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1. Notions on 
ommutative algebra

In what follows, A denotes a 
ommutative ring with unit. Ring homomorphisms map units to units.

1.1. Rings.

1.1.1. Ideals.

De�nition 1.1.2. An ideal of A is a subset I � A su
h that:

(1) p�x, y P Iqx� y P I (so that I is a subgroup of pA,�q);

(2) p�a P Aq p�x P Iq ax P I.

Given an ideal I � A, the quotient group A{I is endowed with a unique ring stru
ture su
h that the


anoni
al map AÑ A{I is a ring homomorphism.

Example 1.1.3. (0) t0u is an ideal.

(1) A is an ideal (
alled the unit ideal). We say that an ideal I � A is stri
t if I � A.

(2) Ideals of Z are of the form nZ for a unique n P Z
¥0.

(3) Similarly, ifK is a �eld, nonzero ideals ofKrXs are of the form P pXqKrXs for a unique moni
 polynomial

P pXq P KrXs.

De�nition 1.1.4. Let I � A be a stri
t ideal.

(1) I is maximal if it is maximal (for the in
lusion) among stri
t ideals in A.

(2) I � A is prime if p�x, y P Aq pxy P I ñ px P I or y P Iqq.

Example 1.1.5. 
 The ring A is an integral domain if and only if t0u is prime.


 nZ is prime in Z if and only if nZ is maximal if and only if n is a prime integer. Similarly, P pXqKrXs

is prime in KrXs if and only if P pXqKrXs is maximal if and only if P pXq is irredu
ible.

Remark 1.1.6. (1) A maximal ideal is prime.

(2) An ideal I � A is maximal (reps. prime) if and only if A{I is a �eld (resp. an integral domain).

(3) Let Λ be a set and pIλqλPΛ be ideals in A. Then
�

λPΛ

Iλ is an ideal of A.

Theorem 1.1.7. (Krull). Let I � A be a stri
t ideal. There exists

(1)

a maximal ideal m � A su
h that

I � m.

Proof. Let E be the set of stri
t ideals J � A 
ontaining I: it is non empty sin
e I P E . We (partially) order

E with the relation given by J1 ¤ J2 � J1 � J2. The ordered set pE ,¤q is indu
tive: if pJλqλPΛ is a 
hain

(i.e. a totally ordered subset) of E , then J :�
�

λPΛ

Jλ is an element in E , and an upper bound of pJλqλPΛ.

By Zorn's lemma, pE ,¤q admits a maximal element m. If J � A is a stri
t ideal 
ontaining m, then J P E ,

hen
e J � m by maximality. This shows that m is a maximal ideal, that 
ontains I by de�nition. �

Remark 1.1.8. One 
an show that Krull's theorem is equivalent to the axiom of 
hoi
e.

De�nition 1.1.9. 
 If X � A, the ideal generated by X is the smallest ideal of A that 
ontains X , this is

nothing but the interse
tion of all ideals

(2)

of A that 
ontain X .


 If I � A is an ideal and X � I, we say that X generates I if the ideal generated by X is I. We sometimes

denote it by xXy.


 A prin
ipal ideal of A is an ideal generated by one element. The ring A is 
alled prin
ipal (PID) if it is

an integral domain and its ideals are all prin
ipal.

Example 1.1.10. (1) Z and KrXs are prin
ipal, more generally eu
lidean rings are prin
ipal.

(2) If K is a �eld, xX,Y y is not prin
ipal in KrX,Y s. Similarly, x2, Xy is not prin
ipal in ZrXs.

(3) Zri
?

5s is not prin
ipal.

De�nition 1.1.11. 
 Let Λ be a set and pIλqλPΛ be ideals in A. Their sum is the ideal generated by

�

λPΛ

Iλ.

This is nothing but the set of �nite A-linear 
ombinations
n
°

i�1

aixi with r P Z
¥0, a1, . . . , ar P A and xi P Iλi

for all i P t1, . . . , ru.


 Let I, J � A be ideals. Their produ
t IJ is the ideal generated by txyuxPI
yPJ

.

De�nition 1.1.12. Two ideals I, J � A are 
oprime (or I is prime to J) when I � J � A.

(1)

This statement is equivalent to the axiom of 
hoi
e.

(2)

This makes sense by Remark 1.1.6 (3).
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Proposition 1.1.13. (1) Two distin
t maximal ideals are 
oprime.

(2) If I1, . . . , In are prime to J , then I1 � � � In is prime to J .

(3) If I, J � A are 
oprime and n,m P Z
¡0, then I

n
and Jm are 
oprime.

Proof. (1) As I � I � J � A, we have I � J � A.

(2) As Ik � J � A for all k P t1, . . . , nu, we have A � pI1 � JqpI2 � Jq � � � pIn � Jq �� I1 � � � In � J , when
e

I1 � � � In � J � A.

(3) Applied to Ik � I for all k P t1, . . . , nu, (2) implies that In and J are 
oprime. After repla
ing I by J

and J by In, we dedu
e that In and Jm are 
oprime. �

Theorem 1.1.14. (Chinese remainder theorem). Assume I1, . . . , In � A are pairwise 
oprime ideals

(i.e. i � j ñ Ii � Ij � A). Then:

(1) I1 X I2 X � � � X In � I1I2 � � � In;

(2) the 
anoni
al ring homomorphism A{I1I2 � � � In Ñ
n
±

k�1

A{Ik is an isomorphism.

Proof. By proposition 1.1.13, the 
ase n � 2 implies the general 
ase: let I, J � A be 
oprime ideals. There

exist eI P I and eJ P J su
h that eI � eJ � 1.

(1) We have always IJ � I X J . Let a P I X J : we have a � apeI � eJq � aeI � aeJ . As a P J and eI P I,

we have aeI P IJ . Similarly aeJ P IJ , hen
e a P IJ , proving the equality.

(2) Let ϕ : AÑ pA{Iq � pA{Jq be the natural map. If x, y P A, we have ϕpxeJ � yeIq � px� I, y� Jq, so ϕ

is surje
tive. As Kerpϕq � I X J � IJ , it indu
es an isomorphism A{IJ
�

ÑpA{Iq � pA{Jq. �

1.1.15. UFDs.

De�nition 1.1.16. Assume that A is an integral domain.


 An element α P AzpA� Yt0uq is prime (resp. irredu
ible) if the ideal αA is prime (resp. p�a, b P Aq pab �

αñ pa P A� or b P A�qq). A prime element is always irredu
ible

(3)

, but the 
onverse is not true in general.


 The ring A is a unique fa
torization domain (UFD) if it is an integral domain in whi
h every non-zero

element 
an be written as a produ
t of or irredu
ible elements, uniquely up to order and multipli
ation by

units. More pre
isely, for any α P Azt0u, there exist n P Z
¥0 and irredu
ible elements p1, . . . , pn su
h that

αA � p1 � � � pnA

and if αA � q1 � � � qmA with m P Z
¥0 and q1, . . . , qm irredu
ible, then m � n and there exists σ P Sn su
h

that qkA � pσpkqA for all k P t1, . . . , nu.

There exists u P A� su
h that α � up1 � � � pn: su
h an quality is 
alled a prime de
omposition of α.

Example 1.1.17. (0) A �eld is a UFD.

(1) Z and KrXs (where K is a �eld) are UFD.

(2) The subring Zri
?

5s � tx� iy
?

5 P C ; x, y P Zu of C is not a UFD, be
ause 2, 3, 1� i
?

5 and 1� i
?

5

are irredu
ible, the unit are 1 and �1, but 2.3 � p1 � i
?

5qp1 � i
?

5q (i.e. there is no uni
ity for a prime

de
omposition of 6).

Lemma 1.1.18. In a PID, irredu
ible element are prime.

Proof. Let p P A be an irredu
ible element. Let m � A be a maximal ideal su
h that p P m (
f Krull

theorem, or use the noetherianity of A). As A is a PID, there exists α P A su
h that m � aA, so p � αa for

some a P A. As p is irredu
ible, we must have a P A� (be
ause α R A� sin
e m � aA � A). Thus pA � m

is maximal. �

De�nition 1.1.19. Assume A is a UFD, and let p P A be an irredu
ible element. If α P Azt0u, the p-adi


valuation of α is

vppαq � maxtk P Z
¥0 ; p

k
| αu

This is well de�ned and only depends on the ideals pA and αA.

Proposition 1.1.20. (Properties of valuations). Assume A is a UFD and let a, b P A.

(1) vppabq � vppaq � vppbq ;

(2) a | b if and only if vppaq ¤ vppbq for all irredu
ible element p P A;

(3) a P A� if and only if vppaq � 0 for all irredu
ible element p P A.

(4) vppa� bq ¥ mintvppaq, vppbqu with equality when vppaq � vppbq.

(3)

Be
ause A is a domain. Note that 2 is prime in Z {6Z, but not irredu
ible sin
e 2 � 2� 4.
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Proof. (1)-(3) follow from the de�nition and the uni
ity of de
omposition into a produ
t of prime elements.

For (4), if v � inftvppaq, vppbqu, then pv | a and pv | b, so pv | a � b, thus vppa � bq ¥ v. Assume

vppaq � vppbq: we may assume that v � vppaq   vppbq. Write a � pva1 with p ∤ a1 and b � pvb1 with p | b1,

so that a� b � pvpa1 � b1q and p ∤ a1 � b1: we have vppa� bq � v. �

Proposition 1.1.21. Assume A is a UFD and let p P Azt0u. Then p is irredu
ible if and only if p is prime.

Proof. If p is irredu
ible and p | ab, then vppaq � vppbq � vppabq ¥ 1 so vppaq ¥ 1 or vppbq ¥ 1 i.e. p | a or

p | b. Conversely, a prime element is always irredu
ible. �

Remark 1.1.22. It is easy to show that a noetherian ring (
f de�nition 1.3.3) in whi
h irredu
ible elements

are prime is a UFD. This said, there exist non-noetherian UFD (eg ZrXnsnPZ
¥0
).

De�nition 1.1.23. Assume A is a UFD and let a, b P Azt0u. The g
d (greatest 
ommon divisor) and the

l
m (least 
ommon multiple) of a and b are the greatest lower bound (resp. smallest upper bound) of the

set ta, bu for the divisibility relation. They are denoted gcdpa, bq and lcmpa, bq respe
tively. We say that a

and b are 
oprime when gcdpa, bq � 1.

Remark 1.1.24. (1) Stri
tly speaking, gcdpa, bq and lcmpa, bq are only de�ned up to multipli
ation by a

unit: only the ideal they generate are well de�ned.

(2) Let a, b P Azt0u and an irredu
ible element p P A. Then vppgcdpa, bqq � mintvppaq, vppbqu and

vpplcmpa, bqq � maxtvppaq, vppbqu. Note that gcdpa, bq lcmpa, bqA � abA.

(3) By indu
tion, one 
an easily extend the de�nition and 
onsider g
d and l
m of a�nite family in Azt0u.

Lemma 1.1.25. (Gauss lemma). Assume that A is a UFD and let a, b, c P Azt0u be su
h that gcdpa, bq � 1.

If a | bc, then a | c.

Proof. If p P A is irredu
ible and divides a, then vppbq � 0 sin
e p ∤ b (be
ause a and b are 
oprime). This

implies that vppaq ¤ vppbcq � vppcq. As this holds for any irredu
ible element p dividing a, we have a | c (
f

proposition 1.1.20 (2)). �

Proposition 1.1.26. A PID is a UFD.

Lemma 1.1.27. Assume that A is an integral domain in whi
h irredu
ible elements are prime (
f proposition

1.1.21). If an element admits a prime de
omposition, the latter is unique (in the sense of de�nition 1.1.16).

Proof. Assume α � up1p2 � � � pn � vq1q2 � � � qm, with n,m P Z
¥0, u, v P A� and p1, . . . , pn, q1, . . . , qm

irredu
ible elements. Possibly after ex
hanging the de
ompositions, we may assume n ¤ m. We pro
eed

by indu
tion on n. If n � 0, then α � u P A�: the produ
t vq1q2 � � � qm is invertible so all its fa
tors are:

we must have m � 0. Assume n ¥ 1. As p1 is irredu
ible and divides the produ
t vq1q2 � � � qs, it divides

one of the fa
tors (sin
e it is prime). As v P A�, it is not divisible by p1: after renumbering the qi, we

may assume that p1 | q1 i.e. p1A � q1A. Dividing α by p1, we redu
e to the 
ase n� 1, and use indu
tion

hypothesis. �

Proof of proposition 1.1.26. Assume A is a PID. By lemmas 1.1.18 and 1.1.27, it is enough to shows that

any nonzero element in A admits at least one prime de
omposition. Let E be the set of elements in Azt0u

that do not admit a prime de
omposition. Assume E is not empty. As A is noetherian, the set E admits a

minimal element α (for the divisibility relation). The element α 
an be nor a unit, nor irredu
ible: it 
an

be written α � α1α2 with α1, α2 P AzpA
�

Y t0uq. Then α1 and α2 are stri
t divisors of α, so α1, α2 R E

by minimality of α: they admit prime de
omposition. This implies that their produ
t α admits a prime

de
omposition: 
ontradi
tion. �

Remark 1.1.28. 
 When A is a PID, there is an other 
hara
terization of g
d and l
m of two element

a, b P A: we have gcdpa, bqA � aA� bA and lcmpa, bqA � aAX bA. Let's prove it for the g
d (the proof for

the l
m is similar). As A is prin
ipal, there exists d P A su
h that aA� bA � dA. As x P A divides a and b

if and only if aA � xA and bA � xA i.e. dA � xA, so gcdpa, bq � d.


 This 
hara
terization does not hold in any UFD. For instan
e, QrX,Y s is a UFD (
f theorem 1.1.41). As

X and Y are irredu
ible and 
oprime, we have gcdpX,Y q � 1, though XQrX,Y s � Y QrX,Y s � QrX,Y s

(the LHS is the ideal of polynomials vanishing at p0, 0q). Of 
ourse, this follows from the fa
t that QrX,Y s

is not a PID.

Example 1.1.29. If K is a �eld and n P Z
¡0, the ring KrX1, . . . , Xns is a UFD (
f theorem 1.1.41) but

not a PID (
f remark above). Similarly the ring ZrXs is a UFD (
f lo
. 
it.) but not a PID (the ideal

generated by 2 and X is not prin
ipal).

Proposition 1.1.30. In a PID, nonzero prime ideals are maximal.
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Proof. Assume A is a PID, and let p � A be a nonzero prime ideal. Write p � xay with a P Azt0u: if I � A

is an ideal 
ontaining p, we have I � xby with b P Azt0u dividing a: write a � bc with c P A. As a is prime,

we have a | b or a | c. If a | b (resp. a | c) there exists d P A su
h that b � ad (resp. c � ad). Then we have

a � bc � acd (resp. a � bc � abd), hen
e 1 � cd (resp. 1 � bd) be
ause a � 0 and A is integral, so that

I � p (resp. I � A), showing that p is maximal. �

De�nition 1.1.31. Assume that A is a integral domain.


 An eu
lidean fun
tion is a map φ : Azt0u Ñ Z
¥0 su
h that if b | a in Azt0u, then φpbq ¤ φpaq.


 An eu
lidean fun
tion φ de�nes an eu
lidean division if for all pa, bq P A�Azt0u, there exist q, r P A su
h

that a � bq � r and (r � 0 or φprq   φpbq). �The� element q is 
alled the quotient and r the remainder of

the division.


 The ring A is eu
lidean if it admits an eu
lidean fun
tion that de�nes an eu
lidean division.

Remark 1.1.32. If A is an eu
lidean domain, there is not uni
ity for an eu
lidean fun
tion. Moreover,

uni
ity of quotient and remainder is not required.

Exemples 1.1.33. A �eld is an eu
lidean domain. The ring Z is eu
lidean domain, an eu
lidean fun
tion

being given by φpaq � |a| (absolute value). In that 
ase, eu
lidean division is the usual one. When K is a

�eld, the ring of polynomials KrXs is eu
lidean, an eu
lidean fun
tion being given by φpP q � degpP q. Here

again, eu
lidean division is the usual one.

The ring Zris � ta� ib P C ; a, b P Zu of Gauss integers is eu
lidean, endowed with the eu
lidean fun
tion

given by φpa� ibq � a2 � b2.

Proposition 1.1.34. An eu
lidean domain is a PID.

Proof. Assume A is an eu
lidean domain, let φ : Azt0u Ñ Z
¥0 be an eu
lidean fun
tion and I � A an ideal.

To prove that I is prin
ipal, we may assume that I � 0. In that 
ase, φpIzt0uq is an nonempty subset

of Z
¥0, so it admits a smallest element: let b P Izt0u be su
h that φpbq is minimal. One has bA � I.

Conversely, let a P I. There exist q, r P A su
h that a � qb� r with r � 0 or φprq   φpbq. Assume r � 0, so

that φprq   φpbq. As r � a� qb P I and r � 0, we have φpbq ¤ φprq by minimality of φpbq, whi
h s absurd:

we must have r � 0, i.e. a � qb P bA. Thus I � bA is prin
ipal. �

Remark 1.1.35. There are PID that are not eu
lidean domains, for instan
e Z
�

1�i
?

19
2

�

.

Corollary 1.1.36. Let K be a �eld, the rings Z and KrXs are PID, hen
e UFD (
f proposition 1.1.26).

A ring homomorphism f : A Ñ B indu
es a ring homomorphism ArXs Ñ BrXs. If A is a subring of B,

then ArXs is a subring of BrXs.

De�nition 1.1.37. Assume that A is a UFD and let P � a0 � a1X � � � � � anX
n
P ArXszt0u. The 
ontent

of P is

cpP q � gcdtai ; ai � 0u.

Lemma 1.1.38. (Gauss Lemma). If A is a UFD and P,Q P ArXszt0u, then cpPQq � cpP qcpQq.

Remark 1.1.39. As g
d is de�ned up to multipli
ation by a unit, one should write cpPQqA � cpP qcpQqA.

In what follows, we will keep this abusive notation to avoid heaviness.

Proof. Write P � cpP q rP and Q � cpQq rQ with cp rP q � 1 and cp rQq � 1: we have PQ � cpP qcpQq rP rQ.

Repla
ing P and Q by

rP and

rQ respe
tively, we may assume that cpP q � 1 and cpQq � 1: we have to show

that cpPQq � 1.

Assume instead that there exist a prime element p P A su
h that p | cpPQq. Denote by P and Q the images

of P and Q in pA{pAqrXs respe
tively, this implies that PQ � 0 in pA{pAqrXs. As p is prime, the ring

A{pA is an integral domain: so is the ring pA{pAqrXs. This implies that P � 0 or Q � 0, i.e. p | cpP q or

p | cpQq, 
ontradi
ting cpP q � 1 and cpQq � 1. �

Proposition 1.1.40. Assume that A is a UFD. Let K � FracpAq and P P ArXs su
h that cpP q � 1. Then

P is irredu
ible in ArXs if and only if P is irredu
ible in KrXs.

