can be written uniquely as the sum of a convergent series zo +z17m +
2 .

Tom® + -+ in A.

Exercise 3.9.15. Let (K, |.|) be a non archimedean valued field and (L, |.|) its completion. Show that
|[K*| =|L*| and that kg ~ K.

Exercise 3.9.16. Let K be a field and |.|; ,|.|, two equivalent non archimedean absolute values on K. Show
that their value groups (resp. residue fields) are isomorphic.

Exercise 3.9.17. Let (K |.|) be a non archimedean valued field. Prove the following:

(1) for each r € R, the balls B(0,7) = {x € K; |z| < r} and B(0,7) = {z € K; |z| < r} are additive
subgroups of K;

(2) the unit sphere is a multiplicative subgroup of K *;

(3) B(1,1) = {z € K; | — 1| < 1} is a multiplicative subgroup of the unit sphere;

(4) for each r €]0, 1[, the balls B(1,r) and B(1,r) are multiplicative subgroups of B(1, 1).

Exercise 3.9.18. Let (K, |.|) be a non archimedean locally compact valued field. Show that its residue field
is finite and its value group is discrete.
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Exercise 3.9.19. Find examples of two complete non archimedean valued fields whose respective residue
fields and value groups are isomorphic, but which are not isomorphic as fields.

Exercise 3.9.20. Show that every non-trivial non archimedean absolute value on R has divisible value
group and algebraically closed residue field.

Exercise 3.9.21. Let (K, |.|) be a complete valued field such that |2| = 2.

(1) Show that R ¢ K and that |.| extends the “usual” absolute value on R.

(2) Show that if K # R, then K = C endowed with its “usual” absolute value |.| . [hint: if & € K\ R, show
that the map f: C — Rxo;2 — |0 — (2 + Z)a + 27| has a zero.|

Exercise 3.9.22. Let (V,|.|,/) and (W, |.|;;;) be normed vector spaces over a complete valued field (X, |.|).
Agsume that V' is finite dimensional. Show that each sub-K-vector space of V is closed, and that any
K-linear map f: V — W is continuous.

Exercise 3.9.23. Find an example of a (necessarilly non complete) non archimedean field (K, |.|) and a
finite dimensional K-vector space that admits two unequivalent norms.

Exercise 3.9.24. (OSTROWSKI FOR FUNCTION FIELDS). Let K be a field. As K[X] is factorial, we can
associate an absolute value |.|, on K(X) to any monic irreductible P € K[X]: fix ¢ €]0,1[, we have
IR|p = c"?(F) where vp(R) is the P-adic valuation of R € K(X). Also we have the absolute value |.| .
whose restriction to K[X] is given by |F|, = ¢~ () for any F € K[X].

(1) Compute the rings of integers and the residue fields of the absolute values mentionned above.

(2) Show that |.| , can be seen, after an appropriate change of indeterminate, as a P-adic absolute value.
(3) Show that any nontrivial absolute value on K (X) that is trivial on K is equivalent to |.|, for some
monic irreducible P € K[X] or to |.|,.

(4) Explain how to normalize the absolute values |.| p so that the product formula [] |R|, = 1 holds, where
veV
V is the set of irreducible monic polynomials union {co}.

(5) When K = Q, construct absolute values on Q(X) that are not equivalent to the absolute values above.
(6) What happens when K is finite?

Exercise 3.9.25. (NEWTON POLYGONS). Let (K, |.|) be a complete non archimedean valued field, K an
algebraic closure of K and v an associated valuation. If P(X) = a, X" +a, 1 X" 1+ +a1 X +ap € K[X],
the Newton polygon NP(P) of P is the convex hull in R? of the set of points {(,v(a;))}o<i<n U {00} where
oo denotes the point at infinity of the positive vertical axis.

°
My
. My
M1 Md
M,
(1) Let A€ R. Show that P\(X):= [] (X —a)e K[X].

U(g)ef—k
P(a)=0

(2) Let A € R. Show that the number (counting multiplicities) of roots = of P (in K) such that v(z) = —\
is equal to the length of the projection on the horizontal of the side of NP(P) of slope A (so it is 0 if there
is no such side).

(3) Deduce that if NP(P) has more than one finite slope, then P is reducible in K[X].

(4) (Irreducibility criterion) Assume that v is discrete and normalized, that P is monic and that NP(P)

has only one side of finite slope —=* where gcd(m,n) = 1. Show that P is irreducible in K[z]. Recover
Eisenstein’s irreducibility criterion.
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o0
Exercise 3.9.26. Let z € Q) and = = Y a,p" (with a, € {0,1,...,p — 1} for all n) its p-adic
n=vp ()
development. What is the p-adic development of —x?

o0

Exercise 3.9.27. Let x € Q,. Show that x € Q if and only if its p-adic development z =}  a,p" (with
n=vp(x)

an € {0,1,...,p — 1}) eventually becomes periodic [hint: reduce to the case where z € Q_y N Zy].

o0
Exercise 3.9.28. Let z = . 2" € Q,. Show that x is transcendental over Q.
k=0

0
Exercise 3.9.29. Let v € Q; and z = Y] a,p" its p-adic development. Let ng < ny < --- be the sequence
n=v
of indices such that a,, # 0. Assume that limsup
k—w

Nk+1
Nk

= +00. Show that z is transcendental over Q.
Exercise 3.9.30. Let (K, |.|) be a complete non archimedean valued field. Denote by Ok its ring of integers
and let P(X)=ap +a1 X+ +a,—1 X" ! +a,X" € K[X] such that apa,, # 0.

(1) Show that if P is irreducible, then |P|s, . = max{|ao|,|an|}.

(2) Assume that P is monic, irreducible, and ag € Og. Show that P € Og[X].

Exercise 3.9.31. Let p be a prime integer.
(1) Let u € Q. Show that the following are equivalent:

(i) ueZy;

(ii) wP~! is an n-th power in Q,, for infinitely many n € Z.
(2) Prove that the only field automorphism of Q,, is ldq .

Exercise 3.9.32. Assume that p is odd. Show that Q) / Q) ~ (Z /pZ)>.

Exercise 3.9.33. Let p be a prime number, K be a complete discretely valued extension of Q,. Denote
by v: K* — Z its normalized valuation and by e = v(p) its absolute ramification index. For i € N+, put
Uj =1+ m’, where mg is the maximal ideal of K. Prove that (Uj)? = U® when i > 7T

Exercise 3.9.34. (1) Let F be a field such that char(F) # 2 and z,y € F\F?. Show that F(\/z) = F(\/y)
if and only if there exists z € F'* such that y = z22.

(2) Let € Q): write x = 2¥2(*)y with u € Z5. Show that z is a square in Q, if and only if 2 | v2(z) and
u =1 mod 8Z,. Describe the group QJ / Qx*.

(3) Describe quadratic extensions of Q.
Exercise 3.9.35. Let a € Z. Show that the polynomial X2 + X + a has a root in Q, if and only if a is even.
Exercise 3.9.36. Show that Q* = {a”}, .o is open in Q.

Exercise 3.9.37. (HENSEL’S LEMMA). Let (K, |.|) be a complete discretely valued field and P € Og[X] a
monic polynomial.

(1) Show that if P is irreducible in Ok [X], its image in kx[X] is the power of an irreducible polynomial.
(2) Assume that the image P of P in kx[X] factors as P(X) = g1(X)g1(X) where g1, g2 € kx[X] are monic
polynomials such that ged(g1,91) = 1. Show that there exist unique G1,G2 € Ok [X] monic polynomials
whose images in ki [X] are g; and go respectively, and P(X) = G1(X)G2(X).

Exercise 3.9.38. (A MULTIVARIATE NEWTON’S LEMMA). Let (K, |.|) be a non archimedean valued field,
n € Zso and Py,...,P, € Og[Xy,...,X,]. Endow K" with the norm defined by |z| = Jmax |;| for

<t
all x = (x1,...,2n) € K", and put P = (P,...,P,). Assume that a = (a1,...,a,) € OF satisfies
|P(a)] < el|det(J(a))]* with e €]0, 1[, where J(a) € M,,(Ok) denotes the Jacobian matrix of P at a. Show
that there exists b € O% such that |b—a| < e|det(J(a))] and |P(b)| < £2|det(J(a))|*. In particular, if
(K,|.]) is complete, there exists @ € O} such that ||a — a|| < £]J(a)| and P(a) = 0.
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Exercise 3.9.39. Let p be a prime. Show that Z, = {zx € Q,; (Jy € Q,)y* = 1+ p°z*} (this shows that Z,
is algebraically definable in Q).

Exercise 3.9.40. Is the p-adic absolute value the only non trivial absolute value on Q,,, up to equivalence?

Exercise 3.9.41. Let (K, |.|) be a non archimedean valued field, and p € R~o. If P(X) =ap+ a1 X +--- +
an X", put |P|, = Jnax |a;| p*. Check that |.|, extends into an absolute value on K (X). When are two such

absolute values equivalent?

Exercise 3.9.42. (CLASSIFICATION OF DEGREE 1 TRANSCENDENTAL VALUED EXTENSIONS). (c¢f [16, §0.2])
Let K be an algebraically closed field, X an indeterminate, and |.| be an absolute value on K(X). Put

rx = inf | X — q]

aEK

(1) Assume that there exist o, 7 € K such that rx = |X — ag| = |7|. Show that |[K(X)*| = |K*| and that
K (x) is purely transcendental extension of degree 1 of ki (the extension of valued fields K (X)/K is called
inert).
(2) Assume that there exists ap € K such that rx = |X — ag| ¢ |K*|. Show that |K(X)*| = |[K*|r% and
ki (x) = ki (the extension of valued fields K(X)/K is called totally ramified).
(3) Assume that |X — | > rx for all a € K. Show that |[K(X)*| = |[K*| and kg (x) = kx (then K(X) is
called an immediate (valued) extension of K).

Exercise 3.9.43. Show that the map C — Rso; z = |z| = \/2Z is the unique absolute value on C that
extends the absolute value |.| of R.

Exercise 3.9.44. Let L/K be an algebraic extension, and |.| an absolute value on L. Show that if the
restriction of |.| to K is trivial, then |.| is trivial.

Exercise 3.9.45. Let L/K be a finite extension of valued fields. Shows that if a € L is integral over Ok,
then o € Op. The converse holds when K is complete: show with an example that the converse does not
hold in general.

Exercise 3.9.46. Let L/K be a purely inseparable field extension. Show that any absolute value on K has
a unique extension to L.

Exercise 3.9.47. Let (K, |.|) be a complete non archimedean valued field, and L/K a finite extension. Show
that if ||.| is any norm on the K-vector space L, the map z +— lim {/|z"| coincides with the unique absolute
n—>a0

value extending |.| on L.

Exercise 3.9.48. Let p be a prime number. Show that X2 — p is irreducible in Q,[X]. Let K = Q,(\/p)
and |.| the extension of |.|, to K. If 2 = a+by/p € K (where a,b € Q,), show that ||, = max{ lal, , %}
What are the residue field and the value group of (K, |.|;)?

Exercise 3.9.49. Let p be a prime number such that p = 3 mod 4. Show that X2 + 1 is irreducible in
Q,[X]. Let K = Q,(i) (where i is a root of X* 4+ 1) and |.| - the extension of ||, to K. Find a formula for
la +ib| g, where a,b € Q,,.

Exercise 3.9.50. How many extensions to Q(</2) does the archimedean absolute value |.| of Q admit?

Exercise 3.9.51. Let P(X) = X? — 17 and j € Q5 a primitive cubic root of unity.

(1) Show that j ¢ Qg [hint: compute (j — 1)?].

(2) What are the degrees of the irreducible factors of P in Q4[X] [hint: compute P(5)]?
(3) How many extensions to Q(</17) does the 3-adic absolute value have?

Exercise 3.9.52. Let (K, |.|) be a non archimedean valued field. Is the map |.| : K — R¢ continuous when
Ry is endowed with its “usual” topology? What if R>¢ is endowed with the discrete topology?
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Exercise 3.9.53. Let (K, |.|) be a complete non archimedean valued field and P € K[X]\K.
(1) Let (zn)nezs, be a sequence of elements in K such that lim |P(z,)| = 0. Show that there is a
n—o0

subsequence of (z,)nez., that converges to a root of P in K.
(2) If F c K is closed, then its image P(F') is closed.
(3) If C < K is compact, then its inverse image P~1(C) is compact.

Exercise 3.9.54. Let QP be an algebraic closure of Q,,. The p-adic absolute value extends uniquely to an
absolute value |.|, on Q. For n € Zwo, put H, = {r € Q,; [Q,(z) : Q,] <n}.

(1) Show that H,, is closed.

(2) Show that H,, # 61) for all n € Zg.

(3) Show that H,, + H,, € Hyy, for all n,m € Z~y.

(4) Deduce that Q,, is not complete for |.|, [hint: Baire].

Exercise 3.9.55. Prove that there are exactly two non-isomorphic cubic extensions of Q.

Exercise 3.9.56. Let Q, be an algebraic closure of Q,, and fix a sequence (a, )nezs, in Q, such that ag = 2
and o2, = a, forall n € Zsg. Let F = Qy(a)nezs, © Qo the 2-adic absolute value |.|, extends uniquely
to Q,. Let (K, |.|) be the completion of (F,|.|,), and L = K(i) where i2 = —1.

(1) For n € Zsq, put &, = 1 +2(ay" + -+ + a;,!). Show that vs(i — z,) = 1 — 54 [Hint: compute
vo(1 + 22)]. Deduce that [Qs(an, i) : Qy(ay)] = 2.

(2) Determine the residue field of Q,(cv,,4) for all n € Zxg.

(3) Show that the ramification index e and the residual degree f of L/K are equal to 1, so that the inequality
ef <[L: K] is strict.

Exercise 3.9.57. Let (K, |.|) be a complete non archimedean valued field, and L/K a finite extension such
that the residual extension x(L)/k(K) is Galois. Let T be the maximal unramified subextension of L/K.
Show that T'/K is Galois and that there exists a natural group isomorphism Gal(T/K) = Gal(x(L)/k(K)).

Exercise 3.9.58. Let (K, |.|) be a complete non archimedean valued field, K an algebraic closure, and L,
M finite subextensions. Show that if L/K is unramified, so is M L/M.

Exercise 3.9.59. Let (X, |.|) be a complete non archimedean valued field, K an algebraic closure of K and
e € Z~ prime to char(kx). Show that if & € K is such that a® € O, the extension K («)/K is unramified.

Exercise 3.9.60. Let |.| be the Gauss absolute value on Q,(X), and (K, |.|) the completion thereof. Let L
the decomposition field of the polynomial P(Y) = (Y2 — X)? —2 € K[Y], and |.| the unique absolute value
on L that extends |.].

(0) What is the residue field kx of K?

(1) Show that [L : K] =8, that ey /x =4 and fr)x = 2.

(2) Show that there is no subextension M of L/K such that [M : K] =2 and sy = kL.

Exercise 3.9.61. Let A = Z5) and a = v Avass V;m’ € R. Put B = A[a]. Show that B is a DVR whose
residue field is Fy and whose ramification index is eg;4 = 2. Show that there is no DVR C c B which is
unramified over A and whose residue field is Fy [hint: determine the subextensions of Q(«)/ Q]

Exercise 3.9.62. Let (K, |.|) be a complete and discrete non archimedean valued field, L/ K a finite extension
and a € OFf such that L = K(a). Denote by @ the image of o in k1. Let P(X) € Og[X] (resp.
II(X) € kx[X]) be the minimal polynomial of  (resp. @) over K (resp. over rf), and P(X) the image of
P(X) in kx[X]. Show that P(X) = II(X)%, for some integer d such that e | d (where e = €1/ denotes the
ramification index of L/K).

Exercise 3.9.63. Show that the unique unramified extension of degree n of Q, (in a fixed algebraic closure
Qp of Q,) is the decomposition field of X" —X.
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Exercise 3.9.64. Let (K,|.|) be a complete discrete non archimedean valued field, and K an algebraic
closure.

(1) Let M < L be finite subextensions of K /K. Show that L/K is tamely ramified if and only if L/M and
M /K are tamely ramified.

(2) Assume that L/K is a finite subextension of K, and T/K a finite unramified subextension of K. Show
that L/K is tamely ramified if and only if LT /T is tamely ramified.

(3) Let e € Z~ be prime to char(rk) and b € Ox\{0}, and L = K be the extension obtained by adjoining a
root of X —b. Show that L/K is tamely ramified, and that ej x = ¢’ := m (where vk denotes the
normalized valuation on K) [hint: by question (2), this can be checked after composition with any unramified
extension of K: use an appropriate one to reduce to the case where b = Ffé with 7 a uniformizer in KJ.
(4) Let L, M be finite subextensions of K /K. Show that if L/K is tamely ramified, so is M L/M.

(5) Deduce that if L/K and M /K are both tamely ramified, so is M L/K.

Exercise 3.9.65. Let C' be an algebraic closed field of characteristic 0, and K = C((X)) = Frac(K[XT])
the field of formal Laurent series with coefficients in C. Let K be an algebraic closure of K. Show that
K= | o(x'm).

neZso

Exercise 3.9.66. Let L/K be a finite extension of local fields, and M;, M, two subextensions such that
M, /K and My/K are totally ramified. Is the composite M; Ms/K necessarily totally ramified?

Exercise 3.9.67. Let p be a prime number. Show that the maximal unramified extension of Q, in Qp is
obtained by adjoining all roots of unity of order prime to p.

Exercise 3.9.68. Let L/K be a totally tamely ramified finite extension of complete, discrete non archimedean
valued fields. Show that the intermediate fields of L/K correspond bijectively to subgroups of |L*|/|K*|
(where |.| denotes the absolute value on L).

Exercise 3.9.69. (1) Let L/K be a finite tamely ramified Galois extension of complete and discrete non
archimedean valued fields. Denote by T be the maximal unramified subextension of L/K. Put Gy, /K =
Gal(L/K) and Ip;x = Gal(L/T), so that we have an isomorphism Gk /I;/x — Gal(kr/kKk). Show that
I'r/K is abelian and that Gal(kp/kk) acts on I by (oI, 7) — oro™ .

(2) Show that every tamely ramified extension of K can be embedded into a finite tamely ramified extension

L/K such that GL/K x>~ IL/K X Gal(HL/HK).

Exercise 3.9.70. Show that the maximal tamely ramified abelian extension V' of Q,, is finite over the
maximal unramified extension 7' of Q,,.

Exercise 3.9.71. Show that the maximal unramified extension of K = F,(X))is T = |J Fpr (X)) and

’nEZ>0

that the maximal tamely ramified extension is V = T({ X }nez>0).
pin

Exercise 3.9.72. Let p be an odd prime number, ®,(X) = X?~'+... + X +1€ Q,[X] and ¢ € Q,, a root
of ®,. Put K = Q,(C).
(1) Set Y = X — 1: show that ®,(X) = P(Y)) where P is an Eisenstein polynomial. Deduce that K/Q,, is
tamely totally ramified.
(2) Show that K = Q,(w) where 7°~! = —p [hint: use the polynomial —%P(WZ) to show that ¢ € Q,()].

Exercise 3.9.73. Let a be a root of P(X) = X% —50 € Q;[X] (in some algebraic closure of Q) and
K = Qs(a).

(1) Prove that K/ Qj5 is a cyclic extension of degree 4.

(2) Prove that the maximal unramified subextension T of K/ Qjy is quadratic over Qg, so K/T is a totally
tamely ramified extension with degree 2.

(3) Find a uniformizer = of T such that K = T'(\/7).

(4) Show that such a 7 cannot be found inside Q.
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Exercise 3.9.74. Let (K, |.|) be a non archimedean complete valued field and L/K a finite separable exten-
sion.

(1) Assume that L/K is unramified. Show that Try/x(Or) = Ok.

(2) Assume that [.| is discrete. Show that Try/x(Or) = O if and only if is tamely ramified.

Exercise 3.9.75. Let K be a complete discretely valued field of characteristic 0, whose residue field xx has
characteristic p > 0. We denote by vk : K — Z u{oo} its normalized valuation.

(1) Let L/K be a totally ramified finite extension and E(X) = X¢ 4+ a. 1 X¢ 1 + - + a9 € Og[X] the
minimal polynomial over K of a uniformizer 77, of L. Put ¢(L) = vr (D /x) —e+1 (where vy : L — Z u{oo}
is the normalized valuation and Dk the different of L/K). Show that c(L) € Z>o and that c¢(L) = 0 if
and only if L/K is tamely ramified [hint: use the equality ©/x = E'(7)OL].

(2) Show that if L/K is not tamely ramified, then ¢(L) = min{evk(e), evk (a;) — e +i}1<i<e-

Let K be a fixed separable closure of K and 7 a uniformizer of K. We denote by Ux = 1 + 7O the group
of principal units of K. Henceforth, we assume that xx is finite: let ¢ be its order.

(3) Show that an element u € O can be written uniquely u = [a]u where a € k-, [a] € OF is the unique
(¢ — 1)-th root of unity lifting « and @ € Uk

We denote by Y. the set of subextensions L/K of K that are totally ramified of degree e € Z~y.

(4) Assume that p { e. Recall that, being tamely ramified over K, elements in 3, are of the form Ky := K(6)
where § € K is a root of the polynomial X¢ — ur for some u € Ok.

(a) Let w € Ug. Show that there exists A € Uk such that \* = &. Deduce that we may restrict to
elements u of the form [a] with « € K.

(b) Let a,a’ € k) and 0,0' € K such that ¢ = [a]r and ¢ = [o/]7. Show that Ky = Ky if and only
if there exists 3 € kj such that o/ = f°a and an e-th root of unity ¢ € K such that ¢’ = [5]¢0.
Deduce that it is equivalent to the existence of v € k) such that " = [y]6.

c) Show that #3. = e.

(

(5) In this question, we assume that p | e: by question (1), we have L € ¥, = ¢(L) € {1,...,evk(e)}.

(a) For each j e {1,...,e— 1}, construct an element L € X, such that ¢(L) = j.

(b) Deduce that #X. > e.

(c) Assume #3X. = e. Using (2), show that vi(e) = 1, then that e = p is a uniformizer of K [hint:
consider the extension generated by the roots of X¢ — 7, then that generated by a root of X¢ — um
for an appropriate root of unity u € O%|.

(d) Deduce #X. > e.

Exercise 3.9.76. Let (K, |.|) be a complete discretely valued field and K an algebraic closure of K. We
assume that the residue field kx of K contains the finite field F, (where ¢ = p/ with f € Z-o). Fix a
uniformizer 7 of K and let P(X) = X7+ X € K[X]. Choose a sequence (7,,)nezs, in K such that mo = 0,
m # 0 and P(m,) = m,—1 for all n € Zo. For n € Z>q, we put K,, = K(m,).

(1) Explain why the group p4—1(K) of (¢ — 1)-th roots of unity is cyclic of order ¢ — 1.

(2) Show that K;/K is totally ramified and that 7 is a uniformizer of K;.

(3) Show that K;/K is Galois and describe its Galois group.

(4) Show that for all n € Z~, the extension K, 1/K, is separable, totally ramified of degree ¢, and that
Tn+1 18 @ uniformizer of K, [hint: use induction].

(5) Show that Ok, = Ok[m,] for all n € Zx,.

(6) Compute the different D . /k, [ do the case n = 0 separately|, and deduce D, /x and the discrim-
inant 0 /i for all n € Zxo.



100 Number theory

4. LOCAL FIELDS

4.1. Definition and first properties.

Definition 4.1.1. A local field is a complete discrete valued field (K, |.|) such that |.| is non trivial and
whose residue field is perfect37).

Henceforth, (K, |.|) denotes a local field, 7x a uniformizer of K, and vk a valuation on K associated to |.|.

4.1.2. Galois extensions of local fields. Let L/K be a finite Galois extension. By theorem 3.8.12, the
extension T/K is Galois, and we have the exact sequence

{1} i IL/K — GaI(L/K) i Gal(mL/mK) i {1}
where Ir,x = Gal(L/T) is the inertia subgroup. Assume now that char(kx) = p > 0. The extension
L/T is totally ramified. Let V be the unique subextension of L/T such that V/T is tamely ramified and
[L:V]=p", where r = v,([L : T]). If 0 € Gal(L/T), then o(V) c L satisfies [o(V) : T] = [V : T, so by
unicity we have o(T) = T the extension V /T is Galois.

4.2. Structure of rings of integers of local fields. Let (X, |.|) be a local field, and 7 a uniformizer of
K. If char(K) = p > 0, then char(kx) = p. There are two possibilities:

e char(K) = char(kk): this is the equicharacteristic case;

e char(K) =0 and char(kx) = p > 0: this is the mized characteristic case.

4.2.1. The equicharacteristic case.
Theorem 4.2.2. Assume char(K) = char(kx). Then Ok is isomorphic to kx[[T]

Definition 4.2.3. A field of representatives in O is a field F < Ok which is also a complete set of
representatives for kg, in other words such that the canonical map O — kKx induces an isomorphism
F :> RK-

Lemma 4.2.4. If char(kx) = 0, then Ok admits a field of coefficients.

Proof. As Z — O — ki is injective (since char(kx) = 0), we have Z nmg = {0}, so that Q is a subfield
of Ok. By Zorn’s lemma (¢f theorem 9.1.1), there exists a maximal subfield F ¢ Ok: we have to show
that the composite F ¢ Ox — kx is surjective (it is automatically injective since F is a field). Let F be
the image of F' in k.

e Assume kf/F is not algebraic: there exists x € O} whose image T in s is transcendental over F'. The
projection O — ki maps F[z] surjectively hence bijectively onto F'[Z]. This implies that F[z]nmg = {0},
so that elements in F[2]\{0} are invertible in Ok: we have F'(z) c Ok, contradicting the maximality of F.
o Let T € k. As ki /F is algebraic, we can consider the minimal polynomial P(X) e F[X] of T over F.
Let P(X) € F[X] be a monic lifting of P (so P is irreducible in F[X]), and 2o € O be any lifting of
7. As char(kx) = 0, the polynomial P is separable, so P'(Z) # 0: we have |P(xo)| < 1 and |P’(zo)| = 1.
Newton’s lemma (¢f theorem 3.3.10) implies that there exists a unique x € O such that P(x) = 0 and
|z — 20| < |P(20)] < 1. This implies that the composite F[X]/{(P)> F(z) — F(T) is an isomorphism,
hence F(z) is a subfield of Ok: by maximality we have F(z) = F, i.e. x € I, whence T € F. This shows
that F' = kg, and F is a field of coefficients for O. O

Lemma 4.2.5. If char(kx) = 0, then Ok admits a field of coefficients.

Proof. e Let T € k. For each n € Z, let Z,,, T, € Ok be liftings of 7" € ki (recall that kk is perfect):
the elements ’x\fln and iﬁn are lifts of 7. We have Z,, = ¥, mod nxOk, so ZF, = ¥ mod 7h O (by the
binomial theorem, and the fact that char(Ox) = p), and 22" = 32" mod 7} Of by an immediate induction.

Applied with Z,, = 27, we deduce that %f:rll = 27" mod ﬂzn Ok, which implies that (Eﬁ")nezzo is a
Cauchy sequence in Ok for the mx-adic topology. As Ok is complete, this sequence converges to a limit
p(T) € Ok, which lifts T. The congruence 22" = 77" mod ﬁﬁ’(n Ok proved above shows that this limit p(T)
does not depend on the choice of the lifts (Z,,)nez.,, but only on Z. This provides a map p: kx — Ok,
that is a section of the canonical map O — k.

e If 7,7 € ki, let (Zn)nezso and (Yn)nez., sequences in Ok lifting the sequences (fp_n)nez>0 and

(y”fn)nez>0 respectively. Then the sequence of products (Z,,Jn)nezs, lifts ((@)f")nezm, which implies

that p(Ty) = nh_I)nf P gr" = p(T)p(y). Similarly, the sequence of sums (Z,, + Jn)nezs, lifts (Z+7)P ")

’nEZ;O

(37)Some authors restrict this terminology to the finite residue field case.



Number theory 101

(because (Z +5)P =7 +7P ), so that p(Z +7) = limf (Zn +0n)?" = p(@) + p(7) (as char(Ox) = p,
n—o
we have (Z,, +§n)P" = 22" 4+ 2" for all n € Zx¢). This implies that p is a ring homomorphism. As kf is a

field, it is an isomorphism onto its image: the latter is a field of coefficients for Ok-. g

Proof of theorem 4.2.2. Lemmas 4.2.4 and 4.2.5 show that Ok has a field of coefficients F. As Ok is mx-
adically separated and complete, there exists a unique continuous morphism of F-algebras h: F[[T] — Ok
such that h(T) = mx. Corollary 3.7.5 imply that h is an isomorphism. Composed with the isomorphism
ki [[T]] = F[[T] gives the result. O

4.2.6. Witt vectors. The references for this part are [20, Chap. II, §6], [5, Chap. IX, §1] and [10, Chap. I].
In what follows, "ring” means commutative unitary ring. Let p be a prime integer. Let X = (Xo, X1,...)
be a indeterminate.

Definition 4.2.7. Let n € Zx, the n-th Witt polynomial is
O, (X) = X5 +pX]" 4k TIXD 4 p X, = Y g X

If A is ring, the ghost map is:
Py AZz0 5 AZz0
a— ((I)n(g))

’nEZ;O

Lemma 4.2.8. Let A be a ring, and z,y € A such that z = y mod pA. Then 27 = y? mod pi*1 A for
every i € Z>g.

Proof. We proceed by induction on i € Zxo, the case i = 0 being the hypothesis. Let i € Zx( be such
that z¢° = y? mod p't1A: write zp = y?' + p*lz with z € A. By the binomial theorem, we have
= (ypi +pitlz)’ = g Z (P)pkli+Dyp {(p=k) gk 4 pp(+D 2P For k e {1,...,p — 1}, we have
op ((B)pFHD) = 14+ k(i +1) > i+2, and pli+1) =i+2 (because p = 2),s02? " =y mod pt2A4. O

Lemma 4.2.9. (DWORK). Let ¢: A — A be a ring homomorphism such that ¢(a) = a? mod pA for all
a € A. Then a sequence (2, )nezs, € AZ>0 is in the image of ® 4 if and only if ¢(z,) = 2,41 mod p"+1A4
for all n € Z>,.

Proof. e As ¢ is a ring homomorphism, we have o(®,(a)) = 3. pip(a;)?" " for all @ = (an)nezso- As
i=0
n4+1l—i

o(a;) = a? mod pA, we have (a;)?" = a” mod p"*t1=¢A for all i € {0,...,n} by lemma 4.2.8. This
implies that o(®,(a)) = Z pia’i’nHﬂ mod p"t1A, i.e. o(®,(a)) = P,y1(a) mod ptTLA.

n(a
e Conversely, assume that (Tn)nezs, € A%>0 satisfies ¢(z,) = xn41 mod p" 1A for all n € Zso: we
construct @ = (an)nez=, € € AZ>o inductively such that =, = ®,(a) for all n € Z=q. Put ag = zg € A.
Let n € Zs( be such that ag,...,a, € A have been constructed such that for all ke {O ...,n}, we have

xr = Pr(ao,...,ar). By the computation above, we have p(z,) = (P, (a)) = Z pia 7 mod pntlA

n .ontl—i

i.e. Tpp1 — », plal e p" 1A (since z,41 — @(7,) =0 mod p"t1A): there exists a,41 € A (that may
i=0
ntl i1
not be unique when A has p-torsion) such that z,,11 = Y, p‘a? =0, 1(a0, -, an41)- a
i=0

Let Y = (Y, Y:,...) be a indeterminate.

Proposition 4.2.10. (¢f [20, Chap. II, §6, Theorem 5]). There exist unique sequences of polynomials
(Sn)nezso> (Pn)nezs, € Z[X,X]Z>“ and (In)nezs, € Z[X]Z>0 such that:

Sn(X,Y), P (X,Y) e Z[Xo,..., X, Y0,...,Y,]

I.(X) € Z[Xo, ..., X,]
%(So(z(,z), Sp(X,Y)) = @, (X) + @, (Y)
@n(Po(X,X), X,X)) =, X ®,(Y)
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Proof. e Let A = Z[X,Y] be the polynomial ring. Denote by ¢: A — A the unique ring endomorphism
such that ¢(X,) = XP and ¢(Y,,) = YP for all n € Z>o. We have ¢(a) = a? mod pA for all a € A.
As ¢ is a ring endomorphism and ®,, has integral coefficients, we have p(®,(X) + ©,(Y)) = @, (o (X)) +
D (P(Y)) (168D, P(Bn(X)Bp(Y)) = B (X)) B (oY), 15D o~ Bn(X)) = —B(0(X))) for all 1 € Zisp.
As @, (p(X)) = ®py1(X) — p" X, 41 and @, (0(Y)) = ®,41(Y) — p" 1Y, 41 by definition, this implies
that (@, (X) + (V) = Bi1(X) + Bpgr(Y) mod p A (resp. p(@n(X)Bp(Y)) = Bsr (X)Bps (V)
mod p" 1A, resp. o(—®, (X)) = —®,,41(X) mod p"TtA) for all n € Z>o. Lemma 4.2.9 thus implies that
DPA(X)+PAY ), Pa(X)P4(Y) and —P 4(X) belong to the image of @ 4, which precisely means the existence
of the sequences of polynomials (S, )nezs, (Pn)nezso € Z[X,Y %20 and (I,)nez, € Z[X]%>0.

e The unicity is obvious in Z[p~!][X,Y] by induction. O

Example 4.2.11. One has

So(Xo,Yo) = Xo + Yo
Po(Xo,Ys) = XoYo

and
p—1 R
S1(Xo, X1,Y0, Y1) = X1 + Y1 = ¥ 2 (0) XgYy
i=1

Py (X0, X1,Y0, Y1) = XbYy + X{Y1 + pXi11
Definition 4.2.12. Let A be a ring. Put

(as a set). If @ = (ag, ai,...),b= (b, b1,...) € W(A), put

—a = (I"(Q))n€Z>o
Remark 4.2.13. The map ®4: AZ>0 — AZ=0 ahove is seen as a map ®4: W(A) — AZ=>0,

Proposition 4.2.14. (1) A — (W(A),+,.) is a functor on Ring to the category of sets endowed with two
composition laws.

(2) If p is not a zero-divisor (resp. is a unit) in A, then ®4 is injective (resp. bijective).

(3) (W(A), +,.) is a commutative ring with zero element 0 = (0,0, ...) and unit (1,0,0,...). The map ®4
is a ring homomorphism.

Proof. (1) and (2) are obvious. For (3), let B — A be a surjective ring homomorphism, such that p is not
a zero-divisor in B (one can take B = Z[X,]sea, and B — A; X, — a). As ®p is injective, (W(B), +,.)
identifies (via ®p) with a subring of B%>0 (with the product structure). Since B — A is surjective, so is
W(B) - W(A), and (W(A), +,.) fulfills the ring axioms. O

Definition 4.2.15. Let A be a ring. The Teichmiiller representative of a € A is [a] := (a,0,0,...) € W(A).
Proposition 4.2.16. Let A be a ring. If a,b € A, then [ab] = [a].[b] in W(A).

Proof. Here again, it is enough to check the equality when A has no p-torsion, hence after applying ® 4
(since it is injective in the p-torsionfree case), but ®4([a]) = (a,a?,a?’,...) is multiplicative. O

Proposition 4.2.17. There exists a sequence (F},)nez., € Z[X]?%>° such that F,(X) € Z[Xo,. .., Xn4+1] and
(vn € ZBO) o, (FO(X)a ceey Fn(X)) = (I)n-#—l(X)

Proof. As in the proof of proposition 4.2.10, it is enough, using lemma 4.2.9, to check that if A = Z[X],
we have p(®,, (X)) = ®,.1(X) mod p"*1A for all n € Zsg, which is trivial. Here again, the unicity in
Z[p~1][X] is obvious by induction. O

Example 4.2.18. We have
Fo(Xo, X1) = X§ +pX3
P . X i
Fi(Xo, X1, X2) = X{ +pXo — ] (?)plileXg(p )

=1

Definition 4.2.19. Let A be a ring. The Frobenius map of W(A) is
F(a) = (Fo(a), Fi(a),...)
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Proposition 4.2.20. Let A be a ring.

(1) (Va € A) F([a]) = [a”].

(2) (Vn € Zxo) F,,(X) = X? mod pZ[X]. In particular, it pA = 0, then F(ag,as,...) = (af,al,...).

Proof. (1) Considering a surjective ring homomorphism B — A where B has no p-torsion, which gives

rise to a surjective ring homomorphism W(B) — W(A), we may reduce to the case where A has no p-

torsion. Then ®4: W(A) — AZ=0 is injective: it is enough to check that ®4(F([a])) = ®a([a?]), i.e. that
n+1

®y11([a]) = a? T= @, ([a]).

(2) By induction on n € Zx, the case n = 0 following from the equality Fo(X) = X§ +pXi. Let n € Z-o be

such that F;(X) = X? mod pZ[X] fori € {0,...,n — 1}: we have F;(X)?" " = anH_l mod p" 1 Z[X]

for i € {0,...,n — 1} by lemma 4.2.8, hence

n n—1
. n—i . n+l—i
011 (X) = 0, (Fo(X), ..., Fu(X)) = D p'Fi(X)P" " =p"Fu(X) + ). p'X? mod p" ! Z[X]
1=0 1=0

n—1 ntl—i

As Y pXPTT = @, 1(X) — pPXE — p" X, 1, this implies that p"F, (X) = p"XP mod p"t! Z[X] i.e.
1=0

F(X) = X2 mod pZ[X]. =

Definition 4.2.21. Let A be a ring. The Verschiebung of a = (ag,a1,...) € W(A) is
V(a) = (0,a0,a1,...)

Proposition 4.2.22. Let A be a ring and a,b e W(A).

(1) We have

= (®1(a), 2(a),...) = f(Pa(a))

= (0,p®o(a), pP1(a), . ..) = v(Pa(a))
where f(X) = (X1, Xs,...) and v(X) = (0, pXo,pX1,...).

) V is an group endomorphism of (W(A), +).
) 'V = pldw(a) and VF(a) = (0,1,0,...).a.
) V(@ F(b) = V(a)b and V(@).V(b) = pV (@),
) F(a) =a” mod pW(A).

)

Proof. (1) is computation. Using the usual trick, the proof of properties (2)-(7) reduces to the case when
A has no p-torsion, hence after applying ®4 since the latter is injective. (2) (resp. (3)) follows from the
fact that f (resp. v) is a ring (resp. a group) homomorphism. (4) follows from the equality f ov = p and
®4(0,1,0,0,...) = (0,p,p,...). (5) follows from the corresponding statements on f and v in Z[X]%>°. To
prove (6), we check that ®4(F(a)) = ®a(a?) mod plm(®y), i.e. that f(Pa(a)) — Pa(a?) € plm(P4). By
lemma 4.2.9, this follows from the congrucences

P(Pni1(X) — (X)) = Dy 2(X) — Ppia (X)P mod p" 2 Z[X],

which are obviogs since (P, (X)) = ®pr1(X)—p" 1 X,, 1. Finally, (7) follows from the equalities ®y(a) = ag
and ®,(a) = al} +p®,_1(a’) for all n € Z-, which precisely mean that ®4(a) = ®4([ao] + V(a')). O
Definition 4.2.23. Let A be a ring. For n € Zx, let

Fil" W(A) = V"(W(A)) = {(0,...,0,an, ant1,--.); (ar)ksn € A%>7}  W(A).
This defines a decreasing filtration on W(A).
As V™(a+b) =V"(a) + V"(b) and V"(a).b = V" (a.F"(b)), Fil" W(A) is an ideal of W(A).
Definition 4.2.24. Let A be a ring. The ring of Witt vectors of length n is W,,(A4) := W(A)/Fil" W(A).