Proof. 
 Assume that P is irredu
ible inKrXs and write P � Q1Q2 with Q1, Q2 P ArXs. As P is irredu
ible

in KrXs, possibly after ex
hanging Q1 and Q2, the polynomial Q1 is 
onstant so Q1 � cpQ1q. By lemma

1.1.38, we have 1 � cpP q � cpQ1qcpQ2q, so Q1 P A
�

. Thus P is irredu
ible in ArXs.


 Conversely, assume that P is irredu
ible in ArXs write P � Q1Q2 with Q1, Q2 P KrXs. There exist

a1, a2 P Azt0u su
h that a1Q1 P ArXs and a2Q2 P ArXs. We have a1a2 � cpa1a2P q � cpa1Q1qcpa2Q2q by

lemma 1.1.38, be
ause cpP q � 1. Write a1Q1 � cpa1Q1q
rQ1 and a2Q2 � cpa2Q2q

rQ2 with

rQ1, rQ2 P ArXs:
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we have a1a2P � cpa1Q1q
rQ1cpa2Q2q

rQ2 � a1a2 rQ1
rQ2 when
e P �

rQ1
rQ2 (the ring A is an integral domain).

As P is irredu
ible in ArXs, we may assume, possibly after ex
hanging

rQ1 and

rQ2, that
rQ1 P A

�

. Then

Q1 P K
�

and P is irredu
ible in KrXs. �

Theorem 1.1.41. If A is a UFD, then

(4) ArXs is a UFD.

Proof. 
 If p P A is an irredu
ible element, the 
onstant polynomial p is irredu
ible in ArXs. Indeed, A{pA

is an integral domain: so is ArXs{pArXs � pA{pAqrXs and p is prime hen
e irredu
ible in ArXs.


 If P P ArXs is of degree ¥ 1 and irredu
ible, then cpP q � 1. Indeed one 
an write P � cpP q rP with

rP P ArXs, providing a non trivial fa
torization if cpP q is not invertible.


 Existen
e of a prime de
omposition. Let P P ArXszt0u. Write P � cpP q rP with

rP P ArXs su
h that

cp rP q � 1. As A is a UFD, cpP q has a prime de
omposition, so it is enough to show that

rP has a prime

de
omposition: we may assume that cpP q � 1. If P P A, then P � 1: we may assume that degpP q ¥ 1.

Put K � FracpAq. As KrXs is a UFD (
f 
orollary 1.1.36), we may write P � P1P2 � � �Pr with Pi P KrXs

irredu
ible for all i P t1, . . . , ru. For i P t1, . . . , ru, let ai P Azt0u be su
h that aiPi P ArXs, and rPi �

cpaiPiq
�1
paiPiq P ArXs. As rPi has 
ontent 1 and is irredu
ible in KrXs (be
ause Pi is), it is irredu
ible in

ArXs (
f proposition 1.1.40). We have a1a2 � � �ar � cpa1P1q � � � cparPrq by lemma 1.1.38, be
ause cpP q � 1,

hen
e the prime de
omposition P �

rP1
rP2 � � �

rPr.


 Uni
ity of prime de
omposition. Let P P ArXszt0u and P � P1P2 � � �Pr and P � Q1Q2 � � �Qs two prime

de
ompositions in ArXs. Possibly after renumbering the Pi (resp. the Qj), there exist r0 ¤ r (resp. s0 ¤ s)

su
h that Pi P Azt0u for i ¤ r0 and degpPiq ¡ 0 for r0   i ¤ r (resp. Qj P Azt0u for j ¤ s0 and degpQjq ¡ 0

for s0   j ¤ s). By the se
ond point above, we have cpPiq � cpQjq � 1 for r0   i ¤ r and s0   j ¤ s. Taking


ontents in the equality P1P2 � � �Pr � Q1Q2 � � �Qs, we get P1P2 � � �Pr0 � Q1Q2 � � �Qs0 , whi
h is an equality

of two prime de
ompositions in the UFD A: we have r0 � s0, and after renumbering, we may assume that

PiA � QiA for all i P t1, . . . , r0u. Dividing P by P1P2 � � �Pr0 , we get Pr0�1 � � �PrArXs � Qr0�1 � � �QsArXs.

This is a prime de
omposition in KrXs, whi
h is a UFD: we have r � s and after renumbering, we

may assume that PiKrXs � QiKrXs for all i P tr0 � 1, . . . , ru. As cpPiq � cpQiq � 1, we have in fa
t

PiArXs � QiArXs for all i P tr0 � 1, . . . , ru. �

Remark 1.1.42. (1) During the proof, we showed that a 
omplete family of representative of irredu
ible

elements in ArXs is given by the union of a 
omplete family of representative of irredu
ible elements in A

and that of a family of polynomials in ArXs with 
ontent 1 that forms a 
omplete family of representatives

of irredu
ible elements in KrXs.

(2) In general, A may be a UFD without ArrXss being one.

To summarize the relationships between the 
lasses of rings re
alled above, we have the following impli
ations

(whose reverses are false):

�eldsñ Eu
lidean domainsñ PIDñ UFDñ integrally 
losed domainsñ integral domains

1.2. Modules and algebras.

1.2.1. Modules.

De�nition 1.2.2. An A-module is a triple pM,�, �q where pM,�q is an abelian group and � : A �M Ñ M

an external 
omposition law su
h that :

(1) p�a, b P Aq p�m PMq pa� bq �m � a �m� b �m ;

(2) p�a, b P Aq p�m PMq pabq �m � a � pb �mq ;

(3) p�a P Aq p�m1,m2 PMq a � pm1 �m2q � a �m1 � a �m2 ;

(4) p�m PMq 1 �m � m

This amounts to give a ring homomorphism AÑ EndpMq.

Remark 1.2.3. Elements in A are 
alled s
alars. As usual, we usually denote a module by the underlying

set and write am instead of a �m.

Example 1.2.4. (1) A Z-module in nothing but an abelian group.

(2) If K is a �eld, an K-module is just a K-ve
tor spa
e.

(3) If K is a �eld, a KrXs-module is a K-ve
tor spa
e endowed with a K-linear endomorphism (
orrespond-

ing to the multipli
ation by X).

(4) If I � A is an ideal, then I and A{I are A-modules.

(4)

The 
onverse is true and easy.
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De�nition 1.2.5. Let M be an A-module. A sub-A-module of M is an additive subgroup N �M whi
h is

stable under multipli
ation by s
alars, i.e. su
h that

p�a P Aq p�n1, n2 P Nq n1 � an2 P N.

Exemples 1.2.6. Submodules of A are nothing but its ideals. When A is a �eld, submodules are sub-ve
tor

spa
es.

Operations on submodules of an A-module. Let M be an A-module and pMλqλPΛ a family of sub-A-

modules of M . The interse
tion

�

λPΛ

Mλ is a submodule of M . Put

¸

λPΛ

Mλ �

!

¸

λPΛ

mλ ; pmλqλPΛ P

à

λPΛ

Mλ

)

(the set of �nite sums of elements in

�

λPΛ

Mλ). This is a sub-A-module of M , 
alled the sum of pMλqλPΛ.

De�nition 1.2.7. Let M be an A-module.

(1) Let X � M . There exists a smallest sub-A-module N of M su
h that X � N : it is 
alled the sub-A-

module of M generated by X (it is the interse
tion of all sub-A-modules of M that 
ontain X). It is also

the sum

°

xPX

Ax (where Ax � tax, a P Au).

(2) A subset X �M generates M when the sub-A-module of M generated by X is M itself.

(3) The A-module M is of �nite type if it is generated by a �nite part.

(4) The A-module M is 
alled noetherian if all its sub-A-modules are of �nite type.

De�nition 1.2.8. Let Λ be a set and pMλqλPΛ a family of A-modules.

(1) The produ
t

±

λPΛ

Mλ is the A-module of maps f : ΛÑ
�

λPΛ

Mλ su
h that fpλq PMλ for all λ P Λ.

(2) The (dire
t) sum

À

λPΛ

Mλ is the sub-A-module of

±

λPΛ

Mλ made of maps f : Λ Ñ

�

λPΛ

Mλ su
h that the

set tλ P Λ, fpλq � 0u is �nite.

(3) If Mλ � M for all λ P Λ, one writes MΛ
and M pΛq

instead of

±

λPΛ

M and

À

λPΛ

M . When n P Z
¥0 and

Λ � t1, . . . , nu, one denotes it Mn
.

Remark 1.2.9. When Λ is �nite, the A-modules

±

λPΛ

Mλ and

À

λPΛ

Mλ are the same.

De�nition 1.2.10. (1) Let M and N be A-modules. An A-linear map from M to N is a group homomor-

phism f : M Ñ N su
h that fpamq � afpmq for all a P A and m P M . The set of A-linear maps from M

to N is an abelian group denoted HomApM,Nq.

(2) The kernel of f P HomApM,Nq is the submodule Kerpfq � f�1
p0q of M , and the image of f is the

submodule Impfq � fpMq of N . The 
okernel of f is Cokerpfq :� N{ Impfq.

(3) We say that f is an isomorphism when f is bije
tive (the inverse map f�1
is then A-linear). This is

equivalent to Kerpfq � t0u (i.e. f is inje
tive) and Impfq � N (that is Cokerpfq � t0u, i.e. f is surje
tive).

De�nition 1.2.11. Let M be an A-module and N a sub-A-module. The quotient group M{N is naturally

endowed with a A-module stru
ture (be
ause apm�Nq � am� aN � am�N for all m PM and a P A).

The A-module M{N is 
alled the quotient of M by N . The 
anoni
al map π : M Ñ M{N ;m ÞÑ m�N is

A-linear, and has the following universal property: for all A-linear map f : M ÑM 1

su
h that N � Kerpfq,

there exists a unique A-linear map

rf : M{N ÑM 1

su
h that f � rf � π.

M
f //

π

��

M 1

M{N

rf

<<①①①①①①①①①

In parti
ular, if f : M ÑM 1

is A-linear, there is a 
anoni
al de
omposition f � ι� rf �π where ι : Impfq ÑM 1

is the in
lusion,

rf an isomorphism and π : M ÑM{Kerpfq the 
anoni
al proje
tion.

De�nition 1.2.12. (1) A free A-module is an A-module isomorphi
 to ApΛq for some set Λ.

(2) Let Λ be a set. For λ P Λ, let eλ P A
pΛq

be the element de�ned by eλpηq � δλ,η (Krone
ker symbol).

The family peλqλPΛ is 
alled the 
anoni
al basis of ApΛq.
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Proposition 1.2.13. (1) If a P ApΛq, then a �
°

λPΛ

apλqeλ (the sum is �nite).

(2) If M is an A-module, the A-linear map

HomApA
pΛq,Mq ÑMΛ

f ÞÑ pfpeλqqλPΛ

is an isomorphism. In other words, the data of an A-linear map f : ApΛq Ñ M is equivalent to that of the

family pfpeλqqλPΛ.

Proof. (1) For η P Λ, one has
�

°

λPΛ

apλqeλ

	

pηq � apηq.

(2) Follows from fpaq �
°

λPΛ

apλqfpeλq for all f P HomApA
pΛq,Mq and a P ApΛq. �

De�nition 1.2.14. Let M be an A-module and tmλuλPΛ � M . Form proposition 1.2.13 (2), there exists

a unique A-linear map f : ApΛq Ñ M su
h that fpeλq � mλ for all λ P Λ. The A-module Impfq is the

submodule of M generated by tmλuλPΛ. In parti
ular, the family tmλuλPΛ generates M if and only if f

is surje
tive. When f is inje
tive, we say that tmλuλPΛ is free (or linearly independent). When f is an

isomorphism (so that M is free), we say that pmλqλPΛ is a basis of M . In that 
ase, any m P M 
an be

uniquely written m �

°

λPΛ

aλmλ with paλqλPΛ P ApΛq. Su
h a family pmλqλPΛ is 
alled a basis of M (this

generalizes the usual notion of basis of a ve
tor spa
e over a �eld).

Remark 1.2.15. When A is a �eld, any A-module is free (any ve
tor spa
e has a basis). This is not true if

A is not a �eld: there exists a non zero ideal I � A su
h that I � A, and the A-module A{I is not free (if

e P A{I and a P Izt0u, then ae � 0). For instan
e, Z {2Z is a Z {4Z-module, and it is not free. It 
an be

shown (this in not obvious) that ZZ
¥0

is not free over Z (though it has no torsion).

Proposition 1.2.16. Bases of a free modules have all the same 
ardinality.

Proof. We have to show that if Λ and Λ1 are sets su
h that the A-modules ApΛq and ApΛ
1

q

are isomorphi
,

then Λ and Λ1 have the same 
ardinality. Let f : ApΛq Ñ ApΛ
1

q

be an isomorphism, and I � A a maximal

ideal A (
f Krull's theorem). As f is A-linear, it indu
es an isomorphism

(5) f : pA{IqpΛq Ñ pA{IqpΛ
1

q

. As

I is maximal, A{I is a �eld: the A{I-ve
tor spa
es pA{IqpΛq and pA{IqpΛ
1

q

are isomorphi
, so CardpΛq �

CardpΛ1q. �

De�nition 1.2.17. From the pre
eding proposition, if M is isomorphi
 to An with n P Z
¥0, the integer n

is an invariant of M , 
alled the rank of M and denoted by rkpMq.

Remark 1.2.18. When M and N are free A-module of ranks m and n, proposition 1.2.13 (2), implies that

the 
hoi
e of bases of M and N provide an isomorphism

HomApM,Nq � HomApA
m, Anq � Mn�mpAq.

As for ve
tor spa
es over a �eld, after the 
hoi
e of bases, the data of a A-linear map between free A-modules

of �nite rank is equivalent to that of its matrix in the 
hosen bases.

De�nition 1.2.19. Let M be an A-module and m PM . Put annApmq � ta P A ; am � 0u. This is an ideal

of A, 
alled annihilator of m. We say that m is torsion if annApmq � t0u, i.e. if it exists a P Azt0u su
h

that am � 0. We denote Mtors the set of torsion elements in M , and we say that M is torsion-free (resp.

has torsion) if Mtors � t0u (resp. Mtors �M).

Put annApMq � ta P A ; p�m P Mq am � 0u �
�

mPM

annApmq (the annihilator of A): this is an ideal. The

A-module stru
ture on M indu
es an A{ annApMq-module stru
ture on M . Note that M may have torsion

even if annApMq � t0u: for instan
e annZpQ {Zq � t0u.

Example 1.2.20. If I � A is a non zero ideal, the A-module A{I has torsion. For instan
e, Z {2Z is a

Z {6Z-module with torsion. Idem for the Z-module Q {Z.

Proposition 1.2.21. If A is an integral domain and M is an A-module, then Mtors is a submodule of M

and the quotient A-module M{Mtors is torsion-free.

(5)

Prove this using proposition 1.2.13 (2).
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Proof. If m1,m2 P Mtors and α P A, there exist a1, a2 P Azt0u su
h that a1m1 � 0 and a2m2 � 0. As A is

an integral domain, we have a1a2 � 0 and a1a2pm1 � αm2q � 0 so that m1 � αm2 PMtors.

Let m PM whose imagem�Mtors is torsion inM{Mtors: there exists a P Azt0u su
h that am�Mtors �Mtors

i.e. am P Mtors, so that there exists b P Azt0u su
h that bpamq � 0. As A is an integral domain, we have

ab � 0, and m PMtors. �

Remark 1.2.22. (1) The previous statement does not hold if A is not an integral domain. For instan
e, if

A �M � Z�Z, then Mtors � pZ�t0uq Y pt0u � Zq is not a submodule of M .

(2) A free A-module is torsion-free, but the 
onverse is false in general (it holds for modules of �nite type

over prin
ipal rings).

1.2.23. Algebras.

De�nition 1.2.24. An A-algebra is a ring homomorphism f : AÑ B (whi
h may not be inje
tive), whose

image lies in the 
enter of B. We will often denote it by the underlying ring B. A morphism between two

A-algebras f1 : AÑ B1 and f2 : AÑ B2 is a ring homomorphism g : B1 Ñ B2 su
h that g � f1 � f2.

B1

g // B2

Af1

aa❉❉❉
f2

==④④④

Remark 1.2.25. (0) Any ring is a Z-algebra, in a unique way.

(1) If f : AÑ B is an algebra, then B is naturally endowed with an A-module stru
ture, and the multipli-


ation law B � B Ñ B is A-bilinear. Conversely, if B is a ring endowed with an A-module stru
ture su
h

that the multipli
ation B �B Ñ B is A-bilinear, then the map f : AÑ B; a ÞÑ a1B is an A-algebra.

Example 1.2.26. (1) A �eld extension L{K is a K-algebra.

(2) If K is a �eld and V a K-ve
tor spa
e, the (non 
ommutative) ring EndKpV q is a K-algebra.

(3) If A is a ring, the polynomial ring ArXλsλPΛ is an A-algebra.

(4) If B and C are A-algebras, so is their produ
t B � C.

(5) If B is an A-algebra and I � B an ideal, then B{I is an A-algebra.

De�nition 1.2.27. Let f : AÑ B an A-algebra.

(1) A sub-A-algebra is a subring B1

� B su
h that f fa
tors through a ring homomorphism A Ñ B1

(in

other words su
h that the in
lusion map B1

Ñ B is a morphism of A-algebras).

(2) Let X :� txλuλPΛ � B. There exists a smallest sub-A-algebra of B that 
ontains X (this is nothing but

the interse
tion of all the sub-A-algebras of B 
ontaining X). This subalgebra is denoted ArxλsλPΛ and is


alled the sub-A-algebra generated by X . If it is B itself, we say that txλuλPΛ generates the A-algebra B.

(3) An A-algebra is of �nite type if it is generated by a �nite set. This is equivalent to the existen
e of a

surje
tive morphism of A-algebras ArX1, . . . , Xns Ñ B.

(4) An A-algebra is �nite if it is �nite as an A-module.

Remark 1.2.28. (1) A �nite A-algebra is of �nite type, but the 
onverse does not hold (for instan
e the

polynomial A-algebra ArXs is not �nite).

(2) Let B a �nite A-algebra andM a B-module of �nite type. TheM is an A-module of �nite type. Indeed,

one 
an write B �

r
°

i�1

biA and M �

s
°

j�1

Bmj , so that M �

°

1¤i¤r
1¤j¤s

Abimj .

1.3. Noetherianity.

Proposition 1.3.1. (1) Let M be an A-module. The following properties are equivalent:

(i) M is noetherian (
f de�nition 1.2.7 (4));

(ii) every as
ending sequen
e of sub-A-modules of M is stationary;

(iii) every non empty subset of submodules ofM 
ontains elements that are maximal under the in
lusion.

(2) Let M be an A-module and N �M a submodule. Then M is noetherian if and only if the A-modules

N and M{N are.

Proof. (1) (i)ñ(ii). Let pMnqPZ
¥0

be an as
ending sequen
e of submodules. As the submodule

°

nPZ
¥0

Mn

is of �nite type, it is generated by a �nite set tm1, . . . ,mru: let N P Z
¥0 be su
h that tm1, . . . ,mru �MN ,

so that MN �

°

nPZ
¥0

Mn �MN , hen
e
°

nPZ
¥0

Mn �MN , and Mn �MN for all n ¥ N .

(ii)ñ(iii). Let E be su
h a subset. If it has no maximal element, one 
an indu
tively 
onstru
t a stri
tly

as
ending (for the in
lusion) sequen
e of elements in E , 
ontradi
ting (ii).
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(iii)ñ(i). Let N � M be a submodule and E the set of submodules of �nite type in N . As t0u P E , we

have E � ∅: by (iii), the set E 
ontains a maximal element N0. Assume N0 � N : there exists x P NzN0

and N 1

� N0 �Ax � N P E . As N0 � N 1

, this 
ontradi
ts the maximality of N0: we have N0 � N and N

is of �nite type.

(2) 
 If M is noetherian, then N is noetherian. If N 1

is a submodule of M{N , we 
an write N 1

�

rN{N

with

rN � π�1
pN 1

q (where π : M Ñ M{N is the 
anoni
al map). As M is noetherian,

rN is of �nite type,

whi
h implies that N 1

�

rN{N is of �nite type as well, and M{N is noetherian.


 Assume N and M{N are noetherian. Let pMnqnPZ
¥0

be an as
ending sequen
e of submodules of M . The

sequen
es pMn X NqnPZ
¥0

and ppN �Mnq{NqnPZ
¥0

are as
ending in N and M{N respe
tively. As they

are noetherian, those sequen
es are stationary: there exists n0 P Z
¥0 su
h that Mn X N � Mn0

XN and

pN �Mnq{N � pN �Mn0
q{N i.e. N �Mn � N �Mn0

for all n ¥ n0. If m P Mn, there exists x P N

and y P Mn0
� Mn su
h that m � x � y. As x � y �m P N XMn � N XMn0

, we have m P Mn0
, hen
e

Mn �Mn0
i.e. Mn �Mn0

. The A-module M is thus noetherian. �

Corollary 1.3.2. If M1 and M2 are noetherian, so is their produ
t M1 �M2.

Proof. As M1 � M1 � t0u and M2 � pM1 �M2q{pM1 � t0uq are noetherian, this follows from proposition

1.3.1 (2). �

De�nition 1.3.3. The ring A is noetherian if it is as an A-module. By de�nition, this means that every

ideal of A is of �nite type. By proposition 1.3.1, this is equivalent to the fa
t that any as
ending sequen
e

of ideals in A is stationary.

Proposition 1.3.4. If A is noetherian, every A-module of �nite type is noetherian.

Proof. LetM be an A-module of �nite type: there exists n P Z
¥0 and a surje
tive A-linear map f : An ÑM .

As A is noetherian, so is An (
orollary 1.3.2), and M � An{Kerpfq (proposition 1.3.1 (2)). �

Example 1.3.5. (1) Let R be a ring and I an in�nite set. The ring of polynomials A � RrXisiPI is not

noetherian: the ideal generated by tXiuiPI is not of �nite type.

(2) Let A � Zr2X, 2X2, 2X3, . . .s � Z�2X ZrXs � ZrXs. Then A is not noetherian: the ideal I generated

by t2X i
uiPZ

¡0
is not �nitely generated. Indeed, the ring homomorphism f : ZrXisiPZ

¡0
Ñ ZrXs de�ned by

fpXiq � 2X i
fa
tors through an inje
tive morphism ZrXisiPZ

¡0
{x2i�1Xi �X i

1yiPZ¡1
Ñ ZrXs, indu
ing an

isomorphism ZrXisiPZ
¡0
{x2i�1Xi � X i

1yiPZ¡1

�

ÑA, hen
e an isomorphism F2rXisiPZ
¡0
{xX2

1y
�

ÑA{2A: the

image of I in A{2A 
orresponds to the ideal generated by tXiuiPZ
¡0
: it is not �nitely generated. Moreover,

the ideal x2XyX x2X2
y � x4X2, 4X3, . . .y is not �nitely generated: this gives an example of an interse
tion

of two prin
ipal ideal whi
h is not �nitely generated (same reasoning as above).

Theorem 1.3.6. (Hilbert) If the ring A is noetherian, so is ArXs.

Proof. Let I � ArXs be an ideal : we have to show that I is �nitely generated. We may assume that

I � t0u. For n P Z
¥0, let A¤nrXs be the sub-A-module of ArXs made of elements of degree ¤ n, and Jn

the set of 
oe�
ients of Xn
of elements in I X A

¤nrXs (this is also t0u union the leading 
oe�
ients of

elements of degree n in I). As I � ArXs is an ideal, I XA
¤nrXs is a sub-A-module of A

¤nrXs, so Jn is an

ideal in A. If n ¤ m and α P Jnzt0u (so that there exists P P I of degree n whose leading 
oe�
ient is α),

then α P Jm (sin
e α is the leading 
oe�
ient of Xm�nP ): the sequen
e of ideals pJnqnPZ
¥0

is as
ending. As

A is noetherian, this sequen
e is stationary: let d P Z
¥0 be su
h that n ¥ dñ Jn � Jd. As A is noetherian,

the ideal Jd is of �nite type (and non-zero sin
e I � t0u): 
hoose α1, . . . , αr generators of Jd that we may

assume all non-zero. These are the leading 
oe�
ients of P1, . . . , Pr P I, all of degree d. On the other hand,

A
¤d�1rXs is an A-module of �nite type (it is free with basis p1, X,X2, . . . , Xd�1

q), so it is noetherian (
f

proposition 1.3.4), hen
e M :� I XA
¤n�1rXs is of �nite type: let Q1, . . . , Qs be generators of M . We have

of 
ourse

xP1, . . . , Pr, Q1, . . . , Qsy � I.

To prove that this in
lustion is an equality, we show that if P P I then P P xP1, . . . , Pr, Q1, . . . , Qsy by

indu
tion on n � degpP q. Si n   d, then P P M � xQ1, . . . , Qsy. If n ¥ d, the leading 
oe�
ient α

of P belongs to Jn � Jd: there exist a1, . . . , ar P A su
h that α � aaα1 � � � � � arαr. The polynomial

P �

r
°

i�1

aiX
n�dPi has degree   n and belongs to I: the indu
tion hypothesis shows that this di�eren
e

belongs to xP1, . . . , Pr, Q1, . . . , Qsy, so P does as well. �

Corollary 1.3.7. Let A be a noetherian ring and B an A-algebra of �nite type. Then B is a noetherian

ring.
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Proof. As B is of �nite type, there exist b1, . . . , br P B su
h that B � Arb1, . . . , brs: there is a surje
tive

morphism of A-algebras f : ArX1, . . . , Xrs Ñ B de�ned by fpXiq � bi for i P t1, . . . , ru. Put I � Kerpfq:

we have B � ArX1, . . . , Xrs{I. As A is noetherian, so is ArX1, . . . , Xrs (apply theorem 1.3.6 r times), so

that B is a noetherian ArX1, . . . , Xrs-algebra: it is a noetherian ring. �

1.4. Modules of �nite type over PIDs. In this paragraph, we assume that A is a PID. The ring A is

an integral domain: denote by K its fra
tion �eld. Re
all that A is a UFD (
f proposition 1.1.26): there

are g
d and l
m. Moreover, as ideals in A are generated by one element, A is noetherian.

In what follows, empty entries in a matrix 
orrespond to zeros. If n P Z
¡0 and a1, . . . , an P A, we put

diagpa1, . . . , anq �
� a1 . . .

an

	

P MnpAq.

De�nition 1.4.1. If n P Z
¡0, we put GLnpAq � tM P MnpAq ; detpMq P A�u. Cramer formulas imply that

this is the group of units in the (non 
ommutative) ring MnpAq (note that the detpAq � 0 is not enough).

Put SLnpAq � tM P MnpAq ; detpMq � 1u: this is a subgroup of GLnpAq.

Proposition 1.4.2. Let n P Z
¥2 and a1, . . . , an be elements in A generating the unit ideal. Then there

exists a matrix in SLnpAq whose �rst row is pa1, . . . , anq.

Proof. Put X � pa1, . . . , anq: we have to build M P SLnpAq su
h that XM�1
� p1, 0, . . . , 0q. We work by

indu
tion on n ¥ 2.

Case n � 2. As A � Aa1�Aa2, there exist u, v P A su
h that va1�ua2 � 1. The matrix M � p

a1 a2
u v q does

the job.

Case n ¡ 2. Let dA � gcdpa2, . . . , anq and b2, . . . , bn P A su
h that dbi � ai for i P t2, . . . , nu. We have

gcdpb2, . . . , bnq � A: by indu
tion, there exists M 1

1 P SLn�1pAq su
h that YM 1�1
1 � p1, 0, . . . , 0q where

Y � pb2, . . . , bnq. Let

M1 �

�

1
M 1

1

	

We have detpM1q � detpM 1

1q � 1 and XM�1
1 � pa1, d, 0, . . . , 0q. Use 
ase n � 2: as gcdpa1, dq � A, there

exists M 1

2 P SL2pAq with pa1, dqM
�1
2 � p1, 0q. Let

M2 �

�

M 1

2

In�2

	

(In�2 P SLn�2pAq is the unit matrix). We have detpM2q � detpM 1

2q � 1 and XM�1
1 M�1

2 � p1, 0, . . . , 0q, i.e.

XM�1
� p1, 0, . . . , 0q with M �M2M1 P SLnpAq. �

Remark 1.4.3. This proof provides an e�e
tive pro
edure to 
onstru
t the matrix provided one 
an deal

with the 
ase n � 2 (whi
h is the 
ase, for instan
e, when A is eu
lidean).

De�nition 1.4.4. If n,m P N
¡0, we make the group SLnpAq � SLmpAq a
t on the A-module Mn�mpAq by

pP,Qq �M � P�1MQ.

Two matri
esM1,M2 P Mn�mpAq are equivalent if they are in the same orbit for this a
tion. We write then

M1 � M2 (this de�nes an equivalen
e relation). Note that we may also make GLnpAq � GLmpAq a
t in a

similar way.

Remark 1.4.5. When n � m, one should not 
onfuse this notion with the �ner notion of similarity: two

matri
es M1,M2 P MnpAq are similar if there exists P P GLnpAq su
h that M2 � P�1M1P .

De�nition 1.4.6. A redu
ed matrix is a matrix of the form

� α1 . . .
αr




P Mn�mpAq

with r P t0, . . . ,mintm,nuu and α1, . . . , αr P Azt0u su
h that αi | αi�1 for all i P t0, . . . r � 1u.

Notation. (1) Fix a family ppλqλPΛ of representatives of irredu
ible elements in A. Any element a P Azt0u

admits a unique de
omposition as a produ
t of irredu
ible fa
tors:

a � u
¹

λPΛ

pnλ

λ

where u P A� and pnλqλPΛ is a family of integers, all but �nitely many being equal to zero. We put

ℓpaq �
¸

λPΛ

nλ P Z
¥0
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that we 
all the length of a. This is nothing but the number of irredu
ible fa
tors in a (for instan
e, we

have ℓpaq � 0� a P A� and ℓpaq � 1 if and only if A is irredu
ible). If M � rmi,js 1¤i¤n
1¤j¤m

P Mn�mpAqzt0u,

we put

ℓpMq � min
 

ℓpmi,jq ; 1 ¤ i ¤ n, 1 ¤ j ¤ m, mi,j � 0
(

.

(2) If σ P Sn is a permutation, we put Pσ �

�

δσpiq,j
�

1¤i,j¤n
P MnpAq (where δi,j is the Krone
ker

symbol). We have detpPσq � εpσq (where εpσq is the signature of σ), so that Pσ P GLnpAq. Put

rPσ � diag
�

1, . . . , 1, εpσq
�

Pσ P SLnpAq.

If M P Mn�mpAq, the matrix PσM is the element in Mn�mpAq whose i-th row is the σpiq-th row of M .

Similarly, if γ P Sm is a permutation, the matrix MPγ is dedu
ed from M by permuting the 
olumns

a

ording to γ. Multiplying M by

rPσ on the left (resp. by

rPγ on the right), permutes rows a

ording to σ

(resp. 
olumns a

ording to γ) and multiplies the last row (resp. 
olumn) by εpσq (resp. εpγq).

Theorem 1.4.7. Every matrix M P Mn�mpAq is equivalent to a redu
ed matrix.

Proof. We may assume M � 0. We pro
eed by indu
tion on d � mintm,nu.

Assume d � 1. Transposing if ne
essary, we may assume n � 1, so that M is a row. If m � 1, there is

nothing to do: assume m ¥ 2. Let α1 be the g
d of the 
oe�
ients of M : we have M � α1X where X is

a row ve
tor whose entries generate the unit ideal. By proposition 1.4.2, there exists Q P SLnpAq su
h that

the �rst row of Q�1
is X . Then XQ � p1, 0, . . . , 0q thus MQ � pα1, 0, . . . , 0q is redu
ed.

Assume d ¡ 1. Re
all that M � 0. Let δ � min
 

ℓpM 1

q ; M 1

�M
(

P Z
¥0. Repla
ing M by an appropriate

equivalent matrix, we may assume that ℓpMq � δ. There exist i0 P t1, . . . , nu and j0 P t1, . . . ,mu su
h

that ℓpmi0,j0q � δ. Let τ1,i0 P Sn (resp. τ1,j0 P Sm) be the transposition of t1, . . . , nu (resp. t1, . . . ,mu)

that ex
hanges 1 and i0 (resp. j0), and put M 1

�

rP�1
τ1,i0

M rPτ1,j0 P Mn�mpAq (where rPτ1,i0 P SLnpAq and

rPτ1,j0 P SLmpAq are the modi�ed permutation matri
es, 
f de�nition 1.4.1 (2)). We have M 1

� M and

m1

1,1 � mi0,j0 : repla
ing M by M 1

, we may assume that ℓpm1,1q � δ. Put α1 :� m1,1.


We �rst show that α1 divides the 
oe�
ients of the �rst row and of the �rst 
olumn of M . Transposing if

ne
essary, it is enough to deal with the �rst 
olumn. Assume there exists i P t2, . . . , nu su
h that α1 ∤ mi,1.

Ex
hanging the se
ond and the i-th rows, we may assume i � 2. Let rα1 � gcdpα1,m2,1q. As rα1 stri
tly

divides α1, we have ℓprα1q   δ. On the other hand, there exist a, b P A su
h that rα1 � am1,1 � bm2,1. Put

P �

�

�

a b
�m2,1{rα1 m1,1{rα1

1 . . .
1

�




We have detpP q � 1 and the entry of index p1, 1q in M 1

� PM is rα1: this implies that M 1

� M and

ℓpM 1

q ¤ ℓprα1q   δ, 
ontradi
ting the de�nition of δ.


 Multiplying M on the left by the matrix

�

1
�m2,1{α1 1

...
. . .

�mn,1{α1 1

�

P SLnpAq

on the left, and by

�

1 �m1,2{α1 ��� �m1,m{α1

1 . . .
1

�

P SLmpAq

on the right, we may assume that mi,1 � 0 for P t2, . . . , nu and m1,j � 0 for j P t2, . . . ,mu. Indeed this

provides an equivalent matrix, with same length (the entry of index p1, 1q was not modi�ed).


 The matrix M is now of the form

� α1

M1

�

with M1 P M
pn�1q�pm�1qpAq. By indu
tion hypothesis, there exist P1 P SLn�1pAq, Q1 P SLm�1pAq, r P N,

and elements α2, . . . , αr P Azt0u su
h that αi | αi�1 for all i P t2, . . . , r � 1u and

P�1
1 M1Q1 �

� α2 . . .
αr




Multiplying M by

�

1

P�1
1

	

P SLnpAq on the left and by

�

1
Q1

�

P SLmpAq on the right, we may assume that

M �

� α1 . . .
αr
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It remains to 
he
k that α1 | α2. Assume the 
ontrary. Let α11 � gcdpα1, α2q. As α1 ∤ α2, we have

ℓpα11q   ℓpα1q � δ. There exist a, b P A su
h that aα1 � bα2 � α11. The equality

p

1
a 1 q p

α1
α2
q p

1
b 1 q �

�

α1

α11 α2

	

imply that there exists M 1

� pmi,jq 1¤i¤n
1¤j¤m

P Mn�mpAq equivalent to M and su
h that m1

2,1 � α11: we have

ℓpM 1

q ¤ ℓpα11q   δ, 
ontradi
ting the de�nition of δ. �

Remark 1.4.8. (1) When A is eu
lidean, it is possible to make this statement 
onstru
tive, using elementary

operations.

(2) When A is a �eld, one re
overs the well known fa
t that the orbits for the equivalen
e relation are


hara
terized by the rank: every matrix M is equivalent to

�

1 . . .
1




(where the number of 1 is rkpMq).

Notation. Let M P Mn,mpAq. If k P t0, . . . ,mintn,muu, let IkpMq be the ideal generated by the minors of

order k ofM (so this is the g
d of those minors). The sequen
e of ideals pIkpMqq0¤k¤mintn,mu is de
reasing
(6)

,

and IkpMq � t0u if k ¡ rkpMq. These are 
alled the invariant fa
tors of M .

Lemma 1.4.9. Two matri
es that are equivalent have the same invariant fa
tors.

Proof. Let M P Mn,mpAq and P P GLnpAq. Put M 1

� P�1M . Lines of M 1

are A-linear 
ombinations of

those of M : by multilinearity of the determinant, a minor of order k of M 1

is an A-linear 
ombination of

minors of M of order k. This implies that IkpM
1

q � IkpMq. As M � PM 1

, we have also IkpMq � IkpM
1

q,

i.e. IkpM
1

q � IkpMq. Similarly, we have IkpMQq � IkpMq for all Q P GLmpAq (using the fa
t that 
olumns

of MQ are A-linear 
ombinations of those of M). �

Theorem 1.4.10. With the notations of theorem 1.4.7, we have IkpMq � α1 � � �αkA for k P t1, . . . , ru

(where r � rkpMq). In parti
ular, the sequen
e of ideals α1A � α2A � � � � � αrA is unique.

Proof. By lemma 1.4.9, we have IkpMq � Ikpdiagpα1, . . . , αr, 0, . . . , 0qq � α1 � � �αkA for k P t1, . . . , ru. �

Theorem 1.4.11. (Adapted basis theorem). Let M be a sub-A-module of an A-module L free of �nite

rank n. Then M is free, and there exists a basis pe1, . . . , enq of L, an integer r ¤ n and α1, . . . , αr P Azt0u

su
h that

#

αi | αi�1 for all i P t0, . . . r � 1u

pα1e1, . . . , αrerq is a basis of M.