Remark 4.2.25. In general, we have V" (W(A))V™(W(A)) ¢ V™+™(W(A)), so the filtration is not com-
patible with the ring structure (however this is true if pA = 0).

Proposition 4.2.26. Let A be a ring such that pA = 0.

(1) FV(a) = VF(a) =pa = (0,af,al,...) (so (0,1,0,0...) = p).

(2) V™ (@)V™ (5) = V7 (F™ (0).F7 (1)).

(3) The p-adic and the V(W(A))-adic filtration are the same, and finer than that defined by the filtration.
In particular, W(A) is complete and separated for the p-adic topology.
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(4) If A is perfect®®) all these topologies are the same, and W(A)/pW(A) > A, and®?)
0 0 0
a=(ap,a1,...) = Z V™ ([an]) = Z V”F”([aﬁ ]) = Z p"[afl ]
n=0 n=0 n=0

Proof. (1) Follows from proposition 4.2.20 (2): if a = (an)nezs, € W(A), we have F(a) = (af,af,...), so
VF(a) = (0,aq,af,...) = FV(a), so that VF = FV = pldya)-.

By proposition 4.2.22 (5), we have V(a).b = V(a.F(b)), hence V"(a).b = V"(a.F™(b)) by an immediate
induction on n € Zso. Applied to V™(b) instead of b, we get V™(a).V™(b) = V™ (a.F"V™(b)). As
Frv™(b) = V™F™(b) (by (1)), we have a. F"V™(b) = V™(F™(a).F™ (b)), hence the result.

For (3), one proves by induction that (V (W(A)))¥ = p*~1V(W(A)) (using the second formula of proposition
4.2.22 (5)). AspW(A) = VF(W(A)) c V(W(A)), one has p* W(A) = (V(W(A)))* < p*~1 W(A). Moreover,
we have

(#)  P"W(A) = V'E"(W(A)) = {(0,...,0,ax, aks1,...) € W(A); (Yn € Zzo)a, € Apk} c Fil® W(A)

so that the p-adic topology is finer that that defined by the filtration Fil* W(A).
(4) follows from the fact that (*) is an equality when A is perfect. O

4.2.27. The mized characteristic case. In this paragraph, we assume that char(K) = 0 and char(kg) =p > 0.
As p e Ok maps to 0 in kg, there exists ex € Z~q such that p e 7 O). As char(K) = 0, we have Q c K,
so that K is an extension of Q,,.

Definition 4.2.28. The integer ek is called the absolute ramification index of K. Tt is nothing but the
ramification index of the extension K/Q,. The field K is absolutely unramified when ex =1, i.e. when p
is a uniformizer of O.

Lemma 4.2.29. (MULTIPLICATIVE REPRESENTANTS). There exists a unique map p: kg — Ok which
is a section of the canonical map Ox — ki and such that p(zP) = p(x)P for all © € kx. This map is
multiplicative, i.e. p(zy) = p(x)p(y) for all x,y € kk.

Proof. Existence. o Let s,s": kg — O be sections of the canonical map O — ki (so that s(z) and
s'(z) are liftings of « in Ok). For all n € Zxo, the elements s(zP ") and s'(zP" ") both lift 27 ": we have
s(zP7") =s'(zP"") mod 7Ok, so that
() s(xp_n)pn =4 (xp_n)pn mod 7" O
by an argument analogous to that of the lemma 4.2.8 (using the fact that « divides p). Applied with
s’ x> s(x”fl)p, we get

—n n —n— n+1
(M) s(mp )p Es(x” 1)p mod 7" 1Ok,
showing that (s (gcff’ﬂ)pn)nez>0
lifting of z. Equation (&) implies that p(x) does not depend on the choice of s.
o Passing to the limit as n — oo in (&), we get p(z) = p(z? )" hence p(zP) = p(x)? for all z € .

is a Cauchy sequence in Ok: it converges to a limit p(z) € O, which is a

o If 2,y € kg, and n € Zxg, the elements p((zy)? ") and p(zP ")p(y? ") both lift (zy)? "~ in Ok: we

—-n —n

have p((zy)P" ") = p(a? )p(yp_n) mod 7Ok so p((xy)p_n)p = p(zp_n)p p(yp_n)p mod 71Ok (by
lemma 4.2.8 again), i.e. p(zy) = p(z)p(y) mod 7"+ 1O for all n € Zso, hence p(zy) = p(x)p(y).

Unicity. Let p’: kx — Ok be a section of the canonical map O — kg and such that p'(zP) = p/(z)P for

all v € k. Using s = p/, we have p(z) = lim p/ (2P )"
n—w

" p'(x) for all = € kg, hence p’ = p. O
Remark 4.2.30. (1) As the proof shows, the previous statement can be generalized to the following situation:
let A be a p-adically separated and complete ring such that the Frobenius endomorphism on A/pA is
surjective. Then there exists a unique section p: A/pA — A of the canonical map A — A/pA such that
p(aP) = p(z)? for all x € A/pa, and p is multiplicative.

(2) Of course, p is not additive since char(K) = 0.

Proposition 4.2.31. There exists a unique ring homomorphism W(xg) — Ok that induces the identity on
residue fields. It is injective and Ok is a free W(k i )-module of rank e (in particular, we have O ~ W(kx)
when K is absolutely unramified).

(38)This means that the p-th power map A — A is surjective.
(39)Using proposition 4.2.22 (7).
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Proof. Unicity. Let f: W(kx) — Ok be a ring homomorphism inducing the identity on residue fields. The
map kg — Og; x — f([z]) is a multiplicative (because the Teichmiiller map is), and it is a section of the
canonical map Ok — kg (because f induces the identity on residue fields). By unicity 1n lemma 4.2.29,

we have f([z]) = p(x) for all z € k. Now if @ = (aop,ai,...) € W(kg), we have a = Z p"lat "] (cf
proposition 4.2.26 (4)): by continuity of f (since f(p™ W(kg)) € p™ Ok for all m € Zxy), we have

(%) fla) = Z p'o(al”)
i=0

which proves unicity.

Existence. We have to show that the map f: W(kg) — Ok given by formula (?K) is indeed a ring homo-
morphism that induces the identity on residue fields.

e Ifa = (ap,a1,...) € W(kk), the image of ¢ in kx = W(kg)/pW (kK) is ao (cf proposition 4.2.26 (4)), and
that of f(a) is that of p(ag) i.e. ag: this shows that f induces the identity on residue fields. Formula (%K)
also implies that for all n € Zsg, we have f(p" W(kg)) = f(V*(W(kk))) € p" Ok, so that f is continuous
for the p-adic topology.

o Let n € Z>g. By definitions of Witt vectors, the map ®,: W(Ox /p"T'0k) — Ok /p" 'Ok is a ring
homomorphism. Let a = (a;)icz.,,b = (bz)'LEZ>g € W(OK/p”“OK) such that a; = b; mod pOK/p”“OK

—i n—i

for all i € Zzo: lemma 4.2.8 implies that a? = b’i’ mod p" 1Ok /p" 1 Ok, so that p'a? T =p'bY
for all i € Z>(. This implies that ®,(a) only depends on the image of @ in W(Ox /pOk), which means that
®,, factors through a ring homomorphism ®,,: W(Og /pOr) — Ok /p" 1 Ok.

W(OK/pn-HOK) i) OK/pn-HOK

¢ /3%7
W(Ok /pOk)
For the same reason, if a = (a;)icz-0,0 = (bi)icz-, € W(Or /pOk) such that a; = b; mod 7Ok /pOy for
all i € Zg, we have afk = bfk in O /pOy if k € Z>c, 1, so that F¥(a) only depends on the image of a in
W(kk) (recall that since Ok /pOgk has characteristic p, the Frobenius map on W(Ok /pOk) is just raising

the components to the p-th power): the ring endomorphism F* factors through a ring homomorphism
Pk - W(HK) — W(OK/])OK)

W(Ox /pOx )~ W(Ox /pOrc)

-

W(kr)
Now let a = (ag,a1,...) € W(kg). As (p(a;) mod POk )iczs, € W(Ok /pOk) maps to a € W(kg), we have
er(a) = F*((p(a;) mod pOr)iezs,) = (p(a? ) mod pOK)ieZ>0 (here again, we used the fact the F' is the

k
Frobenius map on components in W Ok /pOk), and that p commutes to p-th powers). Similarly, as (p(al )

(
mod p" ™1 Ok) maps to (p(a? ) mod pOy) in W(Ok /pOr), we have

iEZ;U 1EZ>0

~

(&Dn opg)(a) = @n((p(af ) mod pOK)iezzo) = (I)n((p(afk) mod p"“OK)iez;(,)
= 2 pin(a)" " mod O

— (f OFn+k)(Q) mod pn+10K

which shows that
f=®,00,0F "% modp"t'Oxk
for all £ > ex — 1. This implies that f mod p" 'O is a ring homomorphism for all n € Zxq, so f is a
ring homomorphism (because O is separated for the p-adic topology).
e As f induce the identity on residue fields, we have Ker(f) c pW(nK) as OK has no p-torsion, this

implies that Ker(f) c p" W(kg) for all n € Z>( by induction, so that Ker(f ﬂ p"W(kg) = {0}, and f

is injective. "

e Passing to fraction fields, we have an extension of local fields K/W(k)[p~!]. The residue extension is
trivial, and the index of ramification is ex: by theorem 3.8.4, we have [K : W(kk)[p~!]] = ek, and by
theorem 3.8.23, the W(k g )-module O = W(kg)[n] is free of rank e. O
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Corollary 4.2.32. Ok is isomorphic to W(kg)[X]/{E(X)) where E(X) € W(kg)[X] is an Eisenstein
polynomial.

4.3. Ramification groups. The content of this section is taken from [20, Chapitre IV]. Henceforth, K
denotes a complete discrete valuation field, and L/K a finite and Galois extension, with group G. We
assume that the residual extension sy /K is separable (this is automatic when K is a local field). Let T the
maximal unramified subextension of L/K. Denote by vy, (resp. vk) the normalized valuation on L (resp.
K), so that VK = GL/K’ULlK.

4.3.1. First definitions. By proposition 3.8.5, there exists « € Oy, such that Oy = Ok|[«a].

Notation. If v € G, we put ig(vy) = vp(y(a) — ) € Zso. If i € Z>_4, we put
Gi={veG; (VxeOp)vr(v(x) —xz) =i+ 1}.

Proposition 4.3.2. Let v € G and i € Z>_1. The following conditions are equivalent:
(i) 7 acts trivially on O /m’;™;
(11) Y E Gi;
(it) ic(y) =i+ L.
In particular, i does not depend on the choice of o € O, such that O, = Ok[a]. Moreover, (G;)icz._, is
a decreasing sequence of normal subgroups of G such that G; = {ld} for ¢ » 0.

Proof. (i)<(ii) by definition and (ii)<(iii) is trivial. We have i5'({i}) = G;_1\G; for all i € Zx0, showing

that i does not depend of the choice of a. Finally, G; = Ker (G — Aut(Or/m%"")) so G; is a normal

subgroup of G, and G; = {ldp} id i > max ig(y). O
veG\{ld }

Example 4.3.3. We have G_; = G and Gy = Gal(L/T) is the inertia subgroup of L/K.

Definition 4.3.4. The subgroup G; is called the i-th ramification subgroup (with lower numbering) of G.
The groups (G;)iez._, form a decreasing filtration on G.

PI’OpOSitiOﬂ 4.3.5. (R,AMIFICATION SUBGROUPS WITH LOWER NUMBERING ARE COMPATIBLE WITH SUB-
GROUPS). Let H < G be a subgroup and M = L (so that H = Gal(L/M)). Then iy (n) = ig(n) for all
neH,and H,=H n G, forallie Z>_;.

Proof. Follows immediately from characterisation (i) of proposition 4.3.2. a
Proposition 4.3.6. Let H < G be a normal subgroup, M = L7 and 0 € G/H = Gal(M/K). Then
. 1 .
io/n(0) = o X ia(7)-

YEG

Y=o

Proof. Both sides are equal to 400 when o = Idy;: assume that o # Idy;. Let 8 € Oy be such that

Om = Ok[fB]: we have ig/p(0) = va(o(B) — B) so that ep/nig/u(0) = v (o(B) — B). If 70 € G maps to
o € G/H, the others preimages are of the form vy with n € H: we have to prove that a = [] (o —yon(«))
neH

and b = o(f) — 8 have the same valuation, i.e. that they generate the same ideal in Oy..

e Let P € Op[X] be the minimal polynomial of « over M: we have P(X) = [] (X — n(a)), so that
neH
o(P)(X) = ] (X —vom(a)), i.e. a = o(P)(a) = o(P)(a) — P(a). As the coefficients of o(P) — P are
neH
divisible by b, we have a € bOy.

e To prove that b € aQp, write 8 = Q(«), with @ € Og[X]. The polynomial Q(X)— € Op[X] vanishes at
a: it is divisible by P in Op[X]. Write Q(X) —f = P(X)D(X) with D € Op[X]. As Q € Ok [X], we have
a(Q) =Q,s0 Q(X)—0c(B8) =c(P)(X)o(D)(X): evaluating at a gives Q(«a) — o (8) = o(P)(a)a(D)(«), i.e.
b e a0y since Q(a) — o(B) = —b and o(P)(a) = a. O

Corollary 4.3.7. If H = G; with j € Z(, we have

Gi/H ifi<j

{Idps}  ifix>j

Proof. Let o € G/H\{ldps}, there exists a unique i < j such that o € (G;/H)\(G;+1/H). If v € G maps to
o € G/H, then v € G;\G;+1, whence ig(y) = i + 1. Moreover, as j = 0, we have H < Gy, so that L/M is
totally ramified, i.e. er ns = [L : M] = #H. Proposition 4.3.6 implies thus that ig/g(0) =i + 1, so that

the filtration (G;/H):<; coincides with ((G/H);)i<;. As moreover (G/H); = G;/H = {ldas}, we also have
(G/H); = {ldp} if i = 5. O

(G/H); = {
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Remark 4.3.8. For a general normal subgroup H < @, ramification groups of G/H are also images of
ramification groups of G in G/H, but one needs to modify the numbering (see theorem 4.3.31).

Theorem 4.3.9. We have
@)= ), Z #G; — 1)

'yeG\{IdL}
(as G; = {ldp} for i » 0, the sum is finite).

Proof. e Let P € O [X] be the minimal polynomial of o over K. We have D/ = P'(a)Or, by proposition

2.5.7 (because Of, = OkJa]). As P(X) = [[ (X —v(«a)), we have P'(«) = [] (a—~(«)), proving the
veG yeG\{ldr}

first formula.

¢ ie) = SU+DHC—#Cm) = LHDHC =)= S (+D([#Gui=1) = B#G~1). O

veG\{ldL } i=0

Remark 4.3.10. We recover the fact that L/K is unramified if and only if Dk =0L.

Corollary 4.3.11. Let H < G be a subgroup and M = L. We have v (Dny/k) = I ic().
yeG\H
Proof. By proposition 4.3.9, we have v, (D /) = Y ig(y) and vp(Dp) = > ic(y). By the
~eG\{ld } yeH\{ldr}

transitivity of different (cf proposition 2.5.10), we have D x = D1 /0Dp/k, Whence

ermoM(Dnr) = ve(Onyk) =ve(Dryk) —vL(Dp/m) = Z\ ic(7)-
yeG\H

O

4.3.12. The quotients G;/G;41. Let 7 be a uniformizer of L. Recall (¢f section 3.7.7) that we defined a
filtration of Of by subgroups

(%) o)y ifi=0
Uy’ = ; o -
14+my ifieZyg

This is a basis of neighbourhoods of 1 in OF for the topology induced by that on L*. As Of is closed hence
complete, we have Of = lim OF /Ug).

Lemma 4.3.13. Let v € Gy = Gal(L/T) and i € Z>g. We have y € G; & @ € Uéi).

Proof. By proposition 4.3.5 applied with H = Gy, we have (Gy); = G; (since i = 0). As Op = Op[n]
(theorem 3.8.23), we have ig,(v) = v(7) — 7, i.e. Y€ G S vp(y(n) —7m) 2 i+l s @ =1 modm!. O

Proposition 4.3.14. If i € Z~(, the map v — @ induces as isomorphism 6; from G;/G; 1 onto a subgroup
of U U+ This isomorphism is independent of the choice of 7.

Proof. e If 7 is another uniformizer, we have ' = um with u € OF, so that 'Y( ) = %? If v e G;, we
have v(u) —u e m}™, so # =1 mod m,*!, showing that 0; does not depend on the choice of 7.
e If 71,72 € G;, we have (“Vi)(”) = 71( ) 22(m )“iu) with u = —72 € OF. As —“iu) =1 mod my™ (¢f

(1192)(m) — 2(m) 32 () 1

above), we get — mod mZ+ , showing that 6; is a group homomorphism. It is obviously
injective. ]

Corollary 4.3.15. (1) The group Go/G; is cyclic, and identifies (via 6y) to a subgroup of the group of roots
of unity in x7. Its order is prime to char(kp).

(2) If char(kz) = 0, then G; = {ld.}, so Gy is cyclic.

(3) If char(kr) = p > 0, and i € Z.q, the group G;/G;+1 is a Fp-vector space of finite dimension. In
particular G is a p-group.

Proof. (1) By proposition 4.3.14, the map 6 induces an isomorphism from Gy/G; onto a subgroup of

U /Ut 3 k% (¢f proposition 3.7.10). Finite subgroups of £} are cyclic, made of roots of unity, of order

prime to char(xp).

(2) By proposition 4.3.14, ; induces an isomorphism from G;/G;;1 onto a subgroup of Uéi)/UfH) Sk

(ef proposition 3.7.10). If char(kr) = 0, the additive group sz has no torsion, so that G;/G;+1 = {0}:
this implies that G; = G; for all i € Z~y. As G; = {ld.} for i » 0, we deduce that G; = {ld.}, so that
Go > Go/G1 is cyclic.
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(3) If char(kr) = p > 0, the group 6;(G;/G;+1) identifies with a subgroup of the additive group xr, which
is killed by p: so is G;/Gi+1, which is thus a F,-vector space, necessarily of finite dimension. O

Corollary 4.3.16. If char(xz) = p > 0, the group Gy is a semi-direct product of cyclic subgroup of order
prime to p by a normal subgroup of order a power of p. In particular, the group Gy is solvable. If moreover
k1 is finite, the group G is solvable.

Proof. By corollary 4.3.15, it is enough to show that there exists a subgroup H of Gg which projects
isomorphically onto Go/G1. Let v € Gy whose image in Go/G; is a generator. Put #(Go/G1) = m and
#G1 = p". As p{ m, there exists N € Z>, such that p =1 mod mZ. Put o = ’ypN € Go. As we have
pY =1 mod m, the images of v and o in Go/G; are the same. Moreover, we have #Go = mp" | mp™¥
(since N = r), so that o™ = fympN = Idz, showing that the order of ¢ in G divides m. As it is at least m
since the image of o generates Go/Gq, it has to be m, thus H :={o) ~ Z /m Z.

If K, is finite, then G/Go ~ Gal(k/kK) is cyclic, so G is solvable. O

Corollary 4.3.17. Assume k is algebraically closed of characteristic 0, and let K = k((T)). An algebraic
closure K of K is the union of the subfields K,, := k((T/")) for alln € Z~¢, and Gal(K /K) ~ Z := im Z /nZ.

n

Proof. As k is algebraically closed, we have G = G for every finite subextension L of K /K, and corollary
4.3.15 (2) shows that G is cyclic. If L’ is another finite extension of K such that [L : K] | [L’ : K], the
composite extension LL'/K is cyclic: we have Gal(LL'/L’') < Gal(LL'/L), which shows that L c L’. This
shows in particular that K,, ¢ L i.e. L = K,, with n = [L: K]. O
Let i € Z>o. As G; and G;41 are normal subgroups of Gy, the latter acts by conjugation on G;/G;1.
Proposition 4.3.18. Let v € Gy and 7 € G;/G;41, where i € Z>o. Then

0;(var ") = Oo(7)'0:(7)
(here we see 0y(7) as an element of £, acting on the one dimensional r-vector space m} /m’tt).
Proof. Let o € G; be a lifting of 7 and 7" = 4" (m) (this is a uniformizer of L). We have o(7') = 7'(1 + a)
with a € m?, and 0;(7) is the image @ of a in m% /m’*'. Applying v, we have (yoy=1)(7) = v(7')(1 + v(a)),
i.e. (W’%l)(”) =1+ 7(a), so that 6;(yay~!) is the image of y(a) in m} /m;™'. Write a = br® with be Oy,
so that v(a) = v(b)y(m)". As v € Gg, we have y(b) = b mod my, so that y(a) = (@)Za mod m*t d.e.
the image of y(a) in m?% /m%*t is 6o (v)'0;(7). O

o=t € G441 if and only if 4 € Gy or

Corollary 4.3.19. Let v € Gy and o € G; with i € Z~¢. Then ~voy~
oS Gi+1.

1 1

Proof. We have yoy~lo~! € G;41 if and only if yoy~! and o have same image in G;/G;41: by injectivity
of 0;, this is equivalent to 0;(yoy~!) = 0,(c), i.e. 0o(7)'0;(c) = Oi(0) in m% /mi*. As i > 0, the latter
is a rp-vector space of dimension 1: this is equivalent to p(7) = 1 (i.e. ¥* € Ker(6)) or 0;(c) = 0 (i.e.
o € Ker(0;)), i.e. toy' € Gy or o € Gyy1.

Corollary 4.3.20. Assume G is abelian. If #(Gy/G1) 114, we have G; = Gj41.

Proof. Fix v € Gy mapping to a generator of Go/G1. If o € G;, we have yoy 1o~ = Id; € G;41, so that
v € Gy or o € Gi;1 by corollary 4.3.19: as v* ¢ G since #(Go/G1) 1 i, we must have o € G,y1, i.e.
Gi =Gis1. U

Proposition 4.3.21. (1) Integers i € Z>1 such that G; # G;.1 are congruent modulo p = char(kr).
(2) Let 4,5 € Zz1, v € G; and 0 € G;. Then yoy to™! € Gijjt1-

1

Lemma 4.3.22. Let i,j € Z>1, v € G; and 0 € G;. Then yoy 'o™! € G;4; and

Oivj(yoylo™h) = (7 — 1)0:(1)0;(0).
Proof. Write v(r) = w(14a) and o(r) = w(1+b) with a =z’ € m% and b = yn/ € m),, where z,y € Or,. We
get (yo)(m) = 7(1+a)(1+~(b) = 7(1 +a+~(b) +ay(b)). As y(b) = v(y)v(7) =W/ (1 +a), y(y) =y
mod m**! and (14 a)/ =1 4 ja mod m%™! (since i > 0), we have v(b) = yx/ (1 + ja) mod m; 7! ie.
v(b) = b+ jab mod m%7*!. This implies that (yo)(r) = 7(1 +¢) with c = a +b + (j + 1)ab mod m;7*!.
Similarly, we have (o) (7) = 7(1 + d) with d = a + b + (i + 1)ab mod m’;7*".
Put ©" = oy(w): this is a uniformizer of L, and

(oo ) (') = (vo)(m) = (1 +¢) = /(L + )1 +d) ' =7'(1 +¢)
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where e = (1 +¢)(1+d)' =14+ c¢—d mod my”7*' de e = (j—i)ab mod m;7*'. This shows that

1

M —1em’’ (since a € m} and b e m?), and that 6;, j(yoy 'o~ ') is the image of (j — i)ab in
mitm I e 0, i (voy oY) = (5 — )0:i(7)0; (o). O

Proof of proposition 4.3.21. (1) If G; = {ld.}, there is nothing to do: assume that G; # {ld.}, so that
char(kr) = p > 0. Let j € Z-¢ be the integer such that G; # {ldr.} and G111 = {ldr}. Let i € Z-( be such
that G; # Gi41. Let v € G;)\G;41 and o € G;\{ld.}. By lemma 4.3.22, we have yoy o' € G;1; = {ld.},
so that 0;4;(yoy~to~!) = 0. By lemma 4.3.22 again, this implies that (j —)0;(7)0;(c) = 0 in the one
dimensional -vector space my /m T As 0,(v) € (m /mPT\{0} and 0 (o) € (m, /m?T1)\{0}, the image
of 0;(v)0; (o) in nonzero in miL“/miLHH, implying that j —¢ =01in kg, i.e. p|j—i.

(2) If v € Gi41 or 0 € Gj41, we have yoy~lo™! € Gi1j;1 by lemma 4.3.22. Otherwise, we have G; # G, 41
and G; # Gji1, so that j =i mod pZ: this implies that 0, ;(yoy~'o™!) = (j —i)0;(7)0;(c) = 0, whence

yoy ol € Gipja. |

4.3.23. Upper numbering and Herbrand’s theorem.

Notation. If ¢ € [—1, +o0[, we put
Gy =Gy
so that v € Gy © ig(vy) =t + 1. Put
ot
@L/K(iﬂ) = L 7[(;0 LGl

(where [Go : G¢] = 1 for —1 <t <0, so that ¢ /x(z) =  for all x € [-1,0]).

Proposition 4.3.24. The map ¢ /i is a continuous, piecewise linear, increasing and concave map, such

that o7/ (0) = 0. Moreover, we have ¢} ., (t) = @ /() = m if t ¢ Z, but ¢ ., (t) = m and

Wi (t) = 7[Goiét+1] ifteZ.

i.e.

i—1 .
Remark 4.3.25. If i € Z>o and i < <i+ 1, we have o1k (2) = X goo] T [ooa ]
k=0 '

vr/ () = gz (#G1+ -+ #Gi + (2 — )#Giv1).

Definition 4.3.26. The map ¢k induces an homeomorphism from [—1, +oo[ onto itself: we denote by
Vit [—1, +00[— [—1, +o0[ the inverse map. It is called the Hasse-Herbrand map.

Proposition 4.3.27. The map v/ is a continuous, piecewise linear, increasing and convex map, such
that 91,5 (0) = 0. The slopes of the linear pieces of the graph of 1k are integers. Moreover, we have
Vi (Zz0) © Zxo.

Proof. The only non trivial statement is the last one: let y € Z>o and i = [¢r/k(y)]. By remark 4.3.25, we
have #Goy = #G1+- - -+#Gi+ Y1/ (y) —1)#Git1, so that ¥p x (y) = i+[Go : Giv1]y— Zl: [Gr:Giy1]€Z
(since Gi41 < Gy, for all k€ {0,...,i}). = O
Definition 4.3.28. (RAMIFICATION GROUPS WITH UPPER NUMBERING). If y € [—1, +00[, we put

G = Gy (y)-
Remark 4.3.29. By definition, we have G, = G¥2/x(®) for all = € [—1, 4o0[.
Example 4.3.30. We have G™! = G, G° = Gy and GY = {ld..} if y » 0.

The following result shows that the upper numbering is compatible passing to the quotient (¢f remark
4.38).

Theorem 4.3.31. Let H < G be a normal subgroup. We have (G/H)Y = GYH/H for all y € [—1, +o0].
Proposition 4.3.32. (TRANSITIVITY OF HASSE-HERBRAND MAP). If M = L¥ | we have
oL/ = $YmjK ©Pr/m and Yr i =Y o Yk

Lemma 4.3.33. If z € [-1, +oo[, we have ¢ k() +1 = ﬁ ’Y;Ginf{ig(v),x +1}.
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Proof. Both sides are continuous, piecewise linear, and equal to 0 when x = —1: it is enough to show the
equality of derivatives on intervals of the form ]i,i + 1[. If i < z < ¢ + 1, the derivative of the LHS is
1 o 1 — #{EGiic(v)Zi+2} _ #Git1 _ 1

Gooal and that of the RHS is -z ;G 1= 20 ;;%J i+2} _ #Gng = G O

gl

ig(y)>z+1

Lemma 4.3.34. Let 0 € G/H and j(0) = sup ig(s). Then iq/g(0) =1 = or/(j(o) —1).

seG

S—o

Proof. Let s € G be such that ig(s) = j(o). If n € Hjoy—1 = H n Gjp)—1, we have ig(n) = j(o), s
that ig(sn) > j(o) (simply because Gj,)—1 is a group), whence ig(sn) = j(o) (by definition of j(c)). f
e H\Hy(, 1, we have ig(n) < j(o), 5010 ig(sn) = ic(n). In any case, we have ic(sn) = inflic (n). (o)}
By proposition 4.3.6, this implies that

im(0) = 2o X ic() = g X inflic(n). j(0)} = ry(ile) —1) +1
veG neH
Yo
by lemma 4.3.33 applied to the extension L/M. O

Lemma 4.3.35. (HERBRAND’S THEOREM). We have G,H/H = (G/H) o) for all z € [—1, +oo[.

or/m(z
Proof. We have the equivalences:

ceGH/H < j(o) 2x+1epynu(ilo)—1) 2 orm() < igm(o) =12 e () e o€ (G/H)y, @)
proving the equality. O
Proof of proposition 4.3.32. The second equality follows from the first. Both maps ¢k and pu/x 0@/

are continuous, piecewise linear and vanish at 0: it is enough to show that their derivatives on intervals of
the form ]i,7 4 1[ are the same for all i € Z>_;. That of vy © @1/ at @ €]i, i+ 1] is

1 1
SDQ\J/K(SDL/M(%))SD'L/M(HU) = [(GTH)o:(GTH) 0y 0] THotHz ]

= [GOH/H:le H/H] [H(,:le]

#(G.H)#H,
- #((GUH;#HO = [Gg:lGI] = SﬁlL/K(z)
since #(Gy H)#H, = #(GoH)#(Gy n H) = #G,#H and similarly #(GoH)#Ho = #Go#H. O

Proof of theorem 4.5.31. We have (G/H)Y = (G/H), with @ = ¢nk(y). As (G/H)z = Gy, () H/H by
lemma 4.3.35, this gives (G/H)Y = Gy, .,y H/H = GYH/H since ¢ n(x) = Yrm (W (y) = Yok (y)
by proposition 4.3.32. O

Definition 4.3.36. A jump in the filtration (G¥)y>_1 is an element y € [—1, +oo[ such that GY # GY*< for
all e e R.g.

A fundamental theorem of ramification is the following:

Theorem 4.3.37. (HASSE-ARF). Assume that G is abelian. The jumps of the filtration (G¥)y>_1 are
integers. Equivalently, if i € Z> 1 is such that G; # Gi11, then ¢k (i) is an integer.

4.4. Exercises.

Exercise 4.4.1. Let p be a prime number and A a ring of characteristic p.

(1) Show that W(A) is an integral domain if and only if A is an integral domain.
(2) Show that W(A) is reduced if and only if A is reduced.

(3) Show that A is perfect if and only if W(A)/pW(A) is reduced.

Exercise 4.4.2. Let A be a ring of characteristic p. Show that the V-adic and the p-adic topologies coincide
if and only if the map A — A; a — aP is surjective.

Exercise 4.4.3. Let k be a field of characteristic p. Show that W(k) is noetherian if and only if k is perfect
[hint: compute dimg(V (W(k))/V (W(k))?)].

(40)Because vy, (sn(a) — a)) = vr((s — Id)(n(e)) + (n — I )(@)) = mingor ((s — 1d2)(1(@)), vi.(n — Id)(@)) = ic(n) since
vr.(n(a) —a) =ig(n) < j(o) =vr((s — ldL)(n(a))), for a € O, such that O, = Ok [a] (note that for such an «a, we have
Op =n(0r) = n(Ok[a]) = Ok [n(a)]).
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Exercise 4.4.4. Let A be a ring and p a prime number which is not a zero divisor in A. Let o: A — A be
an endomorphism such that o(a) = a? mod pA for all a € A.

(1) Show that there exists a unique ring homomorphism s,: A — W(A) such that s, oo = F4 0 s, and
Ppos, =1da.

(2) Let B be a ring such that p is not a zero divisor in B, and ¢’: B — B an endomorphism such that
o’(b) = b? mod pB for all be B, and u: A — B a ring homomorphism such that v oo = ¢’ o u. Show that
W(u) 0 85 = 87 0 1.

(3) Let t,: A > W(A/pA) be the composite of s, and the natural ring homomorphism W(A) - W(A/pA).
Show that ¢, induces a ring homomorphism ¢, ,: A/p"A — W,,(A/pA) for all n € Z~,.

(4) Show that ¢, , is an isomorphism when A/pA is perfect.

(5) Show that if A/pA is perfect and A is separated and complete for the p-adic topology, then ¢, is an
isomorphism.

Exercise 4.4.5. Let A be a ring and p a prime number which is not a zero divisor in A.

(1) Show there exists a unique ring homomorphism s4: W(A) — W(W(A)) such that s4 0 Fa = Fya)0sa
and ®g o s = Idy(4). Show that it is the unique ring homomorphism such that &, os, = F} for all
ne Z;().

(2) Let A = Z[ X, ]nezs, and X = (Xp)nezo, € W(A). Write s4(X) = (51(X))nez,, where s,(X) € W(A).
Show that sa(a) = (sn(a))nezs, for all a = (ag,ai,...) € W(A).

(3) For all ring homomorphism u: A — B, show that sg o W(u) = W(W(u)) 0 s4.

(4) Show that the maps W(s4) o s4 and sy(a) 0 s4 from W(A) to W(W(W(A))) are equal.

Exercise 4.4.6. Let K be a local field of characteristic p > 0. Show that it has only one coefficient field.

Exercise 4.4.7. Let (K, |.|) be a local field, K an algebraic closure of K, and k/kx a finite field extension.
Denote by L the unique subextension of K /K that is unramified and such that k;, = k. Show that

) E®r K if char(K) = char(kxk)
| W(k) @wisy) K if char(K) # char(kk)

Exercise 4.4.8. Let Q" be the maximal unramified extension of Q,, in Qp. Show that the completion of
Q," for ||, is W(F,)[p~'].

Exercise 4.4.9. Let A be the localization of the polynomial ring R[X] with respect to the ideal p = (X2+1).
(1) Show that A is a DVR but that there is no section x4 — A of the projection.
(2) The completion A of the DVR A has a field of coefficients: explicit an element in A whose square is —1.

Exercise 4.4.10. (COHEN RINGS). Let p be a prime number. A p-ring is a DVR of characteristic 0 whose
maximal ideal is generated by p.

(1) Let A be a DVR, 7 € A a uniformizer, and & a field extension of x := A/7A. Show that there exists a
DVR B that contains A and such that B/mB = k [hint: lift first a transcendance basis of k over x and use
Zorn’s lemmal].

(2) (Kedlaya) Let € be the category of complete DVRs that are unramified over A, in which morphisms are
unramified morphisms of rings (i.e. morphisms which induce isomorphisms on value groups). If R, S € ¢
have residue fields kr and kg respectively, and p: kg — kg is a morphism, we say the morphism f: R — S
is compatible (with ¢) if the diagram

Rt s

b

KR — R§

commutes. Show that if R € ¥ and kg — k is a separable field extension, there exists S € ¥ with residue
field £ and a compatible morphism R — S. Show moreover that if R, S,T € ¥ are such that there are
morphisms kg — kg — k7 and f: R — S and h: R — T are compatible morphisms, there exists a unique
compatible morphism g: S — T such that h =go f.

Remark 4.4.11. This implies in particular that if f: R — S is a compatible morphism in ¢ and kg/kpR is Galois, then the group of f-equivariant
automorphisms of S is isomorphic to Gal(kg/kR).
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(3) Show that if k is a field of characteristic p, there exists a complete p-ring having k as residue field (such
a DVR is called a Cohen ring for k).

(4) Construct a Cohen ring for F,(T).

(5) Show that if k is perfect, then any Cohen ring for & is uniquely isomorphic to W (k).

Exercise 4.4.12. Let p be a prime. Can you find a Galois extension of Q,, whose Galois group is isomorphic
to 65?

Exercise 4.4.13. Let p be a prime number and d € Z. Assume that d is not a square in Q, and put
K= Qp(\/&). Compute the ramification groups of K/Q,, [hint: treat the cases p odd and p = 2 separately]|.

Exercise 4.4.14. Let L/K be a finite Galois extension of local fields of characteristic 0, with residue field
of characteristic p > 0. Let G = Gal(L/K) be its Galois group, and 7 a uniformizer of L.

(1) Let i € Zso and g € G;. Write g(7) = 7(1 + a) with a € m%. Let ¢ = g —Id;: L — L. Show that
o(z) = jax mod mI ™! for all j € Z>o and 2 € mJ.

(2) Let ¢ = g —Idr,: L — L. Show that

pja:c mod mjl"+i+eL+1 N ifi> %
P(x) = 3 pjax + j(1 — P aPz mod mj Tt if = oL
j(1 —P~YaPzr mod mi Pt if i < e
(3) Show that if ¢ > pe_Ll and g ¢ G;11, then g € Gi1¢; \Gite,+1- Conclude that i > pe_Ll = G; = {ld.}.

(4) Similarly, show that if i = 4, the group G; is either trivial or cyclic of order p, this last case being
P

possible if and only if p | i.

(5) Assume that i < -*. Show that if p { i, then g € Gpiy1. If p | i, show that g7 € Gp; and 0 (g7) = 6:(g)?-

Conclude that if p | ¢, the group G;/G;11 is either trivial, or cyclic of order p, this last case being possible

if and only if p"i = % for some h € Z~g.

(6) Show that if the integers i € Z~¢ such that G; # G;41 all are divisible by p, then they are of the form

prio with k € {1,...,h} where p"io = -*4, and G is cyclic of order p".

Exercise 4.4.15. Let K be a field of characteristic 0, with residue field of characteristic p > 0. Assume that

K contains the p-th roots of unity. Let K be an algebraic closure of K and x € K such that 2P = 7 is a

uniformizer of K. Put L = K (x). Show that L/K is a cyclic extension of degree p. If G = Gal(L/K), show

that Gi = G and Gi+1 = {|dL} for i = ZeK.

-1

Exercise 4.4.16. Let K be a local field of characteristic 0, K an algebraic closure of K, and n € Z~ such
that n < L% and p {n, where p = char(rk) > 0. Let y € K be such that vk (y) = —n and z € K such that
2P —x =y. Put L = K(x).

(1) Show that L/K is a cyclic extension of degree p.

(2) Let G = Gal(L/K). Show that G,, = G and G,,+1 = {ld.}.

Exercise 4.4.17. Let p be a prime number, (2 € Q,, a primitive p>-th root of unity and ¢, = (7. Put
F= Qp(Cp)a K = Qp(CpZ)a L= K(pl/p) and K; = Qp(Cpapl/pC;Z) forie {Oa REEY 2 1}

(1) Explain why L/F is Galois.

(2) Show that there is an injective group homomorphism (a,b): Gal(L/F) — (Z /pZ)>.

(3) Show that the extensions K/F and K;/F are Galois (for i € {1,...,p}), and describe their ramification

filtration (with lower numbering) [hint: show that if 7 = (, —1 € F' then w; := "5 € K; is a uniformizer

C;2p1/p
(4) Deduce that K; # K for all i € {1,...,p}, and that [L : F] = p.
(5) Using these extensions, show that the lower numbering is not compatible with quotients.

Exercise 4.4.18. Let p > 3 be a prime and K a splitting field of P(X) = X® +pX +pe Q,[X].
A if (=2) =1

’ 1 (fg) [hint: the discriminant —4p3 —27p? of P is 6 with
63 if (?) = -1
0 = (a1 —ag)(ag — as)(a1 — ag) where aq, s, ag € K are the roots of P].
(2) Compute the ramification filtration on G.

(1) Show that G := Gal(K/Q,,) ~ {
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Exercise 4.4.19. Let L/K be a totally ramified Galois extension of local fields of characteristic 0. Assume
that its Galois group G ~ {+1, +i, +j, £k} is the quaternion group (so that C := Z(G) ~ {£1}), and that
G4 = {ld.}. Show that G = Gy = Gy, and G2 = G3 = C. What is the different of L/K? Show that

G if y <1
G'=1C ifl<y<2
{ld} if 2 <y

Exercise 4.4.20. Let p be a prime number, Q, an algebraic closure of Q,. If n € Z-q, let ( € Q, be a
primitive p”-th root of unity, and K,, = Q,(().

(1) Show that K,/ Q, is totally ramified of degree p"~!(p — 1), whose ring of integers is Z,[(], of which a
uniformizer is ¢ — 1.

(2) Show that K,/Q, is Galois, and that there is an isomorphism G := Gal(K,/Q,) ~ (Z /p"Z)*. If
me {1,...,n — 1}, what is the image of Gal(K,,/K,,) under this isomorphism?

(3) Show that the ramification groups of K,/Q, are given by

G ifi=0
G, =1 Gal(K,/K,,) ifp™~! <i<p™forsomeme{l,...,n—1}
{ldic.} it pn ! <

(4) Compute @Kn/ Q,-
(5) Describe the upper ramification groups.

Exercise 4.4.21. Assume p > 2 and let K/Q, be a totally ramified Galois extension of degree p. Denote
by 7 a uniformizer of K and vg its normalized valuation. Let E(X) = X? + a,—1 X?~' + -+ ag € Z, be
the minimal polynomial of 7 over Q. Recall that vk (Dx/q,) = min{2p — 1,vk(a;) +i — 1}1<i<p (where
DK/ q, denotes the different ideal of K/Q,,).
(1) Show that p —1 | vk (Dk/q,) [hint: use the ramification filtration].
(2) Deduce that vk (Dr/q,) = 2p — 2.
(3) Compute Gal(K/ Q). for x € [~1, +ool.
(4) Deduce Gal(K/Q,)" for y € [-1, +o0].
(5) Assume L/Q, is a totally ramified Galois extension such that Gal(L/Q,) ~ (Z /pZ)*.
(a) Show that L = K1 K> where K;/Q, is totally ramified Galois of degree p for i € {1, 2}.
Show that Gal(L/Q,,)" — Gal(K1/Q,)Y x Gal(K2/Q,)Y for all y € [—1, +oo].
Compute Gal(L/Q,,)? for all y € [—1, +o0].
Deduce Gal(L/Q,)1/Gal(L/Q,)a-
Derive a contradiction and conclude that no such L exists.

(b
(c
(d
(

e

~— e’

Exercise 4.4.22. Unless otherwise stated, ramification subgroups of a finite Galois extension L/K will be
considered with the lower numbering. A jump of the extension L/K is an integer ¢ such that Gal(L/K); #
GaI(L/K)Z-H.

Let L/K and K/F be nontrivial finite extensions of local fields.

(1) Assume that L/F and K/F are Galois. Let i; < --- <, be the jumps of the ramification filtration of
L/K. Assume that the ramification filtration of K/F has a unique jump 4o, and that ig < ¢;. Show that

Gal(L/F if i <4
Gal(L/F), = { ST <o
Gal(L/K); ifi> i
and deduce that the jumps of the ramification filtration of L/F are ig, i1, ..., i, [hint: Herbrand’s theorem].

Assume from now on that F has mixed characteristics (0,p), that K = F({) where ¢ is a primitive p-th
root of unity, and that L = K(«), where a := o € K and o ¢ K.

(2) Show that the extension K/F is cyclic of degree dividing p — 1, and that v ((—1) = S5 €Zso (where

ek is the absolute ramification index of K).

(3) Explain why K /F has at most two jumps, and exactly one when it is totally ramified.

We henceforth assume that K/F is totally ramified. Denote by vk (resp. vz) the normalized valuation on
K (resp. on L).

(4) Show that L/K is a cyclic extension of degree p. When a € F, show that L/F is Galois and describe
the structure of Gal(L/F).
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(5) Assume that p { vi(a). Show that L/K is totally ramified, and that vr (D) = pex +p — 1 |[hint:
first reduce to the case where vk (a) = 1]. Deduce the jumps of L/K. If a € F, what are the jumps of L/F?
Under which condition on er are the jumps in the upper numbering integers?

Assume from now on that p | vk (a) and put E = {i€ Z.g; (Jz € K*)az P € UI(;)}.

(6) (i) Show that 1 € E.

(ii) Assume that a € Uj((i) with ¢ > B2 Show that the polynomial Q(X) = A DX)a olongs to

p—1 (¢—1)?
Ok [X], and use Newton’s lemma to show that it has a root in O, contradicting the hypothesis.
The set E is thus non empty, and included in {1,..., bess }. Put ¢ = max E: replacing a by az™? for some

appropriate £ € K*, we may assume that a € U;f).

(7) Show that there exists A(X) € Z[X] such that (X —1)?» = XP — 1+ p(X — 1)A(X) and A(1) = —1.

(8) Assume that ¢ = L% and put z = ?T_i clL.

(i) Show that vz (z) = 0 [hint: use question (7)].
(ii) Compute the minimal polynomial P of z over K, and show that its image P in kx[X] is of the
form P(X) = X? — X — \. Explain why P is irreducible, and deduce that K /F is unramified.
(iii) If a € F, what are the jumps of L/F in that case?

(9) Assume that ¢ < 25 — 1.
P

(i) Show that p{ ¢ [hint: assume the contrary and deduce a contradiction with the definition of ¢.]
(ii) Compute vr (o — 1) [hint: use question (7)], and deduce that L/K is totally ramified.
(iii) Constuct a uniformizer 7z of L, and determine the jump of L/K [hint: consider the action of a
generator of Gal(L/K) on 7p,.]
(iv) Deduce that v, (Dr/x) = (p — 1) (2% —c+1). When a € F, what are the jumps of L/F in this
case?

Exercise 4.4.23. Let (K, |.|) be a complete discretely valued field of characteristic 0, with perfect residue
field kg of characteristic p. We denote by v the normalized valuation on K and by ex = v(p) its absolute
ramification index. Let n € Z-( be such that Fyn c kg and o € K such that v(a) > —gzej. Put
P(X)=XP" —X —ae K[X],let A\e K be aroot of P and L = K()\). We still denote by v its extension
to L.
(1) Recall why there is a unique multiplicative map [.]: Fy» — O such that 7o [.] = Idg,., where
m: O — Kk is the projection.
Put Q(X) = P(X + ) e L[X].
(2) Assume v(a) < 0. Show that v(\) = %. Deduce that Q(X) € Or[X] and compute the image Q(X)
of Q(X) in kr[X].
(3) For = € Fyn, compute the images of Q([z]) and Q'([z]) in xz. Deduce that P is split in L.
What precedes shows that L/K is Galois: put G = Gal(L/K).
(4) Show that if 0 € G\{ld.}, we have |o(\) — A\| = 1.
(5) Assume now that p { v(a) and v(a) < 0.

(a) Show that L/K is totally ramified, and give a uniformizer 7z, in terms of a uniformizer mx of K

and A [hint: use the fact that ged(p™, v(«)) = 1].
(b) Show that the ramification filtration with lower numbering is given by

G = {G if i < —v(a)

{Id}  ifi> —v(a)
(c) Compute the different D /x and the discriminant 97,/x.

(6) Show that if a; € K satisfies |« — 1| < 1 and Ay is a root of P;(X) = XP" — X —ay, then K(\) = K()\1).
(7) Assume now that aj,as € K are such that v(aq),v(az) > —ex and | — oy — az| < 1. Show that
L = K(A) lies in the compositum of K (\)K (\z2).

Exercise 4.4.24. Let p be a prime number and n € Z~q. Write n = p"m with r € Z>¢ and m € Z~( such
that p { m. Fix an algebraic closure Qp of Q,. In what follows, ¢,, will denote a (any) primitive n-th root
of unity, and K,, = Q,(¢n). Let ®,(X) € Z[X] be the n-th cyclotomic polynomial.

(1) Explain why K,/Q, is Galois and show that Gal(K/Q,) injects canonically in (Z /nZ)*.

(2) Show that the extension of F, generated by the primitive m-th roots of unity is F,,; where f is the order
of pin (Z /mZ)*. Explain why the irreducible factors of the image of ®,, in F,[X] all are of degree f.
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(3) Show that K, is the unramified extension of degree f of Q,, [hint: use Newton’s lemma to show that
its residue field is F/].

(4) Show that ®,-(1+X) is an Eisenstein polynomial in K,,[X]. Deduce that K,, is the maximal unramified
subextension of K,/ Q,, [hint: show that K, = K, ((-)|]. What is the degree of the extension [K, : Q,]?

(5) Deduce that the ring of integers of K, is Z,[(,]. Show that (,» — 1 is a uniformizer of K,. Is {, — 1 a
uniformizer?

(6) Compute the different and the discriminant of K.,/ Q,,.

(7) Determine the ramification filtration of Gal(/,/Q,) with lower and upper numbering.
(8) Retrieve the result of question (6) using the ramification filtration.

(9) Show that there exists m € K, such that 7" = —p.

(10) Ts there necessarily an element 7, € K, such that 72~" = p?
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5. INFINITE EXTENSIONS

5.1. Infinite Galois theory. Let K be a field. If L/K is a finite Galois extension, Galois theory provides a
dictionary between subextensions of L/K and subgroups of Gal(L/K) = Autk.aig(L). More precisely, there
is a decreasing bijection

{subextensions of L/K} — {subgroups of Gal(L/K)}
F — Gal(L/F)

(the inverse bijection is H +— L*). We extend this to (possibly) infinite Galois extensions: let L/K be an
algebraic, separable and normal extension, and put

GaI(L/K) = AUtK—alg (L)

Remark 5.1.1. An important example, is when L = K is a separable closure of K. The group Gal(K /K)
is called "the” absolute Galois group of K.

Denote by Tk the set of finite and normal subextensions of L/K. Endowed with the inclusion rela-
tion, this is a directed set (an upper bound of two extensions being their compositum). For F; < F» €
71k, the restriction provides group homomorphisms Gal(L/K) — Gal(Fy/K) — Gal(F1/K): the family
(Gal(F/K))Fez,,, (endowed with the restriction maps) is an inverse system, and there is a group homo-
morphism

Y: Gal(L/K) - lim Gal(F/K)

FEIL/K
Lemma 5.1.2. The previous morphism is an isomorphism.
Proof. If g € Ker(v), then g|p = Idp for every F € Iy /. As L= |J F (because L/K is algebraic), this

FEIL/K
implies that g = Idy, so that v is injective. Let (gr)rez,, € lim Gal(F/K). f x € L and Fy,F> € Ty
FEIL/K

are such that x € 1 n I, let F' be the compositum of Iy and Fy. As (g9r)p, = gr, and (9r)|p, = 9r,,
we have gr, (z) = gr(x) = gr,(7), so gr(x) does not depend on the choice of I € 7k such that = € F.
So we can define g: L — L by g(z) = gr(z) for any F € 7k such that x € F. We have gp = gr for all
F eIk, sogeGal(L/K), and ¥(g9) = (9r)Fez, ,x» Which proves the surjectivity of 1. a

Definition 5.1.3. Via the previous isomorphism, the group Gal(L/K) is endowed with a topology (called
the Krull topology) for which it is profinite (in particular it is compact). If g € Gal(L/K), a basis of
neighborhoods of g is {g Gal(L/F)}rez, . (i-e. g1,92 € Gal(L/K) are close if they agree on a big finite
subextension of L/K).

Theorem 5.1.4. The map F — Gal(L/F) is a bijection between the set of subextensions of L/K and that of
closed subgroups of Gal(L/K). The open subgroups correspond to finite subextensions of L/K. The inverse
bijection is H + L.

Proof. e If F is a finite subextension of L/K, the subgroup Gal(L/F) < Gal(L/K) is open*!), hence closed.

Now if F/K is any (i.e. not necessarily finite) subextension of L/K, then Gal(L/F) = (| Gal(L/M)
[MMIg]ix
(because F = |J M), so Gal(L/F) is a closed subgroup as the intersection of closed subgroups. This
McF
[M:K]<x

shows that the map is well defined.

e Let F' be a subextension of L/K. If x € L, there exists a finite and normal subextension N/F of L/F
such that x € N. If z fixed by Gal(L/F), it is fixed by Gal(N/F), hence x € F (by classical Galois theory).
This implies that L&'(X/F) = F so the map F +— Gal(L/F) is injective.

e It remains to show that if H < Gal(L/K) is a closed subgroup, then H = Gal(L/F) with F := L. One
has H < Gal(L/F). To show the equality, is is enough to show that H is dense in Gal(L/F) (because H is
closed). Let g € Gal(L/F) and M € Zy,/, so that g Gal(L/M) is an open neighborhood of g in Gal(L/F). As
F = LH one has M" = F as well, where H is the image of H in Gal(M/F). By classical Galois theory, this
implies that H = Gal(M/F), so that H — Gal(M/F) is surjective: there exists o € H such that oM = g|M>
so that g~'o € Gal(L/M), i.e. o € gGal(L/M): we have 0 € H n gGal(L/M) i.e. H ngGal(L/M) # &,
which proves the density.

(41)Take N < L the normal closure of F, then N € T1/K, 80 Gal(L/N) is open in Gal(L/K) (by definition of Krull topology):
so is Gal(L/F) = U g Gal(L/N).
g€Gal(N/F)
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e We have seen that if F'/K is finite, then Gal(L/F) is open in Gal(L/K). Conversely, if H = Gal(L/F) is
open in Gal(L/K), one has [Gal(L/K) : H] < 4+ (because Gal(L/K) is compact). If z € L¥, then z has at
most [Gal(L/K) : H] conjugates, so [F : K| < [Gal(L/K) : H] is finite. O

Proposition 5.1.5. A subextension F//K of L/K is Galois if and only if Gal(L/F) < Gal(L/K). In this case
Gal(L/K)/Gal(L/F) > Gal(F/K).

Proof. Let H = Gal(L/F) < Gal(L/K). If g € Gal(L/K), one has Gal(L/g(F)) = gHg'. By Galois
correspondence, one has g(F) = F & gHg™' = H, so F/K is Galois if and only if H < Gal(L/K). In
this case, the restriction induces a surjective group homomorphism Gal(L/K) — Gal(F'/K), whose kernel is
H. (|

Example 5.1.6. Let K be a finite field: K = F, with ¢ = p" (where p = char(K)). Fix K an algebraic
closure of K. Let ¢: K — K;z — x? be the Frobenius map. For m € Zwq, let K,, ~ Fyn be the
unique subextension of K /K of degree m. The extension K,,/K is Galois, and Gal(K,,/K) ~ Z /mZ is
cyclic, generated by ¢k, . Passing to the limit, the map A Gal(K/K); 1 = ¢ is an isomorphism and a
homeomorphism.

Remark 5.1.7. (RAMIFICATION GROUPS) Assume K is a local field, and L/K a (non necessarily finite)
Galois extension. If y € [—1, +00[, we can put
Gal(L/K)Y = lim Gal(F/K)?

FEIL/K
(which makes sense since upper numbering is compatible with quotients, ¢f theorem 4.3.31).

5.2. Dévissage of Gk. In this section, (K, |.|) denotes a local field of mixed characteristics (0, p) (so that K
is an extension of Q,). Let v: K — Q u{+00} be the valuation normalized by v(p) = 1. Fix K an algebraic
closure of K and let Gx = Gal(K /K) be "the” absolute Galois group. Recall that |.| extends uniquely to
a (non-discrete) absolute value |.|: K — R (so that v extends uniquely into a non-discrete valuation
v: K — Qu{w}), which is Gg-equivariant, i.e. (Yo € K) (Vg € Gk)v(g(x)) = v(z) (c¢f corollaries 3.5.7
and 3.5.8). Put W = W(k) and F = Frac(W) = W[%] One has F — K, and the extension K/F is totally
ramified of degree ex = [|[K*|: Z] (we have v(K) = - Z u{w0}).

For every finite and Galois subextension L of K /K, we have (cf §4.1) n exact sequence

{ldr} — Ik — Gal(L/K) — Gal(kr/kK) — {1}

where Iy = Gal(L/T) is the inertia subgroup (here T is the maximal unramified subextension of L/K).
As L ranges among the finite and Galois subextension of K /K, this provides an inverse system of exact
sequences. Passing to inverse limit gives an exact sequence:

{|d1?} i IK i GK i GaI(EK/mK) i {1}

(note that kp ~ Rx by corollary 3.8.16). Under Galois correspondance, the group Ix corresponds to the

composite K" of all unramified subextensions of K /K: we call K the mazimal unramified subextension
of K. Then I = Gal(K/K") and Gal(K"/K) > Gal(Kx /kK)-

Remark 5.2.1. When K in a finite extension of Q,,, the group Gal(kx /rx) ~ Z is quite explicit (¢f example
5.1.6). Write kg = F, (where ¢ = pl*x:F»l). Then sz is an algebraic closure of rx: it is obtained by
adjoining to ki the n-roots of unity for all n € Z~( prime to p. Using Newton’s lemma, this implies that
K" = | J K(un) (where p, denotes the group of n-th roots of unity in K).
pin

Definition 5.2.2. We denote by Px the pro-p-Sylow subgroup of Ig, i.e. the maximal pro-p-subgroup of
Ix. This is the closed subgroup of Gk (called the wild inertia subgroup). By definition, it corresponds,
under Galois correspondance, to the composite K *™¢ of all tamely ramified subextensions of K /K.

Definition 5.2.3. Let G be a profinite group.
(1) Let B a topological ring endowed with a continuous action of G. A B-representation of G is a free
B-module of finite rank endowed with a continuous and semi-linear action of G, i.e.

(Vg € G) (Ybe B) (Ymy,mg € M) g(bmy +ma) = g(b)g(m1) + g(m2)

With B-linear G-equivariant maps, they form a category denoted by Repz(G).
(2) Let ¢ be a prime number. A (-adic representation of G is a Q,-representation (where the action of G
on Q, is trivial). An integral (-adic representation of Gk is a Z,-representation of G.
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Proposition 5.2.4. Let G be a profinite group and V € Repq, (G). There exists an integral ¢-adic repre-
sentation L < V which is a lattice, i.e. such that V = L ®z, Q,.

Proof. Let Lo c V be any lattice (take the Z,-span of a basis). This is an open neighborhood of 0 € V: as

the action of G is continuous, there exists an open subgroup H < G such that (Vh € H)h(Lo) € Lo. Put

L = > 7Lo. As Lo is compact (homeomorphic to Zy with n = dimq,(V)), so is L. As Ly < L, this
TeG/H

implies that L is a lattice, which is stable by GG by construction. O

If £ is a prime number, let (an)neN be a compatible sequence of primitive £"-th roots of unity, which means
that (o =1, {y # 1 and (V?’L € ZZO) an+1 = (yn.

Definition 5.2.5. (1) For n € Z, the extension K, := K({n)/K is Galois, and if g € Gal(K,,/K), then
g(Cen) = }f'”(g) where x¢,(9) € (Z/¢™Z)*: the map x¢,: Gal(K,/K) — (Z /" Z)* is an injective group
0

homomorphism. Put K, = U K, the subextension K, /K of K/K is called the (f-adic) cyclotomic
n=0
extension. It is Galois, and as n varies, the morphisms x,,, are compatible: passing to the inverse limit,

one gets an injective group homomorphism
xe: Gal(K/K) — Zj)

called the (¢-adic) cyclotomic character. Note that the image of x, has finite index in Z;.
The composite G — Gal(K.,./K) X% Z) is also denoted by x, and called the cyclotomic character as well.
(2) The character x, provides a continuous action of Gx on Z, (given by the multiplication by x,), in

particular a p-adic representation of G rc. We denote by Z, (1) this G x-module: one has Z,(1) = lim i,» (K)

(taken additively). If i € Z, we put Z, (i) = Z,(1)®": this is nothing but Z, endowed with the action of G
given by the multiplication by X,i,- If M is any (topological) Z,-module with a continuous action of G,
and i € Z, we put M (i) = M ®z, Z,(i) (as Gg-modules). This is called a Tate twist.

Let 7 be a uniformizer of K. Tt is a uniformizer of K. For n € Z~ prime to p, let 7, = /7 € K be a n-th
root of 7. We may assume that the family (m,),, is compatible, i.e. (Ym,n € Nxo)p{nm = 7., = m,.
As X™ — 7w e K"™[X] is an Eisenstein polynomial, the extensions K (m,)/K and K" (r,)/K"" have degree
n. They are totally tamely ramified. In particular, | J K" (m,) ¢ K%™me.

pin

Proposition 5.2.6. We have KM = | ] K" (rr,).
pin

Proof. We have to show that if L is a finite tamely ramified subextension of K /K, there exists a finite
unramified subextension T of K /K and n € Z~q prime to p such that L < T(r,). Let T be the maximal
unramified extension of L/K. As L/T is totally tamely ramified, one has L = T'(w), where w is a uniformizer
of L such that w® is a uniformizer of T (where e = [L : T is prime to p, ¢f theorem 3.8.28): there exists
« € OF such that w@ is a root of the Eisenstein polynomial E(X) = X¢—na € Op[X]. Let T € Rk be a root
of the reduction of X¢ — @ € kp[X] (where @ denotes the image of « in k7). As it is separable (because
ea € OF since p { e), one can lift @ to a root u € Ogw of X¢ —a € Op[X] (by Newton’s lemma). Replacing
L by L(u) (which is licit since T'(u)/T is unramified), we may assume that v € T. We have w® = (um.)®, so
that w = (um, for some e-th root of unity ¢. Replacing L by L(¢) (which is licit since T'(¢)/T is unramified),
we may assume that ¢ € T, so that 7. = & € L, hence T'(m) < L. As [TI'(me) : T] = e = [L : T, this
implies that L = T'(m,). O

If ¢ # p is a prime number and n € Z-, the conjugates of 7 are (f,mm with k € Z /(" Z: if g € G, one
has g(mm) = (;i(g)ﬂen, where t;: Ix — Z /0™ Z is a surjective group homomorphism. These are compatible
as n varies, giving rise to a surjective group homomorphism

te: I — Zg(l)

Remark 5.2.7. The Tate twist (which is relative to the ¢-adic cyclotomic character) denotes the fact that ¢,

is a cocycle. This means the following. Let g € Ix and v € Gk . As I is normal in G, we have vgy~! € Ik,
—1

and (ygy~!)(men) = OOy, o that t(vgy 1) = x(M)te(9) + X()te(v ) + te(r). With

g = ldz (in which case t,(g) = 0), this shows that x(7)te(y™!) + te(y) = 0 for all v € Gk, so that the

previous equality gives

te(vgy ™) = x(Mtelg).
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Proposition 5.2.8. The sequence

{ldg} = Pic — I 225 [T 2:01) - {0}
L#p

is exact.

Proof. By definition, one has Ix/Px — Gal(K*™/K"), and the fact that Gal(K'"™¢/K") > [ Ze(1)
L#p
through (¢,)¢ follows from proposition 5.2.6. O

Theorem 5.2.9. (GROTHENDIECK’S MONODROMY THEOREM), cf [23, Appendix]) Let £ # p be a prime
integer, and V an f-adic representation of Gx. Assume that K(ue=)/K is infinite. Then V is quasi-
unipotent, i.e. there exists a unique nilpotent endomorphism N: V(1) — V and an open subgroup I € Ik
such that

(Vg e (Vv e V) g(v) = exp(te(9)N)(v)

Proof. By proposition 5.2.4, V contains a Gg-stable lattice L: the representation is thus given by a
continuous group homomorphism p: Gx — GL(L) ~ GL,(Z;) where n = dimq,(V). The subgroup
Id, +¢?End(L) < GL(L) is open and normal: let I = p~'(Id, +¢?End(L)) n Ix. This is an open sub-
group of Ix and a normal subgroup of Gk. Let p;: I — Idg, +¢?End(L) be the group homomorphism
induced by p. As Id; +¢2End(L) is a pro-f-group and Ker(t,) is an inverse limit of groups of order prime to
p, the morphism p is trivial on I n Ker(t), i.e. p|; factors through I/(I n Ker(ty)).

0 .
If g € I, then p(g) € Id; +¢*>End(L), so the series log(p(g)) = — ¥ +(ld, —p(g))Z converges in ¢2 End(L)
i=1

(for the ¢-adic topology). Also, since log(p(g)) € #2 End(L), one has p(g) = exp(log(p(g))). This provides
a continuous group homomorphism log(p): I — ¢2 End(L) that factors through I/(I n Ker(t;)), i.e. by t:
there exists a unique N: V(1) — V such that (Vg € I) log(p(g)) = te(g)N. It remains to see that N is
nilpotent.

Denote by x¢: Gx — Z; be the (-adic cyclotomic character. As K (u»)/K is infinite, the image of x; is
infinite. If v € Gk and g € I, one has vy~ 'gv € I (because I is normal in G ), and*? t,(y ' g7) = xe(7)te(g).
We have p(y~'gv) = p(7) 'p(g9)p(7), taking the logarithm we get to(y'g7)N = ti(g)p(7) ' Np(7) hence

p(7) "Np(v) = xe(v)N

This implies that the spectrum of N is stable by multiplication by Im(x¢). As Im(x,) infinite and the
spectrum of N is finite, the latter has to be reduced to {0}, and N is nilpotent. g

Remark 5.2.10. As ¢ # p, one has juy=(K) = p=(kx), so the condition in the theorem is automatically
fulfilled when £ is finite.

5.3. The completion of a separable closure of a local field. Let (F,|.|) be a complete non archimedean
valued field. Fix /" an algebraic closure of F. The absolute value |.| extends uniquely into an absolute value
|.| on F' (cf corollary 3.5.7).
Lemma 5.3.1. (KraSNER(*?)). Let «, 8 € F be such that « is separable over F' and:

a—pB] <  min a—a

| | a’eC(a)\{a} | |
where C(«) is the set of conjugates of « over F. Then F(a) c F(p).
Proof. Put v = f—a and F’ = F(8): we have F'(y) = F'(a) so F'(vy)/F"’ is separable. Let 4’ be a conjugate
of v over F'. If v/ # ~, we can write 7/ = 8 — o/ with o/ € C(a)\{a}. As v and v are conjugate over F’, we
have |[y/| = |v], so that

o —a'[ = ' =] <l =8-a

which contradicts the hypothesis. This implies that « has only one conjugate over F’, i.e. v € F’, whence
a € F' =F(p). O

Lemma 5.3.2. If |.| is not trivial, then an infinite and separable subextension of F'/F is never complete.

(42)This is the precise meaning of remark 5.2.7.
(43)This result is in fact due to Ostrowski.
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Proof. Let K be an infinite subextension of F/F. Assume that (K,|.|) is complete, and that K/F is
separable. Choose a sequence (2, )nez., of elements in K that are all linearly independent over F. As |.|

is not trivial, there exists a sequence (a,)nez., of elements in F' such that the sequence (|anZn|)nezs, is
o0
strictly decreasing and converges to 0. As K is complete, the series s = > a,z, converges in K. For
=0
n—1 "
n € Zso, put s, = 3, a;x;: the elements {s, }nez., are all linearly independent over F. For n € Z~, let d,
i=0
be the smallest distance between s, and its conjugates. ag being chosen arbitrarily, we can construct the
sequence (an)nezs, inductively so that |an,z,| < d,, for all n € Z-g. As (|an@n|)nezs, is strictly decreasing,
we have |s — sp,| = |an2n| < dp,. By Krasner’s lemma, this implies that s, € F(s). As (8p)nez., is linearly
independent, this implies that [F(s) : F'] = o0, which contradicts the fact that s € K is algebraic over F. O

Remark 5.3.3. In the lemma 5.3.2, the separability condition is really necessary: let K = Fj(z;)icz., be
the field of rational fractions in the indeterminates (z;);cz., with coefficients in F;,, and F' = K ((T")) the field
of formal Laurent series with coefficients in K. Endowed with the T-adic absolute value |.|, the field F is
complete. Then FY/? = K'/?((T'/?)) is a totally inseparable algebraic extension of F. The absolute value |.|
extends uniquely to F'/P (¢f theorem 3.5.6), and the Frobenius map ¢: F/? - Fis afield isomorphism. As
lo(f) = |fIF for all fe F1/P_ the Frobenius map is also an homeomorphism, so that F/? is also complete.
On the other hand, the extension F/?/F is infinite, because K/?/K is (this can be seen as follows: for all
i € Z>o, we have x; ¢ Fy(zo,..., 21,2}, 27, 4,...), so that

1 1 1 1
[Fp(xo/p,...,:ci/p,:ciﬂ,...) : Fp(zo/p,...,ziiﬁ,zi,ziﬂ,...)] =p,

whence [Fp(zé/p, Y LI T .) : K] = p**! by induction).

1 L4
From now on, (K, |.|) denote a complete non archimedean valued field. We assume that |.| is not trivial.

Proposition 5.3.4. rj is an algebraic closure of ki and |K*| = {r € Rog; (In € Zoo) ™ € |[K*|} = p@
for any element p € |[K*|\{1}.

Proof. e Let x € ki there exists Z € O such that Z maps to z in kg = O /mp. There exists a finite
subextension L/K of K/K such that Z € L, i.e. 2 € Or. Reducing modulo my shows that = € sy, is
algebraic over k.

e Let P(X) € kx[X] be a monic irreducible polynomial, and P(X) € Ox[X] a monic lift of P. Then P
has a root a € K, and a € O (cf corollary 3.5.10): if @ denotes the image of « in k5, we have P(a) = 0,
hence P has a root in Kz, proving that x5 is an algebraic closure of k.

e Let L/K be a finite subextension of K /K. We have |L*| = |K*|"/* where e is the ramification index of
L/K. This implies that |[L*| c {r € Rsq; (In € Z>o) r™ € |[K*|}. As this holds for all subextension L/K of
K /K, we have |[K*| c {r e Rug; (In € Zso) r" € |[K*[}.

e Conversely, let 7 € R~ and n € Zx( be such that ™ € |K*|: there exists m € Z such that |7g|™ = 7",
where 7x is a uniformizer on K. Then P(X) = X" — g € Ox[X] is an Eisenstein polynomial: if a € K

is a root of P, then |a| = |rx|"™, so that 7™ = |a|™™, hence r = |a™| € |K ™. O
Corollary 5.3.5. The field x5 is infinite, and |I?X| is dense in Ry.

Notation. We denote by C' the completion of K with respect to its absolute value |.|. The latter extends
to C: we still denote by |.| this extension.

Proposition 5.3.6. The field C is algebraically closed.

Proof. Let L be a finite extension of C. Replacing L by its normal closure over C, we may assume that L/C' is

normal. Denote by |.| the unique extension of |.| to L. Let a € Land P(X) = X" +a1 X"~ +---+a, € C[X]

its minimal polynomial over C'. Let € € Rxo: as K is dense in C, we can choose b1,...,b, € K such that

|b; —ailla|"™" < e™ for all i € {1,...,n}. Put Q(X) = X" + 0 X" ! +.-- +0b, € K[X]: we have

Q(0) = Q(0) = Pa) = 3 (b — a)a™~", 50 that [Q(0)] < max [b; — as|[a]"~* < " On the other hand,
i=1 Sisn

let B1,...,08n € K be the roots of Q(X). As Q(a) = [[(a — Bi), we have [] |a — Bi| < ", so there exists

i=1 =1

i€ {l,...,n} such that 8 := j3; € K satisfies |a — 3| < . We can thus construct a sequence (z)ez., in K

such that |o — x| < 27% for all k € Z~o. This implies that a = klim x, € C. In particular, we must have
— 0

L=C. (|

Definition 5.3.7. The completion of “the” algebraic closure of Q,, is denoted by C,.
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5.3.8. The Galois action on C. The content of this part is taken from [2]. Recall that (K, |.|) is a complete
non archimedean valued fied such that |.| is non trivial. Let K be a separable closure of K, and (C, |.|) the
completion of (K, |.|). As the group G := Gal(K/K) acts by isometries on K, the action of G extends
to C by continuity. Let /K denote the perfect closure of K, i.e.
N {K i char(K) =0
KP if char(K)=p >0

Theorem 5.3.9. We have C%% = \/K | i.e. the field of elements in C' that are invariant under G is the
completion of the perfect closure of K.

We will need a few lemmas.

Lemma 5.3.10. Let p be a prime number and n € Z>q. If k € {0,...,v,(n)}, then ’Up(( v)) = vp(n) — k.

Proof. Let s(n) be the sum of the digits of the p-adic development of n. Then v,(n!) = ;S(ln). This
implies that vp((pi)) = nstm)-(" _1;:"1 G ) R U pp)jll s Pyt v = = vp(n) and wrlte n = p’m
with p { m: we have s(n) = s(m) and n — p¥ = p¥(p*"*m — 1) so that s(n — p*) = s(p**m —1). Let

m = ag +pay + -+ +p"a, with a; € {0,...,p—1} for i € {0,...,r} be the p-adic development of m. We
have ag # 0, and

pv—km —1= pv—k -1 +pv—k(a0 _ 1) +pv—k+1a1 4. _l_pv—k-H‘GT
=L +p+p*+- -+ —1) +p a0 — 1) +p" T ay + -+ pt TR,
so that s(p*~*m —1) = (v —k)(p — 1) + s(m) — 1, which implies that s(n —p”) +1—s(n) = (v —k)(p — 1)

whence v, (( 1)) = v — k- O
d d ‘

Lemma 5.3.11. Let P(X) = [[(X — o) = Y a,;X? € C[X]. Assume that |oq| < -+ < |ag|. If
i=1 j=0

j€{0,...,d—1}, we have |a;| < |ajt1---anl. If |a;| < |aji1], we have equality, more precisely

1—(=1)47—% | <1.

Qjg1-Qn

Proof. We have a; = (—1)"77 3 i,

i< <lg_j
|, -+ @iy, | < |ajs1 -+ an| proving the first inequality by the triangle inequality. When |a;| < |oj11], we
have |ag, -+, | < |ajy1--on| unless iy, = j +k for all ke {1,...,d — j}, proving the second part of the
lemma, in that case. 0

+;: the ordering of the roots implies the inequalities

Lemma 5.3.12. Let P(X) € C[X] be of degree d = p°d; = qd; where p = max{1,char(kc)}, § € Zo and
ged(p,di) = 1. Assume ¢ < d and that a disk D < C contains all the roots of P. Then Pldl has a zero in D.

Proof. We may assume that P is monic and that 0 € D: this implies that D = D(0, ) for some r € Rxg.
d d _ _

Write P(X) = [T(X — ;) = 3 a; X7 with |a1| < -+ < |ag| < r. By lemma 5.3.11, we have |a;| < r¢J
. o

i=1

5=
for all j € {0,...,d —1}. We have

d . . d—q
Pl(x)=% ()a; X777 = 3 b X*
k=0

Jj=q

where by, = (k;q)akﬂ for k € {0,...d — q}. As P is monic, we have by_, = (Z), SO we can write
o
Pld(Xx) = (q) kHI(X — B)
d—gq
so that by = (Z) IT(=Bk). We have ‘(2)‘ = 1, because the image of (Z) is invertible in k¢ (this is trivial
k=1

d—q

if char(kc) = 0, and follows from lemma 5.3.10 if char(kc) = p > 0). This implies that [] 8] < r¢79, so
k=1

that there exists ko € {1,...,d — ¢} such that |Bx| < r i.e. By € D. O

Lemma 5.3.13. Assume that char(C’) = 0 and char(kc) = p > 0. Let P(X) € C[X] be of degree d = p° > 1
having all its zeros in a disk D = D(a,r). If ¢ = p’~!, then Pl has a zero in D (a,r |p|7d%q )
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d
Proof. Again, we may assume that P is monic and that D = D(0,7). Write P(X) = [[(X —a;) = Y a; X7:
i=1 =0
as before, we have
d . ) d—q
PEICX) = $5 (X770 = (3) T1(X - )
J=q k=1
d—q d—q
so that ay = (Z) [T(=Bk). As vp((Z)) = 1 by lemma 5.3.10, we have |p| [] |8k] < 7%79, so that there exists
k=1 k=1
ke{l,....d—q} such that [p||Bu]|® 7 <199 ice. |Bx| <7 lp| 7. O

Definition 5.3.14. If a € K, let

Ag(a)=A(a)= sup |0 —«
a’eC(a)\{a}

with the convention that A(a) = 0 if a € VK.

Remark 5.3.15. If o € K and z € K, we have |’ — a| < max{|a’ — 2], |a — 2|} = |a — z| for all conjugate
o of « (since elements of Gk act by isometries on K). This implies that A(a) < | — z|. As this holds
for all z € K, this means that A(a) < d(«, K). The aim of the next few lemmas is to show that A(«) is

"close" to d(«, K).