Proof. As A is a PID, it is noetherian. As L is of �nite type, it is noetherian (proposition 1.3.4): its

sub-A-module M is of �nite type as well. Choose a generating family x1, . . . , xm PM : we have an A-linear

map

f : Am Ñ L

pa1, . . . , amq ÞÑ

m̧

j�1

ajxj

whose image is nothing but M . After the 
hoi
e of a basis B of L, this map is given by an n �m matrix

(whose j-th 
olumn 
onsists in the 
oordinates of xj in B). By theorem 1.4.7, this matrix is equivalent to

a redu
ed matrix: after a 
hange of bases in Am and L, it has the form
� α1 . . .

αr




with r P t0, . . . ,mintm,nuu and α1, . . . , αr P Azt0u su
h that αi | αi�1 for i P t0, . . . r � 1u. Denote by

pe1, . . . , enq the new basis of L: the imageM of f is then the free sub-A-module with basis pα1e1, . . . , αrerq.

�

Remark 1.4.12. The previous result is obviously false when A is not a PID. For instan
e Z {2Z is a

sub-Z {4Z-module of Z {4Z. Similarly, the sub-Z�Z-module Z�t0u of Z�Z is not free.

(6)

This follows from the fa
t that minors of order k a linear 
ombinations of minors of order k�1, as 
an be seen by developing

determinant along the �rst row.
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Theorem 1.4.13. (Invariant fa
tor de
omposition). Let M be an A-module of �nite type. There

exist integers d, r P Z
¥0 and a1, . . . , ad P Az

�

t0u YA�
�

su
h that

#

ai | ai�1 for all i P t0, . . . d� 1u

M � pA{a1Aq � � � � � pA{adAq �Ar

Moreover, the integers d, r and the ideals a1A, . . . , adA are unique. The integer r is 
alled the rank of M

and when r � 0, the elements pa1, . . . , adq �the� invariant fa
tors of M .

Proof. 
We start with the existen
e. As M is of �nite type, we 
an 
hoose a generating family m1, . . . ,mn:

we have a surje
tive A-linear map

f : An ÑM

pλ1, . . . , λnq ÞÑ

ņ

i�1

λimi.

As An is free of �nite rank, there is a basis pe1, . . . , enq su
h that

Kerpfq �
s
à

i�1

Aαiei

with s P t1, . . . , nu and α1, . . . , αs P Azt0u su
h that αi | αi�1 for all i P t0, . . . s� 1u (
f theorem 1.4.11).

Taking the quotient, f indu
es an A-linear isomorphism

M � An{Kerpfq �
� s
à

i�1

pA{αiAqei

	

`

� n
à

i�s�1

Aei

	

Let t � max
 

i P t1, . . . , su ; αi P A
�

(

(we have t � 0 if α1 R A
�

). Put d � s� t, r � n� s and ai � αt�i
for i P t1, . . . , du. We have a1, . . . , ad P Az

�

t0u YA�
�

and ai | ai�1 for all i P t0, . . . d� 1u. Moreover, as

A{αiA �

#

0 if i ¤ t

A{ai�tA if t   i ¤ s

we have

M � pA{a1Aq � � � � � pA{adAq �Ar.


 We now prove the uni
ity. We have Mtors � pA{a1Aq � � � � � pA{adAq thus M{Mtors � Ar . The integer

r thus depends only on M (
f proposition 1.2.16). We are thus redu
ed to the 
ase where M is a torsion

module. We have M �

d
±

i�1

pA{aiAq with a1 | a2 | � � � | ad in Azt0u. Let P be the set of irredu
ible

elements in A. If p P P, the ideal pA is prime an non-zero, hen
e maximal

(7)

: the A-module M{pM is an

A{pA-ve
tor spa
e of �nite dimension dppMq (we have dppMq � #ti P t1, . . . , du ; p | aiu). This shows in

parti
ular that d � dpMq :� max
pPP

dppMq only depends on M .

For all n P Z
¥0, we have dppp

nM{pn�1Mq � #ti P t1, . . . , du ; vppaiq ¥ n � 1u. This implies that for all

n P Z
¡0, the integer

#ti P t1, . . . , du ; vppaiq � nu � dppp
n�1M{pnMq � dppp

nM{pn�1Mq

only depends on M and p. As vppa1q ¤ vppa2q ¤ � � � ¤ vppadq, this implies that for all p P P and all

i P t1, . . . , du, the integer vppaiq only depends on M and p. This means that the ideals aiA only depend on

M .

Remark: an other way to 
on
lude.

Lemma 1.4.14. If a, b P Azt0u, we have apA{bAq � A{ b
gcdpa,bq

A.

Proof. Write a � α gcdpa, bq and b � β gcdpa, bq: we have gcdpα, βq � 1. Let π : A Ñ A{bA be the 
anoni
al proje
tion. Then apA{bAq is the

image of the 
omposite π �ma, where ma : A Ñ A is the multipli
ation by a. We have x P Kerpπ �maq � ax P bA � αx P βA � x P βA (be
ause

gcdpα, βq � 1). The surje
tive morphism π �ma : A Ñ apA{baq thus indu
es an isomorphism A{βA
�

Ñ apA{bAq. �

(7)

If A is a PID and p � A is prime and non-zero, then p is maximal. Indeed, let m � p be a maximal ideal (
f Krull's theorem,


f theorem 1.1.7). As A is a PID, there exist a, b P Azt0u su
h that p � aA and m � bA. As p � m, we have b | a: there

exists c P A su
h that a � bc. As p is prime, we have b P p or c P p. In the last 
ase, there would exist d P A su
h that

c � ad, when
e a � abd i.e. bd � 1 sin
e A is a domain and a � 0. This would imply that b P A� i.e. m � A whi
h is not.

We thus have b P p, hen
e m � p i.e. p � m is maximal.
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We prove the uni
ity of the ideals taiAu1¤i¤d by indu
tion on d, the 
ase d � 0 being empty. Assume that M �

d
±

i�1

pA{aiAq �
d
±

i�1

pA{biAq

with a1 | a2 | � � � | ad and b1 | b2 | � � � | bd. Let s � maxti P t1, . . . , du ; aiA � a1Au. We have a1M �

d
±

i�s�1

a1pA{aiAq �
d
±

i�1

a1pA{biAq.

By lemma 1.4.14, this means that a1M �

d
±

i�s�1

A{
ai
a1

A �

d
±

i�1

A{
bi

gcdpa1,biq
A. By uni
ity of dpa1Mq, this implies that A{

bi
gcdpa1,biq

A � t0u,

i.e. biA � gcdpa1, biqA when
e a1A � biA for all i P t1, . . . , su. Symmetri
ally, we also have biA � a1A, so aiA � biA for i P t1, . . . , su.

Moreover, we have a1M �

±d
i�s�1 A{

ai
a1

A �

±d
i�s�1 A{

bi
a1

A: the indu
tion hypothesis implies that

ai
a1

A �

bi
a1

A and thus aiA � biA for all

i P ts� 1, . . . , du, �nishing the proof. �

Corollary 1.4.15. A torsionfree A-module of �nite type is free.

Corollary 1.4.16. The ideals α1A, . . . , αrA in theorems 1.4.7 and 1.4.11 are unique.

Proof. If M �

r
À

i�1

Aαiei �
n
À

i�1

Aei � L, we have L{M �

r
À

i�1

pA{αiAqei � An�r. Let s be the number of

indi
es i P t1, . . . , ru su
h that αiA � A (i.e. αi P A
�

). We have L{M � pA{αs�1Aq�� � ��pA{αrAq�A
n�r

.

By theorem 1.4.13, the integers r � s and n � r and thus s only depend on L and M , and the ideals

αs�1A, . . . , αrA as well, whi
h implies uni
ity in theorem 1.4.11. This implies uni
ity in theorem 1.4.7. �

1.5. Tensor produ
t. Let M and N be A-modules.

De�nition 1.5.1. Let L be an A-module. A map f : M � N Ñ L is bilinear if it satis�es the following


onditions:

(1) f is left-linear, i.e. p�a P Aq p�m1,m2 PMq p�n P Nq fpam1 �m2, nq � afpm1, nq � fpm2, nq ;

(2) f is right-linear, i.e. p�a P Aq p�m PMq p�n1, n2 P Nq fpm, an1 � n2q � afpm,n1q � fpm,n2q.

The set BilApM,N ;Lq of bilinear maps M �N Ñ L is an A-module.

Proposition 1.5.2. There exists a pair pMbAN,ϕq whereMbAN is an A-module and ϕ : M�N ÑMbAN

a bilinear map, having the following universal property: if f : M �N Ñ L is a bilinear map, there exists a

unique A-linear map

rf : M bA N Ñ L su
h that f � rf � ϕ.

M �N
f //

ϕ
))❙❙❙

❙
L

M bA N
rf

77♦♦♦♦

Remark 1.5.3. (1) The universal property of the pair pM bA N,ϕq implies its uni
ity up to a unique

isomorphism.

(2) One 
an slightly generalize the previous 
onstru
tion to 
over the 
ase where A may not be 
ommutative

(this is useful for representation theory for instan
e).

Proof. Consider the A-module ApM�Nq
of mapsM�N Ñ A having a �nite support, and its 
anoni
al basis

�

e
pm,nq

�

pm,nqPM�N
. Let K be the submodule of ApM�Nq

generated by the following elements:


 e
pm1�m2,nq � e

pm1,nq � e
pm2,nq for m1,m2 PM and n P N ;


 e
pm,n1�n2q

� e
pm,n1q

� e
pm,n2q

for m PM and n1, n2 P N ;


 e
pam,nq � ae

pm,nq and epm,anq � ae
pm,nq for a P A, m PM and n P N .

Put M bA N � ApM�Nq
{K. Let i : M �N Ñ ApM�Nq; pm,nq ÞÑ e

pm,nq and π : A
pM�Nq

Ñ M bA N the


anoni
al proje
tion. Put ϕ � π � i: by de�nition of K, the map ϕ is bilinear. If f : M �N Ñ L is bilinear,

we de�ne an A-linear map

pf : ApM�Nq
Ñ L by

pfpe
pm,nqq � fpm,nq for all m P M and n P N . As f is

bilinear, we have K � Kerp pfq: the map

pf fa
tors through a map

rf : M bA N Ñ L, so that f � rf � ϕ (we

have

rfpπpe
pm,nqqq � fpm,nq for all m PM and n P N).

M �N
f

%%

ϕ

))❚❚❚
❚❚❚

❚

i

��

M bA N
rf //❴❴❴ L

ApM�Nq
π

55❦❦❦❦❦❦
pf

77

�

De�nition 1.5.4. M bA N is 
alled the tensor produ
t of M and N over A.

Remark 1.5.5. (1) The universal property of tensor produ
t means that there is a fun
torial isomorphism

BilpM,N ;Lq � HomApM,HomApN, .qq � HomApM bA N, .q
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(2) If M is an A-module and B an A-algebra, then B bAM is endowed with a B-module stru
ture (base


hange).

Notation. With notations of proposition 1.5.2, put mbn � πpe
pm,nqq PM bAN for all m PM and n P N .

Elements in M bA N of this form are 
alled simple tensors. They generate M bA N as an A-module, but

in general, all elements in M bA N are not simple tensors.

Proposition 1.5.6. Let M be an A-module.

(1) If N is an A-module, there is an isomorphism M bA N
�

ÑN bAM sending xb y to y b x.

(2) If pNλqλPΛ is a family of A-modules, thenM bA

�

À

λPΛ

Nλ

	

�

À

λPΛ

pM bANλq (distributivity of the tensor

produ
t).

Proof. Follow from the universal property of the tensor produ
t. �

Proposition 1.5.7. If M and N are free, with bases peλqλPΛ and pfδqδP∆ respe
tively, then M bAN is free,

with base peλ b fδq
pλ,δqPΛ�∆.

Proof. Write N �

À

δP∆

Afδ. By proposition 1.5.6 (2), we haveM bAN �

À

δP∆

M bAAfδ. Similarly, we have

M bA Afδ �
À

λPΛ

Aeλ bA Afδ. As Aeλ bA Afδ � Aeλ b fδ, we get M bA N �

À

λPΛ
δP∆

Aeλ b fδ, when
e the

result. �

Fun
toriality of tensor produ
t. Let f : M ÑM 1

and g : N Ñ N 1

be two A-linear maps. They indu
e

a map M �N Ñ M 1

bA N
1; pm,nq ÞÑ fpmq b gpnq. It is bilinear, so fa
tors uniquely through an A-linear

map

f b g : M bA N ÑM 1

bA N
1.

In parti
ular, if N an A-module, there is a natural A-linear map M bA N
fbIdN
ÝÝÝÝÑM 1

bA N . An important

spe
ial 
ase is base 
hange: if B is an A-algebra, f indu
es a B-linear map B bAM Ñ B bAM
1

.

Remark 1.5.8. If f : M ÑM 1

is an isomorphism, then M bA N
fbIdN
ÝÝÝÝÑM 1

bA N is an isomorphism. If f

is only inje
tive, then M bA N
fbIdN
ÝÝÝÝÑ M 1

bA N may not be inje
tive. If f is surje
tive, then f b IdN is

surje
tive (even better, Cokerpf b IdN q � Cokerpfq bA N , see below).

Example 1.5.9. (1) pZ {aZq bZ pZ {bZq � Z { gcdpa, bqZ for all a, b P Z
¡0.

(2) pQ {Zq bZ pQ {Zq � 0.

(3) QbZQ � Q.

(4) The maps CbCCÑ C; z1 b z2 ÞÑ z1z2 and CbRCÑ C2; z1 b z2 ÞÑ pz1z2, z1z2q are isomorphisms.

(5) Let K be a �eld, V and W be K-ve
tor spa
es, and let V _

� HomKpV,Kq be the dual of V . The map

W bK V _

Ñ HomKpV,W q sending w b α (with w P W and α P V _

) to the rank 1 linear map given by

x ÞÑ αpxqv is an isomorphism (be
ause it is surje
tive sin
e any element in HomKpV,W q 
an be written as

a sum of rank 1 maps, and dimKpW bK V _

q � dimKpV q dimKpW q � dimKpHomKpV,W qq). In parti
ular,

one has V bK V _

�

ÑEndKpV q. Note that the map V bK V _

Ñ K; v b α ÞÑ αpvq 
orresponds, via this

isomorphism, to the tra
e map Tr : EndKpV q Ñ K.

1.5.10. Tensor produ
t of algebras. Let B and C be A-algebras. The multipli
ation on B (resp. C) provides

maps mB : BbAB Ñ B; xby ÞÑ xy and mC : CbAC Ñ C; xby ÞÑ xy. Moreover, there is an isomorphism

ε : C bA B
�

ÑB bA C; xb y ÞÑ y b x. Consider the 
omposite

pB bA Cq bA pB bA Cq
IdB bεbIdC

µ

11pB bA Bq bA pC bA Cq
mBbmC // B bA C

(here we ta
itly used the natural isomorphisms pB bA Cq bA pB bA Cq
�

ÑB bA pC bA Bq bA C and

B bA pB bA Cq bA C
�

ÑpB bA Bq bA pC bA Cq i.e. the asso
iativity of tensor produ
t).

De�nition 1.5.11. The pre
eding map µ : pBbACqbA pBbACq Ñ BbAC endows the A-module BbAC

with an A-algebra stru
ture: the produ
t law is simply given by

pb1 b c1q � pb2 b c2q � pb1b2q b pc1c2q

on simple tensors. This A-algebra is 
alled the tensor produ
t of the A-algebras B and C.

Remark 1.5.12. Note that this 
onstru
tion is fun
torial.

There are natural morphisms of A-algebras iB : B Ñ BbAC; b ÞÑ bb1C and iC : C Ñ BbAC; c ÞÑ 1Bb c.
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Proposition 1.5.13. (Universal property of the tensor produ
t of algebras). If X is an A-

algebra, then

HomA -alg

pBbAC,Xq �
 

pf, gq P HomA -alg

pB,Xq�HomA -alg

pC,Xq ; p�b P Bq p�c P Cq fpbqgpcq � gpcqfpbq
(

In parti
ular, if B and C are 
ommutative, the tensor produ
t pB bA C, iB, iCq is the 
oprodu
t of B and

C in the 
ategory of 
ommutative A-algebras.

B
iB
))❘❘

❘❘
❘❘

f

%%
A

88♣♣♣♣♣♣

&&◆◆
◆◆

◆◆ B bA C // X

C
iC

55❧❧❧❧❧❧
g

99

Example 1.5.14. (1) ArX1, . . . , Xns bA B � BrX1, . . . , Xns.

(2) If I � B is an ideal and I � B bA C the ideal generated by iBpIq, then pB{Iq bA C � pB bA Cq{I .

For instan
e, assume that P1, P2 P A :� CrX,Y s, and let B � CrX,Y s{xP1y and C � CrX,Y s{xP2y. Then

BbAC � CrX,Y s{xP1, P2y. Geometri
ally, this 
orresponds to the fun
tions on the interse
tion of the two


urves de�ned by P1 and P2 in the a�ne plane A2
C.

(3) (Example 1.5.9 (4) 
ontinued) Let L{K is a �nite Galois extension with group G, the natural map

L bK L Ñ

À

σPG

L; x b y ÞÑ pxσpyqqσPG is an isomorphism of L-algebras (for the left stru
ture on the

LHS, and the diagonal stru
ture on the RHS). Indeed, 
hoose a primitive element α P L (i.e. su
h that

p1, α, α2, . . . , αd�1
q is a K-basis of L, where d � rL : Ks), and let P pXq �

±

σPG

pX � σpαqq P KrXs be

its minimal polynomial over K. Then L bK L � L bK KrXs{xP y � LrXs{xP y �
À

σPG

L, the last map

sending the 
lass of X to pσpαqqσPG (this is nothing but the Chinese remainder theorem). By L-linearity,

it is obvious that the 
omposite maps xb y to pxσpyqqσPG (remark: in down to earth terms, p1b αiq0¤i d
is an L-basis of L bK L, whi
h is mapped to ppσpαqiq0¤i dqσPG, whi
h is an L-basis of

À

σPG

L be
ause the

Vandermonde matrix pσpαqiq0¤i d
σPG

P MdpLq is invertible).

1.6. Tensor, symmetri
 and exterior algebras.

1.6.1. Graded algebras.

De�nition 1.6.2. Let AÑ B be an A-algebra. A grading on B is a 
olle
tion of sub-A-modules tBnunPZ
¥0

su
h that


 B �

8

À

n�0

Bn;


 p�m,n P Z
¥0qBnBm � Bn�m.

A graded A-algebra is an A-algebra endowed with a grading.

Remark 1.6.3. If B �

8

À

n�0

Bn is a graded A-algebra, then B0 is an A-algebra.