Lemma 5.3.16. Assume that char(K) = 0 and char(kx) = p > 0. If a € K has degree n over K, then there
exists ¢ € K such that

o — 2| < Ala) [p| 7™

A(n)
where ¢(n) = 3] p_;i,l and A(n) = max{e € Zxo; p® < n}.
i=1

Proof. We proceed by induction on n € Z-, the case n = 1 being trivial. Let P(X) € K[X] be the minimal
polynomial of o over K. Write n = pn; = gn; with p { ny. Let D be the disc centered at a with radius
A(w).

o If n; > 1, lemma 5.3.12 implies that Pl has a root 8 € D, i.e. such that |a — 3| < A(a). If § ia a
conjugate of S over K, then there exists o € Gk such that o(8) = 8. This implies that

18" = Bl = |o(B) = Bl = |o(B — @) + (0(a) —a) + (a = f)| < max{la — 5], |o(a) —al} < Aa)

since |o(a — B)| = |o — B]- As this holds for every conjugate 8’ of 5 over K, this implies that A(8) < A(«).
As [K(B) : K] < deg(Pl) = n — ¢ < n, the induction hypothesis implies that there exists = € K such that
18 — 2| < A(B) |p|*""?. We have A(n) = A(n — q), hence c(n) > c(n — q), thus |p|*"™? < |p|™*™ (as
1< |p| ™), 50 [8—2] < A(@) |p| ™. As o — 2| < max{la - 8], |8 — =}, we get | — 2| < Aa) [p| "
(since |o — B| < A(a) and 1 < |p|=*™).

o Ifn; =1, put ¢ = p’~', lemma 5.3.13 shows that Pl has a root 3 such that |3 — a| < A(«) |p|_d;—<1. As
before, we have |5’ — f| < max{|a — 3], |o(a) — a|} < A(«a) |p|_d7iq for all conjugate 8’ of 8 over K, so that
A(B) < A(a) |p|_d%q. By the induction hypothesis, there exists z € K such that |3 — z| < A(B) [p|*" ™2,

ie. |B—x| < Ala) |p|76("7q)7"%q. Asn = p’, we have n —q = p* Y(p— 1), s0o A(n —¢q) = 6 — 1,
51

hence c(n —q) = ¥ —=r = c(n) — ;1 this implies that |3 —z| < A(@) Ip| ™. As before, we
1=1

have |o — 2| < max{|a — A, |8 — 2|}, so that |a — z| < A(a) |p| "™ (because |a — 8| < A(a)|p| ™7 and

Ipl ™™ < | ). O

Proposition 5.3.17. Assume that char(K) = 0 and char(kx) = p > 0. If o € K, there exists x € K such

D

that |a - :L'| < A(a) |p|7(p—1)2 .

0
Proof. This follows from lemma 5.3.16, since c¢(n) < ), p_;i,l = p—il
i=1

1
PE

= ﬁ forallneZ.g. O

T
s

Lemma 5.3.18. Assume that char(K) = p > 0. If a € K has degree p over K, there exists 3 € K'P such
that [a — 8] < |a| 7 A(a)¥.
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Proof. This is trivial if « is not separable over K: assume that « is separable over K. Let aq,...,ap be
the conjugates of « over K. For i € {1,...,p}, put 1, = o; — a. We have
p p
Ni(ayr(@) = [Tai = [T(a+m) = a? +bia?~" + -+ + b,
i=1 i=1

where b; is the i-th symmetric function of n1,...,n,. As || < A(a) for all k € {1,...,p}, we have
|bi| < A(a)? for all i€ {1,...,p}. Let 8 € K'/P be such that 8P = Nk (a)/k (@) we have

(B—a)P =bjaP™L +---+ b,
so that |a — 3] < max |bs] [oP~" = A(a) |aP~" since Aa) < || (because |of — a| < max{|a|,|a|} = |
for every conJugate o of a over K). a

Lemma 5.3.19. Assume that char(K) = p > 0. If @ € K has degree p over K and j € Z+, there exists
3; € VK such that

p—11j 1 (p—1)J—1

o = B3] < Jal "5 A@)r T
Proof. We proceed by induction on j € Z.g, the case j = 1 being lemma 5.3.18. Assume /; has been
constructed. Applying lemma 5.3.18 to o — 3; € VK, there exists Bj+1 € \/El/p = /K such that

p=1 1
la = Bjrl S la—=p;1 7 Ala—B;)7
As B € VK, the element B; has only one conjugate, so that A(a — 8;) = A(«a): we have

—1
= )]+1

p—=1yj 1pp1, —(pil)_j_l P 1
oo — B 11| < (|0¢|( o) A(a)p"’_ e ) A(a)rl) |a|(

Afa)s 5 T

O

Lemma 5.3.20. Assume that char(K) =p > 0. If a € & has degree p over K is such that o] < 1, and
(€ Z, there exists 3 € VK such that |a — 8] < A(a)! 7.

N

Proof. This follows from lemma 5.3.19 and the fact that

< (p-1 <
+_22 Z(PT) =1. O
5= k=0

S AL
hSAC

Proposition 5.3.21. Assume that char(K) = p. If a € K is such that |a] < 1 and ¢ € Z~, there exists
B € VK such that |o — 3| < Aa)t 7.

Proof. ¢ Case where K is perfect and every finite extension of K has degree a power of p. Fix a tower of
extensions K = Ko ¢ Ky € -+ ¢ K, such that « € K, and [K; : K;_1] =pfor all i € {1,...,n} (take for
K,, any finite Galois extension of K containing «, and use the fact that p-groups are solvable). By lemma
5.3.20, there exists y € \/K, 1 = K, 1 such that |o —v| < Ag,_, (@) 2 < A(a)' 2. If 4/ is a conjugate
of v over K, there exists 0 € G such that v/ = o(y), so that

' =7l < max{lo(y — )], |o(@) = af , |a = y]} = max{A(a), |a = |} < A(a)' 2

since A(a) < A(a)!~2¢ since A(a) < 1 because A(a) < o] < 1. As this holds for every conjugate 5/ of v
over K, this implies that A(y) < A(a)!~2¢. By induction on n we can find an element 8 € v/K such that
=B8] < AB)% < A()1=3)°, thus |a — 8] < A()1=3)° < Aa)!=F (since (1 —5)° >1—1 and
Aa) £ 1). B

e Case where K is perfect. Let L be the subfield of K fixed by the pro-p-Sylow of Gx: this is the composite
of all subextensions of K /K that are of degree prime to p. By construction, finite extensions of L have
degree a power of p. By the previous case, there exists v € v/L = L such that |o —~| < Ap(a)!~7. As
before, this implies that Ax (y) < Ag(a)~7.
As [K(y) : K] is prime to p; we may define 8 = [K('i) =] Tri()/x(7) € K. Denote by J be the set of
K-embeddings of K(v) into K: we have #J = [K(v) : K] since « is separable over K (because K is

perfect). This implies that 8 — v = Wl)K] > (o(y) — 7) As |[K(v) : K]| = 1 (because p { [K(v) : K]),
oeJ

we have |5 = 3] = | £ (0(7) = )| < maxla(2) =71 = k() < Ax()' =}, 50 that o = 5] < Ax(a)' .
oeJ o€

e General case. What precedes (with K replaced by VK ) implies that there exists 5 € VK such that

o= Bl < A (@) ~F < Ag(a)' 7. 0

Proposition 5.3.22. Assume that char(kg) = 0. If a € K, there exists 8 € K such that |a — 8] < A(a).
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Proof. Put g = Wl)}(] Tri(a)/ix (@) € K and let J be the set of K-embeddings of K (a) into K: we have
#J = [K(a) : K] since char(K) = 0 (because char(kg) = 0). We have f —a = m > (o(a) — a): as
oeJ
[[K(a): K]| =1 (because char(kx) = 0 again), we have |5 — a| < max lo(a) — o] = A(w). O
g€
Proof of theorem 5.3.9. Let ¢ € COx, Rescaling via an element of K, we may assume that le] < 1. If
A€ |K*| and ¢ € Z~, there exists o € K such that |c — a| < wi (), £) where
A if char(kg) =0
wir (A 0) =1\ |p|(z>—pl)2 if char(K) =0if char(kg) =p >0
AI=DTif char(K) =p >0
(by density of K in C). If 0 € G, we have
lo() —al =lo(a —c) +c—al <max{lo(a — )|, la — [} = |c —a] Swk (A 0)
so that A(a) < wg(\¢). By propositions 5.3.17, 5.3.21 and 5.3.22, there exists § € +/K such that
oo — B] < A. As A\ was arbitrary, this implies that ¢ € VK . This implies that C¢% < /K . The reverse
inclusion is obvious. 0

Theorem 5.3.23. The separable closure K5 of K in K is dense in C, i.e. C = K5°p.

Proof. This is obvious when char(K) = 0 (since K*P = K): we henceforth assume that char(K) = p > 0.
Put L = K, so that K = «/L. Let ¢ € C: we have to show that ¢ can be approximated by elements of L.
We may assume that |¢| < 1. As in the proof of theorem 5.3.9, if A € |I?>< |, there exists o € K such that
|e — | < A. There exists a power ¢ of p such that a = a? € L. Let be K* (to be chosen later), and g € L*
a root of smallest absolute value of P(X) = X?—bX —a. We have P'(X) = b # 0, so P is separable, hence
B € L. We have (8 — «)? = 7 —a = b3, so that

(%) o= B[ = [bB]7 -
As |.| is not trivial, we can choose b € L* such that
1b] < min { o] T, A]a| 7 }.
Let 8 = f1,..., 34 be the conjugates of 8 over K, such that |81] < -+ < |B,]: we have |a] = |81+ 84| = |8]*
whence | 3] < |a|%. If 18] < |a|% then |b3| < |al, so that |3|? = |bB + a| = |a|, whence |3|? = |a|, contradicting

18] < |a|%: we have |8| = |a|7 (this can be seen directly on Newton’s polygon of P, regardless to the
1

minimality of |§]). Equation (#) thus implies that | — 8| = |b|% la|s> < A, so that |[c— 8] < A. As A is

arbitrary, this shows that L is dense in C. O

5.4. Exercises.

Exercise 5.4.1. Let K be a field, with separable closure K5°P, and K?" be the maximal abelian extension of
K inside K*P. Put G = Gal(K®P/K). Prove that K?P is a Galois extension of K, and that Gal(K%*/K)
is isomorphic to Gk /[Gk,Gk], where [Gk, G k] denotes the closure of the commutator subgroup of G .

Exercise 5.4.2. Let L be a field, and view Aut(L) as a subset of LT = [] L of all maps L — L. Give L
x€eL

the discrete topology, L the product topology, and Aut(L) the relative topology.

(1) Prove that Aut(L) is a topological group; i.e. the composition map Aut(L) x Aut(L) — Aut(L) and the

map Aut(L) — Aut(L) sending each automorphism of L to its inverse are continuous.

(2) Let K be a subfield of L. Prove that L is Galois over K if and only if there is a compact subgroup

G of Aut(L) such that K is the field of invariants of G. Prove also that such a subgroup G, if it exists, is

necessarily equal to Gal(L/K), and that its topology coincides with the Krull topology on Gal(L/K).

Exercise 5.4.3. (0) Let F be a field and z,y € F. Assume that char(F) # 2, and that \/z, \/y, \/zy ¢ F.
Show that [F(y/z,\/y) : F] = 4. Deduce that if F'(S) is an extension of F' generated by n square roots of
elements in F' such that every nonempty subset of S has product not in F, then [F(S) : F] = 2™.

Let (p1,p2,...) be the sequence of prime integers, and K = Q(\/Pr)kez,-

(1) Show that K/Q is a Galois extension and describe its Galois group.

(2) Show that for all n € Z~, the profinite Gal(X/Q) contains non-open subgroups of index 2.

(3) Deduce that for all n € Z+, the profinite Gal(Q/ Q) contains non-open subgroups of index 2.
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Exercise 5.4.4. Let G be a profinite group.

(1) Let L be a field. Assume that G < Aut(L), and that the stabilizer of each element of L in G is an open
subgroup of G. Put K = LY. Show that L/K is Galois, and that G' = Gal(L/K) (this is a generalization of
Artin’s theorem).

(2) Show that G is the Galois group of some Galois field extension.

Exercise 5.4.5. Let Qp be an algebraic closure of Q,. Assume that Qp is complete for |.|p. For each
— o0
m € Zxo, let (;m € Q,, be a primitive m-th root of unity. Put a = Y, p"(s(n) (where f(n) = n if p{n, and
n=1
f(n)=1ifp|n),and K = Q,(a).

(1) Show that (y(,) € K for all n € Z-o.
(2) Deduce that Q,, is not complete.

Exercise 5.4.6. Show that Q is dense in C,, (this implies that C, is separable i.e. that it contains a
countable dense subset).

Exercise 5.4.7. (APPLICATIONS OF KRASNER’S LEMMA). Let (K, |.|) be a local field, and K an algebraic
closure of K.

(1) Let P,Q € K[X] be monic polynomials of degree n € Z~(. Assume that P is irreducible and separable.
Show that if |P — Q| 18 small enough, then @ is also irreducible, and that if o € K is a root of P, then
there exists a root 8 of @ such that K(«a) = K(f).

From now on, we assume that K is a finite extension of Q,,.

(2) Show that there are finitely many subextensions L of K /K of given degree n.

(3) Show that there is a finite subextension L of K/Q such that [L: Q] = [K : Q,] and K = L Q,,.

Exercise 5.4.8. Let A be a closed sub-Q,-algebra of C,. Show that A is a field.

Exercise 5.4.9. Let p be a prime integer. Show that C, and C are isomorphic as fields.
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6. RUDIMENTS IN p-ADIC ANALYSIS

o
6.1. Generalities. Let K be a closed subfield of C, and f(X) = 3] a,X™ € K[[X] be a formal power
n=0
o

series. Let z € Cp. As (C,, |.|) is complete and non archimedean, the series Y, a,z™ converges in C, if and
n=0
only if lim a,z™ = 0: in that case, we denote f(x) for the sum of this series. Just as in the archimedean case
n—ox0
(i.e. in the case of formal power series with coefficients in the field C of complex numbers), the preceding
condition only depends on |z|: this motivates the following definition.

Definition 6.1.1. The radius of convergence of f is

1
r(f) = T 1m°© R>o.
lim sup |an,|
nEZ>0

o0
Proposition 6.1.2. The series Y| a,z™ converges if |z| < r(f) and diverges if |z| > r(f).
n=0
Proof. Put r =r(f).
e Assume [z| < r: we can write |z|, = (1 —&)r with ¢ €]0, 1[, so [a,2"| = (r |an|1/" (1—¢))" for n € Zso.

1 n 1—¢ \7
73> Whence |ana”| < (757)" foralln > N,

By definition of 7, there exists N € Z- such that |a,|"/" <
implying that lim |a,z™| = 0.
n—>a0

e Assume |z| > r: we can write |z|] = (1 + &)r with € €]0,1[. We can find a strictly increasing map
. : em) _ 1. : 1/¢(n) 1
¢: Z~o — Z-g such that nh_{nL |aw(n)| = there exists N € Z-o such that |aw(n)| > e
whence |a,(,)2z?™| > (11++€j2)n for all n > N, implying that nh_r)n/v |apnyz?™] = +0o0, so that the series

o0
> apz™ diverges. O

n=0

Notation. If a € C,, and r € Ry, we put D(a,r) = {z € Cp; |x — a| < r} (the “open disc” with center a
and radius r) and D(a,r) = {x € C,; |z — a| < r} (the “closed disc” with center a and radius 7).

Remark 6.1.3. In contrast with discs in the complex plane C, both D(a,r) and D(a,r) are open and closed
in the topological space (Cy, |.|)-

Corollary 6.1.4. A formal power series f(X) e K[[X] defines a continuous map f: D(0,r7(f)) — C,.
Proof. We may assume 7(f) > 0. Let xo € D(0,7(f))\{0},  €]0, |zo| [ and x € C,, such that |z — z¢| < a:

el
we have |z| = |xo|, and we may evaluate f at xo and . As f(x) — f(zo) = D) an(z™ — x}), we have
n=0
If () — f(20)] < sup |an||z™ — 2f|. Asa"—ap = (x—z0) (2" +xoa” 2+ - 420 1), we have 2" — 2| <
ne€dso

|z — o] max 2| |0 ™! = a|o|" ! for all n € Z-. By definition of 7(f), the sequence (Janzg ™ nezo
KN
is bounded (it converges to 0): let c(z9) = 1 + sup |anzf | € Rs1. We have |f(z) — f(z0)| < Ze(wo)a
nEZ>0
given € € R, put o = min { ;=5 [wo] }, so that [z — 20| < a = |f(2) — f(w0)| < ¢, showing the continuity
of f at xg.
Assume z¢p = 0 and choose r €]0,r(f)[. As above, there exists C, € R~q such that |a,|r" < C, for all
n € Zwo. It 2 € D(0,7), we have | f(z) — f(0)] < sup |ana"|: as [ana”| = |a,|r" (Z)" < ¢, 2L, we deduce

T
nedso

that |f(z) — f(0)| < % |z|, showing the continuity of f at 0. O
Example 6.1.5. A formal power series with coefficients in Ok defines a continuous map D(0,1) — Oc, .

Notation. Let r € R~g.
(1) We denote by % ([0,7[) (resp. 75 ([0,7])) the set of formal power series f(X) € K[[X] that converge
on D(0,7) (resp. D(0,r)).
o0
(2) If re Rsp and f(X) = 3} ap, X™ € K[X]], we put |f],. = sup |an|r"™ € Rxo u{+00}.
n=0 nedxo

-
Lemma 6.1.6. Let r € Rog and f(X) = }} a, X" € #%([0,r]). Then |f|,. = max |an|r™.
n€sizo

n=0
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Proof. This is trivial if £(X) = 0; if f(X) # 0, we have lim |a,|r™ = 0, s0 E = {n € Zso; |an| ™ > "fQ”P}
n—o

is finite, and |f|, = max |a,|r". H
nek

Definition 6.1.7. With the notations of lemma, 6.1.6, assume f # 0. Put
wr(f) = max{n € Zzo; |an|r" = |f],}

(which makes sense since lim |a,|7™ = 0).
n—x0

Proposition 6.1.8. (1) If r € R, 5k ([0, r]) < % ([0, r[) are subrings of C,[X]|, in particular they are
integral domains.
(2) If pe [0, 7] (vesp. p € [0,7]), the map |.|, defines an absolute value on 5 ([0, 7[) (vesp. 5k ([0,7])).

(3) Elements in s#% ([0,7]) define bounded maps D(0,r) — C,,.

Proof. (2) We certainly have |f|, = 0 = f = 0 and |f + g|, < max{[f|,,]g],} for all f,g € H5([0,r[).
0 0 0 n

Write f(X) = Y a, X" and g(X) = >} b,X". We have (f¢)(X) = >, ¢, X" with ¢, = Y a;b,—; for all

n € Zso: we hg;g len] p™ < Jax |ai|7;;(|)bn_i|p”_i < |fl,lgl,- By lerz_rr?a 6.1.6, the integ;;é) ip = min{i €
Z>o; |ai| pt = |f1,} and jo = min{j € Zxo; bj| p? = lg|,} are well defined. If 4,j € Z>o are such that
i+j =io+ jo and _(i,j) # (io_,jo), we have las| p* 1bj] 07 < lase| P |bjo | p?°, hence |a;b;| < |aiybj,|, so that
1£9l, 2 |cig1io P00 = lasy| p*° 1bjo| p7° = |£1, 191,

(3) If f(X) = i anX™ belongs to % ([0,7]) and 2 € D(0,r), the series f(x) :=

n

anpx’” converges

3
118

n 0

absolutely, and [f(2)] < sup [a]la]" < ], < /1, 0
n€s>o

Remark 6.1.9. (1) The restriction of |.|; to K[X] is nothing but the Gauss absolute value (¢f definition

3.5.2). In what follows, we denote it by |.|5,,e OF simply |.|.

(2) Assume r € [K*|: let @ € K be such that |o| = 7. The map ¢o: K[X] — K[X]; f(X) — f(aX)

induces an isometry

(%K([Oa T])v ||r) :)(%K([Oa T])v |'|Gauss)'

This allows to reduce some questions on J#% ([0, r]) to the case r = 1.

Lemma 6.1.10. If € R.¢, the normed vector space (% ([0,7]),].|,) is Banach.

o0
Proof. Let (fi)rezs, be a Cauchy sequence in (% ([0,7]),|.|,). For all k € Z>o, write fi(X) = > ar X"

n=0
For all n, ki, ks € Zxo, we have |ak, n — ky 0| 7" < | fry — fro], SO that (agn)rez., is a Cauchy sequence
in (K,|.|). As the latter is complete (because K is closed in C,), it converges to limit a,, € K. Let

L
f(X) =3 a, X" e K[ X].
n=0
Let ¢ € R~o: there exists C' € Z>q such that k, k" > C = |fi — fi|, < e. For all n € Z>(, we have
thus |ar n — agn|r™ < e passing to the limit, we have |a, — ak,,|r" < € for all n € Zsg, showing that
|f — frx| < e. This implies in particular that |f|, <&+ |fx|, < 400 forall k > C, hence f € #%([0,r]), and
that (fx)rezs, converges to f for |.|,. O

6.2. The Weierstrass preparation theorem. The reference for this part is [4, §5.2]. Again, K denotes
a closed subfield of C,. Let r € R~g.

Theorem 6.2.1. (WEIERSTRASS DIVISION THEOREM). Let f,g € 5% ([0,7]) be such that g # 0. There
exist uniquely determined elements g € 7% ([0,7]) and h € K[X] such that

deg(h) < wr(g)
f=a9+h
Moreover, we have |f|,. = max{|q|, |9l., k], }.

Proof. e Assume r € |[K*|, the isometry ¢: (% ([0,7]),].],) = (% ([0,7]), || causs) allows to reduce to the
case where r = 1 (¢f remark 6.1.9). Note that w,(g) = wi(¢(g)) =: w(g). There exists A € K* such that
lg| = |A|]: we may divide by A to reduce to the case where |g| =1, so that g € O [XT].

We first show that conditions (x) imply the estimate |f| = max{|q|, |h|}. If ¢ # 0 or h # 0, there exists
1 € K* such that max{|uq|, |ph|} = 1. This implies in particular that pf = puqg + ph € Ox [ X], whence*4

(%)

(44)Here we denote with a bar the image of an element of Ok [[X] in k[ X].
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wf =Tqg + ph in kg [X]: this is the euclidean division of uf by . As fig # 0 or uh # 0, we have uf # 0,
hence |pf| = 1, so that |uf| = max{|ugl|, |uh|} i.e. |f| = max{|q|,|h|}. This holds obviously true when
q=0and h=0.

In particular, if gg + h = 0 with ¢ € 7% ([0,1]) and h € K[X] of degree < w(g), this implies that ¢ = 0 and
h =0, so that the map

P A ([0,1]) x K[X]<W(g) — A ([0,1])
(¢.h) = qg+h

is injective, and an isometry (where the LHS is equipped with the max of the absolutes values). The estimate
proved above and the fact that % ([0, 1]) and K[X].4) are Banach spaces (c¢f lemma 6.1.10) imply that
the image of ¢ is closed in % ([0, 1]): as we want to prove that 1 is surjective, it is enough to check that
this image is dense in ([0, 1]).

Write g(X) = Z b X™. As hm bn| = 0 and [by| < 1 for all n > w(g), there exists ¢ € [0, 1] such that

|bn| < & for all n > w(g). Put mie ={re K;|z| <e}, Oxe = Ox/mg, and 7.: Og[X]] = Ok [X]
the canonical map. Then 7 (g) is a polynomlal of degree w(g), whose dominant coefficient is invertible, so
we can perform Euclidean divisions by 7 (g) in Ok ¢[X]. Let f € 5 ([0,1])\{0}: there exists € K™ such
that |uf| = 1. There exist qo, ho € Og[X] such that deg(ho) < w(g) and 7 (uf) = m(qo)me(g) + 7 (ho) is

the Euclidean division of 7. (uf) by 7-(g). Then we have |uf — qog — ho| < &, i.e. |f — (g, h)| < ﬁ =elf|,

where ¢ = %0 and h = % This implies the density of the image of v, hence the result.

¢ The general case. By unicity of (g, h), we may use theorem 5.3.9 to reduce to the case where K = C,,.
Then |[K*| is dense in R>g. We can thus find a sequence (r;)jcz., is R-¢ that converges to r from
below. Then we have |f| = lim |f|,.,- Moreover, there are sequences (¢;)icz, and (hi)iez,, such that

qi € 5 ([0,74]), hi € K[X]w(g) and f = qig + h; for all i € Z>o. By unicity, we have ¢; = ¢; and h; = h;
in K[[X] whenever ¢ < j, so that ¢ := ¢; and h := h; does not depend of i € Z>(,. Moreover, we have
|f],., = max{|ql,, |gl. .|kl }: passing to the limit on i gives |f|, = max{lq|, |g],,|h[.}, which implies in
particular that ¢ € #% ([0,7]) (because |g|, < +00). O

Theorem 6.2.2. (WEIERSTRASS PREPARATION THEOREM). Let f € 5% ([0,7])\{0}. There exist uniquely
determined P € K[X] and u € 5#%([0,7])* such that

P is monic of degree w(f)
f = Pu.

Moreover, we have |P| = r¥r(f).

Proof. e Again, assume first that » € [K*|: the isometry ¢: (#k ([0,7]), |.]|,.) = (% ([0,7]), ]| Ganss) 2llOWs
to reduce to the case where r = 1 (¢f remark 6.1.9). Indeed, if the case r = 1 is known, let « € K* be
such that |a| = r: we have f(aX) € #%([0,1]), so we have f(aX) = Py(X)uo(X) with Py € K[X] monic
of degree d := w(f(aX)) = w(f) and up € H#%([0,1])* uniquely determined; then f(X) = P(X)u(z) with
P(X) = a?Py(a™1 X) € K[X] monic of degree d and u(X) = a~%ug(a™'X) € #5%([0,7])*. Also, |Py| =1
implies that |P|, = r?.

We prove the existence first. Rescaling by an element in K*, we may assume that |f| = 1. Put d = w(f):
by the Weierstrass division theorem, there exist uniquely determined ¢ € 5% ([0,1]) and h € K[X] such
that deg(h) < d and X = qf + h. Put P = X% — h e K[X]: as deg(h) < d, this is a monic polynomial
of degree d = w(f), and P = ¢qf. We also have 1 = |f| = max{|q| |f],|h|}, hence |h| < 1: as deg(h) < d,
we have |P| = max{|X9|,|h|} =1, and w(P) = d. As P = gf, this implies that |¢| = 1. We have to check
that ¢ is a unit in % ([0,1]). Reducing modulo mg gives P = gf in KK[[X]] As w(f) = w(P) = d, the
elements P and f are both polynomials of degree d. This implies that g € x}, so that |g —q(0)] < 1 i.e.

o
‘W - 1‘ < 1: the series s = Zo (1- %) converges in the Banach space (#%([0,1]),|.|) (lemma 6.1.10),
and (0)5 = 1. This shows that u := ¢(0)s € %k ([0,1])*, and that ug = 1. In particular, we have f = Pu:
this proves the existence.

The unicity follows from the unicity in Weierstrass division theorem, since X% = v~ f + (X — P) has to
be Weierstrass division of X% by f, which we know to be unique.

e The general case follows as in the end of the proof of theorem 6.2.1 O
Corollary 6.2.3. A element in J#%([0,7]) has only finitely many zeros, and these are algebraic over K.
Corollary 6.2.4. 7% ([0,7]) is a PID.
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6.3. Newton polygon and applications. A reference for this part is [8, Chapter I §§6-7, Chapter II
§§2-3]. Endow C, with the p-adic valuation v: C, — Q u{+00} normalized by v(p) = 1. Let K be a closed
subfield of C,.

o
Definition 6.3.1. Let f(X) = > a,X" e K[X].

n=0
e The Newton polygon NP(f) of f is the convex hull of the set of points {(n, v(as))}nen U {(0,+00)} in the
plane. It is thus a union of segments of increasing slopes and possibly one or two half-lines.
e The length of a segment is the length of its projection onto the z-axis (this is an integer), that of a half-line
is that of the longest piece between to points of the form (n,v(a,)).
e The breaks are those i € Z>( such that the point (i,v(a;)) is a vertex of the polygon.
e f is said pure of slope A if is has only one finite slope, equal to .

Remark 6.3.2. In general, there might be infinitely many slopes, but of course there are finitely many when
f e K[X].

Definition 6.3.3. Let A € R. The line support of slope A for NP(f) is the line of equation y = Az + ¢y with
¢x € R maximal such that NP(f) lies above it.

Remark 6.3.4. (1) Let A € R be such that NP(f) has a line support of slope A. If z € C, is such that
v(z) = =\ (ie. |z] < p*), we have v(a,z") = n(v(z) + ) +cy ie. |anz"| < (l}%l)"p_c*: this implies that f
converges on D(0,p), and that if f converges at z, then |f(2)| < p~°*.

(2) Let Ay, be the supremum of the slopes of NP(f). The line support of slope X exists if and only if A < A\,
and what precedes imply that r(f) = p*=.

(3) Assume NP(f) has a line support of slope X\. There are two cases: if A is a slope of NP(f), then the
line support contains the segment of slope A of NP(f). If not, there exists exactly one n € Zx( such that
v(an) = An + cy.

S -

Theorem 6.3.5. Let P e K[X] and A € R.
(1) P\(X):= ] (X-a)eK[X]

aeK
v(a)=—X
P(a)=0
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(2) The number (counting multiplicities) of roots = of P (in K) such that v(z) = —\ is equal to the length
of the side of NP(P) of slope A (so it is 0 if there is no such side).

(3) If NP(P) has more than one finite slope, then P is reducible in K[X].

(4) Assume that v is discrete on K, that P is monic and that NP(P) has only one side of finite slope —2
where gcd(m,n) = 1. Then P is irreducible in K[x].

Proof. (1) Let a,...,a, € K be the roots of P (counted with multiplicities). Put L = K(ay,...,ay). If
L/K is separable (which is automatic if char(K) = 0), it is Galois. The set {a € K ; P(a) = 0, v(a) = —\}
is stable under the action of Gal(L/K) (because voo = v for all o € Gal(L/K) since K is complete), which
proves that Py € K[X]. Assume that char(K) = p > 0. If P is irreducible, we can write P(X) = Q(X?")
where e € Zx¢ and Q € K[X] is irreducible and separable. All roots of @ have the same valuation: all

roots of P have the same valuation. In general, write P = [[ P, with Pp,..., P, irreducible: for each
i=1
i€ {l,...,r}, the roots of P; all have the same valuation v;, and Py, = [] P, € K[X].
1<i<r
’Ui=—>\
(2) As multiplying P by a non zero constant (resp. by X) translates NP(P) vertically (resp. horizontally),
we may divide P by its monomial of lower degree and assume that ag = 1. The roots ai,...,a, € K
of P are nonzero: put f; = —a; ' for i € {1,...,n}. We have P(X) = [[(1 + 8;X). Renumbering
i=1

if necessary, we may assume that v(81) < -+ < v(B,). Write {v(B1),...,v(Bn)} = {v1,...,v} with
vi <--- <y, andfor j e {1,...,r}, let n; be the number of indices ¢ € {1,...,n} such that v(8;) = v;
(so we have Y, n; = n). We have to prove that NP(P) has r non vertical sides, [MoMi],...,[M,—1M,]

j=1

J J
with My = (0,0), My = (nl,nlul), Moy = (n1 + ng, N1 +n21/2), .. .,Mj = ( Z Nk, Z nkuk), .... This is
k=1 = k=1
equivalent to
J

v(an1+---+nj) = Z NEVk fOI‘jE {1,...,7’}
(+) S

v(a)) = XY mpvg +(i—ng— - —nj)vp fng+- 40y <i<ng+oo- 40

k=1

(the last condition means that the points (i,v(a;)) lie above the segment [M;M;+1]). We have
a/l = 2 ﬁkl ot /Bkz

1<

Sk <<k <
so that v(a;) > min (Bry) + -+ +v(Br;) = v(B1) +--- +v(B;) which implies the second condition

v
1<k <--<ki<n

in (#). For the first condition, just observe that if i = é ng for some j € {1,...,r}, then we have
v(Br,) + - +v(Bk;) >v(B1) + -+ v(B;) whenever the seqku:elnce (k1,...,k;) is different from (1,2,...,1),
so that v(a;) = v(f1) +--- +v(6i) = i ny in that case.

(3) The number of finite slopes in NP]E?) is equal to the number of non trivial factors in P = [] Px.

(4) There are n roots of valuation *, let a be any one of these. As gcd(m,n) = 1, we have ’U(K(C:SRD Ly(K),
so that the ramification index e of the extension K(«a)/K satisfies n | e. As [K(«) : K] < n, we have

[K(a) : K] =n = deg(P), so that P is irreducible.
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Remark 6.3.6. One recovers Eisenstein’s irreducibility criterion as the special case m =1 in (4).

Theorem 6.3.7. Assume f € #%([0,7]) (vesp. f € H#k([0,7])) where r € R+, and let A € [—00,0,1n,(r)]
(resp. A € [—00,1n,(r)[).

(1) The number of zeros of f in D(0,7) (resp. in D(0,7)) with valuation —\ is equal to the length of the
segment of NP(f) of slope A.

(2) If X ¢ {400} is such a slope, there exists a unique monic polynomial Py € K[X] and such that f(X) =
Py (X)g(X) where g € 5% ([0,7]) (resp. g € F%([0,7])) is such that NP(g) is NP(f) without its piece of
slope A.

o0
Proof. Write f(X) = > a,X"™. We may of course assume that f # 0.

n=0

(1) This is obvious if » = —oo (the length of the corresponding half-line is precisely the multiplicity of 0 as
a root of f: assume henceforth that A € R.

e Assume first that A\ is not a slope of NP(f): by remark 6.3.4 (3), there exists exactly one N € Zx( such
that v(an) = An +ca. If a € C,, is such that v(a) = —A, we thus have |a,a™| < p~®*, with equality if and
only if n = N. the strong triangle inequality thus implies that |f(«)| = p~ so that f(«) # 0, and f has
no zero of valuation —A\.

o Assume that A is a slope of NP(f): put p = p* < r (resp. < r) and d = w,(f). By Weierstrass
preparation theorem (cf theorem 6.2.2), there exists a unique monic polynomial Py € K[X] such that
deg(Pr) = wy(Py) = d and uy € H#5x([0, p])* such that f = Pyuy. Dividing f and ux by aw,(5), we may

o0
assume that a,,, (y) = 1, so that |f|, = pl = |Px],- This implies that |u|, = 1. If we write ux = 3 uxn X",
n=0

this implies that |ux | < p™", for all n € Zx,.

d

Write Py(X) = Y a; X? (so that ag = 1 since Py is monic). As |PAl, = p? (c¢f theorem 6.2.2), we have
i=0

loi| p* < p?, i.e. v(ai) = A(i — d), which means that NP(Py) lies above the line of equation y = A\(z — d).

In fact, this line is the support line of NP(Py) of slope X because the point (d,0) belongs to NP(Py), since

P, is monic of degree d.

Let § < d be the integer such that (4, v(as)) and (d,0) are the endpoints of the segment of slope A in NP(f).

The length of the slope A in NP(f) is thus d — d, and v(as) = A(§ — d), i.e. |as| = p?~°. Now the equality

f = Phu) implies that

5
as = Z QGUN,5—i
i=0

so the strong triangle inequality implies that there exists i € {0,...,d} such that |as| < |azur,q—il, i.e
p?0 < Ja;| p0%, hence p?7* < |y, i.e. v(a;) < AN(i —d). As v(ay) = A(i — d) by what precedes, we have
v(a;) = At — d), which means that the point (i,v(«;)) belongs to the support line of NP(Py) of slope A.
This implies in particular that the length of the slope A in NP(Py) is > d —¢ > d — 0. In particular, Py
hence f has at least d — § roots of valuation —\ (¢f theorem 6.3.5).

As uy € A ([0, A])%, the series uy has no zero in D(0, p): the zeros of f in D(0, p) are precisely those of Py, in
particular there are exactly w,(f) such zeros (counting multiplicities). Let A\; < -+ < A, be the slopes < Ain
NP(f), and for i e {1,...,r}, let £; be the length of the slope \;. Then f has deg(Py) = w,(f) = {1+ +¢,
zeros in D(0, p). Replacing A by \; in what precedes, we know that Py has at least hence exactly £; zeros
of valuation —\;.

e This proves (1), and also that NP(Py) is NP(f) with the slopes > A removed. For (2), the existence was
already proved, and the unicity follows from that in Weierstrass preparation theorem (¢f theorem 6.2.2).
The statement on NP(g) follows from the fact that its slopes are exactly those of NP(f) that are > X\ (since
its zeros are those of f of valuation > —)\). O

Remark 6.3.8. One can recover corollary 6.2.3 from theorem 6.3.7.

6.4. Exponential and logarithm.

Notation. If n = ag + a1p + -+ + a,p" (with a; € {0,...,p— 1} for all s € {0,...,r} and a, # 0) is the
writing of n € Zx is base p, put s(n) = ag + - - + a, (sum of the digits of the p-adic writing of n).
Lemma 6.4.1. If n € Z>(, we have v,(n!) = %(1") (where v, denotes the valuation on C, normalized by
up(p) = 1)

Proof. Let k € Z~(. The number of integers less than n and that are divisible by p* is equal to Nj = [p%]
i.e. Ny =ay +agp1p+---+a.p"*if k <r and 0if & > . The number of integers less than n and whose
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p-adic valuation is equal to k is N — Niy1. This implies that

©0 €0 €0 r r
vp(n!) = kgl /{Z(Nk — Nk+1) = kgl kN — k§2(k’ — 1)Nk = kgl Ny = kgl (ak +ag1p+ -+ anT_k)
=Y a(l+p+---+ph
1=0
_ z ‘—1 _ n—s(n)
a zgo aiz;il -l

Definition 6.4.2. The logarithm and exponential series are

28] n—1 L n
In(l+X)= Y %X" and exp(X)= ) Z-
=0 n=0

n

respectively.

Lemma 6.4.3. We have equalities of formal power series In(exp(X)) = X, exp(In(1+ X)) = 1+ X in Q[ X]],
and In((1+X)1+4+Y)=In(1+X)+In(1+Y), exp(X +Y) = exp(X)exp(Y) in Q[X,Y].

o0
Proof. e Note that the derivative of In(1+ X') and exp(X) are », (=X)™ = HLX and exp(X) respectively.
m=0

. . . X .
Put f(X) = In(exp(X)) and g(X) = exp(In(X)): differentiating we get f(X) =1 and ¢'(X) = %. This

implies that f(X) = X (hence the first equality), and ¢”(X) = 0, whence g(X) = 1 4+ X by identification.

N -1
emark 6.4.4. We have In(exp(X)) = lim (=n"77 exp(X) — 1)". As exp(X)¥ = exp(kX) (cf below), we have
Remark h | Yy U
=0 =1 2

N —1 N -1 n
S epx) - = 3 L S () Cny R exp(hX)
n=1 " n=1 " k=0
N n @0 k—1
=y § 3 G (menn
n=1k=0m=0 " m
& N
— E am’ng! )Xm
me

an,
n

with ap, (N) = —

| L2

n
™ where an,m 1= Y (71)’“(2)1@7”.
n=1 k=0

fn,me Zsoand Pp(X) = (1—X)" = 3 (=1)* (1) x*, we have P{™ (X) = ¥ (=1)F (1) Do () X B~ witth Dy (T) = T(T=1) -+ (T=m+1).
k=0

=m

n n
If m < n, we have Y (—1)F (Z)Dm(k) = P,(nm) (1) = 0. With m = 0, this shows that a, 0 = (—1)* (Z) = 0, and a straightforward induction
k=m k=0

m n
implies that apn m (when m < n). This implies that am(N) = am 1= — 3] % > (71)’“(2)1@7” whenever N > m, in particular ag = 0. Passing
n=1" k=0
& a
to the limit as N — +o0, we get In(exp(z)) = 21 g™
m=

IS k T o1 k -1 T n—1 k—1
Assume m > 0: we have —a;m, = kzl(—l) k™ Ek ;(2) As ;(2) = (Z—l) and Zk (271) is the coefficient of X®7* in the polynomial

= n= n=

m m k—1 m
S oa4x)nTt = QEOT_QRTT o that of XF in (14 X)™ — (14 X)FT1, that is (T,';) we have —am = 3, (71)’“(7;)#”_1 = o mo1
k k=1

n=

if m > 1. As we have seen above, we have o, ,,—1 = 0, 850 @, = 0 when m > 1. On the other hand, we have a; = 1, showing In(exp(X)) = X.