Example 1.6.4. 
 B � ArX1, . . . , Xds has a natural grading, for whi
h Bn is the sub-A-module made of 0

and homogeneous polynomials of degree n.


 Idem for ArrX1, . . . , Xnss.

Remark 1.6.5. By analogy with the previous example, elements in Bn are sometimes 
alled homogeneous

of degree n.

De�nition 1.6.6. Let B �

8

À

n�0

Bn be a graded A-algebra. An ideal I � B is 
alled graded if I �
8

À

n�0

pIXBnq.

Example 1.6.7. If B � ArXs and I � x1 � Xy � B, then I is not graded (be
ause I X Bn � t0u for all

n P Z
¥0).

Proposition 1.6.8. If B �

8

À

n�0

Bn is a graded A-algebra and I � B an ideal generated by homogeneous

elements, then I is graded.

Proof. Write I �
°

λPΛ

βλB with βλ homogeneous of degree nλ P Z
¥0 for all λ P Λ. Let x P I: there exists

λ1, . . . , λr P Λ and b1, . . . , br P B su
h that x �
r
°

k�1

βλk
bk. For k P t1, . . . , ru, write bk �

8

°

n�0

bk,n with
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bk,n P Bn, and bk,n � 0 for n " 0: we have x �
8

°

n�0

xn with xn �
°

kPZ
¥0

nλk
¤n

βλk
bk,n�nλk

P I X Bn, so that

I �
8

À

n�0

pI XBnq. The reverse in
lusion is trivial. �

Proposition 1.6.9. Let B �

8

À

n�0

Bn be a graded A-algebra and I � B a graded ideal. For n P Z
¥0, let

pB{Iqn � pBn � Iq{I � Bn{pI XBnq be the image of Bn in B{I. Then B{I �
8

À

n�0

pB{Iqn, so that B{I is a

graded A-algebra.

Proof. The map B �

8

À

n�0

Bn Ñ
8

À

n�0

pB{Iqn is surje
tive (be
ause Bn Ñ pB{Iqn � Bn{pI X Bnq is for ea
h

n P Z
¥0) and its kernel is

8

À

n�0

pI XBnq � I. �

De�nition 1.6.10. Let B �

8

À

n�0

Bn and C �

8

À

n�0

Cn be graded A-algebras.


 A morphism of A-algebras ϕ : B Ñ C is graded if ϕpBnq � Cn for all n P Z
¥0.


 The tensor produ
t algebra B bA C is naturally graded by pB bA Cqn �
n
À

k�0

Bk bA Cn�k.

Remark 1.6.11. As B �

8

À

n�0

Bn and C �

8

À

n�0

Cn, we have B bA C �

À

n,mPZ
¥0

Bn bA Cm (
f proposition

1.5.6 (2)), so B bA C �

8

À

n�0

pB bA Cqn. Moreover, if 0 ¤ k ¤ n and 0 ¤ ℓ ¤ m are integers, and x P Bk,

x1 P Bℓ, y P Cn�k and y
1

P Cm�ℓ, we have pxbyqpx
1

by1q � xx1byy1 P Bk�ℓbACn�m�pk�ℓq � pBbACqn�m,

so the previous de�nition makes sense.

1.6.12. Tensor, symmetri
 and exterior algebras. In this se
tion M denotes an A-module. If n P Z
¥0, we

put

Mbn
�M bAM bA � � � bAM
loooooooooooooomoooooooooooooon

n times

.

(in parti
ular Mb0
� A and Mb1

�M).

De�nition 1.6.13. The tensor algebra of M is

TApMq :�
8

à

n�0

Mbn

where the A-algebra stru
ture is 
hara
terized by

px1 b � � � b xnq b py1 b � � � b ymq ÞÑ x1 b � � � b xn b y1 b � � � b ym.

It is a graded A-algebra, the n-th graded pie
e being Mbn
.

Remark 1.6.14. In general, TApMq is not 
ommutative.

Example 1.6.15. 
 If M � Ax in free of rank 1, then Mbn
� Axbn is of rank 1 for all n P Z

¥0, and

TApMq �

8

À

n�0

Axbn � ArXs is isomorphi
 to the ring of polynomials in one variable X 
orresponding to

p0, x, 0, . . .q P TApMq.


 If M � Ax`Ay is free of rank 2, then TApMq is isomorphi
 to the free A-algebra on two indeterminates

X and Y (that 
orrespond to p0, x, 0, . . .q and p0, y, 0, . . .q respe
tively).

De�nition 1.6.16. Let IspMq � TApMq (resp. IapMq � TApMq) be the two-sided ideal generated by

elements of the form x1 b � � �xn � xσp1q b � � � b xσpnq with n P Z
¡0, x1, . . . , xn P M and σ P Sn (resp. of

the form x1 b � � � b xn where n P Z
¥2 and x1, . . . , xn PM are su
h that there exist 1 ¤ i   j ¤ n su
h that

xi � xj).

Remark 1.6.17. As Sn is generated by transpositions, a set of generators for IspMq (resp. IapMq) is given

by txb y � y b xux,yPM (resp. txb xuxPM ).

Being generated by homogeneous elements, the ideals IspMq and IapMq of TApMq are graded.
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De�nition 1.6.18. The symmetri
 algebra (resp. exterior algebra) of M is

SymApMq :� TApMq{IspMq presp. AltApMq � TApMq{IapMqq

By proposition 1.6.9, these are graded A-algebras: SymApMq �

8

À

n�0

Symn
ApMq and AltApMq �

8

À

n�0

AltnApMq

where Symn
ApMq �Mbn

{pIspMq XMbn
q and AltnApMq �Mbn

{pIapMq XMbn
q.

Remark 1.6.19. (1) As A-algebras, SymApMq and AltApMq are generated by Sym1
ApMq � Alt1ApMq � M .

As A is 
ommutative, this implies in parti
ular that the ring SymApMq is 
ommutative, and that the graded

A-algebra AltApMq is anti
ommutative, whi
h means that yx � p�1qnmxy if x P AltnApMq and y P AltmA pMq.

(2) These 
onstru
tions are fun
torial: an A-linear map f : M Ñ M 1

indu
es morphisms of A-algebras

TApfq : TApMq Ñ TApM
1

q, SymApfq : SymApMq Ñ SymApM
1

q and AltApfq : AltApMq Ñ AltApM
1

q.

(3) Base 
hange: if B is a 
ommutative A-algebra and M an A-module, then TBpBbAMq � BbA TApMq,

SymBpB bAMq � B bA SymApMq and AltBpB bAMq � B bA AltApMq.

De�nition 1.6.20. The A-module Symn
ApMq (resp. AltnApMq) is 
alled the n-th symmetri
 power (resp.

exterior power) of M .

Notation. 
 Quite often, AltnApMq is denoted by

�n
AM .


 Let t : Mn
Ñ Mbn; px1, . . . , xnq ÞÑ x1 b � � � b xn and s : Mn

Ñ Symn
ApMq (resp. a : Mn

Ñ AltnApMq) be

the 
omposite of t with the natural proje
tion. Then one writes x1 � x2 � � �xk�1 � xn instead of spx1, . . . , xnq

and x1 ^ � � � ^ xn instead of apx1, . . . , xnq.

Example 1.6.21. 
 If M � Ax in free of rank 1, then SymApMq � TApMq � ArXs, and AltApMq � A`Ax.


 If M � Ax ` Ay is free of rank 2, then SymApMq � ArX,Y s, and AltApMq � A ` Ax ` Ay ` Ax ^ y is

free of rank 4.

De�nition 1.6.22. Let L be an A-module and n P Z
¡0. A map f : Mn

Ñ L is n-linear if it is A-linear

with respe
t to ea
h of its variables. A n-linear map f : Mn
Ñ L is symmetri
 (resp. alternating) if

fpxσp1q, . . . , xσpnqq � fpx1, . . . , xnq for all x1, . . . , xn P M and σ P Sn (resp. fpx1, . . . , xnq � 0 as soon as

there are 1 ¤ i   j ¤ n su
h that mi � mj).

Remark 1.6.23. If f : Mn
Ñ L is an alternating n-linear map, then f it is antisymmetri
, i.e.

fpxσp1q, . . . , xσpnqq � εpσqfpx1, . . . , xnq

for all x1, . . . , xn P M and σ P Sn. When 2 P A�, the 
onverse holds, i.e. an antisymmetri
 map is

alternating.

Proposition 1.6.24. The n-linear map t : Mn
ÑMbn

(resp s : Mn
Ñ Symn

ApMq, resp. a : Mn
Ñ AltnApMq)

has the following universal property: if f : Mn
Ñ L is a n-linear map (resp. a symmetri
, resp. an

alternating n-linear map), then there exists a unique A-linear map

rf : Mbn
Ñ L (resp.

rf : Symn
ApMq Ñ L,

resp.

rf : AltnApMq Ñ L) su
h that f � rf � t (resp. f � rf � s, resp. f � rf � a), i.e. su
h that the diagram

Mn f //

t
''◆◆

◆ L

Mbn rf

99rrr
presp.Mn f //

s ((◗◗
◗◗

L

Symn
ApMq

rf

77♥♥♥♥
, resp.Mn f //

a ((PP
PP

L

AltnApMq

rf

77♦♦♦♦
q


ommutes.

Proof. By the universal property of tensor produ
t, there exists a unique A-linear map f̆ : Mbn
Ñ L su
h

that f � f̆ � t. By de�nition, f is symmetri
 (resp. alternating) if and only if IspMqXMbn
� Kerpf̆q (resp.

IapMqXMbn
� Kerpf̆q), i.e. if and only if the map f̆ fa
torizes through an A-linear map

rf : Symn
ApMq Ñ L

(resp.

rf : AltnApMq Ñ L). �

Proposition 1.6.25. (Universal property of the symmetri
 algebra). Let f : AÑ B be a 
ommu-

tative A-algebra. The map

HomA -alg

pSymApMq, Bq Ñ HomA -mod

pM,Bq

is bije
tive. In other words, any A-linear map ψ : M Ñ B extends uniquely into a morphism of A-algebras
pψ : SymApMq Ñ B.

M
ψ //

''❖❖
❖❖

❖ B

SymApMq

pψ

77
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Proof. If h : SymApMq Ñ B is a morphism of A-algebras, and ψ � h
|M , then ψ is A-linear, and for n P Z,

we have

hpx1 � x2 � � �xnq � ψpx1qψpx2q � � �ψpxnq

for all x1, . . . , xn PM , whi
h implies that h is entirely determined by ψ (we are just using the fa
t that M

generates SymApMq as an A-algebra). This shows that the map HomA -alg

pSymApMq, Bq Ñ HomA -mod

pM,Bq

is well de�ned and inje
tive.

Let ψ P HomA -mod

pM,Bq. If n P Z
¥0, the mapMn

Ñ B; px1, . . . , xnq ÞÑ ψpx1qψpx2q � � �ψpxnq is n-linear, so

fa
tors through a map

phn : M
bn

Ñ B. The map

ph �
8

À

n�0

phn : TpMq Ñ B is a morphism of A-algebras. As B

is 
ommutative, we have IspMq � Kerpphq, so ph fa
tors through a morphism of A-algebras h : SymApMq Ñ B

su
h that h
|M � ψ, whi
h shows the surje
tivity of HomA -alg

pSymApMq, Bq Ñ HomA -mod

pM,Bq. �

Similarly:

Proposition 1.6.26. (Universal property of the exterior algebra). Let f : AÑ B be an anti
om-

mutative A-algebra. The map

HomA -alg

pAltApMq, Bq Ñ HomA -mod

pM,Bq

is bije
tive. In other words, any A-linear map ψ : M Ñ B extends uniquely into a morphism of A-algebras
pψ : AltApMq Ñ B.

M
ψ //

&&◆◆
◆◆

B

AltApMq

pψ

88

Corollary 1.6.27. Let M1 and M2 be A-modules. There are natural isomorphisms

SymApM1q bA SymApM2q � SymApM1 `M2q

AltApM1q bA AltApM2q � AltApM1 `M2q

Proof. Let f : AÑ B be an A-algebra. Assume B is 
ommutative: we have natural bije
tions

HomA -alg

pSymApM1 `M2q, Bq � HomA -mod

pM1 `M2, Bq

� HomA -mod

pM1, Bq � HomA -mod

pM2, Bq

� HomA -alg

pSymApM1q, Bq � HomA -alg

pSymApM2q, Bq

� HomA -alg

pSymApM1q bA SymApM2q, Bq

by the universal property of symmetri
 algebras and tensor produ
t of A-algebras. Sin
e this holds for any


ommutative A-algebra B, we get an isomorphism SymApM1 `M2q � SymApM1q bA SymApM2q. The 
ase

of the exterior algebra is similar. �

Remark 1.6.28. If n, k P Z
¥0 and x1, . . . , xk PM1, y1, . . . , yn�k PM2, then

x1 b � � �xk b y1 b � � � b yn�k P pM1 `M2q
bn

so we get a map

k
à

k�0

Mbk
1 bAM

bn�k
2 Ñ pM1 `M2q

bn

This map is not an isomorphism in general. For instan
e, using proposition 1.5.6 (2) we have

pM1 `M2q
b2
�Mb2

1 `M1 bAM2 `M2 bAM1 `Mb2
2

and the fa
tor M2 bAM1 is not in
luded in the image.

If we add all those maps, we get a graded morphism of A-algebras

TApM1q bA TApM2q Ñ TApM1 `M2q

(whi
h is not an isomorphism in general). It indu
es graded morphisms of A-algebras

SymApM1q bA SymApM2q
�

Ñ SymApM1 `M2q AltApM1q bA AltApM2q
�

ÑAltApM1 `M2q

whi
h are nothing but those provided by 
orollary 1.6.27.
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Considering the graded pie
es of the graded isomorphisms of 
orollary 1.6.27, we get A-linear isomorphisms:

n
à

k�0

Symk
ApM1q bA Symn�k

A pM2q
�

Ñ Symn
ApM1 `M2q

n
à

k�0

AltkApM1q bA Altn�kA pM2q
�

ÑAltnApM1 `M2q.

Corollary 1.6.29. Assume M �

d
À

k�1

Axk is free of rank d.

(1) We have SymApMq � ArX1, . . . , Xds (where Xk 
orresponds to the image of p0, xk, 0, . . .q P TpMq), so

in parti
ular Symn
ApMq is a free module of rank

�

n�d�1
n

�

(a basis being given by homogeneous monomials

of degree n).

(2) The A-module AltnApMq is free of rank

�

d
n

�

with basis pxi1 ^ � � � ^xinq0 i1 ��� in¤d, so AltApMq is free of

rank 2d.

Proof. The 
ase d � 1 is nothing but example 1.6.21. The general 
ase follows by indu
tion, using 
orollary

1.6.27 for the symmetri
 algebra, and the se
ond isomorphism above for the exterior power. �

De�nition 1.6.30. Let M be a free A-module of rank d and f P EndApMq. By fun
toriality, f indu
es an

A-linear endomorphism AltdApfq : AltdApMq Ñ AltdApMq, whi
h is the multipli
ation by a s
alar detpfq P A

sin
e AltdApMq is free of rank 1 over A by 
orollary 1.6.29 (2). This s
alar is 
alled the determinant of f .

Remark 1.6.31. This de�nition mat
hes the �usual� one: let B � pe1, . . . , edq be a basis of M and

pαi,jq1¤i,j¤d P MdpAq the matrix of f in B, so that fpeiq �
d
°

j�1

αi,jej . We have AltdApMq � Ae where

e � e1 ^ � � � ^ ed, so that:

AltdApfqpeq �
�

ḑ

j�1

α1,jej

	

^ � � � ^

�

ḑ

j�1

αn,jej

	

�

¸

1¤j1,...,jd¤d

α1,j1α2,j2 � � �αd,jd ej1 ^ ej2 ^ � � � ^ ejn
looooooooooomooooooooooon

�0 if jk�jℓ with k�ℓ

�

¸

σPSd

α1,σp1q � � �αd,σpdq eσp1q ^ � � � ^ eσpdq
loooooooooomoooooooooon

εpσqe

�

�

¸

σPSd

εpσqα1,σp1q � � �αd,σpdq

	

e

1.6.32. Symmetri
 and anti-symmetri
 tensors. Assume from now on that n P Z
¥2 and that n! P A�.

If x1, . . . , xn P M
n
, put fspx1, . . . , xnq �

°

σPSn

xσp1q b � � � b xσpnq. This de�nes a map fs : M
n
Ñ Mbn

whi
h is n-linear and symmetri
: it fa
tors uniquely through an A-linear map ιs : Symn
ApMq Ñ Mbn

(the

symmetrization operator). Likewise, put fapm1, . . . ,mnq �
°

σPSn

εpσqmσp1qb� � �bmσpnq: this de�nes a map

fa : M
n
ÑMbn

whi
h is n-linear and antisymmetri
al (when
e alternating given the hypothesis): it fa
tors

uniquely through an A-linear map ιa : AltnApMq ÑMbn
(the anti-symmetrization operator).

Endow Mbn
with the a
tion of Sn given by σpm1b� � �bmnq � mσp1qb� � �bmσpnq. Then

1
n!
ιs �πs (where

πs : M
bn

Ñ Symn
ApMq is the 
anoni
al map) is a proje
tor onto the subspa
e

�

Mbn
�Sn

(of invariants under

the a
tion of Sn). Similarly,

1
n!
ιa � πa (where πa : M

bn
Ñ AltnApMq is the 
anoni
al map) is a proje
tor

onto the subspa
e of anti-invariants, i.e. elements x PMbn
su
h that σpxq � εpσqx for all σ P Sn.

Remark 1.6.33. When n � 2, the previous proje
tors provide a de
ompositionMb2
� Sym2

ApMq`Alt2ApMq.

Indeed, as 2 P A� we have pSpMq X Mb2
q ` pApMq X Mb2

q � Mb2
and they provide identi�
ations

Sym2
ApMq � ApMq XMb2

and Alt2ApMq � SpMq XMb2
.

1.7. Flatness.

De�nition 1.7.1. 
 A 
omplex of A-modules is a sequen
e of A-linear maps

�

fi : Mi Ñ Mi�1

�

iPI
(where

I � Z is an interval) su
h that fi�1 � fi � 0 for all i P I. It is exa
t when Kerpfi�1q � Impfiq for all i P I.


 A short exa
t sequen
e of A-modules is an exa
t 
omplex of the form

0ÑM 1

f
ÝÑM

g
ÝÑM2

Ñ 0
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Remark 1.7.2. If 0ÑM 1

f
ÝÑM

g
ÝÑM2

Ñ 0 is exa
t, then M 1

� Kerpgq and M2

� Cokerpgq.

Proposition 1.7.3. Let

(♣) M 1

f
ÝÑM

g
ÝÑM2

Ñ 0

be a diagram of A-modules. Then (♣) is an exa
t sequen
e if and only if for any A-module N , the sequen
e

(♠) 0Ñ HomApM
2, Nq

�g
ÝÑ HomApM,Nq

�f
ÝÑ HomApM

1, Nq

is exa
t.