N
o If N € Z-g, put un(z) = Y, 2-. We have

n=0
2N 2N n .
X+Y)™ ky n—k vk
un(X +Y) = 3 D = 3 Y e D W
n=0 n=0 k=0 J,k€Z >0
j+k<2N
and uy(X)un(Y) = X % this implies that uen(X +Y) — uny(X)un(Y) = 3 %
oik<N T N

Frk<2N
max(j,k)>N

Passing to the limit as N — oo gives exp(X +Y) = exp(X) exp(Y) in Q[[X,Y]. This implies in particular
that exp(X)* = exp(kX) in Q[[X] for all k € Z.

¢ By what precedes, we have exp(In(1 + X) +In(1 +Y)) = exp(In(1 + X)) exp(In(1+Y)) =1+ X)(1+Y):
applying In gives In((1 + X)(1+Y)) =In(1 + X) +In(1 +Y) in Q[ X, Y.

Remark 6.4.5. These equalities also follow from the corresponding equality of power series over the complex numbers.

O

Proposition 6.4.6. (1) The radius of convergence of In (resp. exp) is 1 (resp. p_ﬁ). Moreover, we have
IIn(1 + )|, = |z|, and |exp(z) — 1|, = |z|, for all z € D (O,pfp%l).
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(2) We have In((1 +z)1(1 +y)) =In(l+z)+In(l+y) (resp. exp(x+y) = exp(x) exp(y)) for all z,y € D(0, 1)
(resp. z,y € D (1,p_ﬁ)).

(3) log and exp provide inverse group isomorphisms ( D (l,p_v%l), ) — (D (O,p_ril), +) .

exp
Proof. e Let x € C, be such that |z|, < 1. If n € Z-o, we have \nl| = pU» (™ | n: this implies that
p
|%|p < n x|}, whence Tim |—| = 0, so that the series Z Lx converges. As it obviously diverges
i

at © =1 (because |n|, takes arbitrary small values), the radlus of convergence of In is 1.

Assume that |:1:| <p I Ifne {2, — 1}, we have |n|, = 1 whence |ﬁ| = |zf; < |z],- n =p,

then 1’;(_711) > L 1n(p) (because the map f t— ln_T) extended by continuity at ¢ = 1 by f(1) = 1, is strictly
increasing on [1, +oo[ as a trivial computation shows). This implies that

vp(%) = vp(z) + (n — 1)vp(x) — vp(n) > vp(z) + % - IIEEZ)) > vp(x)

(since wy(z) > -I7) so that vp(Z) > wvp(x) as well. This implies that v,(In(1 + 2)) = v,(2), i.e

1
IIn(1 + )|, = ||,
e The series defining exp(x) converges if and only if hm vp(””n—) = +00. As

vp(£7) = nvp (@) —vy(nl) = n(vy(2) — 525) + 22

1

(¢f lemma 6.4.1), this is equivalent to v,(x) — >0, de |z[, < pfp%l (observe that s(p*) = 1 for all

p—1
ke Zzo).
Assume that |z], <p T, e vp(z) > o271 if n € Zzo, we have
(n = Dp(a) > 2L > 2=s) — 4 (),

o0

i-e. vp(%) = nup(x) — vp(nl) > vy(x): we have v,,( 22 %) > vp(x), so that vy(exp(z) — 1) = v,(x), i.e.

fexp(z) 1], = [l )
(2) & (3) follow from lemma 6.4.3, noting that we have absolute convergence of the series involved. O

Remark 6.4.7. (1) In contrast with the complex analytic case, the radius of convergence of In is strictly
larger that that of exp.

(2) Being continuous (c¢f corollary 6.1.4) the inverse isomorphisms of proposition 6.4.6 are also homeomor-
phisms.

Proposition 6.4.8. There exists a unique continuous map
In: C; - C,
having the following properties-
(i) (Vz,y € C)) In(zy) = In(z) + In(y);
(i) (Yo € DL 1) Infa) = £ U@ = 1)
(i) In(p) = 0. "
Proof. We have the exact sequence of abelian groups:

{1} - 08 - Cy Q-0

The choice of a compatible system (p(”))UEQ in C (i.e. such that p(!) = p and p(v1+v2) = p(v1)p(v2) for
all vy, vy € Q) provides a section Q — (’)ép of v,. To construct such a system, one can proceed as follows.
Let (pn)nez., € Cf” be such that p; = p and p,4+1 is a root of X" —p, in C, for all n € Z~,. Then

vp(pn) = %, and if v € Q, the element p(*) := pz!v does not depend on the choice of n € Z~ such that
nlv e Z.
This implies in particular that there is a (non canonical) isomorphism:

Oép x Q>Cy
given by (u,v) — up(*). Similarly, we have the exact sequence of abelian groups:

{1} > 14+mg, > 05 —F, - {1}
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(the last map being the canonical projection). The Teichmiiller map (¢f definition 3.8.20) provides a section
of the latter: there is a canonical isomorphism

(1+mg,) xF, 508

given by (1 +,¢) + (1 4+ )[C]. Put together, this provides an isomorphism

(1+mg,) xF, x Q> C
given by (1 +z,(,v) — (14 z)[C]p™).
e Assume the map In: C)¥ — C, exists. Let z € mg,, ¢ € F; and v € Q. There exists f € Z~o such that
_f _ _
7' = 1: as the map [.] is multiplicative, we have [C]P’~! = 1, so that (p — 1)In ([¢1) = In(1) =0 (by
property (i)), so In ([¢]) = 0. If n € Z is such that nlv € Z, we have nlvln (p*)) = In (p()™*) = 0 by
-
S

(0" 1y,

n

properties (i) and (iii): properties (i) and (ii) imply that In ((1+x) [Z]p(”)) =In(l+z) = ]
This shows the unicity of the map In.
e The composite of the isomorphism C; -1 +mg,) x F; x Q with the first projection, followed with
the group homomorphism In: D(1,1) — C,, (c¢f proposition 6.4.6 (3)) provides a group homomorphism
C, — C, having properties (i), (ii) and (ii).
Let z € C;. Ifz’eD (z,p_ﬁ |z|p), we have Z;I —1eD (O,p_ﬁ), so that ‘ln (1 + z;’ — 1)‘ =
P

=

2],

Definition 6.4.9. If n € Z>,, we put (¢) = w € Q[a]. Evaluated at an integer, this coincides
with the usual binomial coefficient. We also define

B(a,X)= 3 (%)X e Qfa, XT.

n=0

%—1‘ by
P

proposition 6.4.6 (1), i.e. [In(z’) —In(z)| = : this shows the continuity of In. O

p

Lemma 6.4.10. Let z € mc,. The map Z>o — Oép; m — (1 +2)™ is continuous (for the topology defined

by |.|p on both sides). In particular, it extends by continuity into a map Z, — Oép; a— (1+z)°.
Proof. As (1 4+ x)™ € 1 +mg, for all m € Zxo, it is enough to check that klim (1+ m)pk = 11in C,: this
—0

follows from (1 + z)P" = exp(p* In(1 + z)) and lexp(p* In(1 + z)) — 1|p = |pFIn(1 + x)|p = # for k=1 (¢f
proposition 6.4.6 (1) & (2)). O

__1
p P 1

Proposition 6.4.11. (1) Assume a € C,. The radius of convergence of the series B(a, X) is if |al, > 1

la,
and at least p 71 if lal, < 1.

(2) If a € Z,, then B(a, X) € Z,[X] so the radius of convergence of B(a,X) is at least 1, and we have
B(a,z) = (14 2) for all z e mc, .

(3) Assume that |z|, < p~ 77 min {1, ﬁ} Then B(a,z) = exp(aln(l + z)). In particular, if m € Zxo and

zeD (O,p*m*p%l), we have B(p}n,x)pm =1+uz, ie B(#,x) is a p™-th root of 1 + x.

(4) We have B(a, X) = exp(aln(l + X)) in Q[a, X]. In particular, B(a1, X)B(az, X) = B(a1 + a2, X) in

Q[a1,az, X], and B(a, X)? = B(pa, X) in Q[a, X]-

Proof. (1) e Assume |a|, > 1: we have |a — k[, = |a|,, for all k € Z, so that 1(4) |p = % the computation
1 P

p »—T
lal,

and the radius of convergence

in this case.

of proposition 6.4.6 (1) implies that the radius of convergence of B(a, X) is

1
[n1]

o Assume |a|, < 1: we have |a — k[, < |a|, for all k € Z, so that |(Z)|p < =
of B(a,X) is equal to that of exp(X), i.e. p_ﬁ.

(2) e Let n € Z>p. The map a — (Z) is polynomial, hence continuous on Z,. It has values in Z < Z, on Zx:
as Zx is dense in Z, and Z, is closed, we have (%) € Z, for all a € Z,. This shows that B(a, X) € Z,[X]],
implying that the radius of convergence of B(a, X) is at least 1 (note that it might be larger: it is infinite
when a € Zx for instance).

e Fix z € mg,. The maps a — () being continuous and bounded by 1 on Z,, the series of functions
a — (%)z" converges normally on Z,: its sum a — B(a, ) is continuous on Z,. As a — (1 + 2)® is
continuous as well (¢f (1)), the equality (1 + x)* = B(a, ) holds for all a € Z,, since it holds when a € Zx,

(binomial expansion), and Zxq is dense in Z,.
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(3) o If 2], < p 7T min {1, ﬁ}, both series B(a,z) and exp(aIn(1 + x)) converge absolutely in C,: it is
enough to check the equality in Q[a, X]|. This follows from the equality when a € Z, and x € mc,.
¢ By proposition 6.4.6, and (2), we have B(pim, x)p = exp (p%n In(1 +x))p = exp(In(l +2)) = 142 when

1
p—1],

zeD (O,p_
4) This follows from (3) and lemma 6.4.3. O
(4)

6.4.12. The Artin-Hasse exponential. In contrast with the complex analytic case, the p-adic exponential
formal series has a small radius of convergence. The Artin-Hasse exponential map is a modified exponential
map whose radius of convergence is 1.

Definition 6.4.13. The Artin-Hasse exponential map is
p p2
AH(X) = exp (X + 3= + & +---) € Q[X].

Lemma 6.4.14. AH(X) = [ (1—X")“ in QX (where p: Z-o — {—1,0,1} is Mobius map).
neZso
pin

Proof. By lemma 6.4.3, we have

_pn) n n n nm
log ([T (1—X")~) = ¥ —tiiog(1—xm) = 3 4y X-

n€Zxo ne€Zso neZso m=1
pin pin ptn
0 X 90 Xpi
=S Y )= 3 A
k=1 nlk =0
pin
1 if k = vp (k)
since S, p(n) = Y pn)={ U TP O
nlk n|k/pvr*) 0 otherwise
pin

o0

Lemma 6.4.15. Assume p { n and f(X) = 1+ Y] ;X" € Q[ X] satisfies f(X)" € 1 + X Z(,)[X], then
i=1
f(X)el +XZ(p)[[X]].

@0 .
Proof. Write f(X)" =1+ ] b;X": we show that a; € Z,) by induction on i € Z~o. Assume a; € Z(, for

all j < i. We have b; = mfl-l- > aj, ---a;z, € na; + Z(p), hence na; € Z(p) so that a; € Z(p) since
Bi<n) Jun

p1in. O

Proposition 6.4.16. AH(X) € Z,,)[X]], so the radius of convergence of AH(X) is at least 1.

Proof. Follows from lemmas 6.4.14 & 6.4.15. a

6.4.17. An extra useful series. If N € Z~, we have

N

xpi_xpi! p
B(X,Y)i];[lB(T,YP )

[o's} ) vi N o0 Xpiixpi—l Xpiixpi—l Xpiixpi—l ) Y“’i
= (ZXOD Xm0 T3 = (5 -0 (55— =i 1)),

This is an element of Q[[X,Y]. The factors contributing to the coefficient of the monomial X"Y™ are
i i1 P .
B(X,Y) and those B(%, Y?") for which p’ < m (recall that the constant term in B(a,T) is 1): this

coefficient does not depend on N > m. This implies that the following definition makes sense:

Definition 6.4.18. We define Dwork’s series by

pl

F(X,Y) = B(X,Y) [] B(X=X""" yv') e Q[x, Y.
=1

p_ , XPT_xP
Remark 6.4.19. (1) We thus can think of F(X,Y) as (1 +Y)X(1 + YP)X o (L+YP) 7 .
(2) The monomials X™Y™ that appear in the factors B(X,Y") and B(%, an) satisfy n < m: the
same holds for F, so we can write F(X,Y) = Y anmX"Y" e Q[X,Y].

os<n<m
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Proposition 6.4.20. We have F'(X,Y) € Z,[[X,Y].

Lemma 6.4.21. (DWORK) Let f(X) € 1+ X Q,[[X]. Then we have f(X) € 1 + X Z,[[X] if and only if

L5t e 14+ pX Z,[X].

Proof. o Assume f(X) € 1+ X Z,[X]: we can write f(X) = 1+ Xg(X) with g(X) € Z,[X]. We have
FX)P = (14 Xg(X))? = 1+ XPg(X?) mod pX Z,[X]: as f(X) € Zy[[X]*, we deduce that L5} =1
mod pX Z,[[XT].

0 P D
o Conversely, assume that chg(()p =1 mod pX Z,[X]. Write f(X) = >, a, X" and ;Eﬁ)g = > b X",
n=0 n=0

with (an)nez., € Qg” and (bn)nez., € pZ?>0 (and ap = by = 1). We show that a,, € Z, by induction on

n, starting with ag = 1. Assume that aj, € Z, for all k < n, so that h(X) := Y axX"* € Z,[X]. We have
k=0
f(X) =h(X)+a, X" mod X" Q,[X]], hence
fX)P = (h(X) +anX™)P mod X" Q,[X] = h(X)? + ph(X)a, X" mod X" Q,[X]

= h(X)" +pa, X" mod X" Q,[X]

o0 n
hence f(X)p( Z—o mem) = h(X)p( Z—o mem) +pa, X" mod X" Q,[X] (since by = 1). On the other

hand, we have h(X)? = Y. ax XP* mod pZ,[X] (because h(X) € Z,[X]) and b,, € pZ,, for m € Z-o: this
0

k=
implies that the coefficient of X™ in the product belongs to pa, + a,, +pZ, if p | n and to pa, + pZ,
otherwise. As this coefficient is a,,/, if p | n and 0 otherwise, we have a,, € Z, in all cases. O
Similarly, we have:
Lemma 6.4.22. If f(X,Y) € 1+ X Q,[X,Y]+Y Q,[X, YT, then f(X,Y) € 14+ X Z,[X, Y] +Y Z,[X, Y]
if and only if LX) €1 4 pX Z,[X, Y] + pY Z,[X,Y].

F(X,Y)r
Proof of proposition 6.4.20. Tt is enough to apply lemma 6.4.22 to F(X,Y). We have
0 1 i . o8] —1 .
F(X? YP) = B(X?,YP) H B(X pi—X’) ,YpH—l) B(x?,Y?)[] B (7”’3/#)?
i=1 i=2
so that
F(XPYP) _ B(XP,Y?) B(XP,YP) _ B(Xx,Y?)

FX,Y)P B(Xﬁy)pB(xppfxyyp)P T B(X,Y)PB(XP—X,YP) _ B(X,Y)P

by proposition 6.4.11 (4). By proposition 6.4.11 (4) again, we have

B(X,YP? exp(X In(1+Y?P P
BEX,Y):2 = exggpx 11(1(1+Y;; = exp (X In (%))

By lemma 6.4.21, we have dig; €1+ pY Z,[Y], hence In (dig;) € pY Z,[[Y]), so that

exp (X In (fi557)) € 1 +pX Z,[X, Y] +pY Z,[X, Y]

6.5. Rationality criteria. A reference for this part is [1, Chapitre 5].

o0
6.5.1. The algebraic criterion. Let K be a field, a = (an)nezs, € K2>° and f(X) = Y, a, X" € K[ X].
n=0
If k,n € Zso, the Hankel matriz (resp. the Hankel determinant) of rank n and order k is the matrix

MM (@) = (an+itj)o<ij<k € Mpp1(K) (resp. D (a) = det (M'r(zk) (a))).
Lemma 6.5.2. If k€ Z-( and n € Z>(, we have

DT(lk)(a)Dg:—Qz)( )—D(k 21)( )fo‘l)( ) — plk= 1)( )2

n+ n+1
(with the convention Dﬁfl)(a) =1).
Proof. This is a direct consequence of lemma 6.5.3 below. 0

Lemma 6.5.3. (SYLVESTER RELATIONS). Let R be a commutative ring and n € Z-q. If A € M,,11(R),

let A € M,,_1(R) denote the matrix obtained from A by removing the extremal rows and columns. Write
com(A) = (Ai,j)OSi,an- Then det(A) det (A) = AO,OAn,n — AO,nAn,O-
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Proof. We may assume R = Z[X, ;lo<i j<n and A = (X; j)o<i,j<n. Let B = (b; j)o<ij<n € Mpt1(A) such
that bi,j = Mi,j ifie {O,TL} andj € {0,...,71}, and bi,j = 5i,j ifie {1,...,TL— 1} andj € {0,...,71}2
Ap,o Ao, - Aon—1 Ao
0 1 0 .- 0
0 g 0 1 0
An,o An,1 o Ann—1 Anon

By definition of coefficients A; ;, we have:

det(A) 0 - - 0
* *
BA = : A :
* *
0 e 0 det(A)

which implies det(A)? det (ﬁ) = det(A) det(B) = det(A)(Ao,0dnn — Aondno): we deduce the equality
det(A) det (/T) = Ap,0An,n — Ao nAn,o by dividing by det(A) (which is licit in the integral domain R). O

Theorem 6.5.4. We have f(X) e K(X) if and only if there exist ng, k € Z>( such that D )( ) = 0 for all

N E ZLzn,.

Proof. e Assume f(X) e K(X): there exist P(X),Q(X) € K[X] with Q(X) # 0 such that f(X) = Q(X;

Write Q(X) = XF + b X1+ + by = ﬁ:obk_gXe (with by = 1). If m = mg := max{deg(P), deg(Q)},

the coefficient of X™ in Q(X)f(X) = P(X) is éio Am—gbr—¢ =0, i.e. 'ﬁo m—k+ibi =0 (take i = k —¢). If
n=nyg=mo—kand je{0,...,k}, we have m :=n + k + j = my, so that _ioanﬂ-ﬂ»bi = 0, showing that

M (a)X =0 with X = by, ..., b) € K*+1\{0}: we have DY (a) = 0 for all n > no.
¢ Conversely, assume there exist ng, k € Z>o such that D(k)( ) =0 for all n € Zs,,. If a is stationary,
then f(X) in rational: assume henceforth that a is not stationary. Let h be the smallest integer such

that Dgh)(a) = 0 for n » 0. We have k£ > 0 since a is not stationary. Let ny € Z>( be the smallest
integer such that DM (a) = 0 for n > ng. Lemma 6.5.2 implies that DSI}:L_Ql)(a)DT(lh_l)(a) = Dg:ll)(al)2
for all n > ng. In particular, if m € Z is such that m > no and Dyf_l)(a) = 0, then Dﬁlh_l)(a) =0
for all n > m, contradicting the minimality of h. This implies that D,(,hfl)(a) # 0 for all n > ng. This
means that for n > ng, the rank of M.")(a) is h: the K-vector space Ker (M,(Lh) (a)) has dimension 1.

Also, it coincides with the kernel of the matrix obtained from M,Sh)( ) by removing its first or last row.
This implies that Ker (M7(z+)1( )) = Ker (MT(lh)(a)), i.e. that Ker (Mr(lh)( )) does not depend of n > ng. If

= t(bp, ..., bo) € Ker (M\"(a)) and Q(X) = ﬁ br_eX* then Q(X) # 0 and Q(X)f(X) € K[X], so
=0
that*®) f(X)e K(X). O

Corollary 6.5.5. We have f(X) € K(X) if and only if there exist ng € Zs¢o such that D(k)( ) = 0 for all
ke ZZno'

Proof. o Assume f(X) € K(X). Let AP = (G, Qngly - -y Gnyk); then D( ) = det(A((Jk),...,A,(ck)). If
h

QX)) = XM+ b0 XMt 4o by, = Y by o X (with by = 1) is such that Q(X)f(X) € K[X], we have
£=0

Z bgAl(ck , = 0 for £ » 0, implying that the lines A,(c )h, e ,Ag’;) of Mék) (a) are linearly dependent, hence

(k)( ) =0.
e Conversely, assume that D(()k) (a) =0 for £ » 0. By lemma 6.5.2, we have

DD (@) Dy, (a) = Dy, (a) DI (a) — DI, (a)°

1f DV (a) = O0for all k = ng, then D,(Lkﬂ)(a) = D,(Lk)( )=10s0 D,(Zizl( ) = 0forall k > ng. A straightforward

induction thus implies that D (a) = 0 for all & > np and all n € Z>(: by theorem 6.5.4, we have
F(X) e K(X). O
(45)1n fact by, # 0, otherwise we would have M ("5 (a)y’ = 0 with X = t(b,_1,...,bo) € K"\{0}, contradicting D" 3" (a)

n+2 n+1
This shows that deg(Q) = h.
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6.5.6. The analytic criterion. As usual, let p be a prime number.

Lemma 6.5.7. Let z € Z. If |z]|z[, <1, we have z = 0.

Proof. Assume z # 0, we can write 2 = p*»(®)y with y € Z\{0} prime to p: we have |z| lzl, =yl =1. O

0
Theorem 6.5.8. Let f(X) = > a,X"™ € Z[X]]. Assume that f defines an holomorphic function on the disc
0

n=
{z € C; |z| < R} and that f defines a meromorphic function (i.e. quotient of two holomorphic functions)
on the disc {x € Cp; |z[, <r}. If Rr > 1, then f is rational.

Proof. We apply theorem 6.5.4 with K = Q.
e Making R a little smaller, we may assume that lim |a,|R™ = 0 (this follows from Cauchy inequalities):
n—x0

there exists N € Zso such that |a,| < R™™ foralln > N. If n > N and 0 < 4,5 < k, we have
|lantitj| < R™("++9): Hadamard’s inequality implies that

s kK ko k , o )
k 2 1+R 4+ R C
D®@)| < T (D lansinsl) < [T (D) ") < g

7=0 =0 0 =0

j=

k C 1+R—24.-- 4+ R—2k)k+1
hence ‘D,(l )(a)‘ < zatnw, where Oy = ( HRGEFD) e Rog

e Making r a little smaller, there exist g,h € J#q ([0,7]) such that g = hf. The order of vanishing of h is

less that that of g: dividing g and h by the appropriate power of X, we may assume that h(0) # 0. By
Weierstrass preparation theorem (cf theorem 6.2.2), there exist P € Q,[X] and u € #q ([0,7])* such that

h = Pu. Replacing h by P and ¢ by gu™!
d 0
h(0), we can further assume that h(0) = 1: write h(X) = Y a; X? (so ag = 1). Write g(X) = . b, X". As

i=0 n=0
g € Hq,([0,r]), we have lim [b,|,r" = 0: making N larger if necessary, we may assume that |b,|, <r
n—ox0

, we may assume that h is a polynomial. Dividing g and h by

—n

for all n = N. On the other hand, the equality g = hf implies that b, 19 = @mid + ¥10mid—1 + - + @gam
for all m € Zso. Assume k > d: in the determinant D (a), we may replace an4i+; by bptit; Whenever
jzd Ifn>=N,i€{0,...,k} and j € {d,...,k}, we have

b < p(n+d) ifr>1
briil, < pm(E28) e <]

As |am|p < 1 since a,y, € Z for all m € Zxg, the strong triangle inequality implies that

—(k+1—d)(n+d) :
‘D,Slk)(a) < {T if r >1
p

rf(k+17d)(n+2k) ifr<i :

In any case, we have ‘D,(lk) (a)‘ < —odtsaw, With ¢, = max {r=(hrl=d)d p=2(k+1=dk} e R _.
e Assuming that k > d, we have thus

(D (@) | (a)| Cr

» S R(k+1)n7a(k+1—d)n'

Now choose k > d large enough so that RFT1rkT17d > 1 (this is possible because Rr > 1): then we have

lim R(k—ﬂﬁvbﬁfm = 0. Making N larger if necessary, we have ‘D,(Ik) (a)‘ ‘D,(Ik) (a)‘ <1lforalln > N. As
n—%0 L P

D (a) € Z, lemma 6.5.8 implies that D (a) =0forall n > N. O
6.6. Exercises.

Exercise 6.6.1. (HENSEL LEMMA). Let (K, |.|) a complete non archimedean valued field, P € Ox[X], and
P € kx[X] its reduction modulo mg. Assume that there exist f,g € kx[X] such that
(i) P =fg
(i) g is monic;
(iii) ged(f,g) =1.
Show that there exist F, G € Ok[X] such that:
(i) P =FG,
(if) G is monic;
(iii) F = fand G = g.
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o0
Exercise 6.6.2. Show that the disc of convergence of a power series f(X) = >, a, X" is contained in that
n=0
of its derivative f/(X) = na, X" !. Give an example where the regions of convergence are not the same.
1

3
18

Exercise 6.6.3. Find an example of an infinite sum of nonzero rationals which converges with respect to
|.|, for every prime p and with respect to |.|, .

o0
Exercise 6.6.4. Let K be a closed subfield of C, and f(X) = }; a, X" € % ([0, 1]).

n=0
(1) Let p € [0,1[n Q. Show that sup [f(z)| = |f[|, := sup [a,|p™ (in particular the maximum modulus

lz|=p
principle holds: we have sup |f(2)] = [f],)-
z|<p
(2) Show that the map f is bounded (resp. bounded by 1) if and only if f(X) € Q,®z, Ok [X] (resp.
f(X) € O XT])-
(3) Show that the inclusions % ([0, 1]) € Q, ®z, Ok [X]| © Ak ([0, 1[) are strict.

n€d=o

Exercise 6.6.5. Let K be a closed subfield of C, and 0 < r; < ra. Is the inclusion
v A ([0, m2]) = A ([0,71])

continuous for the norms [.|., and [.|. ?
Exercise 6.6.6. Let K be a closed subfield of C,, and € R~. Show that K[X]is dense in (% ([0,7]),].|,)-
Exercise 6.6.7. Find a locally analytic map that is not globally a power series on C,.

Exercise 6.6.8. Let K be a closed subfield of C,,, r € R+ and f € K[[X].

(1) Show that if r; < ro, then wy, (f) < wy, (f).

(2) Assume f € J#%([0,7]) and let 1 < 7o < 7. Forie {1,2}, let f = Pyu; with P; € K[X] monic of degree
wy, (f) and w; € 5 ([0,7;])* be Weierstrass decomposition of f. Show that P; divides P; in K[X].

Exercise 6.6.9. Let f(X) =1+ a1 X +a2X?+ --- € Cp[X] defining an entire function on C,. Show that
the reciprocals of the zeros of f form a sequence (o;)ez., that converges to 0, and that

o0
fX) =[]0 - X)
i=1
(for the metric defined by |.|,. for any r € R~).

0 e
Exercise 6.6.10. (1) Draw the Newton polygon of f(X)=1In(1+ X) = ] %X”. What is its radius
n=1

of convergence?
. L pn _ (_1)k—1
(2) Show that lim - (h) = —%

A , and that f(X) = lim %.

n—>a0

pntl 0
(3) For n € Zzo, put Qu(X) = ®poi (14 X) = Lt € Z[X]. Show that f(X) = X UO 2u()

What are the roots of f in the open disc of convergence?

Exercise 6.6.11. (WEIERSTRASS PREPARATION THEOREM). Let (K, |.|) be a complete discrete valued field.

el
Fix a uniformizer 7. If f(X) = Y a, X" € O [[X], let w(f) = inf{n € Zx¢; an € Of} € Zxo u{+0}, so
n=0
that f € 1O [X] < w(f) = +o0.

(1) Check that w(f) =0 < fe Ox[X]*, and that w(fg) = w(f) + w(g).
(2) Let f,g € Og[[X] be such that d := w(g) < +00. Show that there exist unique ¢ € Og[X] and
r € Og[X] such that:

deg(r) < d
f=af +r

(Weierstrass division theorem).
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A polynomial P € Ok[X] is called distinguished if P(X) = X9+ a4 1 X% 1 + -+ + ag with a; € mg for
all i € {0,...,d — 1}. By the theory of Newton polygons, a distinguished polynomial P has exactly deg(P)
roots in mj.

(3) Let f € Og[[X] be such that d := w(f) < 4+00. There exists a unique distinguished polynomial P of
degree d and a unique u € O [[X]* such that f = Pu.

(4) Show that if f € K ®0, Ox[[X]\{0}, there exist a unique p € Z, a unique distinguished polynomial P
and u € O [[X]* such that f = 7#Pu. In particular, f has exactly w(m #f) zeros in mz.

(5) Show that K ®o, Ox[X] is a PID.

(6) Assume K c C,,. Show that f € % ([0,1[)\{0} is bounded if and only if f has finitely many zeros in
D(0,1).

(7) Construct a bounded element in J#¢, ([0, 1]) having infinitely many zeros in D(0, 1).

Exercise 6.6.12. Let (K, |.|) be a complete discrete valued field. Fix a uniformizer 7. Show that Ox[[X]
is a noetherian local ring, with maximal ideal m = {7, X), and whose other prime ideals are {0}, (w) and
(P) with P € Og[X] an irreducible and distinguished polynomial.

Exercise 6.6.13. Let p be a prime number. Construct a continuous surjective map Z, — [0, 1]. Describe
continuous maps [0,1] — Z,.

Exercise 6.6.14. Let p be a prime number and & = %O(ZP,QP). If feo,put |f]|, = sup |f(x)|p. If

z€Z)
X(X=1)(X=n+1)

n € Zxq, the binomial polynomial of index n is ((if)) = -

(1) Show that (<, |.|, ) is a Banach space.

(2) Show that H ) H/ =1 for all n € Zo.

If k € Zoo and f € o, we define fI*! inductively by I = f and fl*+1(z) = fFl(z + 1) — fI¥1(2). The
k-th Mahler coefficient of f is ai(f) = f1¥1(0).

(3) Show that if f € 7, there exists m € Zx such that | fIP"1] < "f]ﬂ‘”.
(4) Show that nh_r)nf an(f) =0.

(5) Show that f — éoan(f)(jf) in (o, |.]..).
(6) Show that [|f]|, = sup |an(f)|p.

LISY/PN)

Exercise 6.6.15. Show that 3 (%) (2)" = —% in Q;. Compute S %) (3)" in R.
n=0 n=0

AH’(X))
AH(X) /-

Exercise 6.6.16. Prove that AH(X) converges in D(0, 1) but not in D(0,1) (hint: compute
Exercise 6.6.17. Find the coefficients in AH(X) through the X?~! term.

Exercise 6.6.18. Use Dwork’s lemma to show that AH(X) € Z,[X].

o0 .

Exercise 6.6.19. A slight generalization of previous exercise. Let g(X) = Y. b, X?' € Q,[[X]. Show that
i=0

exp(g(X)) e 1+ X Z,[X] if and only if b,_1 — pb; € pZ,, for all i € Z>( (with b_, :=0).
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7. RATIONAL POINTS

7.1. Equations over a finite field. Let p be a prime number, r € Z.g and ¢ = p". If I c F,[X;,..., X,]
is an ideal, we denote by

V(I) = {x e F!'; (YP e I) P(x) = 0} = A"(F,).

its set of zeros in F/. A quite important problem is to determine if V() # @, or better understand # V(I).
In what follows we provide partial (and classical) results in special cases.

Lemma 7.1.1. If n € Z>, we put s(n) = Y, 2. We have s(n) =

2eF, 0 otherwise

{—1 ifn>0andqg—1]|n
Proof. e Assume n >0 and ¢ — 1| n: we have 2 = 1 for all z € F* (since the latter has order ¢ — 1), and
2" =0if x =0, s0 that s(n) = > 1=¢—1=-1.

IEF;

e If n =0, we have 2" =1 for all z € F, so that s(0) = >, 1=¢=0.

z€F,

q—2

e Assume n > 0 and g—1{n. The group F is cyclic: let w be a generator. Then s(n) = 3 2" = 3 Wk,
IEF; k=0

hence w™s(n) = s(n), i.e. (1 —w™)s(n)=0. As ¢ —14n, we have w™ # 1, whence s(n) = 0. O

Theorem 7.1.2. (CHEVALLEY-WARNING). Let (P;)1<i<r € Fg[X1,...,n]" and
V=V({P,....,P))={xeF;; (Vie{l,...,r}) Pi(x) = 0} ¢ A"(F,).

Assume that ] deg(P;) <n. Then p | #V.

=1

Proof. Put P = [[(1 =PI " e F [X,,...,X,] Ifxe F;, we have
i=1

P(x) =

1 ifxeV
0 otherwise

(if Pi(x) # 0, we have P;(x)?~' = 1, whence P(x) = 0). This means that P, seen as a map on F} with
values in {0, 1} is the characteristic map of V. This implies that >, P(x) is the image of #V in F;: we

n
xEFq

have to check that Y, P(x) = 0. The hypothesis implies that deg(P) < (¢ — 1)n, which implies that P is

x€Fy
an F,-linear combination of monomials Xfll - X3 with dy +- - - +d,, < (g—1)n, in particular so that there
exists i € {1,...,n} such that d; < g—1. By lemma 7.1.1, we have then Y z{* ...z = s(d;)---s(d,) = 0,

n
n
xEFq

implying the theorem. O

Corollary 7.1.3. Under the hypothesis of the previous theorem, if the polynomials Pi,..., P, have no
constant term, they have a non trivial common zero.

Example 7.1.4. A non degenerate quadratic form over F, in more than 3 variables has a nonzero isotropic
vector.

Remark 7.1.5. The bound }) deg(P;) < n is optimal: if N: F» — F, is the norm map, then N is a
i=1
polynomial map in n variables which is homogeneous of degree n, and V' = {0} has cardinality prime to p.

7.1.6. Counting solutions using trigonometric sums. Here we assume that r = 1, i.e. ¢ = p. Choose ( € C
a primitive p-th root of unity.

Lemma 7.1.7. If v € F, we have

Z Cwy:{g ifz=0

otherwise
yeF,

Proof. We have (* = 1 if x = 0 and {* is a primitive p-th root of unity if z # 0: the lemma follows from

s =S ok = .
k=0

yeF,
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Proposition 7.1.8. Let P € F,[X,..., ] Then
xeF zEFX
xEF" xEF"
Proof. Follows from lemma 7.1.7. g
In general, controlling the "error term" % 3 ¢*P™) is quite hard and the general statement for this is
zEF:
xeF )

Weil conjectures (¢f remark 7.2.9). Following [3, I §2 (2)], we will treat the case of diagonal hypersurfaces,
i.e. that where

P(X1,...,Xn) =a; X3 + - 4, X
where (a1, ...,an) € F)\{0}.

Definition 7.1.9. (1) A character of a finite abelian group G is a group homomorphism x: G — C*. Such
a character has values in the group of #G-th roots of unity.
(2) Let x: F,; — C™ be a character. We extend it into a map x: F, — C by putting

x(0) =

1 if x is trivial
0 otherwise '

Note that x(zy) = x(x)x(y) for all z,y € F,,. If a € F,,, we put

Ta(x) = 2 x(@)¢""eC

z€eF,

(Gauss sum).

.. if 1 and a € F*
Proposition 7.1.10. We have |7, (x)| = VpoiEx# ] ancdacty
otherwise

Proof. e Assume x # 1 and a € F;. We have O = X x(@)x@)¢* =¥, As |x(y)| = 1, we have
IWEF;

x(y) = x(y)~' = x(y~?) for all y € F. This implies that
|7'a(X)|2 = Y x(ay™HeelEmw) = 3 Y y(z)¢ezmy

xyeF; zeF;yEF;
By lemma 7.1.7, we have ¢e(z=1y — _1 unless z = 1, in which case it is equal to p — 1. This implies
yEFS
that
2
)" =p-1- X x()=p- X x(?)
zeF,; \{1} 2€F)

As x is non trivial, we have Y. x(z) = 0, whence |7, (X)|* = p, i.e. |ra(x)| = N2
zEF;

e We have 7,(1) =0 by lemma 7.1.7. We have 79(x) = >, x(z) =0if xy # 1. O

z€eF,
Theorem 7.1.11. We have |# V((P)) — p"~!| < C(p—1)p% ~! with C = [](6; —1) where §; = ged(d;,p—1)
i=1
forie{l,...,n}.

Proof. By proposition 7.1.8, we have

(%) (#V(<P> Z Cm a1z 4 tagein) _ Z HZC (zai, d;)

zeF zeP) =1
xEFZ
where ¥¢(a,d) = 3, ¢’ = Y ma(2)¢?* with ma(z) = #{y € Fp; y¢ = z}.

yeF, z€F,
We have my4(0) = 1. Let z € F;. If wis a generator of the cyclic group F , we can write z = w” for a
unique k € {0,...,p — 2}. Writing y = w*, we have y? = z & du = k mod ( —1)Z. If 6 = ged(d,p — 1),
a necessary condition for the existence of such w is that ¢ | k, in which case the congruence is equivalent
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to %u = % mod % Z: as %l is prime to % hence invertible mod pf;l, this last congruence has a unique

solution modulo pf;l, hence ¢ solutions mod p — 1. This shows that
ma(z) = 0 ifd]|k
alz) = {O otherwise
Let € € C be a primitive d-th root of unity. If s € {0,...,0 — 1} and z € F,, let
xs: F, — C*
be the character defined by xs(w) = £° (this makes sense since £° is a p—1-th root of unity, because § | p—1).

51
Let z = w* € F) with 6 | k, we have x,(z) = ¢ = 1 for all s € {0,...,6 — 1}, so that Zoxs(z) =0. If 51k,

s=

5—1 5—1
we have (¥ — 1) Y xs(2) =€°* —1 =0, hence Y. x4(2) = 0 since e # 1. In any case we have
s=0 s=0
5—1
mal2) = S ()
5—1 5—1 5—1
What precedes thus imply X¢(a,d) = >, > xs(2)¢* = 3 Ta(xs) = 2 Talxs) (since 74(60) = 72(1) =0
zeF, s=0 s=0 s=1

5-1
by proposition 7.1.10). In particular, we have |¥¢(a,d)] < Y, |7a(xs)| = (6 —1)/p. Thus equation (*)
s=1
implies that
V) = = S TG = 1)3) = (0~ 1)(_111 (6: = 1))pt
ceFy i= i=

hence the result. O

7.2. Rationality of Zeta functions of schemes of finite type over finite fields. What follows is
taken almost verbatim from [19]. Other references are [13, Chapter V] and [8, Chapter II]. Let ¢ be a power
of a prime p, and V a Fg-scheme of finite type. Denote by |V the set of closed points of V.

Definition 7.2.1. If z € |V, the corresponding residue field x(x) is a finite extension of F,. The degree of
x is then deg(z) = [k(z) : Fyl.

Remark 7.2.2. A point of V' with values in F 4 is a morphism of F,-schemes Spec(F «) — X. The data
of such a point is equivalent to its image in the topological space V', which is a closed point z € |V|, and
a local morphism of F,-algebras Oy, — Fa, i.e. a Fy-linear morphism x(x) — F,a. The closed point x
being fixed, there are deg(x) such morphisms, i.e. deg(x) points. The set of points with values in Fa is
denoted V(Fa).

Lemma 7.2.3. For all k € Z>1, the set V(F ;) is finite.
Proof. Being of finite type over Fy, the scheme V can be covered by finitely many affine F,-schemes:
write V' = | J Spec(A;) where A; is a Fg-algebra of finite type for ¢ € {1,...,r}. If x € |V, there exists

i=1
i€ {l,...,r} such that = € Spec(4;). If z is the image of an element of V(F ), it corresponds to the kernel

of a morphism of Fg-algebras A; — Fx (cf remark 7.2.2). As A; is a quotient of Fo[X1,..., X, ]| for some
n, € Zxo, there are finitely many such morphisms, a fortiori finitely many such closed points. Each of these
corresponding to at most k& morphisms Oy, — Fx, this shows the finiteness of V(F ). O

Definition 7.2.4. The zeta function of V is

1
ZV(T) = H m € Z[[T]]
z€|V|

Observe that the product converges in Z[[T]] thanks to the previous lemma.
o0

Lemma 7.2.5. We have Zy (T) = eXp( > #V(Fqk)%k).
k=1

Proof. Taking the logarithm in Q[[T], we have

W(Zy(T) = 3 —ln(l— 7o) = 5, 3 T2 _ é Nu(V)ZE

z€|V| z€|V]n=1
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where Np(V) = > deg(x) = #V(F,) by remark 7.2.2. O
ze|V|
deg(x)|k

g :
Example 7.2.6. (1) If V = Ag , we have #V (F) = q"* for k€ Z~o, s0 Y, #V(Fqk)TTk = —In(1-4¢"T),
k=1

hence Zan (T') = ﬁ.

(2) As we have Py = Ag U ngl, a straightforward induction gives Zpn (T') =

1
(1-T7)(A—gT)--(1—¢q"T)"

Zy/ (T)Zyu(T)
Zyiayn(T) -

Proof. Obvious. a

Lemma 7.2.7. If V is the union of two subschemes V' and V”, then Zy (T') =

Theorem 7.2.8. (DWORK) Zy (T) € Q(T).

Remark 7.2.9. (1) In fact, one has Zy (T) = % where P(T),Q(T) € Z[T] have constant term equal
to 1. Indeed, theorem 7.2.8 shows that We can write Zy(T) = % where P(T),Q(T) € Q[T]. We
may assume that gcd(P, Q) = 1. As Zy(0) = 1, we may divide P and @ by their constant terms, and
assume that P(0) = Q(0) = 1. Let p be a prime number. We have Zy(T) € Z[[T] < Z,[T]. Assume
P(T) ¢ Z,[T]: one coefficient of P has negative valuation, so its Newton polygon has a negative slope. This
implies that P has a root A € D(0,1). As Q(T) = P(T)Zy(T) and Zy (T) converges on D(0, 1) (because it
has integral coefficients), we have Q(\) = 0 as well, contradicting the fact that gcd(P, Q) = 1. This shows
that P(T') € Z,[T], so that Q(T) = P(T') Zv(T') € Z,[T]. This means that the coefficients of P and @ have
non-negative p-adic valuations for all primes p: they are integers.

(2) This result is the first of Weil conjectures. There are the following. Assume that V' is a projective and
geometrically irreducible(*®) and smooth over F,. Then the following hold:

e (FUNCTIONAL EQUATION) we have
Zy(q'T™) = +¢F T° 2y (1)

where d = dim(V') and e is the “Euler characteristic” of V;
e (RIEMANN HYPOTHESIS) we can write

_ hA(T)P(T) - - - Paa—1 (T)

Zy(T) =
v{T) = R B (1) - oD
bj
where P;(T) € Z[T] are such that Py(T) =1—T and Py(T) =1 —q¢*T and P;(T) = [[ (1 — i ;T)
i=1
where(!") |a; ;| = ¢//? for all i € {1,...,b;}.

For instance, if V' is a curve of genus g, we have Zy (T') = % where P € 1 + T'Z[T] is a polynomial

of degree 2g, whose roots have absolute value |/g.
7.2.10. First reductions.

Lemma 7.2.11. If d € Z-, we have Q(T) n Z[T9]] = Q(T?).

Proof. Let P,Q € Q[X]\{0} be coprime and such that % € Z[[T?]. We may assume that Q(0) = 1.
P(T)

Let ¢ € C be a primitive d-th root of unity: the hypothesis implies that om = ggg; in C(T"), whence
P(T)Q(CT) = P(CT)Q(T) in C[T]. As gcd(P,Q) = 1, Gauss lemma implies that Q(T) | Q(¢T'), whence

Q(T) = Q(CT) (since Q(T) and Q(CT) have same degree and same constant term). This shows that
Q(T) = Q(C*T) for all k € Z, so that Q(T) = gdf P(CHT) € CT] ~ Q[T] = QIT] (because 'S ¢k = 0
k=0 k=0

unless d | ). Similarly P(T) € Q[T9], and we are done. O

Lemma 7.2.12. Theorem 7.2.8 follows from the special case where V' = V(f) c A%p for some polynomial
f(X)eFplXy,. ..., X,]

(46)j.¢. such that V xp, Fq is irreducible.
¢ Fa
(47)M0re0ver, if V' is the reduction mod p of a non singular projective variety V over a number field K, the integers b; are
g 3 j
precisely the “Betti numbers” of V, i.e. the dimensions of the Betti cohomology groups of the topological manifold V(C).
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Proof. e« Put d = [F, : F,]. As V is of finite type over Fy, it is of finite type over F, as well. If z € |V,
we have [k(z) : Fp] = [k(z) : Fgld, so that Zy,p, (T) = Zy g, (T'?). If the theorem is known for varieties
over F,, this shows that Zy /g (T%) € Q(T) n Z[[T%] < Q(T?) by lemma 7.2.11, so that Zy g (T) € Q(T).
This implies that to prove theorem 7.2.8, we may restrict to the case where ¢ = p is prime.

¢ As V is of finite type over Fp,, we have X = |J V; where Vi,...,V, are affine open subschemes. By lemma

=1
7.2.7, we have
Zv(T) =TI Zy,(1)0"
Ic{l,...,r}
3%

where V; = (\V; for all T < {1,...,r}. Tt is enough to show that Zy,(T) € Q(T) when I # @. As V; is a

subscheme ozfeim affine hence separated scheme when I # &, we can reduce to the case reduce to the case
where V' is separated. In that case, the intersections V; are affine (¢f [15, Chap. 3.3, Prop. 3.6]): we are
reduced to the case when V is affine, i.e. V =V(I) c Af where [ = {frooo o fmy € Fp[Xa, ..., X, ] is an
ideal. Assume m > 1: let V' = V({f1,..., fm=1y) and V" = V(f,,). Then V = V' A V”: by lemma 7.2.7,
we have Zy (T') = % AsV'uV" =V({f1,..., fm—1)fm), a straightforward induction reduces to
the case where m =1, i.e. where V =V(f) c Ag, for some polynomial f(X) e F,[X1,...,Xn,]. a

If f(X)eF,[X1,...,X,], put
V(f) =V(f) nD(X1 - X,) © A .
A point of f(X) with values in Fy thus corresponds to the data of an element x = (z1,...,z,) € Fj/ such

that f(z1,...,2,) =0and 1 - -2, # 0.

Lemma 7.2.13. Theorem 7.2.8 follows from the special case where V = V(f) < Ag, for some polynomial
[(X)eF,[Xq,...,X,]

Proof. By lemma 7.2.12, we already reduced the proof to the case where V' = V(f) for some polynomial
f(X) e Fp[X1,...,X,]. Now we have

V() = V() u (V) A V(X X))
By lemma 7.2.7, the rationality of Zy ) follows from that of Z\7(f) and that of Zy(p)nv(x,..x,) As we
have V(f) nV(X1---X,,) = U V(f) n V(X;), this reduces to that of Z§( sy and of the zeta functions of the
i=1

various intersections of the V(f) n V(X;). As those identify with subschemes of Ag;l, we can use induction
on n to reduce to the rationality of Z\7( £ |

7.2.14. Factorization of additive characters on finite fields. Recall that in section 6.4.17, we defined the
o0

series B(X,Y) = 3, (3)Y™ = (1 +Y)X € Q[X,Y] and Dwork’s series
0

n=

e i pi—1 i
FOXY) = BOCY) T B(%, Y? ) e Z,[X,Y]
(¢f proposition 6.4.20). Formally, we have

o0 o xpt _xpiT?!

FX,Y)=[l+Y?) 7

Write

In each monomial of factor B(Xpl_pi)fpl_, Ypi), the degree in X is less or equal to that of Y: this thus
holds also for F(X,Y). This implies that deg(B,,) < m for all m € Z>o. This shows in particular that we

have

F(X,Y) =

S8

X" (Y)
0

where o, (Y) e Y Z,[Y].
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Fix € € C,, be a primitive p-th root of unity and let A = ¢ —1: we have A # 0, so that 0 = ‘E:T_ll = %,

p—2
so that AP~1 4+ 3 (i))xk_l +p = 0. This shows that v,(A) > 0, hence vp((i))\k_l) >1forke{l,...,p—2},
k=1

so that vp()\p_l)_= 1, d.e. vp(N) = p—il. Put

O(X)=F(X,\) = B X™

E

where B, = aum(A) € Zp[A] = Zp[e]. Note that vy(8r) = 575 since au, (Y) € Y™ Zp[Y]. This implies that
the radius of convergence of © is larger that p7T > 1, i.e. that © converges on D (O,pﬁ).

()

k=1 -
If ke Z-o and t € Fx, we have Terk /F, (1) = X t?" € F, so that e Tor /Fr ) makes sense, and defines a
7=0

character

Trg F
g Fpk/Fr, QS —>C;<

Trppk /Fp (1)

t— ¢

Recall that the Teichmiiller lift of ¢ is the unique element [t] € Og that lifts ¢ € F, and such that [t]pk = [¢]
(¢f definition 3.8.20). The following statement provides an analytic expression of this character (more
precisely its expression as the value at [t] € Oc, of an analytic map defined on D (0, pﬁ))

Proposition 7.2.15. For all t € Fx, we have

k—1

e — e([pe((er)) - e
k=1
Proof. The equality Trg , /g, (t) = X t* € F, is the reduction modulo mg of
P ]:0 P

D-

T = S (17 € 2,

7=0
Tre o imp () Tre([t]) —
so that e "» =g = B(Trr([t]), A)-
k-1 .
On the other hand, B(Trx([t]),Y) = (1 + V)T = TT B([t]*",Y) in C,[[Y]. Moreover, we have
=0

j=
s itj—1

F( ¥) = B ) [] B2 y)

itj—1

ey = (1T o) 11 (] e )

j=0 3=0 =
k=1 0 k=1 itj pitic1
= (I B ) T8k 2 (0 — 177 v)
=11 B[ v)
7=0
in C,[[Y] because 5 ([t]piﬂ - [t]piﬂ_l) = 0 since [t]pk = [t] and B(0,y) = 1. We thus have
§=0
BT ().¥) = T] F(@P.Y)

in C,[[Y]. We may evaluate both sides at A (the LHS because Tr([t]) € Z, and the RHS because the
radius of convergence of © in greater that pﬁ), and get

k—1

" w1 _ e (e)) - e ).
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7.2.16. Spectral theory of an operator in infinite dimension. Put X = (Xo,...,X,) and let E = C,[X] be
the ring of formal power series in the variables Xg, ..., X,, with coefficients in C,,.

If w= (wo,...,w,) € ZL", put |w| = wo + -+ +w, € Zzo and X¥ = X[ --- X2, If G(X) € E, the
multiplication by G(X) defines a Cy-linear endomorphism pg(x) € Endc, (E). If m € Zxo, we define an
element ¢, € Endc, (E) by

(N wX®) = ¥ anXe

Ezga—l wezg_gl
Let
Vin.g = ¥m © pa(x) € Ende, (F)
be the composite. In the canonical basis (Xy)wez;fjl’ the (infinite) matrix of ¥,, ¢ is (gmﬂ,ﬁ)%wezggl,
where G(X) = >,  guwX™
ezlt?

Remark 7.2.17. If m,m’ € Zz2, we have ¥y, 0 ¥y = Y and pig(x) © Ym = Ym © pgxmy. Indeed, if

Xu/m if
- ifm | u . Also, we have ug(xm)(zfﬂ) = 3 guX"2tE: we get

u € Z;ng, we have 1, (Xﬁ) = )
0 otherwise = 1
MEZZO

(Ym0 pig(xm) (XL) = % guthm (X)) = Gipy, (XY) by linearity, so that pg © ¥m = ¥m 0 pig(xm)-

41
QEZ>0

Lemma 7.2.18. Assume there exists a constant C' € R~ such that v,(g,) = C |w| for all w € Z%{'. Then
for all k € Z~, the series giving the trace of \Ilfn’G converges, and we have

(mF =) Tr (W o) = Y GRGE™) -G )
xeCnt!
xmfle
(if x = (x0,...,%n) € CZ“, the condition x™~! = 1 means that :1:;”*1 =1for all i € {0,...,n}).

Proof. « An immediate induction on k using remark 7.2.17, implies that
k
\I/,IfnG—\I/méO\PmG—T/Jmk 10#@( X)G(Xm)--G(XmF™2) 0t 0 ha
= Pk © Haxm)yq(xm?)...q(xmF1) © HG
= Yk © Ho(x)6(xXm)G (XM - G(xXm )
thus we may replace m by m* and G(X) by G(X)G(X™)G(X™)--- G(;(mk_l), and assume that k = 1.
e The matrix of Uy, ¢ being (gmw—u),, wezz i We have Tr(W,,.c) = X g(m—1)w (the series converges
thanks to the hypothesis of the lemma. On the other hand, we have
-1t ifm—1
ﬂ:{@z e ifm—1 |

G+ 0 otherwise
P
xMm" =1
This implies that Y, G(x) = (m—1)""" 3 gim_1)w- .
xECZ'H EEZQSA
x7n—1=1

Assume again the existence of a constant C' € R~ such that v,(gw) = C || for all w e ZZ{'. Put
%0
det(IdE —T\Pmﬁg) = Z ’yde

where

Ya = (—1) 2 £(o) ﬁ (Ym.c), = (-1)? ) e(o) ﬁ Grma, () ;-

Uyl ‘ j
Uy EdEZ;H—l 7j=1 J [€)) Uy, ﬂdEZQ?{l j=1
u; distinct u; distinct
geGy 0EG,
This sum does converge in C,, because we have

d d d
vpe(0) T gmu,y—u, ) = 2 vp(Gmu,  —u,) = C(m Z |U |

5=1 a(§) = =1 a(§) = =

o0
Lemma 7.2.19. Let F be a field, d € Z-o and M € My(F). Then det(I, —TM) = exp (— 3 Tr(Mk)T—’“).
k=
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Proof. Let I be an algebraic closure of F, and \1,...,\q € I are the eigenvalues of M. For k € Z~( we have
d s d © d

Tr(M*) = »21 A, s0 that —kzl Tr(M*)LE = — Zl kzl QT Zl In(1 — \;T) = In(det(L, =TM)). O
Jj= = j=1k= Jj=

Lemma 7.2.20. Assume there exists a constant C' € R~ such that v,(gw) > C |w| for all w € ZZ{'. Then
we have:

o0
(i) det(ldp ~TWpn.c) = exp ( ~ T (v6) )
=1
(ii) the radius of convergence of the series det(ldg —T'¥,, ¢) € C,[17] is infinite.

Proof. (i) If N € Z+, let U,,, ¢ <n be the endomorphism of E whose matrix is that of ¥,, ¢ with entries
0

for which |u| > N or |w| > N are replaced by 0. Then det(Ig —T'V,, ¢.<n) = €xp (— > Tr (\PﬁlﬁcﬁgN)TTk)
k=1

by lemma 7.2.19. Endowing C,[[T]] with the topology coefficientwise convergence, the equality follows by
passing to the limit as NV — 0.
(ii) It is enough to check that lim % = 400. We already know that

d—o0

d
vp(va) = C(m —1) inf " ( D |gj|)
Wy e ug€ZTY j=1
u; distinct

Order the elements of ZZ§" into a sequence (w,)sez., such that [w,| < |w,,,|for all s € Z~o. Then we have
1

d d
vp(7a) = Clm—=1) ¥, fw,|- As lim || = +00, we have lim & 3} Jw,| (Cesaro), ie. lim 2292 = o0, O
s=1 S—0 — 0 s=1 S0
7.2.21. Analytic expression of the Zeta function and end of the proof. Recall (¢f lemma 7.2.13) that we
reduced the proof of theorem 7.2.8 to the special case where ¢ = p is prime and V = V(f) c Ay for some

polynomial f(X) € Fp[X1,...,X,]. If k € Z+( we have:

\~/(f)(Fpk) = {(z1,...,2n) € Foos f(z1,...,2n) =0, (Vie {1,...,n}):cfk71 =1}

Lemma 7.2.22. The series Zg, ,, (T') defines a holomorphic function on the disc {z € C; |z| < 1.

V(f) P
~ 0 -
Proof. We have 0 < #V(f)(F,.) < p*" for all k € Z-: the radius of convergence of Y #V(f)(Fpk)T—,: is
k=1
1 .
at least -, so does that of the series Zg (T). O

According to theorem 6.5.8, theorem 7.2.8 follows if we can show that the series Z\~/( N (T') defines a mero-
morphic function on the disc {z € C,; |2], <7} where % > 1. In fact, we have much better:

Theorem 7.2.23. The series Zg(f)(T) defines a meromorphic function on C,,.

Proof. Fix k € Z~. If t € Fpx, we have
O(t) = e —g(pe(]) - o[ ).

where [t] € Qp is the Teichmiiller representative of ¢ (¢f proposition 7.2.15). As O is a non-trivial character

on F,., we have
Fooifu=0
Z @k(xou) — {p I u

k—1

IOEFpk 0 if u #0
(the first equality is trivial, for the second, pick ug € Fyx such that ©x(uo) # 1, which is possible since
Oy is non trivial, then Ox(ug) >, Ok(zou) = >, Op(rou +up) = Y, Ok(xou) because the map
IUEFPk IUEFPk IUEFPk

Y + Y + ug is a permutation of F,x). If we apply this to u = f(x) and sum over all values of x € F;k", we
get

P#VNEFER) = Y Y Ou@f) =0 -1)"+ ¥ 3 O@f(x)

xeF:kTL zo€F i zoeF:k xeF:kTL
M
Write Xof(X1,...,Xn) = > amX¥m € Fp[Xo, ..., X,] with a,, € Fp and w,, = (Wm0, -, Wim,n) € ZL5"
m=1
for all me {1,..., M} (here X¥n = X" - X, ™). If 29 € F;k. and x = (z1,...,7,) € F;k", we have

O(zof(x)) =

O (amXn)
1

emls
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n
where X¥m = [] zm™" € F,x. The previous equality becomes
i=0

PHVHE) = )"+ Y ] Opamen)

~opx(n+1l) m=1
xerk

M k-1 ;
=0 ="+ X I 1T 0([axen])

;‘EFXIEH-H) m=1 j=0
P

Put

The previous equality is then

~

PRVOED = -0+ T T G(R))

Recall the the map © converges on the disc D (O,pﬁ) c C,: this implies that the series G(X) converges
on the polydisc D (O,pﬁ)mL1 This means that we can write G(X) = Y, guX®? € C,[X] where
QEZ;?{I

1
and 7.2.20 are satisfied by G(X). By lemma 7.2.18, we thus have

PPV()(F ) = (08 — 1" + (pF — 1)1 Tr(Wh)

— é:o(_l)i(r;)pk(n—i) + ;O(_l)i(njl)pk(nﬂ—i) Tr(\Ilg)

v(gw) + C || £ wforall Ce 1o, p%[ This implies in particular that the hypothesis of lemmas 7.2.18

Multiplying by TTk, summing over k € Z~q gives

n A n—igmk n+1 . ] ntl—igmk
In (Zg,)(0T) = B(-1'() X B+ Y (=11("T) X Tr(wE)
=0 k=1 1=0 k=1
n . . n+1 . i

= _ 20(—1)1(1.) In(1 — p"~'T) — '—0(_1)1( :Ll) In (A(p +1 T))

o0
where A(T) = det(ld —=T%¢g) = exp ( — %T’“) (¢f lemma 7.2.20 (i)). Taking exponentials gives

k=1

thus:
L —i _1)i+1(n n+1 i _q)it1(n+1
Zyipy @) = (110 = =)0 O (] A=) )
As the series A is holomorphic on C, (c¢f lemma 7.2.20 (ii)), the series L py (pT) is meromorphic on C,:
so does Zg(f)(T). O

7.3. Lifting solutions from characteristic p to characteristic 0. The following is a trivial generaliza-
tion of Newton’s lemma (c¢f theorem 3.3.10):

Theorem 7.3.1. Let (K, |.|) be a complete non archimedean valued field ,n € Z>o, P € Og[X1,...,Xn]

and x = (z1,...,2,) € O%. Assume that there exist i € {1,...,n} and € € [0, 1[ such that
2
IP()| < 2| 2]
Then there exists x' = x +ne; € O (where (e1,...,e,) is the canonical basis of K™) such that P(x') =0
and || <e {ff; (x)‘

Proof. Write x = (x1,...,2,) and put Q(X) = P(z1,...,2i—1, X, Zit1,...,2n) € Og[X]: we have thus
Q(x;) = Q(x) and Q'(z;) = (3)1; (x). The hypothesis thus imply that we may apply Newton’s lemma to @ at
x;, and find z} = x; + 7 such that Q(z}) =0and |n| < e (f)]; (x)

has the required property. O

’ /
, SO that x’ = (:131,...,xi_l,xi,xi+1,...,xn)
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Corollary 7.3.2. Let A = (a;;)i<ij<n € GLn(Zp) be a symmetric matrix, ¢(X) = Y, a,,;X;X; the
1<i j<n
associated quadratic form on Qy, and a € Z;,. Let x = (v1,...,7,) € Zg\pZZ be such that ¢(x) = a

mod 4p Z,. Then there exists x’ € Zf, such that ¢(x’) = ¢ and x’ =x mod 2pZ,.

Proof. We have P’;?_ (x) =23 aijjz; forall i e {1,...,n}. As A € GL,(Z,) and x ¢ pZy, there exists
3 =

N

i € {1...,n} such that Y a;;z; € Z}. If p # 2, this implies that v,(z5-(x)) = 0, so the generalized

X,

j=1
Newton’s lemma (theorem 7.3.1) implies the existence of x’. If p = 2, this implies that vy (({;?i (x)) =1: as
va(q(x) — a) = 3 the generalized Newton’s lemma again implies the existence of x'. O

7.4. The Hasse principle for quadratic forms. What follows is almost a mere translation*®) of [22,
Chap. IIT & TV].

7.4.1. Squares in Q;. If x € Z,,, denote by Z the image of « in F,.

Proposition 7.4.2. Let z € Q). Write z = pUr @)y with u e Z,. Then z is a square in Q,, if and only if

2 | vp(x) and (%) =1 (i.e. wis asquarein Fp) andt =1 mod 8Zy if p = 2.

Proof. & Assume z is a square: write z = y* with y € Q. We have y = prWy with v € Z). Then

pU» @y = p?r Wy hence vy, (x) = 2v,(y) is even, and u = v? 2

p=2,we have v=1 mod 2Zs hence u =1 mod 8Zs.

e Conversely, assume v,(z) = 2n with n € Z and @ is a square in F,,. Put P(X) = X? —u € Z[X]: there
exists vo € Z, such that P(vo) € pZ,. We have P'(vg) = 2v. If p # 2, we have P'(vg) € Z,;, so Newton’s
lemma implies that there exists v € Z; such that P(v) = 0, so that x = y? with y = p™v. If p = 2, we have
P(vy) € 8Z9 and P’'(vg) € 2Z5 . By Newton’s lemma again, there exists v € ZJ such that P(v) = 0, which
shows that x is a square. O

is a square, hence w = v is a square in F,. If

Notation. If p = 2, and x € Z5, we have z = 1 mod 2 Zs, so that 2> =1 mod 8 Z,. Let ¢(z) (resp. w(z))
be the image of 51 (resp. %) in Fy. We have

0 ifz=1 mod4Z, 0 ifz=+41 mod 8Z,
e(x) = . and w(z) = . .

1 ifz=3 mod4Zs 1 ifx=43 mod8Z,

Corollary 7.4.3. If p # 2, there are isomorphisms
Q, / Q)% ~(Z/22) x (F) /F;*) >(Z /2Z)?
if p = 2, there are isomorphisms
Q3 / Q% = (Z/2Z) x (Z5 /(1 +8Zs)) ~ (Z/2Z)°

in which (e,w): Z5 /(1 + 8Z2) — (Z/2Z)? is a group isomorphism. A system of representatives is
{1, u,p,pu} (where u € Z is not a square) if p # 2 and {1, +5, £2, £10} if p = 2.
In particular, Q;Q is an open subgroup of Q.

Proof. The only thing that has to be checked is the fact that ¢ and w are group homomorphisms. If
z =142uand y = 14 2v are elements in Z5 = 1+2Zy, we have 2y = 1+ 2(z+y) mod 4 Zs so that e(zy)
is the image of u+v mod 2 Zs, i.e. €(z)+¢e(y). Similarly, we have 22 = 1 +4(u +u?) and y? = 1 +4(v +v?),
so that (zy)? =1+ 4(u+u? +v +v?) mod 16 Zs, so that w(xy) is the image of %“2 + # mod 2 Zo, i.e.
w(z) + w(y). O

7.4.4. The Hilbert symbol. In what follows, K is either R or Q,, for some prime p.
Definition 7.4.5. Let a,be K*. The Hilbert symbol of a and b (relative to K) is

(a.b) 1 if ax? + by? — 22 = 0 has a nonzero solution in K3
a,b) = ] .
—1 otherwise

Obviously (a,b) only depends on the images of a and b in K*/K*2: we will often consider (.,.) as a map
(KX /K>?) x (KX /K*?) — {£1}.
Lemma 7.4.6. Let a,b€ K*. Then (a,b) = 1 if and only if a € Njo( 5,/ (K(\/E)X)

(48)1t seems excluded to improve upon Serre’s writing...
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Proof. If b = (% with 8 € KX, then (0,1,3) € K? is a nonzero solution of az? + by? — 22 = 0, and
K* = Npe(pyx (K (\/b)): this gives the equivalence in this case. Assume henceforth that b is not a
square in K, so that [K (\@) : K] = 2. Elements is K(\@) are thus of the form u +v+/b with u,v € K, and
N (o) (v + vWb) = u? — b2, If (a,b) = 1, let (z,9,2) € K>\{(0,0,0)} be such that az?® + by? — 22 = 0.
Assume z = 0: we have y # 0 (this would imply z = 0 which is not), so b = (5)2, contradicting the fact
that b is not a square. As z # 0, we have a = (i)2 — b(ﬂ)2 = NK(\/E)/K (M) € NK(\/Z_:)/K (K(\/l;)x)

xT xT
Conversely, assume that a = Ny ) /5 (u + v\/b) = u? — bv?: then (1,v,u) is a nonzero solution to az? +

by? — 22 =0 in K3, hence (a,b) = 1, showing the equivalence in that case. O

Lemma 7.4.7. If a,b,c e K*, we have:
(1) (aab = (bﬂa’) and (aﬂCQ) =1

(ii) (a,—a) =1and (a,1 —a)=1if a # 1;
(iii) (a,b) =1 = (ac,b) = (c,b);
(iv) (a,b) = (a,—ab) = (a, (1 — a)b) (assuming a # 1 for the last equality).

Proof. (i) is obvious. For (ii), (1,1,0) (resp. (1,1,1)) is a nonzero solution of ax? — ay? — 22 = 0 (resp.

ar? + (1 —a)y? — 22 =0). If (a,b) =1, then a € NK(\/E)/K(K(\/I;)X) (¢f lemma 7.4.6), so
(ac,b) =1 < ac€ Ny /1 (K(\/l;)x) < c€ Ny (K(\@)X) < (ac,b) =1
(since N (o) i (K (Vb) ><) is a subgroup of K*), proving (iii). Finally, (iv) follows from (i)-(iii). O

Notation. e If u € Z 7, we denote by @ its image in F}, and we put (%) = (%) (the Legendre symbol of ,
which is +1 following to @ is a square in F,, or not).

o If p = 2 and u € ZJ, recall that we denote by £(u) (resp. w(u)) the image of “51 (resp. “28_1) in Fs.

Theorem 7.4.8. Let a,be K*.
o If K =R, we have (a,b) = —1 < a,b € Rog.
o If K = Q,, write a = p*u and b = pPv with o, € Z and u,v € Z). Then
_1)aBe(p) (u)B (T if 2
()= VTG () npEe
(_1)s(u)s(v)+aw(v)+ﬁw(u) ifp =9

Theorem 7.4.9. The Hilbert symbol is a non degenerate pairing on the Fa-vector space K * /K *2.

Proof of theorem 7.4.8. The case where K = R is trivial, since K*/K*? ~ {£+1} as K*? = R>g. We
henceforth assume that K = Q,, for some prime p.

First observe that if v € Z) and 2® — pz® — vy® = 0 has a nonzero solution in Qf,, then it has a solution
such that x € Z, and y,z € Z) (clearing the denominators, we may assume that (z,y, z) € Zf, \p(Z,)3; if
p| 2, then p | vy® hence p | y since v € Z, so that p | x, contradicting (x,y, ) ¢ pZ3, hence z € Z, , whence
vy? =22 —pa’e Z),ie yeZy).

The Hilbert symbol is symmetric, and it is affected by a and § only through their images in Z /2 Z: we may
restrict to the following three cases:

(1) a=p=0;
(2) a=1and 3 =0;
3) a=p=1.

Case where p # 2. In case (1), we have to check that (a,b) = 1. By example 7.1.4, the quadratic form
az? + by* — 22 has a nonzero isotropic vector in FJ: as its discriminant —ab belongs to Z, corollary 7.3.2
applies, showing that ax? + by? — 22 has a nonzero isotropic vector in Zf,, i.e. that (a,b) = 1.

In case (2), we have to check that (pu,v) = (%) By lemma 7.4.7 (iii), we have (pu,v) = (p,v) since
(u,v) =1 (¢f case (1)): we may assume v = 1. If (p,v) = 1, there exists (z,y,2) € Zg such that y,z € Z;
such that 22 —px? —vy? = 0 (¢f above): reducing modulo p gives Ty? = z2, which implies that ¥ is a square
in F,, i.e. (%) = 1. Conversely, assume that (%) = 1: this implies that ¥ is a square in F,, so that v is a
square in Z,, so that (p,v) =1 (¢f 7.4.7 (i)). This shows that (p,v) = (%) as required.

In case (3), we have to check that (pu, pv) = (1)) (%) (%) By 7.4.7 (iv), we have

(pu, pv) = (pu, —p*uv) = (pu, —uv) = (5*)
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(the last equality follows from case (2)), hence (pu, pv) = (—1)=® (%) (%) by multiplicativity of the Legendre
symbol, and the equality (-') = (1)),

Case where p = 2. Here again, we may reduce to the three cases (1)-(3) as above. Assume (1): we must show
that (u,v) = 1if e(u)e(v) = 0 and (u,v) = —1if e(u)e(v) = 1. If u =1 mod 8 Zy, then u is a square in Zs,
so (u,v) = 1. f u =5 mod 8 Zy, then u + 4v = 1 mod 8 Zy: there exists w € Zy such that w? = u + 4v,
so that the for uz? + vy? — 22 vanishes at (1,2, w), and (u,v) = 1. This shows that e(u) = 0 = (u,v) =1
(symmetrically, we have £(v) = 0 = (u,v) = 1). Assume u,v € —1 + 4 Zo: if (z,y, 2) € Z* is a primitive
solution of uz? + vy? — 22 =0, we have 22 + y? + 22 =0 mod 4 Zy. As squares in Z /4 Z are 0 and 1, this
shows that x,y, z € 2 Zs, contradicting the fact that (z,y, 2) is primitive. Thus (u,v) = —1 in this case.

In case (2), we have to check that (2u,v) = (—1)5(®=()+«(®) First observe that (2,v) = (—=1)“(*), i.e. that
222 + vy? — 22 represents 0 if and only if v = +1 mod 8. Indeed, assume (2,v) = 1: there exist z,y, z € Zo
such that y,z € Z5 and 222 + vy? = 22 (from the observation above). We have 32,22 € 1 + 8 Z2, hence
222 +v =1 mod 8 Zy: as squares in Z /8Z are 0, 1 and 4, we have v = +1 mod 8 Zg, hence w(v) = 0 and
(2,v) = (=1)*®), Conversely, if v = 1 mod 8 Zy, then v is a square in Zy, so (2,v) = 1, and if v = —1
mod 8 Zs, then (1,1, 1) is a solution of 222 + vy? — 22 mod 8, so (2,v) = 1 by corollary 7.3.2.

It remains to check that (2u,v) = (2,v)(u,v). By lemma 7.4.7 (iii), this holds if (u,v) = 1 or (2,v) = 1:
assume (u,v) = (2,v) = —1. Then u,v = 3 mod 4Z5 and v = +3 mod 8Zs hence v = 3 mod 8 Zs.
Multiplying u and v by squares, we may thus assume that (u,v) € {(—1,3),(3,—5)}: we conclude since
(1,1,1) is a solution of —2x2 + 3y? = 22 and 622 — 5y? = 22.

In case (3), we have to show that (2u, 2v) = (—1)5W=)+w@+w) - Ag (20, 20) = (2u, —4uv) = (2u—uv) by
lemma 7.4.7 (iv), we get (2u,2v) = (—1)c(W+e(-uv)+w(-uv) by the previous case. As e(—1) = 1, w(—1) =0
and e(u)(1 +e(u)) = 0, we have indeed £(u) + e(—uv) + w(—uv) = e(u)e(v) + w(u) + w(v) as required. O

Proof of theorem 7.4.9. Here again, this is trivial when K = R: we henceforth assume K = Q,, for some
prime p.

The formulas of theorem 7.4.8 show the bilinearity of (.,.) (since € and w are group homomorphisms). To
show it is non degenerate, we have to check that whenever a € K* is not a square, there exists b € K*
such that (a,b) = —1. It is enough to check this on representatives of K*/K*2. If p # 2, and u € Z,
is not a square, we have (u,p) = (pu,u) = —1. If p = 2, we have (5,22) = —1 if x € {£1,+5} and
(—1,—1) = (=1,-5) = —1. O

Notation. From now on, we denote by V the set of places of Q, i.e. the set of primes and co. f v € V', we
denote by Q,, the corresponding completion (so that Q.. = R), and (., .), the corresponding Hilbert symbol

on Q, x Q,.

Theorem 7.4.10. (PRODUCT FORMULA, HILBERT). If a,b € Q*, then (a,b), = 1 for all but finitely many
v eV, and

IT (a,b), = 1.

veV
Proof. By bilinearity of the Hilbert symbol, it is enough to check both statements when a and b are either
—1 or a prime. When ¢ = b = —1, we have (a,b)2 = (a,b),, = —1 and (a,b), = 1 if v € V\{2,00}. If
a = —1 and b is a prime, then (—1,b), = 1 for all v e V if b = 2, and (—1,b), = 1 if v € V\{2,b} and
(_1ab)2 = (_Lb)b = (_1)8(1))'
It remains to deal with the case where a and b are prime. If a = b, we have (a,b), = (—1,b), for all v e V,
by lemma 7.4.7 (iv), so we are reduced to the preceding case: assume henceforth that a # b. If b = 2,
we have (a,b), = (—1)“@, (a,2), = (2) = (-1)“@. If a,b € V\{2,a,b,0}, we have (a,b), = 1. Also
(a,b), = (—1)5@=®) (a,b), = (£) and (a,b), = (%), so that the product formula reduces to the equality

(%) (g) = (=1)5(®=(®) which is nothing but the quadratic reciprocity law. a

Theorem 7.4.11. Let (a;);e; be a finite family of elements in Q, and (g;,)ier a family of elements in
veV

{£1}. Then there exists z € Q* such that (a;,x), = &;, for all i € I and v € V if and only if the following
conditions are satisfied:

(1) all but finitely many &;, are equal to 1;
(2) ] €iw=1foralliel;

veV
(3) for all v e V, there exists z, € Q,' such that (a;, ), = €i0-

)

Proof. By theorem 7.4.10, the conditions are clearly necessary. Conversely, assume they are satisfied. After
multiplication of the a; by nonzero squares, we may assume that a; € Z\{0} for all i € I. Let S be the
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subset of V formed by 2, 0 and the primes that divide [ ] a;: this is a finite set. Let T be the set of those

el
v € V such that ¢;, = —1 for some i € I: this is a finite set as well.
Special case: SNT = @. Puta= || fand m =8 [] ¥ the hypothesis implies that a and m
LeT\{0} LeS\{2,0}

are coprime. By Dirichlet’s theorem on arithmetic progressions, there exists a prime p such that p = a
mod mZ,and p¢ SuT. Put x = ap.

Assume v € St we have ¢;, =1 (since S nT = &). As z > 0, we have (a;,z), =1foralliel. Ifvisa
prime ¢, we have 2 = ap = a?> mod mZ, sox =a? mod 8Z and x = a? mod ¢ Z if ¢ # 2: this shows that
x is a square in Q. (c¢f proposition 7.4.2) so that (a;,z), =1 forall i e I.

Assume v = £ € V\S: we have a; € Z) for all i € I. As ¢ # 2, we have (a;,z), = (%) ‘@ fe¢T U {p},
we have x € Z), so that (a;,z)¢ = 1 = &;, since v ¢ T. If { € T, we have v;(z) = 1 and there exists
z¢ € Q) such that (a;, ) = ;¢ for all i € I (by condition (3)). As £ € T', at least one of the &; , is —1: as

(ai,x0)e = (%)W(”) by theorem 7.4.8 (since vy(a;) = 0 and £ # 2), we have vy(z;) =1 mod 2Z, so that

(ai,w)e = (%) = (as,z0)e = €iy

for all 4 € I (by theorem 7.4.8 again). If ¢ = p, we reduce to the previous cases thanks to the product

formula:
(ai; x)p = 1_[ (ai,.’L')U = 1_[ Ei,v = Ei,p,
veV\{p} veV\{p}

which finishes the proof of the special case.