Proof. The exa
tness of the sequen
e (♠) for all A-module N means that for any A-linear map v : M Ñ N ,

the 
omposite v � f is zero if and only if v fa
tors through g, i.e. if and only if there exists a (unique)

A-linear map u : M2

Ñ N su
h that v � u � g, whi
h pre
isely means that g : M Ñ M2

has the universal

property of the 
okernel of f . This is thus equivalent to the exa
tness of (♣). �

Remark 1.7.4. (1) Proposition 1.7.3 implies in parti
ular that if N is an A-module, the fun
tor

HomAp., Nq : ModpAq ÑModpAq

is left exa
t.

(2) Similarly, a diagram of A-modules 0 Ñ M 1

f
ÝÑ M

g
ÝÑ M2

is an exa
t sequen
e if and only if for any

A-module N , the sequen
e 0 Ñ HomApN,M
1

q

f�
ÝÑ HomApN,Mq

g�
ÝÑ HomApN,M

2

q is exa
t. This implies

in parti
ular that for any A-module N , the fun
tor HomApN, .q : ModpAq ÑModpAq is left exa
t.

Proposition 1.7.5. Let N be an A-module. The fun
tor ModpAq Ñ ModpAq; M ÞÑ M bA N is right

exa
t. This means that if 0ÑM 1

f
ÝÑM

g
ÝÑM2

Ñ 0 is an exa
t sequen
e of A-modules, then the 
omplex

M 1

bA N
fbIdN
ÝÝÝÝÑM bA N

gbIdN
ÝÝÝÝÑM2

bA N Ñ 0

is exa
t.

Proof. By proposition 1.7.3, it is enough to 
he
k the exa
tness of the sequen
e

0Ñ HomApM
2

bA N,Lq Ñ HomApM bA N,Lq Ñ HomApM
1

bA N,Lq

i.e. that of the sequen
e

0Ñ BilApM
2, N ;Lq Ñ BilApM,N ;Lq Ñ BilApM

1, N ;Lq

for any A-module L. This is trivial: an element ϕ lies in the kernel of BilApM,N ;Lq Ñ BilApM
1, N ;Lq if

and only if ϕp., yq vanishes onM 1

hen
e fa
tors throughM2

for all y P N , i.e. if and only if ϕ � ψ�pgb IdN q

for some unique ψ P BilApM
2, N ;Lq. �

Example 1.7.6. The sequen
e 0 Ñ Z
2
ÝÑ Z Ñ Z {2Z Ñ 0 is exa
t. After tensoring by Z {2Z, we get the

sequen
e

0Ñ Z {2Z
2�0
ÝÝÑ Z {2ZÑ Z {2ZÑ 0.

De�nition 1.7.7. An A-module N is 
alled �at if the fun
tor ModpAq ÑModpAq; M ÞÑMbAN is exa
t,

that is if for all exa
t sequen
e 0ÑM 1

f
ÝÑM

g
ÝÑM2

Ñ 0, the 
omplex

0ÑM 1

bA N
fbIdN
ÝÝÝÝÑM bA N

gbIdN
ÝÝÝÝÑM2

bA N Ñ 0

is a short exa
t sequen
e.

Remark 1.7.8. By proposition 1.7.5, N is �at if and only if M 1

bAN
fbIdN
ÝÝÝÝÑM bAN is inje
tive whenever

M 1

ÑM is inje
tive.

Proposition 1.7.9. An A-module N is �at over A if and only if for all ideal I � A of �nite type, the natural

map I bA N Ñ IN is inje
tive.

Proof. 
 Assume N is �at over A. As I Ñ A is inje
tive, so is I bA N Ñ N .


 Conversely, assume that the natural map IbAN Ñ IN is inje
tive for every ideal of �nite type I � A. Let

I � A be any ideal. An element ξ P KerpI bA N Ñ INq 
an be written ξ �
r
°

k�1

αi b xi with α1, . . . , αr P I

and x1, . . . , xr P N . Let J � A be the ideal generated by α1, . . . , αr, so that ξ P KerpJ bA N Ñ JNq. As

J is of �nite type, the map J bA N Ñ JN is inje
tive, hen
e ξ � 0 in J bA N , so ξ � 0 in I bA N . This

shows that the natural map I bA N Ñ IN is inje
tive for any ideal I � A.
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Let M 1

� M be a submodule: we want to show that M 1

bA N Ñ M bA N is inje
tive. As above, we


an redu
e to the 
ase where M is of �nite type (this follows from the fa
t that tensor produ
t 
ommutes

with dire
t limits, and that M is the dire
t limit of its sub-modules of �nite type), in parti
ular where

M{M 1

is of �nite type, so that there exist m1, . . . ,mr P M su
h that M � M 1

� Am1 � � � � � Amr. For

k P t0, . . . , ru, put Mk � M 1

� Am1 � � � � � Amk, so that M 1

�M0 � M1 � � � � � Mr�1 � Mr � M . The

map M 1

bA N ÑM bA N is the 
omposite

M0 bA N ÑM1 bA N Ñ � � � ÑMr�1 bA N ÑMr bA N

so it is enough to show the inje
tivity of ea
h map Mk�1 bA N Ñ Mk bA N : we 
an redu
e to the 
ase

where M �M 1

�Am.

Put I � ta P A ; am PM 1

u: this is an ideal in A. The map π : M 1

`AÑM ; px, aq ÞÑ x� am is surje
tive.

If px, aq P Kerpπq, then am � �x P M 1

, so a P I. This implies that the map ι : I Ñ Kerpπq; λ ÞÑ p�λm, λq

is an isomorphism. Form the exa
t sequen
e 0Ñ I
ι
ÝÑM 1

`A
π
ÝÑM Ñ 0 we get the exa
t sequen
e

I bA N
ιbIdN
ÝÝÝÝÑ pM 1

bA Nq `N
πbIdN
ÝÝÝÝÑM bA N Ñ 0

Let ξ P KerpM 1

bA N Ñ M bA Nq. Then pξ, 0q P Kerpπ b IdN q, so there exists η P I bA N su
h that

pξ, 0q � pι b IdN qpηq. Proje
ting on the se
ond fa
tor, the image of η P I bA N in N is zero. As the map

I bA N Ñ N in inje
tive, we have η � 0, when
e ξ � 0, as required. �

Remark 1.7.10. There is a more natural proof of this result using derived fun
tors of the tensor produ
t.

Proposition 1.7.11. (1) If N is proje
tive over A (i.e. a dire
t summand in a free A-module), then N is

�at. In parti
ular, �atness is automati
 when A is a �eld.

(2) If A is prin
ipal, that N is �at if and only if it is torsion-free.

Proof. (1) This is true when N is free by example 1.5.9 (2). In general, write N ` S � L with L a free

A-module. Let f : M 1

Ñ M be an inje
tive map of A-modules. By example 1.5.9 (2) again, the inje
tive

map f b IdL identi�es with pf b IdN q ` pf b IdSq, so f b IdN is inje
tive as well.

(2) Assume N is �at and let α P Azt0u. The multipli
ation map α : AÑ A is inje
tive: so is αb IdN : AbA
N Ñ AbA N . The latter identi�es with the multipli
ation map α : N Ñ N , so N has no α-torsion.

Assume N is torsion-free. If I � A is a nonzero ideal, then I � αA with α P Azt0u. The map IbAN Ñ IN

identi�es to the multipli
ation by α on N : it is inje
tive sin
e N is torsion-free. This implies that N is �at

over A by proposition 1.7.9. �

Remark 1.7.12. There are �at modules that are not proje
tive. For instan
e Q is �at over Z (sin
e it is

torsion-free), but it is not proje
tive (be
ause it is divisible).

1.8. Lo
alization.

De�nition 1.8.1. A subset S � A is 
alled multipli
ative if 0 R S, 1 P S and if S is stable under multipli-


ation.

Example 1.8.2. (1) A�.

(2) tfnunPZ
¥0

where f P A is not nilpotent.

(3) Azp where p � A is a prime ideal.

Proposition 1.8.3. Let S � A a multipli
ative set. There exists an A-algebra A
ι
ÝÑ S�1A, unique up to

isomorphism, having the following universal property: if f : A Ñ B is a ring homomorphism su
h that

p�s P Sq fpsq P B�

, then there exists a unique ring homomorphism

rf : S�1AÑ B su
h that f � rf � ι.

A
f //

ι !!❈
❈❈

❈❈
B

S�1A
rf

==④④④④④

Proof. Endow the set A� S with the binary relation � de�ned by

pa1, s1q � pa2, s2q � pDt P Sq tpa1s2 � a2s1q � 0

This is an equivalen
e relation. Denote by S�1A � pA�Sq{ � the quotient set. If pa, sq P A�S, we denote by
a
s
its image in S�1A. Let pa1, s1q, pa2, s2q P A�S. One 
he
ks easily that the elements

a1
s1
�

a2
s2

:� a1s2�a2s1
s1s2

and

a1
s1
.a2
s2

:� a1a2
s1s2

only depend one

a1
s1

and

a2
s2
, and that this de�nes two internal laws � and . over S�1A,

making S�1A a 
ommutative ring with unit

1
1
. Moreover, the map

ι : AÑ S�1A

a ÞÑ a
1
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is a ring homomorphism. Note that if s P S, then ιpsq � s
1
is invertible in S�1A, with inverse

1
s
.

Let f : AÑ B a ring homomorphism su
h that p�s P Sq fpsq P B�

. The map

rf : S�1AÑ B

a
s
ÞÑ fpsq�1fpaq

is a well de�ned ring homomorphism, and it is the unique one su
h that f � rf � ι. The uni
ity of pS�1A, ιq

follows from the universal property. �

De�nition 1.8.4. The A-algebra S�1A is the lo
alization of A with respe
t to the multipli
ative set S.

Remark 1.8.5. (1) As usual, if a P A, we will write a instead of ιpaq its image in S�1A.

(2) In some sense, S�1A is the �minimal� A-algebra in whi
h elements in S are invertible.

(3) When A is an integral domain, � is nothing but the "usual" relation pa1, s1q � pa2, s2q � a1s2 � a2s1.

When A is not a domain, the latter is not an equivalen
e relation (why?), and the "t" is ne
essary.

(4) Kerpιq � ta P A ; pDs P Sq sa � 0u, so ι is inje
tive when A is an integral domain.

(5) Unless A is a fa
torial domain, there is no notion of �irredu
ible fra
tion�.

Example 1.8.6. (1) Assume A is an integral domain. Then Azt0u is multipli
ative (t0u is prime), and

pAzt0uq�1A � FracpAq is the fra
tion �eld of A. For instan
e, FracpZq � Q, and FracpKrXsq � KpXq when

K is a �eld.

If moreover S � A is a multipli
ative set, the universal property provides an inje
tive ring homomorphism

S�1AÑ FracpAq: lo
alizations of A identify with subrings of FracpAq.

(2) More generally, if we do not assume integrity of A, the set S � tf P A ; f is not a zero-divisor in Au � A

is multipli
ative. In this 
ase the lo
alization QpAq :� S�1A is 
alled the total ring of fra
tions of A.

(3) Let f P A. We denote by A
pfq the lo
alization of A with respe
t to the multipli
ative set tfnunPZ

¥0
.

One 
an easily show that A
pfq � ArXs{xfX � 1y. For instan
e, Z

p10q is nothing but the ring of de
imal

numbers.

(4) If p � A is a prime ideal, we denote by Ap the lo
alization of A with respe
t to the multipli
ative set

Azp. When A is an integral domain and p � t0u, one re
overs FracpAq.

(5) Exer
ise: �nd multipli
ative sets S � Z other than Z zt0u su
h that S�1Z � Q.

De�nition 1.8.7. Let S � A be a multipli
ative set and M an A-module. The lo
alization S�1M of M

with respe
t to S is de�ned similarly as S�1A: it is the quotient of the setM�S by the equivalen
e relation

given by pm1, s1q � pm2, s2q � pDt P Sq tpm1s2�m2s1q � 0. This is a S�1A-module with the laws given by

m1

s1
�

m2

s2
:� m1s2�m2s1

s1s2
and

a
s
.m
s1

:� am
ss1

. Moreover, an A-linear map f : M Ñ N indu
es a S�1A-linear map

fS : S
�1M Ñ S�1N (su
h that fS

�

m
s

�

�

fpmq

s
for all m PM and s P S). It enjoys the following property:

for any S�1A-module N , the natural map

HomS�1ApS
�1M,Nq Ñ HomApM,Nq

is an isomorphism.

In parti
ular, if I � A, is an ideal (i.e. a submodule of A), S�1I is an ideal in S�1A.

Proposition 1.8.8. (1)

�

IdM
�

S
� IdS�1M .

(2) If f : M ÑM 1

and g : M 1

ÑM2

are A-linear maps, then pg � fqS � gS � fS .

(3) If M � N , then S�1M � S�1N and S�1
pN{Mq � S�1N{S�1M .

(4) If f : M Ñ N is A-linear, then KerpfSq � S�1 Kerpfq and CokerpfSq � S�1 Cokerpfq.

Proof. (3) The 
omposite M � N
ι
ÝÑ S�1N extends into i : S�1M Ñ S�1N (by S�1A-linearity). Let

x P S�1M : write x � m
s
with m P M and s P S. If ipxq � 0, there exists t P S su
h that tm � 0 in

M � N , whi
h implies that x � m
s
� 0 in S�1M : the map i is inje
tive. We 
onsider it as an in
lusion in

S�1M � S�1N .

The 
anoni
al map π : N Ñ N{M indu
es a S�1A-linear map S�1N
πS
ÝÝÑ S�1

pN{Mq. It is surje
tive: if

x P S�1
pN{Mq, there exists n P N{M and s P S su
h that x � n

s
. Let n P N lifting n: we have πS

�

n
s

�

� x.

Of 
ourse S�1M � KerpπSq. Conversely, if x �
n
s
P KerpπSq (with n P N and s P S), we have

πpnq

s
� 0 in

S�1
pN{Mq: there exists t P S su
h that tπpnq � πptnq � 0 in N{M , i.e. tn P M , thus x � tn

ts
P S�1M .

Hen
e KerpπSq � S�1M and S�1N{S�1M
�

ÑS�1
pN{Mq.

(4) Follows from (3). �

Proposition 1.8.9. Let M be an A-module and S � A a multipli
ative part. Then S�1A bAM
�

ÑS�1M

as S�1A-modules. In parti
ular, the A-algebra S�1A is �at.
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Proof. (1) The map S�1A �M Ñ S�1M ;
�

a
s
,m

�

ÞÑ

am
s

is bilinear so fa
tors through an A-linear map

u : S�1A bA M
�

ÑS�1M , su
h that u
�

a
s
b m

�

�

am
s
. Its inverse is nothing but the preimage of the

A-linear map M Ñ S�1A bAM given by m ÞÑ 1 bm under the isomorphism HomS�1ApS
�1M,S�1A bA

Mq

�

ÑHomApM,S�1
bAMq (
f de�nition 1.8.7). It is in fa
t S�1A-linear. Assume

m
s
�

m1

s1
in S�1M : there

exists t P S su
h that tps1m�sm1

q � 0, so 1
s
bm �

ts1

tss1
bm �

1
tss1

bpts1mq � 1
tss1

bptsm1

q �

ts
tss1

bm1

�

1
s1
bm1

.

This implies that the map v : S�1M Ñ S�1A bAM given by v
�

m
s

�

�

1
s
bm is well de�ned, and it is an

inverse of u.

(2) This is a reformulation of proposition 1.8.8 (3) �

If S, S1 � A are multipli
ative sets, then SS1 :� tss1 ; s P S, s1 P S1u is also a multipli
ative set of A.

Proposition 1.8.10. Let S be the image of S in S1�1A, then there is an natural isomorphism of rings

S�1
pS1�1Aq

�

ÑpSS1q�1A.

Proof. Let f : A Ñ B be an A-algebra su
h that fpSS1q � B�

. As fpS1q � B�

, the map f extends

uniquely into a ring homomorphism

rf : S1�1A Ñ B. Similarly,

rfpSq � B�

, so

rf extends uniquely into a

ring homomorphism

pf : S�1
pS1�1Aq Ñ B. This implies that S�1

pS1�1Aq has the universal property de�ning

pSS1q�1A: there is an natural isomorphism of rings S�1
pS1�1Aq

�

ÑpSS1q�1A. �

Corollary 1.8.11. If M is an A-module, there is a natural isomorphism S�1
pS1�1Mq

�

ÑpSS1q�1M .

Proof. Tensored withM , the isomorphism S�1AbAS
1�1A

�

ÑpSS1q�1A provides an isomorphism pS�1AbA
S1�1AqbAM

�

ÑpSS1q�1AbAM (
f proposition 1.8.9 (1)). As there are isomorphisms S1�1AbAM
�

ÑS1�1M

and pSS1q�1AbAM
�

ÑpSS1q�1M (
f proposition 1.8.9 (1) again), we dedu
e a 
hain of isomorphisms

S�1AbA pS
1�1AbAMq

��

// pS�1AbA S
1�1Aq bAM

��
S�1AbA pS

1�1Mq

��

pSS1q�1AbAM

��
S�1

pS1�1Mq //❴❴❴❴❴❴❴❴ pSS1q�1M

�

Lemma 1.8.12. Let M be an A-module and N 1

a sub-S�1A-module of S�1M . Then N 1

� S�1N where

N is the inverse image of N 1

under the natural map M Ñ S�1M .

Proof. If x � m
s
P N 1

, then sx � m
1
, i.e. m P N , so x P S�1N . Conversely, x � n

s
P S�1N (with n P N and

s P S), then n
1
P N 1

, thus x P N 1

sin
e N 1

is a S�1A-module. �

Corollary 1.8.13. Let S � A is a multipli
ative set. Ideals in S�1A are lo
alizations of ideals in A. In

parti
ular, A is noetherian implies S�1A is noetherian.

Notation. We denote by SpecpAq the set of prime ideals in A. It is 
alled the spe
trum of A.

Proposition 1.8.14. Let S � A be a multipli
ative set. The maps

tp P SpecpAq ; pX S � ∅u Ø SpecpS�1Aq

p ÞÑ S�1p

qXA :� ι�1
pqq �ß q

are in
reasing (for the in
lusion) bije
tions inverse one to the other.

Proof. Let p P SpecpAq su
h that pX S � ∅. Then S�1A{S�1p � S�1
pA{pq (
f proposition 1.8.8). Let S

be the image of S in A{p: as pX S � ∅, we have 0 R S , and S is a multipli
ative set in A{p. As A{p is an

integral domain, so is its lo
alization S�1
pA{pq � S�1

pA{pq � FracpA{pq, so that S�1p is prime in S�1A.