General case. By corollary 7.4.3, squares in Q) form an open subgroup of Q.: by the approximation
theorem (¢f theorem 3.1.15), there exists 2/ € Q™ such that 2//z, is a square in Q, for all v € S. This
implies in particular that (a;, '), = (a;,2y)y = €ip forallve V and all i € I. For all v e V and i € I, put

/

el = (a;,x")yeip € {£1}. Obviously the family (&} ) icr satisfies conditions (1)-(3) (with =], = 2'z, for all
eV

7,V

veV),ande,, =1foralliel and ve S. We can thus apply the special case to (¢} ,) il there exists
’ Yloev

y € Q™ such that (a;,y), = ¢, for all i € I and v € V, and we may take z = z'y. O

7.4.12. Complements on quadratic forms. In this part, K is a field of characteristic # 2, E a finite dimen-
sional K-vector space, ¢ a quadratic form on E, and ¢ the associated symmetric bilinear form. Recall that
(E, q) admits an orthogonal basis, i.e. a K-basis of F in which (the matrix of) ¢ is diagonal.

Notation. We denote by disc(q) th discriminant of q. This is an element in K/K*? but it will frequently
denote a representative in K.

Definition 7.4.13. Two bases e and €' are contiguous if they share at least one vector.

Theorem 7.4.14. Assume n = dimg(F) > 3 and ¢ is non-degenerate. Let e and €' be two orthogonal
bases. then there exists a chain eqg = e,...,e, = € of orthogonal bases such that e; is contiguous to e;_1
for all i € {1,...,r} (we say that the chain links e to €’).

Proof. Write e = (e1,...,e,) and € = (e],...,el).
e Case where g(e1)q(e}) # ¢(e1,e})?. This means that {ej,e}} is linearly independent and that the re-
striction of ¢ to the plane P = Vect(ey,e€)) is non-degenerate. As g(e1)g(e}) # 0 (because e and e’ are

orthogonal and ¢ non-degenerate), there exist é; and €} such that (e1,é€>) and (ef, €5) are orthogonal bases

1
of P. Let H = P*: as P is non-degenerate, we have P @ H = F and H is non-degenerate. Let (é3,...,¢,)
be an orthogonal basis of H. Then

e—»(el,ég,ég,...,én) —>(€l1,él2,é3,...,én)—>el

is a chain of contiguous bases.

e The case g(e1)q(eh) # p(e1,eh)? is similar, replacing e} by €.

e Case where q(eq)q(el) = p(eq,e})? for i € {1,2}. Then there exists A € K* such that é := €] + \e} is
non-isotropic, and P = Vect(ey, €) is non-degenerate. Indeed, we have q(&) = q(e}) + A\2q(e}), so we have to
choose )\ # — 2L 1) This is possible if #K > 3. If K = F3, we can take A = 1 (since squares are 0 and 1).

a(e;
Recall that K # F2 since char(K) # 2. This choice of A made, we have

a(e1)a(@) — p(er, €)% = qler) (aleh) + A2a(eh)) — (pler,€h) + Apler, eh))”

= qle1)q(eh) + Mqler)a(eh) — pler, €)* = Np(er, €h)* — 2hp(er, ) )p(er, €5)
= —2Xp(e1, €1)p(er, €3) # 0
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since A # 0 and ¢(ey, €])p(er, e5) # 0 (because g(eq)q(e])q(es) # 0 as e and ePrime are orthogonal and ¢
non-degenerate) so that P is non-degenerate.
As € is non-isotropic and Vect(e}, e5) non-degenerate, there exists &’ such that (€,é’) is an orthogonal basis

of Vect(e],eh). Put €’ = (&,¢&, ¢k, ..., ¢e),): this is an orthogonal basis of E which is contiguous to e’. As
Vect(ey, €) is non-degenerate, the first case seen above shows that there exists a chain of contigous bases
that links e to e”. |

Definition 7.4.15. Recall that one says that g represents a € K when there exists € F\{0} such that
q(z) = a (in particular, ¢ represents 0 when ¢ has nonzero isotropic vectors).

Lemma 7.4.16. Let f = f(X1,...,X,—1) be a non-degenerate quadratic form and a € K*. The following
are equivalent:

(i) f represents a;
(i) f ~ g@®aX? for some quadratic form g in n — 2 variables;
(iii) f© aX? represents 0.

Proof. Write E = K™~ 1. Assume (i): there exists e € F\{0} such that g(e) = a. As f is non-degenerate, we
L
have Ke@et = E, and f ~ g@® aX? where g is the restriction of f to e'" this shows (ii). The implication

(ii)=>(iii) is obvious. Assume (iii): there exists (z1,...,x,) € K™"\{0} such that f(x1,...,2,-1) = az?. If
zn # 0, then f(;_i’ cee I;’—T‘Ll) = a. If , = 0 then f represents 0: it contains an hyperbolic plane, so it is
surjective and represents a. This shows (i). O

Lemma 7.4.17. Let g, h be two non-degenerate quadratic forms of rank > 1 and f = g © h. The following
are equivalent:
(i) f represents 0;
(ii) there exists a € K* which is represented by g and h;
(iii) there exists a € K* such tha ¢ ©aX? and h © aX? represent 0.

Proof. The equivalence (ii)<>(iii) follows from lemma 7.4.16 and (ii)=>(i) is obvious. Assume (i): there exist
x,y such that g(x) = h(y). If a = g(x) # 0, this gives (ii). If g(x) = 0, then g and f are surjective: they
both represent a = 1. O

Recall that two quadratic forms on a finite field of odd characteristic (resp. on R) are equivalent if and
only if they have same rank and same discrimininant (resp. if they have the same signature).

7.4.18. Classification of quadratic forms over Q,. In this section p is a prime and (F, ) is a non-degenerate
quadratic space over Q,,.

Notation. Let e = (eq,...,e,) be a orthogonal basis of E. For each i € {1,...,n}, put a; = ¢(e;), so that
q( >, xiei) = Y a;z?. We have disc(q) = [] a; in Q) /Q*. Put
i=1 i=1 i=1

K2

E(q,e) = 1_[ (ai,aj)p € {il}

1<i<j<n
Theorem 7.4.19. The number (g, ) does not depend of the choice of e.

Proof. This is obvious if n = 1 since e(q,e) = 1. If n = 2, then £(¢,e) = 1 if and only if the form
a1X? + aY? — Z? represents 0, i.e. if and only if ¢ represents 1 (¢f lemma 7.4.16), which is independent
of the choice of e. We proceed by induction on n: assume henceforth that n > 3. By theorem 7.4.14, it is
enough to show that (g, €) = £(q, €’) when e and €’ are contiguous: we may assume that e’ = (e, e5,...,e})
(by the bilinearity of Hilbert symbol, ¢f theorem 7.4.9, £(q,e) does not change when the vectors of e are
permuted). Then we have

e(ge) = (ar,az---an)y [ (aia5)p = (ar,disc(q)ar)y, 1 (ai,a;)p

2<i<j<n 2<i<j<n

and similarly
e(g, €') = (ar,disc(q)ar)p, [T (aj,aj)p

2<i<j<n

(where a) = g(e!) for i € {2,...,n}). The indiction hypothesis applied to the restriction of ¢ to ei implies

that [[ (ai,a5)p = [ (a},a})p, so that e(q,e) = £(g,€). O
2<i<j<n 2<i<j<n

Theorem 7.4.19 implies that £(q) := £(q, e) is an invariant of ¢, as do the rank and the discriminant.

Theorem 7.4.20. Let f be a quadratic form of rank n over Q,. The f represents 0 if and only if
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(i) n =2 and disc(f) = —1 (in Q, /Q;Q);

(i) n =3 and =(f) = (=1, — disc(})),

(ili) n =4 and disc(f) # 1 or disc(f) =1 and e(f) = (=1, —1)p;

(iv) n = 5.

Corollary 7.4.21. Let f be a quadratic form of rank n over Q,,. The f represents a € Q; if and only if

(i) n =1 and disc(f) = a (in Q) / Q)*);

(i) n =2 and =(f) = (a, — disc(f)),;

(iii) » = 3 and disc(f) # —1 or disc(f) = —a and e(f) = (=1, —disc(f))p;

(iv) n = 4.

Proof. By lemma 7.4.16, the quadratic form represents a if and only if g := f © aX? represents 0. As

disc(g) = —adisc(f) and e(g) = (—a, disc(f))pe(f), this follows from theorem 7.4.20. O
Proof of theorem 7.4.20. Write f = a1 X? + -+ + a, X2.
(i) Assume n = 2: the quadratic form f represents 0 if and only if —& is a square. As —¢2 = — disc(f) in

Q) / Q. this is equivalent to disc(f) = —1 in Q) / Q>
(ii) Assume n = 3: the quadratic form f represents 0 if and only if —aszf ~ —aja3X? — azas X3 — X3
represents 0. By the very definition of the Hilbert symbol, this is equivalent to

1= (—aia3, —aza), = (=1, =1)p(=1,a1), (=1, a2)p(as, as)p (a1, as)p(ar, as)p(az, az)y -

(7)

As (a3, a3)p = (—1,a3)p by lemma 7.4.7 (ii), this is equivalent to 1 = (=1, —1),(—1, disc(f))pe(f) hence to
the equality e(f) = (=1, —disc(f)),.
(iii) Assume n = 4: the quadratic form f represents 0 if and only if the forms a1 X7 +a> X3 and —a3 X5 —as X3
both represent some element a € Q; /Q;<2 (¢f lemma 7.4.17). By the case (ii) of corollary 7.4.21 (which
follows from the case (ii) of theorem 7.4.20 proved above), such an a is characterized by the following
conditions :

(a,—a1a2)p = (a1,a2), and (a,—asas), = (—as, —aa)p.
The subset A (resp. B) of Q, / Q;Q defined by the first (resp. the second) condition is an affine hyperplane
in the Fy-vector space Q, /Q;Q. Thus f does not represent 0 if and only if A n B = @. This precisely
means that the orthogonal vectors to A and B (for the non-degenerate pairing (.,.),) are equal, i.e. that
—a1a2 = —azays and that (a1,a2)p, = —(—as, —a4),. The is equivalent to disc(f) = 1. On the other hand,
we have £(f) = (a1, a2)p(a1a2, asaq)p(as, aq),: if the first condition holds, we have

e(f) = (a1, a2)p(—1, azas)p(as, as)p = (a1, a2)p(—as, —as)p(—1,-1),
(since (x,x) = (—1, x) by lemma 7.4.7 (ii)), so that the second condition is equivalent to e(f) = —(—1, —1),.
(iv) Assume n > 5. By corollary 7.4.21 (ii), a form in two variables represents half of the elements in
Q; /Q;;2 (because the equation e(f) = (a, —disc(f)), defines an affine hyperplane in the Fa-vector space
Q, /Q;Q). As #(Q, /Q;Q) > 4 (cf corollary 7.4.3), there exists at least one a € Q /Q;;2 which is
distinct from disc(f) and represented by the form. This holds of course for quadratic forms of rank > 3 as
well, hence for f. By lemma 7.4.16, we can write f ~ ¢g@®aX? where g is a quadratic form of rank n—1 > 4.
Then disc(g) = d'%(f) # 1: by (iii), g represents 0, so f represents 0 as well. O

Theorem 7.4.22. Two quadratic forms over Q,, are equivalent if and only if they have same rank, same
discriminant and same invariant €.

Proof. We already know that two equivalent quadratic forms have same rank, same discriminant and same
invariant . Conversely, assume f and g are two quadratic forms having same rank n, same discriminant
and same invariant ¢: we show by induction on n that f ~ g. This is obvious if n = 0: assume n > 0.
By corollary 7.4.21, f and g represent the same elements in Q,: we can find a € Q, which is represented
by both f and g. Then we can write f ~ f'@aX? and g ~ ¢’ ® aX", where f’' and ¢’ are of rank n — 1.
As disc(f’) = adisc(f) = adisc(g) = disc(g’) and e(f’) = (a,disc(f'))pe(f) = (a,disc(g"))pe(g) = (¢’), the
induction hypothesis implies that f’ ~ ¢, hence f ~ g. a

Corollary 7.4.23. Up to equivalence, there exists exactly one anisotropic form of rank 4 over Q,,, which is

X7 —aX3 — bX3 + abX, X7 for any a,b € Q) such that (a,b), = —1.

Proposition 7.4.24. Let n € Z.o, d € Q, and ¢ € {£1}. There exists rank n a quadratic form f over Q,
such that disc(f) = d and e(f) =eifandonlyif n =1l ande=1,orn=2and d# —1l,orn=2and e =1
orn = 3.
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Proof. This is obviousif n = 1. If n = 2, write f ~ aX{+bX3: if d = —1 we have e = (a,b), = (a,—d), =1,
so we cannot have d = —1 and ¢ = —1 simultaneously. Conversely, if d = —1 and ¢ = 1, we can take
f=X?—X3, and if d # —1, there exists a € Q, such that (a,—d), = ¢, and we take f = a X7 + adX3. If
n = 3, let a € Q; whose image in Q /Q;<2 is distinct from —d: by what precedes, there exists a rank 2
quadratic form g such that disc(g) = ad and £(g) = €(a, —d),, so that f = g + aX? works. When n > 3,
we reduce to the case n = 3 bytaking f = g + X7 + --- + X2 where g has rank 3, discriminant d and
e(g) =e. O

Corollary 7.4.25. The number of equivalences of rank n quadratic forms over Q,, is summarized in the
following table:

n 112 |>=23
p=2|8|15]| 16
p#2|4| 7 8

7.4.26. Classification of quadratic forms over Q. Recall that V is the set of places of Q, i.e. the set of
prime numbers and a point oo, and that for each v € V', we denote by Q, the corresponding completion of
Q (so Q, = R). If f is a quadratic form over Q and v € V, then if can be seen as a quadratic form f, over
Q,, so besides the global invariants given by the rank and the discriminant, we have the local invariants
eu(f) :=e(fy) € {£1} for v € V\{oo}, and the signature (s,t). By the product formula, we have

Hgv(f)zl

veV

Theorem 7.4.27. (HASSE-MINKOWSKI). f represents 0 if and only if f, represents 0 for all v e V.

Proof. Write f = a; X? + -+ +a,X? with a1,...,a, € Q*. Replacing f by a; ' f, we may of course assume
a1 = 1. Assume f, represents 0 for all v € V: we have to prove that f represents 0 (the converse is obvious).
e Assume n = 2. Write f = X? — aX3. As f, represents 0, we have a > 0: writea = [[ p%(®). As
peV\{0}

fp represents 0, the element a is a square in Q;, so that vp(a) is even. As this holds for all prime p, this
means that a is a square in Q*, and f represents 0.

e Assume n = 3. Write f = X7 —aX3 — bX3. Multiplying a and b by appropriate squares in Q*, we may
assume that a and b are squarefree integers. We may also assume |a| < |b]. We proceed by induction on
m = la| + |b| > 1 (since ab # 0). If m = 2, we have f = X7 + X3 + X2. As f, represents 0, the case
f = X?+ X3+ X2 is impossible; in all other cases f represents 0. Assume m > 2, so that |[b| > 2. Write
b= 4pi -+ p, where py,...,p, are paiwise distinct primes. Let p € {p1,...,p,}. If pfa, then a € Z). By
hypothesis there exists (z,y,2) € Zg\ng such that 2% — ay? — bz?, hence #2 —ay®> =0 mod pZ,. If p |y,
then p | z, so that p* | —bz?, whence p | z (because v,(b) = 1), contradicting the fact that (z,y,z2) ¢ pi;.
This implies that y € Z;, and «a is a square modulo p. Of course, this also holds when p | a. As this is true
for each p € {p1,...,p:}, this shows that a is a square modulo b (by the Chinese remainder theorem): we
can find t, b’ € Z such that t? = a +bb'. We may assume [t| < @ As bb' =t*—a = Ny /z)/x (t++/a) (where
K =Qor K =Q,), lemma 7.4.6 implies that f represents 0 in K if and only if f’ := X7 —aX3 —b'X3 does.

_ [Pq

In particular, f; represents 0 for all v € V. As [b'| = = < %l + 1 < |b] (since |b] = 2), we have b’ = b"u>
with b” a squarefree integers, u € Z and |[b”| < |b|. The inductin hypothesis implies that f’ represents 0: so
does f.

e Assume n = 4. Write f = (aX? + bX3) — (cX3 +dX3). Let ve V. As f, represents 0, lemma 7.4.17
implies the existence of 2, € Q. which is represented by both aX? + bX2 and cX2 + dX3. By corollary
7.4.21 (which also holds when v = o), this means that (z,, —ab), = (a,b), and (z,, —cd), = (¢,d),. As
IT(a,b), = T] (e,d), =1, theorem 7.4.11 applied to (—ab, —cd) (hence #I = 2) implies the existence of
veV veV

z € Q* such that (z,—ab), = (a,b), and (z, —cd), = (¢,d), for all v € V. This means that the quadratic
forms aX? + bX3 — 272 and ¢X3 + dX? — xZ? represent 0 in Q,, for all v € V: by the case n = 3 treated
above, this implies that they represent 0 in Q. In particular, x € Q* is represented by aX? + bX2 and
cX? +dXZ: by lemma 7.4.17 again, this implies that f represents 0.

e Assume n > 5. We use induction on n. Write f = h©g with h = a; X7 +asX3 and g = —ag X3 — - -—a, X 2.
Let S be the subset of V' made of oo, 2 and those primes p such that v,(a;) # 0 for some ¢ € {3,...,n}:
this is a finite set. Let v € S. As f, represents 0, there exists a, € Q. which is represented by h, and g,
(¢f lemma 7.4.17): there exists (1,4,...,%n,0) € Qy \{0} such that hA(x1 4, 22.) = ay = 9(@30, .-, Tnu)-
As squares form an open subset of Q. (c¢f corollary 7.4.3) and Q™ is dense in Q., there exist x1, 22 € Q™
such that a = h(x1,29) € Q* satisfies a € a, Q) for all v € S. Let fi = aZ? — g: this is a rank n — 1
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quadratic form over Q. As g, represents a, hence a, the form f; , represents 0 for all ve S. If v e V\S, we
have a; € Z for all i € {3,...,n}, so that disc(g) € Z). As v # 2, we have £,(f1) = 1 (¢f theorem 7.4.8).
As the rank of g is > 3, theorem 7.4.20 implies that g, represents 0 (as v # 2, the Hilbert symbols is trivial
on pairs of units, ¢f theorem 7.4.8 again). This show that f; , represents 0 for all v € V: the induction
hypothesis implies that f; represents 0 hence g represents a over Q. By lemma 7.4.17, this shows that f
represents 0. O

Remark 7.4.28. The analogue of Hasse-Minkowski theorem fails for forms of higher degree. For instance
the form of degree 4

(X 4+ + X0 = 2(X2 0+ + X))
does not represent 0 in Q, but it does in R and Q,, for all prime p when n > 5 (by theorem 7.4.20).

Corollary 7.4.29. f represents a € Q™ if and only if it does in Q,, for all v e V.

Proof. This follows from theorem 7.4.27 applied to the form aZ2 — f and lemma 7.4.16. O
Corollary 7.4.30. If f is of rank > 5, then it represents 0 if and only if it does in R.

Proof. This follows from theorems 7.4.27 and 7.4.20. O

Theorem 7.4.31. Two quadratic forms f and g over Q are equivalent if and only if they are over Q, for
allveV.

Proof. The necessity is trivial. For the converse, we proceed by induction on the rank n of f and g. There
is nothing to do if n = 0: assume n > 0. There exists a € Q> which is represented by f, hence also by g (cf
corollary 7.4.29). This implies that f ~ aX2@® f’ and g ~ aX2 @ g’ where f’ and ¢’ are of rank n — 1. By
Witt simplification theorem we have f] ~ g/ for all v € V: the induction hypothesis implies that ' ~ ¢, so
that f ~ g. O

Proposition 7.4.32. Let d € Q% /Q*?, (ey)vev € {+1}V and (s,t) € Z2,. Then there exists a quadratic
form f of rank n over Q whose invariants are d, (€,),ev and (s,t) if and only if

(i) &, =1 for all but finitely many v € V and [] &, = 1;

veV
(ii) e, =1ifn=1orn=2and d, = —1in Q¥ /Q}?;
(ili) s+t=mn;
(iv) do = (-1)%
() er = (=)

Proof. The necessity is obvious. For the converse, the case n = 1 is trivial.

Assume n = 2. If v € V, the non-degeneracy of the Hilbert symbol (¢f theorem 7.4.9) and condition (ii)
imply the existence of x,, € Q) such that (x,,—d,), = €,. Condition (i) and theorem 7.4.11 then implies
the existence of x € Q* such that (z, —d), = ¢, for all v € V, so we can take f = 2X? + xdX3.

Assume n = 3. Let S be the subset of V made of those v such that (—d,,—1), = —e,: this is a finite
set. If v € S, we can find ¢, € Q¥ whose image in Q* /QX? is distinct from —d,. As Q*? is open in QX,
the approximation theorem (c¢f theorem 3.1.15) implies the existence of ¢ € Q™ whose image in Q. /Q;<2
coincides with that of ¢, for all v € S. By the case n = 2 seen above, there exists a form g of rank 2 over Q
such that disc(g) = cd, €,(g9) = (¢, —d),&, for all v € V. Then we can take f = cX2 +g.

For n > 4, we use induction on n. If s > 1, the induction hypothesis implies the existence of a quadratic
form g of rank n — 1 over Q, with invariants d, (g,),ey and (s —1,t), and we can take f = X2@®g. If s = 0,
the induction hypothesis implies the existence of a quadratic form h of rank n — 1 over Q, with invariants
—d, (e4(—=1,—d)y)vev and (s,t — 1), and we can take f = —X2@® h. O

7.4.33. Cubic forms. Let K be a field (of characteristic 0 to simplify), n,d € Z~o and %, 4 be the space
of homogeneous polynomials of degree d in K[X1,...,X,] (this is a K-vector space of dimension ("F%")).
An element f € /%, 4\{0} defines a projective hypersurface V(f) ¢ P" *(K). A point P € V(f) is a singular
point when(*?) %(]’5) =0 forall i € {1,...,n} (where P € A"(K)\{0} is a lift of P € P"~!(K)). The
hypersurface V(F) is non-singular if it has no singular points.

The resultant polynomial of a collection of elements in K[Xq,...,X,] is a polynomial in the coefficients
of these polynomials which vanishes if and only if they all have a common root (¢f [9, Chapter 13 1.A]).

The discriminant A(f) of f is then the resultant of the polynomials p‘}: for i € {1,...,n}: this is an

n o
(49)By Euler’s formula, we have df = Y, Xi%: the vanishing of the partial derivatives at P € P*"~1(K) implies P € V(f).
= f

K3
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n+d—1

homogeneous polynomial of degree n(d —1)""! in the ( o

only if V(f) is a non-singular projective hypersurface.

) coefficients of f and is non-zero at f if and

Theorem 7.4.34. (DEMYANOV, LEWTIS, cf [6], [14]). Let p be a prime, K/Q,, a finite extension and
f= > 4k XiXjXpe K[Xy,..., X,]
1<i<j<k<n

be a cubic form. If n > 10 then f represents 0.

Proof. e Assume first that V(f) is non-singular, i.e. that A(f) € K*: we have §(f) := vk (A(f)) € Z,
and 6(f) € Zzo when f € Og[X1,...,X,]. We say that a form g € 7, 3 is K-equivalent to f if there
exists M € GL,(K) such that g = f o M. Of course, g is non-singular as well, and f is equivalent to an
element in Og[Xy,...,X,], moreover, f represents 0 if and only if g does. We say that f is reduced if
feOk[Xy,...,X,] and 6(f) < 6(g) for all the forms g that are K-equivalent to f. Of course, replacing f
by an appropriate F-equivalent form, we may assume that f is reduced.

Let r € Z>o be minimal such that f = f1(Li1,...,L,) mod nOk[X1,...,X,] (where 7 denotes a uni-
formizer of K), where f; € Okl[Y1,...,Y;] and Lq,...,L, € Ok[X1,...,X,] are linearly independent
linear forms. We have of course » < n. Also, Li,...,L, are the first components of an unimodular
map M € GL,(Ok), so that g := f o M~ is reduced as well: replacing f by g, we may assume that
L; = X;, i.e. that f(X4,...,X,) = fi(X1,...,X;) mod 7Ok[X1,...,X,]. This implies that the form
ff=rtf(zX1,...,7Xs, X;41,...,X,) has coefficients in O. Moreover, as A is homogeneous of degree
n2" 1 in the variables of f, we have

A =72 T AF (7 X, 7 X, Xty s X))

and  A(f(rX1, ..., 17X Xpi1, .. Xn)) = 772 A(S).
The last equality follows from the fact that multiplying the variables Xi,..., X, by 7w has the effect of

multiplying (”2) coefficients by 73 (namely those XiX;Xpsuch that 1 <i<j<k<r), ("FHn-r

coefficients by 72 (those X;X; Xy, such that 1 <i<j <r <k<n)and r(" ;%) coefficients by = (those

X;X; Xy such that 1 <i<r<j<k<n),so that the mean scaling on the ("}?) coefficients of f is

(305 +20 )=+ () =%

so that the effect on A(f) is multiplication by 7% 2"~ = 372" gince A is homogeneous of degree n2m 1.

Put together, this implies that A(f') = 7G37=2" 7" A(f), so that

S(f)y =0(f) + (B3r—n)2mt.
As f is reduced, we have 6(f) < §(f’), so that 3r = n: if n = 10, we have r > 4. By Chevalley-Warning
theorem (c¢f theorem 7.1.2), the reduction of f; modulo 7 represents 0 (because it has 4 variables and degree
3 over the finite field kx): there exists (by,...,b,) € Ok \wO% such that fi(b1,...,b,) € TOr. We may of
course assume b; = 1. Replacing f by the unimodularly equivalent

F(X1, X0+ 02Xy, ., Xr + 0, X0, Xpg1, ., X)) € O [ X1, -0, X0
(this is still reduced), we may assume that (by,...,b.) = (1,0,...,0). Then
F(1,0,...,0) = fi(b1,...,b,) mod 7Ok

so that f(1,0,...,0) € 7Ok. This shows that the coefficient of X3 in f belongs to 7O. We thus have

f=XL+X,Q+C mod nOk[X1,...,X,]
where L, Q,C € Ok[Xa,...,X,] are homogeneous of degres 1, 2 and 3 respectively. By minimality of r, we
cannot have (L, Q) = (0,0) mod nOk[Xa,..., X,] (otherwise we could replace f; by C).
First case. If L ¢ 7Ok[Xas,...,X,], there exists i € {2,...,r} such that ;TL € Og. As Q and C are

2(1,0,...,0) = £2(1,0,...,0) = 0, so that
£L(1,0,...,0) = &

Second case. If L € wOK[Xg,...,X] there exists d = (dg,... d.) € O% ! such that Q(d) ¢ 7Ok,
i.e. Q(d) € Of. Put x c(d )de( )y dr@Q(d),0,...,0) € OF. We have x ¢ 7O} since

(=
(d2Q(q), - Q( ) = Q(d)d)ﬁfﬂ(’)“ We have
f(x) = C(d)* L(Q(d)d) —C(d) Q(Q(d)d) + C(Q(d)d) mod 7Ok
— —_  Y—
Q(d)L(d) =Q(d)? =Q(d)*C(d)
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since L (resp. @, resp. C) is homogeneous of degree 1 (resp. 2, resp. 3). As L(d) € 7Ok, this shows that
f(x) € TOk. On the other hand, we have (,‘;{1 =2X1L +Q mod nO0k[Xy,...,X,], so that

£ (x) = ~20(d)Q(D)L(d) + Q(d)*  mod 70
which implies that (f;fl (x) € Of since L(d) € 1Ok and Q(d) € Of.

In any case we can apply Newton’s lemma to find a nonzero solution of f = 0, which concludes the proof
when V(f) is non-singular.

o Proof of the general case. As A is a nonzero homogeneous form of degree n2"~! in the ("?) variables of

f, it cannot vanish on any neighborhood of a point in 77, »: we can find a sequence of non-singular forms
(fx)kezs, that converges coefficientwise to f. By the non-singular case proved above, for each k € Z~(, we
can find x; € K™\{0} such that fi(xx) = 0. As fi is homogeneous, we can multiply x; by an appropriate
power of w and assume that

n

xp € K = |J{x€Of;z, e O}

i=1
As J# is compact as a finite union of compact sets, the sequence (X )rez., has an accumulation point: we
may assume it converges to some a € £ (so in particular a # 0. By continuity of f, we have f(a) = 0 and
f represents 0. O

Remark 7.4.35. (1) The bound 10 is optimal. In fact, if p is a prime, K/ Q,, a finite extension and n € Z,
it is easy to construct a homogeneous polynomial in n? variables and of degree n that does not represent 0,
as follows (cf [3, p.58]). Let ¢ = #r k. After the choice of a Fy-basis of Fyn, the norm Np_,, /¥, : Fgn — F,

provides an homogeneous polynomial F,[X;,...,X,] of degree n which does not represent 0 (we have
Ng,./r,(r) = 0 = x = 0). We may lift it coefficient-wise to get a degree n homogeneous polynomial
g € Og[X1,...,X,] such for all for all x € O%, we have g(x) € TOx = x € TOk. Put

n—1

f(Xh s 7Xn2) = Z ﬂ-zg(Xin+17 s 'Xin+n71) € OK[Xla cee 7Xn2]

i=0
If f represents 0, there exists a primitive vector x = (x1,...,2,2) € (’)}‘(2\77(’)}‘(2 such that f(x) = 0. This
implies that g(z1,...,2,) € 7Ok, so that z1,...,z, € 7Ok, hence g(x1,...,2,) € 7 Ok. This implies
that 7g(xni1,...,72,) € 2Ok, so that x,41,..., T2, € TOk. A straightforward induction thus shows that
x; € 1O for all i € {1,...,n?}, which is a contradiction.

(2) Heath-Brown has shown (¢f [11]) that a non-singular cubic form in n > 10 variables with rational
coefficients represents 0 in Q.

7.5. Exercises.
Exercise 7.5.1. Let V' be a Fg-scheme of finite type. Show that Dwork’s theorem is equivalent to the

existence of algebraic complex numbers ay,...,a,, f1,...,3s such that #V(Fp) = ] ab — % ﬂf for all
i=1 j=1
keZg.

Exercise 7.5.2. Assume V is such that Zy (T) = % (this holds when V' is an elliptic curve). Show

that #V (F,) determines #V (F.) for all k € Z,.

Exercise 7.5.3. Find the Zeta functions of the following schemes V' over F,:
(1) the 3-dimensional hypersurface defined by XY — ZT = 0;
(2) the projective curve in P%q with inhomogeneous equation:
(i) XY =0;
(ii) XY(X +Y +1)=0;
(i) X Y2 =1;
(iv) ¥
)Y X 3 + X2
(3) V=GLgand V = SLd over F, for d € Z~.

Exercise 7.5.4. Let V be a geometrically irreducible smooth projective variety of dimension d over F.

Show that the Riemann hypothesis for Zy (T) implies that #V (Fgn) = ¢ + O(q\@=1/2m), Conversely,

assuming that d = 1, Zy (T') = % and the functional equation, show that the Riemann hypothesis

for Zy (T') follows from this estimate.
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Exercise 7.5.5. Let P(X,Y,Z) = 3X3 +4Y? + 575,
(1) Show that the equation P(z,y,z) = 0 has a non zero solution in Ff, for all prime p.
(2) Deduce that the equation P(z,y,2) = 0 has a non zero solution in Zf; for all prime p.

Exercise 7.5.6. Let P(X,Y,Z) = X* —2Y? — 1724
(1) Show that the equation P(z,y,z) = 0 has a non-zero solution in Zg for all prime p.
(2) Show that the equation P(z,%,z) = 0 has no non-zero solution in Q?

3

Exercise 7.5.7. Let p be an odd prime and K/ Q,, a finite extension. Assume f = a; X2 e K[X1,...,Xn]
=1
is a quadratic form of rank n.

(1) Show that if a; € O for at least three indices i € {1,...,n}, then f represents 0.
(2) Show that if n > 5, then f represents 0.

Exercise 7.5.8. Does the quadratic form 22 + ¢ + 22 — 7t2 represent 0 over Q?

Exercise 7.5.9. Let p be a prime, f = a12? + -+ + a,22 and g = by} + --- + b,x2, be two diagonal
non-singular quadratic forms with coefficients in Q,,. Show that e,(f @ g) = €,(f)e,(g)(disc(f), disc(g)),-

Exercise 7.5.10. Determine all the elements of Q. represented by the quadratic form 322 + 7y2.

Exercise 7.5.11. Let f = 5X2 — 7Y,
(1) Does the form f represent 0 in Q7
(2) Show that the form f represents a nonzero rational integer a in Q if and only if (a, 35), = (5, —7), for
all odd prime p.
(3) Assuming a € Z\{0} is squarefree, characterize by conditions on Legendre symbols those a that can be
represented by f in Q, distinguishing the following four cases:
(i) ged(a,35) =1,

(ii) 5| a and 71 a;

(iii) 7 |a and 51 a;

(iv) 35] a.
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8. THE KRONECKER-WEBER THEOREM

8.1. The statements. What follows is taken from [25, Chapter 14]. In what follows, if n € Z~, ¢, will
denote a (any) primitive n-th root of unity. If F' ia a field whose characteristic does not divide n, the
extension F((,)/F is Galois (field of decomposition of X™ —1). If o € Gal(F((,)/F), there exists a unique

x(0) € (Z /nZ)* such that o((,) = (X7, and o is entirely determined by x(c), so that the map

x: Gal(F(¢n)/F) — (Z/nZ)*
o x(0)

is an injective group homomorphism. In particular, the extension F'(¢,)/F is abelian.
Class field theory is devoted in classifying abelian extensions of a given field. A classical consequence of
global class field theory is the follow result:

Theorem 8.1.1. (KRONECKER-WEBER). Let K/ Q be a finite abelian extension. Then there exists n € Z
such that K < Q(¢,)-

Instead of using class field theory, we will deduce it from its local counterpart:

Theorem 8.1.2. Let p be a prime number and K/Q,, a finite abelian extension. Then there exists n € Z~
such that K < Q,(Gy)-

8.2. Preliminaries.

8.2.1. Abelian extensions.

Proposition 8.2.2. Any subextension of an abelian extension is abelian. Any composite of finitely many
abelian extensions is an abelian extension.

Proof. Let K be a field.

e Let L/K be an abelian extension. If M is a subextension of L/K, the group Gal(L/M) is a subgroup of
the abelian group Gal(L/K): it is abelian as well, and normal in Gal(L/K), so that M /K is Galois, with
group Gal(M/K) ~ Gal(L/K)/ Gal(L/M), which is abelian. This shows that L/M and M /K are abelian.

e Let L/K be an algebraic extension and Li, Lo subextensions of L/K such that L;/K and Ly/K are
abelian. Then L, is the field of decomposition of some separable polynomial P(X) e K[X] over K, so that
L1 Ly is the field of decomposition of P over L;. This implies that the extension L;Lo/L; is separable (even
Galois): as L;/K is separable, this shows that L;Ly/K is separable. On the other hand, if o: L1Ly — L
is a morphism of K-algebras (where L is an algebraic closure of L), we have o(L;) = L; and (L) = Ly
(since Ly and Lo are Galois over K), hence o(LiLs) = LiLa, i.e. LiL2/K is normal, thus Galois. The
restrictions to L; and Ly induce a group homomorphism

Gal(L,Ly/K) — Gal(L1/K) x Gal(Ly/K)

which is injective since if o € Gal(L1 Lo/K) induces the identity on L; and Lo, then o = Idy,,1,,. This implies
that Gal(LqLo/K) identifies with a subgroup of the abelian group Gal(L;/K) x Gal(L2/K): it is abelian as
well. By induction, this extends to the composite of finitely many abelian extensions. O

Proposition 8.2.3. Let L/K be an abelian extension of number fields, p € Ok a nonzero prime ideal and
B < O, a prime ideal lying above p. Then

{o e Gal(L/K); o(B) = B}

{o e Gal(L/K); Vx € Or)o(x) € x + P}

are subgroup of Gal(L/K) that do not depend of B: we denote them Dy (L/K) and I,(L/K) respectively,
and call them the decomposition and the inertia group of L/K at p respectively.

Proof. The set {o € Gal(L/K); o(B) = P} is the stabilizer of P for the action of Gal(L/K) on the set of
prime ideals dividing p: this is a subgroup of Gal(L/K). As the action is transitive, those stabilizers are all
conjugate, hence equal since Gal(L/K) is abelian. This shows the statements for D,(L/K). The analogue
for I,(L/K) follow. O
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8.2.4. Cyclotomic extensions of Q.

Proposition 8.2.5. The minimal polynomial of ¢, over Q is the cyclotomic polynomial

o,(X)= [ (X=¢h).

ke(Z /nZ)*
Proof. We have X™ —1 = [ ®4(X): a straightforward induction (starting with ®;(X) = X — 1) implies
d|n

that ®,(X) € Z[X] for all n € Z~o. We have to prove that ®,(X) is irreducible over Q, i.e. over Z (its
content is 1). Assume we can write ®,(X) = P(X)Q(X) with P,@Q € Q[X] monic and P irreducible. Write
P = %]3 and Q = %@ with a,b € Z-y and ]3,@ € Z[X] with content 1: we have ]3@ = ab®,. Taking
contents we have ab =1, i.e. a =b =1, so that P,Q € Z[X]. Replacing (, by another primitive n-th root
of unity, we may assume that P(¢,) = 0, and P is the minimal polynomial of (,, over Q.

Let p be a prime not dividing n. As (? is a primitive n-th root of unity, we have ®,(¢*) = 0. Assume that
P(¢P) # 0, so that Q(¢?) = 0. As P is the minimal polynomial of (,, over Q, we have P(X) | Q(XP): write
Q(XP) = P(X)U(X). We have U(X) € Z[X] since P is monic. Modulo p, this gives Q(X)? = P(X)U (X)
in Fy[X]. If « € F, is a root of P, we have Q(a) = 0. This implies that X — « | gcd(P(X), Q(X)), so
that (X —a)? | P(X)Q(X) = ®,(X), whence (X — a)? | X" — 1 in F,[X]. This contradicts the fact that
the polynomial X™ — 1 is separable in F,[X] (since p { n). We thus have P((?) = 0. A straightforward
induction implies that for any k € Z~ prime to n, we have P(¢¥) = 0, so that ®,,(X) | P(X), i.e. ®, =P
is irreducible over Q. O

Remark 8.2.6. If p is a prime integer and e € Z~(, we have

By (X) = B, (X7 1) = XO-0P p x0-20 p xt 2 XL

and one can show directly the irreducibility of ®,. over Z using the Eisenstein criterion.

Proposition 8.2.7. If p is a prime number and e € Z-y. The ring of integers of Q(({pe) is Z[{pe] and
ep(p®)

G -
p P1L

Proof. Put ¢ = (pe and K = Q((pe) for short.

o We certainly have Z[{] € Ox. We have ®,c(1) = ®,(1) = p, so that [T a—=¢* =p If
ke(Z [pe Z)*

ke (Z /p¢Z)*, we have % € Z[¢]. As ¢* is also a primitive p°-th root of unity, we also have % € Z[(],
so that % € Z[¢]*. What precedes thus imply that p = u(1 — ()(p_l)pyl with u € Z[C{]*. f m =1—-¢
was invertible in A, so would be p = uw?®") | implying that p would be invertible in Z (since Z is integrally

closed), which is not: 7 is not invertible in Of.
e Wehave Ng/q(1—-¢) = [[ (1—=¢)=®p(1) =p. Ifme{l,...,e—1}, the element ¢P" is a primitive
1<k<p”
ng(ka<P§)=1
p°~™-th root of unity, so that Ng(»my,q (1 —¢P") = p by what precedes. This implies
Nk/q (1=¢"") = Ngjqrerm) (NQ(CP’")/Q (1- Cpm)) = pl Qe

As [K: Q] = () =p~'(p—1) and [Q(¢*") : Q] = p*~™ (p — 1), we have [K : Q (¢P")] = p™, so

that .
Ni/q (1—¢") =p"
We have 7. (X) = 3] [T (X=¢),s09.(0)= Tl (-¢"= ce)=1 T (1-¢*h

= pp '(pe—e—1) —

lda(c,e)

m

1<k<p® 1<j<p® 1<k<p® 1<k<p®
ged (k,p)=1ged(j,p) =1 ged(k,p)=1 ged(k,p)=1
j#k
and
Nic/q (®}:(C)) = NP7 T Ngjq(1—¢*7)
1<k<p®
ged(k,p)=1
As ¢ € OF, we have Ng/q(¢) € {+1}. As Ng/q (1 —¢F1) = """ by what precedes, we have thus
Ni/q (®:(C)) = 4p° where ¢ = Y p»(=1) An integer k € {2,...,p° — 1} satisfies v,(k —1) > r
1<k<p®
ged(k,p)=1

if and only if ¥ = 1+ p"z with x € {1,...,p¢" — 1} if r € {1,...,e — 1} and = € {1,...,p® — 2} if
r = 0: there are p " — 1 (resp. p® — 2) such integers. This implies that there are p¢ — p*~* — 1 (resp.
p¢" —p® 1) integers k € {2,...,p° — 1} such that v,(k — 1) = 0 (resp. such that v,(k — 1) = r). Among
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those k such that v,(k — 1) = 0, there are p®~ ' — 1 that are divisible by p. This implies that we have
e—1

c=p —p Tl =1 T =)+ X p T - pt ) = e(pt —ptTh) —p e e =p*Ti(pe —e—1).
r=1

We have(5?)

(@) (p(p9)=1)

D (1,6, €7 = (=) 75T Ny (€:()) = +p°

If (21,...,%,(r)) is a Z-basis of Ok, we have

D (15 Ca e acw(pE)_l) = [OK : Z[C]]2 D(:Ela s a‘rga(pe))

and [O : Z[C]]?|p¢, so that #(Ok/Z[¢]) = [Ok : Z[¢]] is a power of p (cf corollary 2.6.5).

e We have pOx = 1¢®P ) Ok, so pZ S Z nrOk. As pZ is maximal in Z and 1 ¢ 7O (because 7 is not
invertible in Ok), we have in fact Z nmOk = pZ. As the extension Z c Ok is integral and p Z is maximal
in Z, the ideal 7Ok is maximal in Ok. As pOf = 79O, there is a filtration

pOk = WQD(pE)OK (- ﬁ‘p(pe)_loK c---cnm0g c Ok

where the O /7O -vector space 7Ok /m™ 1Ok has dimension 1 for all m € {0,...,p(p") — 1}. We thus

have #(Ok /pOk) = (#(OK/WOK))W@T). As #(O /pOk) = p#P*) (since Of is a free Z-module of rank
©(p®)), whence #(Ok /mOk) = p: the natural map Z /pZ — Ok /O is an isomorphism.

e This implies that Ox = Z +70k, i.e. Ox = Z[¢] + 7Ok. If k € Z~¢ and O = Z[(] + 7¢Ok, we thus
have Og = Z[(]+7*(Z[(]+70k) = Ok = Z[(]+7* 1 Ok: by induction, we deduce O = Z[(]+7"Ok for
all k € Z~o. In particular, we have O = Z[¢] + 1?P)°Ok, i.e. O = Z[¢] +p°Ok. As #(Ok/Z[C]) | p°,
we have p°Ox € Z[(], so that Ok Z[(].

o As [Ok : Z[¢]] = 1, we deduce that |d| = p© = pp*~ (Peme=1), 0

Lemma 8.2.8. Let K and L be number fields such that [KL : Q] = [K : Q][L : Q] and ged(dk,dy) = 1.
Then Ok = OxOp and dp i = d%:Q]d[LK:Q]_

Proof. e We have of course Ox O, € Okp. Let (z1,...,2,) (resp. (y1,--.,Ym)) be a basis of Ok (resp. Op)
over Z. Then K = @ Quz;and L= P Qu;,s0o KL= Y Quy,;. As[KL:Q]=[K:Q][L:Q]=nm

i=1 j=1 1<i<n
1<j<m
by hypothesis, this implies that (z;y;) 1<i<n is a basis of KL over Q. Now let o € Ok we can write
1<j<m
a= 3 Njzy; with (A ;) i1<isn € Q™. Let § € Z~( be the lcm of the denominators of the A; ;: we
1<i<n 1<j<m
1<j<m
have da = Y, a;jz;y; where a; ; = 0X;; € Z and ¢ is prime to gcd 1<i<n (ai,;). For i € {1,...,n}, put
1<i<n Isjsm
1<j<m

a; = Y, a;;y; € Op: we have da = Y, a;.
j=1 i—1
Let 0: K — C be a field homomorphism. Let 6 be a primitive element for L, so that L = Q(6), and

KL = K(#). By hypothesis, we have [K(0): K] = [KL: K] = [E(L(S] =[L: Q] =[Q(f) : Q]. This means
that the degree of 0 over K is equal to that over Q, so that the minimal polynomial of § over K is equal
to that over Q (without the degree assumption, we only know that the former divides the latter). By the

isomorphism extension theorem, there exists a unique field homomorphism ¢: KL — C that extends o and

such that 5(0) = 6, implying 7|, = Id. We thus have 67 (a) = Y] a;o(z;). The collection of those equalities

=1
for all 0 € I := Homq-aiz(K, C) provides a Cramer linear system ¢Y = XM where X = (a1, ..., a,) € OF,
Y = (6(®))oer € O and M = (0(z;))1<i<n € My (Ok). Multiplying on the right by the transpose
oel

Me M, (Ok) of the adjugate matrix of M, we get SY M = det(M)X. As (z1,...,2,) is a basis of Ok over
Z, there exists a column vector V € Z" such that XV = 1, so that Y MV = det(M). As dx = det(M)? (cf
proposition 1.10.22), this shows that 6det(M)Y]\7V = dg, hence ¢ | dx. Symmetrically, we have ¢ | dr.: as
ng(dK,dL) = 1, we have § = 1, and o = Z a; jT;Y; € OKOL, showing the equality OKL = OKOL.

1<isn
1<j<m

n(n—1)
(50)This is the formula D(1,z,22,...,z"~1) = (=1) 2 Np(2)/r (P, () for z separable of degree n over F.




164 Number theory

¢ Keeping the preceding notation, (z;¥;) 1<i<n is a basis of Ox, over Z. By proposition 1.10.24, we have
1<js<m

drr = D(iﬁz‘yj)llfign =D(a1,...,20) FFINg (D1, - - - Ym))
jsm

since [ L : K] = [L : Q] by hypothesis, and Ng,q(dL) = d[LK:Q] because dy, € Q. O
Remark 8.2.9. A reformulation of the second statement is l[r}gk(g]) = 1[1}?161) + I[HL(:d(S]).
Theorem 8.2.10. Let n € Z~(. The ring of integers of Q(¢,) is Z[¢,] and |dQ(<n)| = ”w(;)ﬂ .

pr-1

T
Proof. Write n = [] p{’. We proceed by induction on r € N, the cases r = 0 being trivial, and r = 1

i=1
r—1

being proposition 8.2.7. Assume r > 1, and put m = [] p;‘, so that n = mpS" and gecd(m,p). Put
i=1

K = Q(Gn) and L = Q((per ). We have KL = Q((,) (since (,,(per is a primitive n-th root of unity because
ged(m, per) = 1). This implies that

[KL: Q] = ¢(n) = p(m)e(p;) = [K : Q]IL : Q]
(again because gcd(m,p) = 1). Moreover, the induction hypothesis implies that the prime dividing dx

(resp. dr) are p1,...,pr—1 (resp. p.), so that gcd(dg,dr) = 1. This shows that one may apply lemma 8.2.8,
so that Oq(¢,) = OxOr = Z[Gn] Z[(per | = Z[(r] and

m) \ ¢ eropir)e(m) n
p _ el isal _ me(m) pere e . nen)
Q(Cn) - YK L - = V’(l’;) w(Pir)(P(m) - = kP(_nl)
H p P prpr—l H p P
plm pln
since p(m)e(pyr) = ¢(n). O
Corollary 8.2.11. The prime that ramify in Q((,) are precisely those dividing n.
Proof. This follows from corollary 2.6.6. O

8.2.12. Ramification of cyclotomic extensions of Q,. Let p be a prime and n € Z~o. Write n = p°n’ with
n' € Z~o prime to p. Let f € Z~( be the order of p in (Z /n' Z)* (so that f is the least positive integer such
that n' | pf — 1, and f | ¢(n')).

Proposition 8.2.13. The absolute ramification index of Q,(¢,) is ¢(p°), and its residual degree is f. In
particular, we have [Q,,(¢,) : Q,] | ¢(n), with equality if and only if p is a generator of (Z /n' Z)*.

Proof. ¢ As p 1 n’, the polynomial X" — 1 is separable over F,[X]: so is the cyclotomic polynomial
®,/(X). If a € F, is a root of ®,/, the order of « in the multiplicative group F; is n': if ¢ € Zsg, we
have o' = a < of ' =1e n/|p' —1 <« f |4 This implies that the field of decomposition of ®,, is
F,;. The roots of ®,,/ lift uniquely into roots of @, in Q,r (which is the unique unramified subextension
of Q,/Q, lifting F s /F,, cf theorem 3.8.7). This implies that Q,(¢,/) © Q,s. As the image of ¢, in

KQ,(c,,) generates Fp;, we also have

f = [pr : FP] g [K’Qp(fnl) : FP] < [Qp(Cn’) : Qp] < [pr : Qp] = f

we have Q,(Cn) = Q,r 50 [Q,(¢n) : Q,] = f and Q,,(¢nr)/ Q,, is unramified.

e We have ®,.(X) = <I)p(Xpe_1), 50 Ope (X +1) = O,((X + P = (I)p(Xpe_1 + 1) mod pZ[X]. As
P,(Y +1) = % = Y7 mod pZ[Y], we have @, (X +1) = X®DP""" mod pZ[X]. Moreover,
we have ®,c(1) = ®,(1) = p. This implies that the ®,c(X + 1) € Q,;[X] is an Eisenstein polynomial:
it is irreducible, and [Q, ((pe) : Q,r] = deg(®pe (X + 1)) = ¢(p®). This also implies that the extension
Q1 (Cpe)/ Qs is totally ramified, with uniformizer (ye —1 (so that vy (Gpe — 1) = (p(;e) = pe,lép_l)).

e We have Q,(Cnr; Gpe) = Q,(Cn) (as ged(p,n') = 1, the element (,/(pe is a primitive n-th root of unity).
This implies that Q,(¢n) = Qs ((pe), showing that the ramification index of Q,((,)/Q,, is ¢(p°®) and that
its residual degree is f. In particular, we have [Q,(Cn) : Q,] = ¢(p©)f. As f is the order of p in the group
(Z /n"Z)*, we have f | #(Z /n"Z)* = ¢(n), hence [Q,(Cn) : Q,] | ¢(p®)p(n') = @(n), with equality if and
only if p generates (Z /n' Z)*. O
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Corollary 8.2.14. Under the assumptions of proposition 8.2.13, the inertia subgroup of Q,((,)/Q, is
isomorphic to (Z /p¢ Z)*.

Proof. This follows from the discussion in paragraph 8.1 applied to F' = Q,, using the irreducibility of ® .
over Q,;. O

Remark 8.2.15. As a special case of last proposition, we have Q,; = Q,((pr—1)-

8.2.16. The field Q,(C,).

1

Lemma 8.2.17. Q,((,) = Q, ((—p)77).

P p—1 . p—1 .
Proof. We have ®,(X +1) = % =XP1 4+ 3 ()X s0 (G —1)P7 == (%)({ — 1), hence
i=1 i=1

-
(G —1)P' = —p mod p(G, — 1)Oq,(¢,)» it ui=" 2= =1 mod (¢, — 1)Oq(¢,)- As (¢ — 1)Oq, ()
is the maximal ideal of OQP(CP)’ we have u € OE2 )" Moreover, a straightforward induction implies

that «? = 1 mod PG — 1)Oq,(¢,)- This shows that the sequence (u’”p*LpZ*“'*pn) converges to

neZ>o
-1 _ -1 _ —1
some element u; € Oq (c,), such that u!”" = u. We have u; € (’)ap@p), and ({, — 1)P~t = —pul™,
e o= C‘;:l € OQP(CP) is a root of XP~1 + p. As the latter is an Eisenstein polynomial, the inclusion
Q,(a) € Q,(¢p) is a equality. |

Remark 8.2.18. The extension Q,((,)/ Q,, is totally tamely ramified of degree p—1: we knew a priori that
there exists a uniformizer @ of Q, such that Q,(¢,) = Q, (wﬁ) (cf theorem 3.8.28).

Let v: Q,((p)* — Z be the normalized valuation, so that v(7) = 1 where 7 = (;, — 1, and
U= {(E € OQP(CP) L= 1 mod WOQP(CP)}
the group of principal units. As the residue field of Q,((p) is F;, we have
Qp(Cp)x ~ % pp—1 x U.
Lemma 8.2.19. We have U? := {u”; ue U} = {z € Oq (,); =1 mod 7**'Oq (c,)}-

Proof. e Let u € U. As the residue field of Q,(¢,) is Fj, we have OQP(CP) =7 +7TOQP(CP)2 we can write
v =1—nm mod WQOQP(%) with n € Z>o. As (j = (1 +7)" =1+ nr mod WQOQP(CP), we have thus
Gpu=1 mod wQOQP(Cp): write (yu =1+ w2y with y € OQP(CP)' Raising to the p-th power, we get

p_l o
uP =1+ '21 (P)m?iy’ + 7?PyP =1 mod 7rp“(9Qp(<p)
i=

since (7) € pOq, (,) = ' Oq,(c,) for i€ {1,...,p—1} (because v(p) = p—1=v(7?"')), and p + 1 < 2p.

e Conversely, let € 1 + 7?10 . Write z = 1 + 7P+l with 2 € O : we have to show that z is
Q,(Cp) Q, (Cp)

the p-th power of some v € U. We have

( 3 (%P)Xn)p —1+X

n=0

in Q[[X]]. If n € Z>p, we have

(1) = (=1 =2) - (b =+ 1) = oot

n 1
written in base p. In particular, we have v((lép) (rPt2)") = (p+1)n—(p—1)(n+ %({1)) =n+s(n) = n.
This implies that the series

This implies that vp((l/p)) = -n—vp(nl) = —n-— %W, where s(n) denotes the sum of the digits of n

sy

u =

3
18

converges in OQP(CP)’ and that u? = 1 + 7P*1z = z, as required. O

8.3. Proof of Kronecker-Weber Theorem.
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8.3.1. Reduction of theorem 8.1.1 to theorem 8.1.2 for all p. Assume that theorem 8.1.2 holds for every
prime p and let K/ Q be an abelian extension. Let ¥ be the set of primes p that ramify in K/Q (i.e. such
that p | di, ¢f corollary 2.6.6). If p € ¥ and p ¢ Ok is a prime ideal lying over p, denote by IA(p the
completion of K with respect to p. The extension I?p /Q, is abelian, and its Galois group identifies the
decomposition subgroup

Dy(K/Q) = {0 € Gal(K/Q); o(p) = p} < Gal(K/Q)

(¢f propositions 3.5.15 and 8.2.3). By theorem 8.1.2, there exists n, € Z~¢ such that I?p c Q,(Cn,)- Put

ep = vp(ny) and n = [] p: it is enough to prove that K < Q((,)-
peEX

Put L = K(¢,) = Q(,)K: the extension L/Q is abelian since K/Q and Q(¢,)/ Q are (¢f proposition
8.2.2). Let B  Or, be a prime ideal lying over p, and Ly the completion of L with respect to 8. We have
the diagram of fields:

~

L
RN
KP Qp(Cn)

N7
Q,

As E‘B = Qp(gn)l?p, the extension iqg/ Q, is unramified if and only if I?p and Q,(Cn) are (cf corollaries
3.8.9 and 3.8.11). This implies that the primes p that ramify in L are precisely those in X (since the prime
that ramify in Q((,) are the elements of ¥ by corollary 8.2.11).

~

For p € ¥, we have K, < Q,((n,), so that

Qp(CpeP) - L‘IS < Qp(CnpaCn) = Qp(CPepn’)
for some n’ € Z~( prime to p. Let I, = I,(L/ Q) be the inertia group of L/ Q at p. By corollary 8.2.14, we

have
I, ~ Gal(Q,,(Cper )/ Q) ~ (Z /p™ Zy) ™

Let I < Gal(L/Q) be the subgroup generated by all the I, for p e £. As Gal(L/Q) hence I is abelian, the

natural map [[ I, — I is a surjective group homomorphism, so that
peX

#I< 11 #1, = ] (™) = ¢(n) = [Q(¢) - Q.

peX peEX

Let F = Q((,) be the field fixed by I. The primes ramified in F are ramified in L: they belong to X. As
we killed the ramification at p by taking invariants under I, for all p € X, this implies that F'/ Q is nowhere
ramified, i.e. that |drp| = 1. Minkowski bound +/|dp| > (%)d‘;—T (where d = [F': Q]) implies that F' = Q,
so that

[L:Q]=[L:F]=#I<[Q(): Q]
As Q(¢n) © L, this implies L = Q((¢,,), hence K < Q(¢,).

8.3.2. Proof of theorem 8.1.2. Let K/Q, be an abelian extension. We can write Gal(K/Q,) = [ G; where
i=1
G, is cyclic of prime power order. Then K = K;--- K, where K; is the field fixed by [] G;. As the
1<j<r
J#i

composite of finitely many cyclotomic extensions is again a cyclotomic extension, it is enough to show that
each K is included in a cyclotomic extension of Q,: we are reduced to the case where Gal(K/Q,) ~Z /q™ Z
is cyclic of prime power order.

Case where p # ¢q. Let T' be the maximal unramified subextension of K/Q,. If f = [T : Q,], then
T is the unique unramified subextension of Qp lifting Fps /Fp, de. T = Q,r = Q,(Cpr_1), ¢f remark
8.2.15. As [K : Q)] = ¢™ and p # g, the degree of the totally ramified extension K/T" is of the form
e = ¢" with r € {0,...,m}, whence prime to p: it is tamely ramified. By theorem 3.8.28, there exists

a uniformizer m of T' = Q,; such that K = Q,; (wé). As 7 and p are uniformizers of Q, ;, there exists

pf
u € Z) such that m = —up. As u is a unit and p # g, the extension Q,; (ué)/pr is unramified: so is
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Q,r (ué)/Qp. By remark 8.2.15 again, we lllave Q,r (ué) = Q,(Cnr) for some M € Z-¢ prime to p. Note
that in K({y) = Q (wé,ué), we have (’f) = —p, so that (—p)% e K(Cu).

pf

K(Cnr)
e N
K

Q,(Car)
N 0

Being the composite of the abelian extensions K/Q, and Q,(Ca)/ Q,, the extension K ((ar)/ Q,, is abelian:

so is its subextension Q,, ((—p)%)/Qp (¢f proposition 8.2.2). In particular, it is Galois, hence contains the
conjugates of (—p)% over Q,: we have (. € Q, ((—p)%). Moreover, the extension Q, ((—p)%)/QP is totally
ramified: so is its subextension Q,(¢.)/Q,. By proposition 8.2.13, this implies that e = ¢" | p — 1 (recall

that p # q), so that (—p)% €Q, ((—p)ﬁ) = Q,((p) (¢f lemma 8.2.17), i.e.

T = (=p)*ut € QG Gp) = Qp(Cary).
Finally, we have K < Q,(Cap), finishing the proof in that case.

Case where p = ¢ # 2. The extension K, := Q,({»m_;)/Q, is unramified and cyclic of degree p™
(¢f remark 8.2.15). On the other hand, the extension Q,((,m+1)/Q,, is totally ramified, with Galois group
isomorphic to (Z /p™*! Z)*, hence cyclic (since p # 2). Let K, be its subfield fixed by the subgroup of order
p — 1: the extension K,/Q, is totally ramified and cyclic of degree p™. This implies that [K, K] = p>m
(since the ramification index of K,K,/Q, is at least [K, : Q,] = p™ and the residual degree at least
[K.:Q,] =p™). By proposition 8.2.2, the extension K,K,/Q, is abelian. As the group homomorphism

Gal(K.K,/Q,) — Gal(K./Q,) x Gal(K,/Q,)
(given by the restrictions) is injective, it is an isomorphism by cardinality, so that
Gal(Ku K./ Q,) ~ (Z /p™ Z)?.
Assume K ¢ K, K,. As above, the group homomorphism given by the restrictions
Gal(KK,K,/Q,) — Gal(K,K,/Q,) x Gal(K/Q,) ~ (Z /p™ Z)*

is injective: let H be its image. By the invariant factors decomposition (¢f theorem 1.4.13), we have

H~(Z/p™ Z) x (Z/p™ Z) x (Z /p"™ Z)
for unique integers m; > mo = ms. As H is killed by p™, we have m; < m for all i € {1,2,3}. As the
restriction Gal(KK,K,/Q,) — Gal(K,K,/Q,) ~ (Z /p™ Z)? is surjective, we have dimg, (p™ ' H) > 2, so
that m; = my = m. We have m’ := m3 > 0, otherwise we would have [K K, K, : Q,] = p?" = [K, K, : Q,l,
implying that K < K, K, contradicting the hypothesis. This implies in particular that

Gal(KK.K,/Q,) ~ (Z [p" Z)* x (Z [p™ Z)
has a quotient isomorphic to (Z /p Z)3: there exists a Galois subextension N of K K, K,/ Q, such that

Gal(N/Q,) ~ (Z /pZ)"
This is impossible by lemma 8.3.4 below: we must have K ¢ K, K, c Qp(g‘pm,gppm_l) = Qp(Cpm+1(ppm_1)),
finishing the proof in that case.

Lemma 8.3.3. Let I be a field of characteristic different from p, M = Q,((¢,) and L = M(a%) with
a€ M*. Let x: Gal(M/F) — Z /pZ be the cyclotomic character. The following are equivalent:

(i) L/F is abelian;
(ii) (Yo € Gal(M/F))o(a) =aX(?) mod M*P.
Note that Z /pZ acts on M*/M*P, so that aX(®) mod M *P makes sense.

Proof. e Assume (i). Let o € Gal(M/F), and fix & € Gal(L/F) extending o. If 7 € Gal(L/M), there exists
¢ € Z /pZ such that T(a%) = C;*a%. As Gal(L/F) is abelian, we have

(r0d)(av) = (G o7)(a¥) = X5 (a¥)
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S

a

Let k € Z mapping to x(c) in Z /pZ: we have T(ag) = C]’jc*af = C;’X(U)C]’jc*a? Put o = T) e L.
What precedes implies that 7(a) = a. As this holds for all 7 € Gal(L/M), we have o € M *: raising to the
p-th power gives o(a) = 5(a) = a*a?, which precisely means that o(a) = aX(?) mod M*?.
o Assume (ii). As char(F') # p, the extensions L/M and M/F are separable: so is the extension L/F. If
v € Homp aig(L, F'), we have vy, € Gal(M/F). Fix k € Z mapping to x(ya) in Z /pZ. By hypothesis,
there exists o € M* such that v(a%)p = m(a) = a*aP: there exists i € Z /pZ such that

'y(a%) = C;a%oz e L.
As L = M(a%), this implies that the extension L/F is normal, hence Galois. The result is obvious if L = M
(then Gal(L/F) = Gal(M/F) is abelian): assume henceforth that L # M. The group Gal(L/M) is then
cyclic of order p, generated by o such that o(a%) = Cpa%. Let v € Gal(L/F): we have fy(a%) = C;,afa with
i€Z/pZ, k € Z whose image in Z /pZ is x(v) and « € M. Then

k

(yoo)(ar) =(Gar) = XD ara = (lara = ¢ (Gar) o = o(Glara) = (o07)(ar)

As yoo and g o7 also coincide on M (because M /F is abelian) and L = M(a%), this shows that yoo = oo7,
so that Gal(L/M) lies in the center of Gal(L/F'). This implies that the quotient of Gal(L/F') by its center
is a quotient of Gal(M/F'), which cyclic (since it identifies with a subgroup of (Z /pZ)*). The classical
argument in group theory implies that Gal(L/F’) is abelian. O

Lemma 8.3.4. If p # 2, there is no Galois extension N/Q,, such that Gal(N/Q,) ~ (Z /pZ)®.

Proof. Let N/Q, be Galois and such that Gal(N/Q,,) ~ (Z /p Z)3. The composite of the abelian extensions
N/Q, and Q,((y)/Q, is abelian: so is the extension N((p)/Q,((p). As [Q,(¢p) : Q,] = p —1 is prime
to [N : Q,] = p*, we have [N((,) : Q,] = (p—1)p?, so that [N(¢) : Q,((p)] = p®: the restriction map
Gal(N(¢p)/ Q,(¢p)) — Gal(N/Q,), which is an injective group homomorphism, is thus an isomorphism, i.e.
Gal(N(¢p)/ Q,(Cp)) ~ (Z /pZ)®. This implies that the extension N((y)/Q,(¢p) is a Kummer extension: it
corresponds to a subgroup A < Q,(¢y)*/ Q,(¢p)*? such that A ~ (Z /pZ)°.

Let a € A, and L = Q, ((p,a%) < N((p)- As the extension N((,)/Q,, is abelian, so is L/Q,,: by lemma
8.3.3, we have o(a) = aX(®) mod Q,(¢p)*? for all o € Gal(Q,(¢y)/ Q,). Using notations of section 8.2.16,
we have v(a) = v(o(a)) and v(Q,((p)**) = pZ, so the image of v(a) in Z /pZ is equal to x(o)v(a) for all

o€ Gal(Q,(¢p)/ Q) As x(Gal(Q,((p)/ Q) = (Z /pZ)* # {1} (because p # 2), this shows that v(a) € pZ,
so that

a€(G—1P% xpp xUc(G—1% xpp1 xU = Q, ().
As a is defined modulo Q,((,)*?, we may multiply a by a p-th power and assume that v(a) = 0. Similarly,
as elements of y,_; are p-th powers of themselves, we may assume that a € U. This implies that we may
assume that
A<U/UP.
Let a € A\{1}. As the residue field of Q,((p) is Fp, we have Oq (¢,) = Z +7Oq, (c,): there exists n € Zx>o
such that a =1 —n7r mod 720Oq (¢,)- As ¢f = (1 +m)" =1+nm mod 7°Oq (c,), we have

u:=Cja=1 mod ﬂ'QOQP(Cp)
(¢f proof of lemma 8.2.19). Let o € Gal(Q,(¢,)/Q,) and k, € Z lifting x(0) € (Z/pZ)*: as above, we
have o(a) = a** mod Q,((,)*? (because Q, (Cp,a%)/Qp is abelian, ¢f lemma 8.3.3). As o(a),a" € U,

we have thus % e UnQ,? =UP, whence o(a) = a*s mod UP for all o € Gal(Q,(¢p)/ Q,)- As the same
congruence holds for ¢, we also have

(%) o(u) = uf  mod UP

for all o € Gal(Q,(¢y)/ Q,). On the other hand, we can write u = 1 4+ c¢r? mod ﬂdOQp(cp) with ce Z\pZ
and d = v(u — 1) € Z>o (recall that u # 1). We have

o(u) =1+ ckin? mod 7rd+10Qp(<p)
uFe =1+ ck,m® mod 7Td+1OQp(Cp)

alu)
uko

SO = 1+ c(k = ko)r? mod 797 Oq (c,)- By equation (), we also have Z(,Ji) € UP. By lemma
8.2.19, we have U? = {x € OQP(CP) ;x =1 mod 7rp+1(9Qp(<p)}: this implies that d > p+ 1 or d < p and

C(kg — ka‘) € ﬂ'OQp(CP).
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In the first case, we have u € UP, whence a € sz. In the second case, we have c(k¢ — k,) € pZ, so that
k® — k, € pZ (since c ¢ pZ), thus x(0)? = x(0) i.e. x(0)¥ ! =1in (Z/pZ)*. As x(c) can take any value
in (Z /pZ)* and the latter is cyclic of order p — 1, this implies that p—1 | d —1. As d < p, this implies that
d = p, so that u belongs to {x e U; z =1 mod WPOQP(CP)}. As the latter is the subgroup of U generated
by 1 + 7P, we see that in any case, we have

Ac{,1+7PycU/UP
As {{p,1 + 7P) has dimension 2 seen as a sub-F,-vector space of U/UP, we cannot have A ~ (Z /pZ)?,
giving the contradiction.

Case where p = ¢ = 2. The extension K, := Qy((s2m 1)/ Qs is unramified and cyclic of degree 2™ (cf
remark 8.2.15). On the other hand, the extension K, = Qy((am+2)/Q, is totally ramified, with Galois
group isomorphic to (Z/2m*2Z)* ~ (Z/2Z) x (Z /2™ Z). This implies that [K,K, : Q,] = 22m+!
(since the ramification index of K,K,./Q, is at least [K, : Q,] = 2™*! and the residual degree at least
[K., : Qy] =2™). By proposition 8.2.2, the extension K, K,/ Q, is abelian. As the group homomorphism

Gal(K. K,/ Q,) — Gal(K./ Q) x Gal(K,/Q,)

(given by the restrictions) is injective, it is an isomorphism by cardinality, so that
Gal(K. K,/ Q) ~ (Z/2Z) x (Z /2™ Z)*>.

Assume K ¢ K, K,. The extension KK, K,/ Q, is abelian (¢f proposition 8.2.2). The group homomor-
phism

Gal(KK,K,/K.,K,) — Gal(K/ Q) ~Z /2™ Z
induced by the restriction is injective, so Gal(K K, K,/K,K,) ~ Z /2™ Z for some m' € {1,...,m}. As
Gal(KK,K,/Q,) is abelian, this implies that it has at most four generators, one of which has order 2, and
contains (Z /27Z) x (Z /2™ Z)? as a strict subgroup. There are two possibilities:

(Z/2Z) x (Z /2 Z)? x (Z /2™ Z) with m' >1
Gal(KK,K,/Qy) ~ < or
(Z /2 Z)? x (Z /2™ Z) with m > m’ > 2

It thus has a quotient has a quotient isomorphic to either (Z /2Z)* or (Z /4Z)3: there exists a Galois
subextension N of KK, K,/ Q, such that

(z/22)*
Gal(N/Q,y) =~ < or
(2 /12)*

It remains to check that those two cases are impossible.
e The first case corresponds, by Kummer theory, to four linearly independent elements in Q2 / Q;Q (i.e. to
four independent quadratic extensions of Q,). As

Qf ~2% x {+1} x U3
where Uy = {u€ Zo;u=1 mod 4Zs},and U = {x € Zo; x =1 mod 8Zy}, the Fy-vector space

Q' / Q3% ~(Z/2Z) x {+1} x U /U}

has dimension 3,contradicting Gal(N/Q,) ~ (Z /2 Z)*.

e Assume from now on that Gal(N/Q,) ~ (Z /4Z)3. Assume i := /=1 ¢ N: then N(i)/Q, is abelian,
and the natural map Gal(N(i)/ Q,) — Gal(N/Q,) x Gal(Q,(i)/ Q,) ~ (Z /AZ)3 x (Z /27Z) is a group iso-
morphism, implying the existence of a subfield N’ of N (i) such that Gal(N’/Q,) ~ (Z /2 Z)*, which is not
possible by what precedes. This shows that i € N. Let f: Z* — Gal(N/Q,) be a surjective group homo-
morphism inducing an isomorphism f: (Z /AZ)® 5 Gal(N/Q,). The composite with the surjective group
homomorphism g: Gal(N/Q,) — Gal(Q4(:)/Qy) ~ Z /27Z provides a surjective group homomorphism
gof: Z® — Z /2Z. By the adapted basis theorem (¢f theorem 1.4.11), there exists a Z-basis (e, ea, e3) of
Z3 such that Ker(go f) = Z e, ®Z eo®2 Z e5. This implies that replacing f by its composite with the change
of basis map, we may assume that (ey, e2, e3) is the canonical basis, so that Ker(go f) = (Z /AZ)?® (2 Z /A Z).
Let L denote the subfield of N corresponding to the subgroup (Z /4Z)*{0} c (Z /4Z)*> ® (2Z /AZ). By
construction, we have Q, (i) € L and Gal(L/Q,) ~ Z /AZ. Let o be a generator of Gal(L/Q,), so that o2
generates Gal(Q,(i)/ Q,) and o (i) = —i. We can write L = Q,(i, ) with o € Q,(i). As L/ Q, is Galois,
we also have L = Q,(i,0(a)) and o(a)? = o(a?) € Q,(i). This implies that o?(a)? = 0?(a?) = o2, so that
0%(a) = £a. We cannot have 0%(a) = «, otherwise o € Q4 (i) which is not: we have 0%(a) = —«, whence
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o3(a) = —o(a). This implies that 02(%) = %, i.e. @ € Q,(i): write o(a) = (a+ib)a with a,b € Q,.
Applying o gives —a = 02(a) = (a — ib)o(a): multiplying these equalities and dividing by ao(a) gives

a? +v* = —1.
Such an equality is impossible in Q, (multiplying by the square of a common denominator gives a non
trivial equality 22 + 2 + 22 = 0 is Z2, which is already impossible modulo 8), giving a contradiction.
What precedes shows that the assumption K ¢ K, K, is absurd: we have K ¢ K, K, = Q, (C2m+2(22m,1)),
finishing the proof. |
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9. APPENDIX
9.1. Zorn’s lemma. The axiom of choice (that we assume) is equivalent to the following:

Theorem 9.1.1. A partially ordered set in which every chain®") has an upper bound contains at least one
maximal element.

Remark 9.1.2. Considering opposite orders, we also have the dual statement: a partially ordered set in
which every chain has an lower bound contains at least one minimal element.

9.2. Galois theory. Let Q/K a field extension, and Ly, Lo sub-extensions. We have the following situation:
Q

LiLs

Ly

N
Lo
/

VAN

1N Lo

|
K

Proposition 9.2.1. Assume L;/K is finite and Galois. The extensions LiLy/Ls and Li/Ly n Lo are finite
and Galois, and the restriction map

P Gal(Lng/Lg) — GaI(Ll/Ll ] Lg)

is a group isomorphism. In particular, we have [L1Lo : La] = [L1 : L1 n La]. If moreover Ly/K is finite, we

have [L1Ly : K] = %

Proof. As L1/K is finite and Galois, it is the splitting field, in Q of a separable polynomial P € K[X]:
the field LiLy is the splitting field, in £, of P seen as an element of Lo[X]. As P is separable, the
extension L1Lo/Ly is Galois. Of course, L1/L; n Lo is Galois because L;/K is. We thus have the group
homomorphisme p.

If o € Ker(p), then o induces the identity on L and Lo, hence on LqLs: we have o = Idy, 1.,, which shows
the injectivity of p. Put H = Im(p). If x € L; is fixed H, it is fixed by Gal(L;1La/Ls): it belongs to La, hence
to L1 n Lo. This shows that LI = L; n Ly: Galois correspondance implies that H = Gal(L1/L; n Ls), and
p is surjective.

We have thus # Gal(L1Ly/Lo) = # Gal(L1/Ly n Ls), hence [L1Ls : Lo] = [L1 : L1 n Lo].

If Ly/K is finite, we have

[Lilo: K] =[L1Ls : Lo][Lo : K] = [L1: Ly 0 Lo][L : K] = latd < o

O

Proposition 9.2.2. Assume Li/K and Ly/K are finite and Galois. Then L1Lo/K and L; n Ly/K are finite
and Galois, and the natural map (given by restrictions)

’L/)Z GaI(Lng/K) - GaI(Ll/K) X GaI(Lg/K)
is injective, with image {(01,02) € Gal(L1/K) x Gal(L2/K); 011, ~Ly = O2|L, AL}

Proof. If x € L1 n Loy, the conjuguates of x over K all belong to L; (because Li/K is normal). Similarly,
they all belong to La: they lie in Ly n Lo, and the extension Ly n Ly/K is normal. Being a sub-extension
of the separable extension L,/K, it is separable, which shows that L1 n Lo/K is Galois.

The fields Ly and Lo are splitting fields, in €2, od separable polynomials P; and P»: the field LqLs is thus
the splitting fields, in €2, of the separable polynomial lcm(P;, Py), which shows that L1Ls/K is Galois.

If 0 € Ker(¢), then o induces the identity on L; and Lo, hence on LqLs, so that o = Idy, ,, which shows
the injectivity of ¢. Of course we have

Im(v) < H := {(01,02) € Gal(L1/K) x Gal(L2/K) ; O1LinLs = ‘72|LmL2}-
We know that
GaI(Lg/K)/GaI(LQ/Ll N L2) LGH'(Ll N LQ/K)

BUre. a totally ordered subset.
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If 01 € Gal(L1/K), the restriction oy, ~1, € Gal(L1 n La/K) thus admits [Lg : L1 n L] extensions to Lo.
this implies that
[Ll : K][L2 : K]

[L1 N L2 : K]
By proposition 9.2.1, we deduce #H < [L1Ls : K| = # Gal(L1Ly/K). As 4 is injective, this is an equality,
which shows that Im(y) = H. O

Corollary 9.2.3. If ; /K and Lo/K are finite and abelian, so is L1Ly/K.

#H < #GaI(Ll/K)[Lg : L1 N L2] = [Ll : K][LQ : L1 N L2] =

Proof. The group Gal(L1/K) x Gal(Lo/K) is abelian: so is its sub-group
H = {(0'1,0'2) € GaI(Ll/K) X GaI(Lg/K), O'l‘LlﬁL2 = 02|L1mL2}-
As 1) induces an isomorphism Gal(L;Ls/K) = H, the extension L;Lo/K is abelian. O
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