Conversely, if q P SpecpS�1Aq, then A{ι�1
pqq ãÑ S�1A{q is an integral domain: we have qX A P SpecpAq.

If s P pq X Aq X S, then s P q. As s is invertible in S�1A, we have q � S�1A, whi
h is not: we have

pqXAq X S � ∅.
Let p P SpecpAq be su
h that pX S � ∅. We have of 
ourse p � S�1pX A. Conversely, let a P S�1pX A:

write a � α
s
with α P p and s P S. As sa � α P p and s R p (be
ause p X S � ∅), we have a P p, whi
h

proves the equality p � S�1pXA.

Let q P SpecpS�1Aq. We have of 
ourse S�1
pqXAq � q. Conversely, let x P q : write x � a

s
with a P A and

s P S. We have sx � a P qXA, so x � a
s
P S�1

pqXAq, whi
h proves the equality q � S�1
pqXAq. �
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Remark 1.8.15. In parti
ular we have SpecpS�1Aq � SpecpAq. The set SpecpAq 
an be equipped with a

topologi
al spa
e stru
ture (and even more...) and the bije
tion of proposition 1.8.14 identi�es SpecpS�1Aq

to an open subset of SpecpAq, whi
h explains the terminology of "lo
alization".

De�nition 1.8.16. A lo
al ring is a ring having only one maximal ideal.

Exemples 1.8.17. (1) A �eld is a lo
al ring.

(2) If K is a �eld, the ring of formal series KrrXss is lo
al, with maximal ideal XKrrXss.

(3) Exer
ise: A is lo
al if and only if AzA� is an ideal

(8)

: it is then the maximal ideal of A.

De�nition 1.8.18. Let A and B be lo
al rings with maximal ideals mA and mB respe
tively. A ring

homomorphism f : AÑ B is lo
al when fpmAq � mB.

Example 1.8.19. Let A be a lo
al ring, m its maximal ideal, k � A{m its residue �eld. Then the 
anoni
al

proje
tion A Ñ k is a lo
al homomorphism. Assume moreover that A is an integral domain, and let

K � FracpAq be its fra
tion �eld. Then the in
lusion AÑ K is not lo
al when A is not a �eld.

Corollary 1.8.20. If p P SpecpAq, then SpecpApq � tqAp ; q P SpecpAq, q � pu. In parti
ular, Ap is a lo
al

ring with maximal ideal pAp.

Proof. The equality follows from the equivalen
e qX pAzpq � ∅� q � p and proposition 1.8.14. Bije
tions

of lo
. 
it. being in
reasing (for in
lusions), maximal elements 
orrespond. �

Lemma 1.8.21. Let M be an A-module. Then M � t0u if and only if Mm � t0u for all maximal ideal

m � A.

Proof. Assume Mm � t0u for all maximal ideal m � A. Let m P M . Put I � ta P A, am � 0u: this is an

ideal in A. Assume I � A: there exists m � A maximal su
h that I � m (theorem 1.1.7). As m �

m
1
is 0 in

Mm, there exists t P Azm su
h that tm � 0 in M , i.e. t P I. We have thus t P Izm, whi
h is a 
ontradi
tion:

I � A and m � 0. �

Proposition 1.8.22. (Lo
al-global prin
iple). Let M be an A-module and M 1

, M2

submodules of M .

Then M 1

�M2

(resp. M 1

�M2

) if and only if M 1

m �M2

m (resp. M 1

m �M2

m) in Mm for all maximal ideal

m of A.

Proof. If M 1

�M2

, we already know that M 1

m �M2

m for all maximal ideal m in A (proposition 1.8.8 (3)).

Conversely, assume that M 1

m � M2

m for all maximal ideal m in A. Put M � M{M2

and π : M Ñ M the


anoni
al map, so πpM 1

q � M . By assumption, we have πpM 1

qm � t0u (be
ause the image of M 1

m � M2

m

in Mm � Mm{M
2

m is zero, 
f proposition 1.8.8 (3)) for all maximal ideal m in A. By lemma 1.8.21, this

implies that πpM 1

q � t0u in M , i.e. M 1

�M2

. �

Remark 1.8.23. An important spe
ial 
ase of last proposition is the following: if I and J are ideals in A,

then I � J if and only if Im � Jm for all maximal ideal m in A.

1.8.24. Dis
rete valuation rings.

De�nition 1.8.25. A dis
rete valuation ring (DVR) is a PID having a unique nonzero prime ideal. A

generator of this nonzero prime ideal is 
alled a uniformizer of A.

Remark 1.8.26. Assume that A is a DVR. Its unique nonzero prime ideal m is maximal: the ring A is lo
al.

Elements is m are not invertible: as m � 0, the ring A is not a �eld.

Proposition 1.8.27. Assume that A is a DVR, and denote by m its maximal ideal and π a uniformizer.

(1) Any element a P Azt0u 
an be written uniquely a � uπvpaq with u P A� and vpaq P Z
¥0;

(2) nonzero ideals in A are of the form mi � πiA (with i P Z
¥0);

(3)

�

iPZ
¥0

mi � t0u;

Proof. (1) As A is a PID, it is a UFD. As m � πA is the only nonzero prime ideal, π is the only irredu
ible

element (up to multipli
ation by an invertible element). The prime de
omposition of a P Azt0u is thus of

the form a � uπvpaq where u P A� and vpaq � vπpaq P Z
¥0 is the π-adi
 valuation of a.

(2) If I � A is an ideal, it is prin
ipal: we have I � aA with a P A. If I � t0u, then a � 0, so a � uπi with

u P A� and i � vpaq P Z
¥0, thus I � πiA � mi.

(8)

If A is lo
al with maximal ideal m, then m � AzA�, and if a P AzA�, the ideal aA is stri
t: it is 
ontained in a maximal

ideal (
f theorem 1.1.7), hen
e a P m, whi
h proves the equality m � AzA�. Conversely, if m :� AzA� is an ideal, and if

I � A is a stri
t ideal, we have I X A� � ∅, i.e. I � m and m 
ontains all ideals in A.
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(3) If a P Azt0u, we have a � uπi with u P A� and i � vpaq, so a P mizmi�1
, and a R

�

iPZ
¥0

mi. Thus

�

iPZ
¥0

mi � t0u. �

1.9. Integral extensions. In what follows, f : AÑ B is an A-algebra.

De�nition 1.9.1. (1) An element b P B is integral over A if there exists a moni
 polynomial P P ArXs su
h

that P pbq � 0. The equality P pbq � 0 is then 
alled an equation of integral dependen
e of b over A.

(2) We say that B is integral over A (or that AÑ B is integral) when all its elements are integral over A.

Example 1.9.2.

?

2 P C is integral over Z, but 1
?

2
is not.

Proposition 1.9.3. Let b P B. The following are equivalent:

(i) b is integral over A;

(ii) Arbs is a �nite A-algebra;

(iii) there exists a sub-A-module B1

� B of �nite type su
h that B1


ontains an element whi
h is not a

zero divisor, and bB1

� B1

(i.e. B1

is stable under multipli
ation by b).

Proof. 
 Assume (i): let P P ArXs moni
 and su
h that P pbq � 0. If degpP q � n, the A-module Arbs is

generated by t1, b, . . . , bn�1
u (eu
lidean division), hen
e of �nite type.


 Assume (ii): the A-module B1

� Arbs satis�es (iii).


 Assume (iii): let pβ1, . . . , βnq be a generating family of the A-module B1

. As bβi P B1

, there exist

M � pai,jq1¤i,j¤n P MnpAq su
h that bβi �
n
°

j�1

ai,jβj for all i P t1, . . . , nu. Put X � pβiq1¤i¤n P Mn�1pBq:

we have MX � bX , i.e.

(�) pb In�MqX � 0.

Let P pXq � detpX In�Mq: this is a moni
 polynomial of degree n, with 
oe�
ients in A. Multiplying

equality (�) by the transpose of the 
ofa
tors matrix of b In�M , we get P pbqX � 0, so P pbqB1

� 0, when
e

P pbq � 0 (sin
e B1


ontains an element whi
h is not a zero divisor by hypothesis). �

Lemma 1.9.4. Let b1, . . . , bn P B su
h that bi is integral over Arb1, . . . , bi�1s for all i P t1, . . . , nu. Then

the A-algebra Arb1, . . . , bns is �nite.

Proof. By indu
tion on n P Z
¡0, the 
ase n � 1 following from proposition 1.9.3. Let n P Z

¡1 and put

A1 � Arb1, . . . , bn�1s � B. By indu
tion, the A-algebra A1 is �nite. As bn is integral over A1, the A1-algebra

A1rbns is �nite: the A-algebra Arb1, . . . , bns � A1rbns is �nite. �

Proposition 1.9.5. The A-algebra B is �nite if and only if it is integral and of �nite type.

Proof. If B is �nite over A, it is integral by proposition 1.9.3 (impli
ation (iii)ñ(i) with B1

� B). Moreover,

if tb1, . . . , bnu generates the A-module B, the morphism of A-algebras ArX1, . . . , Xns Ñ B sending Xi to bi
is surje
tive, so that B is of �nite type (as an algebra) over A.

Conversely, assume B is integral and of �nite type over A. We 
an write B � Arb1, . . . , bns, and as b1, . . . , bn
are integral over A, the A-module B is of �nite type by lemma 1.9.4. �

Proposition 1.9.6. If AÑ B and B Ñ C are integral, so is AÑ C.

Proof. Let c P C and P pcq � 0, with P pXq � Xn
� b1X

n�1
� � � � � bn P BrXs, an equation of integral

dependen
e. As A Ñ B is integral, the elements b1, . . . , bn are integral over A: by lemma 1.9.4, B1

�

Arb1, . . . , bns is �nite over A. As B1

rcs is �nite over B, it is �nite over A, whi
h implies that c is integral

over A (proposition 1.9.3, noting that 1 P B1

rcs). �

Corollary 1.9.7. Let b, b1 P B be integral over A. Then b� b1 and bb1 are integral over A.

Proof. By lemma 1.9.4, the morphism AÑ Arb, b1s is �nite hen
e integral: as b� b1, bb1 P Arb, b1s, they are

integral over A. �

Remark 1.9.8. If b P B�

is integral over A, the inverse b�1
P B is not integral over A in general.

De�nition 1.9.9. (1) By 
orollary 1.9.7, the set of elements in B that are integral over A is a sub-A-algebra

of B, whi
h is 
alled the integral 
losure of A in B.

(2) Assume A is an integral domain and put K � FracpAq. The integral 
losure of A is its integral 
losure

in K. We say that A is integrally 
losed if it is equal to its integral 
losure, i.e. when the only element in

K that are integral over A are elements in A.
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Proposition 1.9.10. UFD are integrally 
losed. In parti
ular, PID are integrally 
losed.

Proof. Assume that A is a UFD, put K � FracpAq and let x P K integral over A. Write x � a{b with

a P A and b P Azt0u 
oprime. Let xn � α1x
n�1

� � � � � αn � 0 be an equation of integral dependen
e (with

α1, . . . , αn P A). Multiplying by bn, we get

an � α1a
n�1b� � � � � αnb

n
� 0

so that b divides an. As a and b are 
oprime, this implies that b P A�, when
e x � ab�1
P A. �

Example 1.9.11. Let F be a �eld, t an indeterminate, and put A � F rt2, t3s � B � F rts. Then we have

FracpAq � FracpBq � F ptq. As B is a PID, it is integrally 
losed by proposition 1.9.10. The element t is

integral over A, but t R A, so that A is not integrally 
losed (hen
e not a UFD by proposition 1.9.10).

Proposition 1.9.12. Assume that A is an integral domain, put K � FracpAq and let L{K be an algebrai


�eld extension. Denote by B the integral 
losure of A in L. If x P L, there exists a P Azt0u su
h that

ax P B. In parti
ular

(9) L � FracpBq and B is integrally 
losed.

Proof. Let Xd
�α1X

d�1
�� � ��αd P KrXs be the minimal polynomial of x overK, and a P Azt0u su
h that

aαi P A for all i P t1, . . . , du. The minimal polynomial of ax overK is thenXd
�aα1X

d�1
�� � ��adαn P ArXs,

so ax P B. This implies that FracpBq � L. If x P L is integral over B, then it is integral over A (proposition

1.9.6), i.e. x P B, and B is integrally 
losed. �

Proposition 1.9.13. (Integral 
losure 
ommutes to lo
alization). Under the hypothesis of propo-

sition 1.9.12, let S � A be a multipli
ative part. The integral 
losure of S�1A � K in L is S�1B.

Proof. Let b P B and bn � a1b
n�1

� � � � � an � 0 an equation of integral dependen
e over A. If s P S and

x � b
s
P S�1B, then xn � a1

s
xn�1

� � � � �

an
sn
� 0, whi
h shows that x is integral over S�1A. Conversely, let

x P L integral over S�1A and xn � α1x
n�1

� � � � � αn � 0 an equation of integral dependen
e over S�1A.

There exists s P S su
h that ai :� sαi P A for all i P t1, . . . , nu (take a 
ommon denominator to the αi).

Put b � sx P L: we have bn � a1b
n�1

� sa2b
n�2

� � � � � sn�2an�1b� sn�1an � 0, so that b is integral over

A. We thus have b P B, and x P S�1B. �

De�nition 1.9.14. Re
all that a number �eld is a �nite extension of Q (usually seen as a sub�eld of C). If

K is a number �eld, its ring of integers is the integral 
losure OK of Z in K. By last proposition, it is an

integrally 
losed ring and K � pZ zt0uq�1OK .

Proposition 1.9.15. Assume A is integrally 
losed, let K � FracpAq and L{K be an algebrai
 extension.

An element in L is integral over A if and only if its minimal polynomial over K has 
oe�
ients in A.

Proof. Let x P L and P P KrXs its minimal polynomial over K. If P P ArXs, the equality P pxq � 0 is

an equation of integral dependen
e, and x is integral over A. Conversely, if x P L is integral over A, �x an

algebrai
 
losure L of L, and let x1, . . . , xn be the roots of P in L (i.e. the 
onjugates of x, 
ounted with

multipli
ities). If i P t1, . . . , nu, there exists a K-isomorphism of �elds f : Kpxq Ñ Kpxiq mapping x to

xi (isomorphism extension theorem). If Qpxq � 0 is an equation of integral dependen
e (with Q P ArXs),

then Qpxiq � Qpfpxqq � fpQpxqq � 0, so that xi is integral over A for all i P t1, . . . , nu. From 
orollary

1.9.7, so are the 
oe�
ients of P (whi
h are, up to a sign, symmetri
 polynomials in x1, . . . , xn). As those


oe�
ients belong to K and A is integrally 
losed in K by hypothesis, we have P P ArXs. �

Example 1.9.16.

?

2
2

is not integral over Z (its minimal polynomial over Q is X2
�

1
2
R ZrXs).

Exer
ise 1.9.17. Let d P Z zt0, 1u without square fa
tor and K � Qp
?

dq. Then

OK �

#

Z
�

1�
?

d
2

�

if d � 1 mod 4Z

Zr
?

ds if d � 1 mod 4Z

Proposition 1.9.18. Assume AÑ B is inje
tive and that B is an integral domain

(10)

and integral over A.

then A is a �eld if and only if B is a �eld.

Proof. 
 Assume A is a �eld, and let b P Bzt0u. As B is integral over A, there is an equation of integral

dependen
e bn � a1b
n�1

� � � � � an � 0 with a1, . . . , an P A. As B is an integral domain, we 
an assume

that an � 0 (otherwise we 
an divide the equation by b): we have bc � 1 with

c � �a�1
n pbn�1

� a1b
n�2

� � � � � an�1q P B

(9)

As the proof shows, we have in fa
t L � pAzt0uq�1B.

(10)

This implies that A is an integral domain.
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so that b is invertible in B, and B is a �eld.


 Conversely, assume that B is a �eld. If a P Azt0u, then a has a nonzero (by inje
tivity of AÑ B) hen
e

invertible image in B: let a�1
P B be its inverse. As B is integral over A, there is a equation of integral

dependen
e pa�1
q

n
� α1pa

�1
q

n�1
� � � � � αn � 0 with α1, . . . , αn P A and

a�1
� �α1 � α2a� � � � � αna

n�1
P A

so that A is a �eld. �

Proposition 1.9.19. Assume f : AÑ B is integral.

(1) If M � B is a maximal ideal, then MXA is a maximal ideal in A.

(2) If f is inje
tive and m � A is a maximal ideal, there exists a prime ideal M � B su
h that m �MXA,

and any su
h M is maximal in B.

Proof. (1) Assume M � B is maximal, and put m � M X A. the morphism A{m Ñ B{M is inje
tive.

The A{m-algebra B{M is integral be
ause B is over A (if b P B and P pbq � 0 is an equation of integral

dependen
e with P P ArXs, we have P pbq � 0 where P P pA{mqrXs and b P B{M denote the redu
tions

of P modulo mArXs and of b modulo M respe
tively). As B{M is a �eld, so is A{m by proposition 1.9.18,

and m is maximal in A.

(2) Let m � A be a maximal ideal. Assume that mB � B, i.e. 1 P mB: we 
an write

(�) 1 �

ŗ

i�1

αibi

with α1, . . . , αn P m and b1, . . . , bn P B. As B is integral over A, so is B1

� Arb1, . . . , bns. As B
1

is of �nite

type over A, the A-algebra B1

is in fa
t �nite (
f proposition 1.9.5): we 
an write B1

� Aβ1 � � � � � Aβn.

On the other hand, equality (�) implies that mB1

� B1

: for all i P t1, . . . , nu, there exists λi,1, . . . , λi,n P m

su
h that

βi �

ņ

j�1

λi,jβj .

IfM � pλi,jq1¤i,j¤n P MnpAq andX � pβiq1¤i¤n P Mn�1pB
1

q, we haveMX � X , thus pIn�MqX � 0: mul-

tiplying by the transpose of the 
ofa
tor matrix of In�M , we get detpIn�MqX � 0, i.e. detpIn�MqB1

� 0,

thus detpIn�Mq � 0 in B sin
e 1 P B1

. Be
ause f is inje
tive, we have detpIn�Mq � 0 in A: as

detpIn�Mq � 1 mod m, we dedu
e that 1 P m whi
h is absurd, so we ne
essarily have mB � B.

As the ideal mB � B is stri
t, there exists a maximal ideal M � B su
h that mB �M (
f theorem 1.1.7).

We of 
ourse m �MXA, when
e m �MXA sin
e m is maximal in A.

If P � B is a prime ideal su
h that m � P X A, the morphism A{m Ñ B{P is inje
tive. It makes B{P

an integral A{m-algebra sin
e B is over A, and B{P is an integral domain: as A{m is a �eld, so is B{P (
f

proposition 1.9.18), i.e. P is maximal in B. �

1.10. Dis
riminants. Let A be a ring.

1.10.1. Tra
es and norms.

De�nition 1.10.2. (1) Let M be a free

(11) A-module of �nite rank and f P EndApMq. If B is an A-basis

of M , we 
an des
ribe f by its matrix pai,jq1¤i,j¤n in B (where n � rkApMq). The tra
e, the determinant

and the 
hara
teristi
 polynomial of f are

Trpfq �

ņ

i�1

ai,i P A, detpfq � detpai,jq1¤i,j¤n P A,

and χf pXq � det
�

XIn � pai,jq1¤i,j¤n
�

P ArXs

respe
tively. They depend on f and not on the 
hoi
e of the basisB. Re
all that Trpf�αgq � Trpfq�αTrpgq,

detpfgq � detpfq detpgq and detpαfq � αn detpfq for α P A and f, g P EndApMq.

(2) Let B be a free A-algebra(12) of �nite rank over A. If x P B, let mx P EndApBq be the map de�ned by

mxpbq � xb for all b P B. Put

TrB{Apxq � Trpmxq P A, NB{Apxq � detpmxq P A and χx,B{A � χmx
P ArXs

that we 
all the tra
e, the norm and the 
hara
teristi
 polynomial of x respe
tively (note that χmx
is moni
).

Proposition 1.10.3. Let B be a free A-algebra of rank n, x, y P B and a P A. Then

(11)

It is possible to extend the following de�nitions to the 
ase where M is a proje
tive module of �nite rank. This generalization

is useful when working with extension of number �elds whose ring of integers is not a PID for instan
e.

(12)

I.e. su
h that B is free seen as an A-module.
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(1) TrB{Apx � yq � TrB{Apxq � TrB{Apyq ;

(2) TrB{Apaq � na ;

(3) NB{Apxyq � NB{ApxqNB{Apyq ;

(4) NB{Apaq � an.

Proposition 1.10.4. Let L{K be a �nite �eld extension, x P L, and x1, . . . , xn the roots (in some algebrai



losure K of K, 
ounted with multipli
ities) of the minimal polynomial P of x over K. Then

TrL{Kpxq � rL : Kpxqs

ņ

i�1

xi, NL{Kpxq �
�

n
¹

i�1

xi

	

rL:Kpxqs

and χx,L{K � P rL:Kpxqs

Proof. Assume �rst that L � Kpxq. Let B � p1, x, . . . , xn�1
q: this is a basis of L over K. Let P P KrXs be

the minimal polynomial of x over K: write P pXq � Xn
�λ1X

n�1
� � � � � λn. The matrix of multipli
ation

by x in B is the 
ompanion matrix:

C � Cpλ1, . . . , λnq �

�

�

0 ��� ��� 0 λn

1
. . .

... λn�1

0
. . .

. . .
...

......
. . . 1 0 λ2

0 ��� 0 1 λ1

�




P MnpKq

We have χCpXq � detpXIn � Cq � Xn
� λ1X

n�1
� � � � � λn, so that χx,L{K � P . In parti
ular, we have

TrL{Kpxq � λ1 �
n
°

i�1

xi and NL{Kpxq � p�1qn�1λn �
n
±

i�1

xi.

In general, let d � rL : Kpxqs and py1, . . . , ydq be basis of L over Kpxq, so that L � Kpxqy1 ` � � � `Kpxqyd.

As the multipli
ation by x preserves ea
h fa
tor Kpxqyi, we have TrL{Kpxq � dTrKpxq{Kpxq � d
n
°

i�1

xi,

NL{Kpxq � NKpxq{Kpxq
d
�

� n
±

i�1

xi

	d

and χx,L{K � χdx,Kpxq{K � P d. �

Corollary 1.10.5. Assume L{K is not separable. Then TrL{K � 0.

Proof. We have charpKq � p ¡ 0. Let x P L, and x1, . . . , xn the roots (in some algebrai
 
losure K of K,


ounted with multipli
ities) of its minimal polynomial P over K. If x is separable over K, then L{Kpxq is

not separable, hen
e p | rL : Kpxqs, thus TrL{Kpxq � rL : Kpxqs
n
°

i�1

xi � 0. If x is not separable over K,

we have P pXq � QpXpe
q with e P Z

¡0 and Q P KrXs separable: ea
h root of P has multipli
ity pe. This

implies that

n
°

i�1

xi � 0, hen
e TrL{Kpxq � rL : Kpxqs
n
°

i�1

xi � 0. �

Example 1.10.6. (1) Let K be a �eld, x algebrai
 over K and P pXq � Xn
� a1X � � � � � an P KrXs its

minimal polynomial. We have TrKpxq{Kpxq � �a1, NKpxq{Kpxq � p�1qnan and χx,L{K � P .

(2) If L{K is a separable �nite extension, K an algebrai
 
losure of K and HomK-algpL,Kq � tσ1, . . . , σdu,

we have d � rL : Ks, and

TrL{Kpxq �

ḑ

i�1

σipxq and NL{Kpxq �

d
¹

i�1

σipxq

(3) Let d P Z zt0, 1u be a squarefree integer and K � Qp
?

dq. We have K � Q`Q
?

d and GalpK{Qq �

tIdK , σu where σp
?

dq � �

?

d. If z � x � y
?

d P K (with x, y P Q), we thus have TrK{Qpzq � 2x and

NK{Qpzq � px� y
?

dqpx� y
?

dq � x2 � dy2.

Corollary 1.10.7. Let A be an integrally 
losed domain, K � FracpAq, L{K a �nite extension and B the

integral 
losure of A in L. If b P B, then TrL{Kpbq,NL{Kpbq P A and χb,L{K P ArXs. Moreover, we have

b P B�

� NL{Kpbq P A
�

.

Proof. As the 
onjugates of b are also integral over A (be
ause its minimal polynomial has 
oe�
ients in

A, 
f proposition 1.9.15), so are their sum, their produ
t, and more generally any symmetri
 polynomial

evaluated on these 
onjugates. This implies that TrL{Kpbq,NL{Kpbq P A and χb,L{K P ArXs.

Let b P Bzt0u and P its minimal polynomial over K. By proposition 1.9.15, we have P P ArXs. Write

P pXq � Xd
�a1X

d�1
�� � ��ad: the minimal polynomial of b�1

overK is thenXd
�

ad�1

ad
Xd�1

�� � ��

a1
ad
X� 1

ad
.

By proposition 1.9.15, we have thus b P B�

� ad P A
�

. We 
on
lude sin
e NL{Kpbq �
�

p�1qdad
�

rL:Kpbqs
. �

Exemples 1.10.8. (1) Let d P Z zt0, 1u be a squarefree integer and K � Qp
?

dq. If d � 1 mod 4Z, we have

OK � Zr
?

ds. If z � x� y
?

d P Zr
?

ds, then NK{Qpzq � x2 � dy2 (
f example 1.10.6 (3)). As Z� � t�1u,
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we thus have z P Zr
?

ds� � x2 � dy2 P t�1u. When d   0, this is equivalent to x2 � dy2 � 1: if d ¤ �2,

we have Zr
?

ds� � t�1u and when d � �1, we have Zris� � t�1,�iu.

(2) Let p be an odd prime number, ζ P C a primitive p-th root of unity and K � Qpζq. The minimal

polynomial of ζ over Q is P pXq � Xp�1
� Xp�2

� � � � � X � 1. We thus have TrK{Qpζq � �1 and

NK{Qpζq � 1, so TrK{Qpζ � 1q � TrK{Qpζq � TrK{Qp1q � �p. The minimal polynomial of ζ � 1 over Q is

P pX� 1q, when
e NK{Qpζ� 1q � P p1q � p. Similarly, the minimal polynomial of ζ� 1 over Q is P pX� 1q,

thus NK{Qpζ � 1q � P p�1q � 1 (whi
h shows that

1
ζ�1

is integral over Z by the pre
eding 
orollary).

Proposition 1.10.9. (Transitivity). If L{K and K{F are �nite �eld extensions, we have

TrL{F � TrK{F �TrL{K and NL{F � NK{F �NL{K

Lemma 1.10.10. Let L{K and K{F be algebrai
 extension, and F an algebrai
 
losure of F . There exists

a bije
tion

HomF -algpL, F q
�

ÑHomK-algpL, F q � HomF -algpK,F q.

Proof. For ea
h ρ P HomF -algpK,Lq, �x an extension pρ P HomF -algpF , F q (use Steinitz' theorem). If

σ P HomF -algpL, F q let σK denote its restri
tion to K and put σK � yσ
|K

�1
� σ. By 
onstru
tion, the �eld

K is invariant under σK : we have σK P HomK-algpL, F q. We thus have a map

HomF -algpL, F q Ñ HomK-algpL, F q � HomF -algpK,F q

σ ÞÑ pσK , σKq

It is inje
tive be
ause σ � xσK � σK . It is surje
tive sin
e pρ, τq P HomK-algpL, F q � HomF -algpK,F q, and if

σ � pρ � τ , then we have σK � ρ and σK � τ . �

Proof of proposition 1.10.9. 
 Case where L{F is separable. Keep notations from lemma 1.10.10. Let x P L:

by example 1.10.6, we have

TrL{F pxq �
¸

σPHomF -algpL,F q

σpxq (be
ause L{F is separable, 
f example 1.10.6 (2))

�

¸

τPHomK-algpL,F q

ρPHomF -algpK,F q

pρ
�

τpxq
�

(by lemma 1.10.10)

�

¸

ρPHomF -algpK,F q

pρ
�

¸

τPHomK-algpL,F q

τpxq
	

�

¸

ρPHomF -algpK,F q

pρpTrL{Kpxqq (be
ause L{K is separable, 
f example 1.10.6 (2))

As TrL{Kpxq P K, we have pρpTrL{Kpxqq � ρpTrL{Kpxqq for all ρ P HomF -algpK,F q, whi
h implies that

TrL{F pxq � TrK{F pTrL{Kpxqq (
f example 1.10.6 (2)). The proof is the same for the norm, repla
ing sums

by produ
ts.


 Case where L{F is not separable. By 
orollary 1.10.5, we have TrL{F � 0. Also, one among L{K and

K{F is not separable, so TrL{K � 0 or TrK{F � 0 (
f 
orollary 1.10.5), so the statement on tra
es is 
lear.

Let x P L. By proposition 1.10.4, we have NL{F pxq � NF pxq{F pxq
rL:F pxqs

�

�

NF pxq{F pxq
rKpxq:F pxqs

�

rL:Kpxqs

and NL{Kpxq � NKpxq{Kpxq
rL:Kpxqs

: the statement on norms is equivalent to the equality

(�) NF pxq{F pxq
rKpxq:F pxqs

� NK{F pNKpxq{Kpxqq.

When x P K, we have Kpxq � K so the equality follows from proposition 1.10.4 in that 
ase. In general,

let P pXq � Xn
� an�1X

n�1
� � � � � a1X � a0 P KrXs be the minimal polynomial of x over K, so that

NKpxq{Kpxq � p�1qna0, when
e NK{F pNKpxq{Kpxqq � p�1qndNK{F pa0q where d � rK : F s. Fix a basis

B � pe1, . . . , edq of K over F . Then rB � peix
j
q1¤i¤d
0¤j n

� pe1, . . . , ed, xe1, . . . , xed, . . . , x
n�1e1, . . . , x

n�1edq is

a basis of Kpxq over F . As xn � �a0 � a1x� � � � � an�1x
n�1

, the matrix of the multipli
ation by x in the

basis

rB is

M �

�

�

0 ��� ��� 0 �M0

In
. . .

... �M1

0
. . .

. . .
...

......
. . .

. . . 0
...

0 ��� 0 In �Mn�1

�




P MndpF q
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(
ompanion matrix by blo
ks), where Mi is the matrix of the multipli
ation by ai in the basis B. Then

(13)

we have TrKpxq{F pxq � detpMq � p�1qpnd�dqd detp�M0q � p�1qpn�1qd2
p�1qdNK{F pa0q � p�1qndNK{F pa0q

(be
ause detpM0q � NK{F pa0q and p�1q
d2
� p�1qd), proving equality (�). �

1.10.11. Dis
riminant.

De�nition 1.10.12. Let B be a free A-algebra of rank n and x1, . . . , xn P B. The dis
riminant of

px1, . . . , xnq is

Dpx1, . . . , xnq � det
�

�

TrB{Apxixjq
�

1¤i,j¤n

	

P A

Proposition 1.10.13. Under the hypothesis of de�nition 1.10.12, let M � pai,jq1¤i,j¤n P MnpAq and

yi �
n
°

j�1

ai,jxj P B for i P t1, . . . , nu. Then

Dpy1, . . . , ynq � detpMq

2 Dpx1, . . . , xnq

Proof. Put X �

�

TrB{Apxixjq
�

1¤i,j¤n
and Y �

�

TrB{Apyiyjq
�

1¤i,j¤n
. For all i, j P t1, . . . , nu, we have

yiyj �
�

ņ

k�1

ai,kxk

	�

ņ

l�1

aj,lxl

	

�

ņ

k�1

ņ

l�1

ai,kxkxlaj,l

hen
e

TrB{Apyiyjq �

ņ

k�1

ņ

l�1

ai,k TrB{Apxkxlqaj,l

thus Y �MXtM , hen
e detpY q � detpMq

2 detpXq i.e. Dpy1, . . . , ynq � detpMq

2 Dpx1, . . . , xnq. �

Corollary 1.10.14. Under the hypothesis of de�nition 1.10.12, let px1, . . . , xnq and py1, . . . , ynq be bases of

B over A. Then

Dpy1, . . . , ynqA � Dpx1, . . . , xnqA

Proof. There exists M � pai,jq1¤i,j¤n P GLnpAq su
h that yi �
n
°

j�1

ai,jxj P B for i P t1, . . . , nu. We

have then Dpy1, . . . , ynq � detpMq

2 Dpx1, . . . , xnq (1.10.13): as detpMq P A�, we have Dpy1, . . . , ynqA �

Dpx1, . . . , xnqA. �

Remark 1.10.15. When B � px1, . . . , xnq is a basis of B over A, the element Dpx1, . . . , xnq is the dis
rim-

inant of the bilinear form B �B Ñ A; px, yq ÞÑ TrB{Apxyq in the basis B.

De�nition 1.10.16. By 
orollary 1.10.14, under the hypothesis of de�nition 1.10.12, the idealDpx1, . . . , xnqA

does not depend of basis px1, . . . , xnq of B over A. This prin
ipal ideal is 
alled the dis
riminant of B over

A and is denoted dB{A.

Proposition 1.10.17. Under the hypothesis of de�nition 1.10.12, let S � A be a multipli
ative part. then

S�1B is free over S�1A and

dS�1B{S�1A � S�1dB{A.

Proof. This is obvious sin
e a basis of B over A provides a basis of S�1B over S�1A. �

Remark 1.10.18. The previous proposition shows that the de�nition of the ideal dB{A shea��es: one 
an

de�ne it for lo
ally free sheaves on a s
heme. This shows in parti
ular that it generalizes to the 
ase where

B is proje
tive over A.

Proposition 1.10.19. Under the hypothesis of de�nition 1.10.12, if dB{A 
ontains an element whi
h is not

a zero divisor, and if x1, . . . , xn P B, the following 
onditions are equivalent:

(i) px1, . . . , xnq is a basis of B over A ;

(ii) Dpx1, . . . , xnq generates dB{A.

(13)

This follows from the equality det
�

0 X
Ir Y

�

� p�1qrs detpXq whenever X P MspF q, an equality whi
h follows from a

straightforward indu
tion on r (developing the determinant along the �rst 
olumn).
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Proof. Impli
ation (i)ñ(ii) follows from de�nition of the ideal dB{A. Conversely, assume that Dpx1, . . . , xnq

generates dB{A. Let pb1, . . . , bnq be a basis of B over A and d � Dpb1, . . . , bnq so that dB{A � dA. There

exists M � pai,jq1¤i,j¤n P MnpAq su
h that xi �
n
°

j�1

ai,jbj for all i P t1, . . . , nu. By proposition 1.10.13,

we have Dpx1, . . . , xnq � detpMq

2d. As Dpx1, . . . , xnq generates dB{A � dA, there exists u P A� su
h that

Dpx1, . . . , xnq � ud, so that dpu � detpMq

2
q � 0. As d is not a zero divisor (otherwise dB{A would only


ontain zero didisors, whi
h is ex
luded by the hypothesis), we have detpMq

2
� u thus detpMq P A�, so

that M P GLnpAq, whi
h implies that px1, . . . , xnq is a basis of B over A. �

Corollary 1.10.20. Under the hypothesis of de�nition 1.10.12, assume moreover that A is a UFD. Let

x1, . . . , xn P B be su
h that d � Dpx1, . . . , xnq P Azt0u is squarefree. Then px1, . . . , xnq is a basis of B over

A, and dB{A � dA.

Proof. Let pe1, . . . , enq be a basis of B over A: there exists M � pai,jq1¤i,j¤n P MnpAq su
h that for all

i P t1, . . . , nu, we have xi �
n
°

j�1

ai,jej . We haveDpx1, . . . , xnq � detpMq

2 Dpe1, . . . , enq (proposition 1.10.13),

i.e. dA � detpMq

2dB{A. As d is squarefree by hypothesis, we have detpMq P A�, so that px1, . . . , xnq is a

basis of B over A. �

Theorem 1.10.21. (Dedekind). Let K{F and L{F be extensions. Then elements in HomF -algpK,Lq are

linearly independent in the L-ve
tor spa
e HomF - linpK,Lq.

Proof. Assume the 
ontrary. Let

r
°

i�1

λiσi � 0 with λi P L and σi P HomF -algpK,Lq for i P t1, . . . , ru be

a non trivial linear dependen
e relation su
h that r is minimal. By minimality, we have λi � 0 for all

i P t1, . . . , ru, and the σi are pairwise distin
t. After dividing the relation by λr, we may assume that

λr � 1. For all x P K, we have thus

(�)

r�1̧

i�1

λiσipxq � σrpxq � 0.

Equality (�) applied to the produ
t of x, y P K gives

r�1̧

i�1

λiσipxqσipyq � σrpxqσrpyq � 0

Subtra
ting σrpyq times (�) to the pre
eding equality gives

r�1̧

i�1

λiσipxqpσipyq � σrpyqq � 0

for all x, y P K. In parti
ular, y being �xed, we have

r�1̧

i�1

λipσipyq � σrpyqqσi � 0.

By minimality of r, the 
oe�
ients of this linear 
ombination are all zero: we have σipyq � σrpyq for all

y P K. The σi being pairwise distin
t, this implies r � 1, whi
h is impossible. �

Proposition 1.10.22. Let L{K be a �nite separable �eld extension, K an algebrai
 
losure of K, and

x1, . . . , xn a basis of L over K. Write HomK-algpL,K q � tσ1, . . . , σnu (this has n elements sin
e L{K is

separable). Then

Dpx1, . . . , xnq � det
�

pσipxjqq1¤i,j¤n
�2
� 0.

Proof. Re
all that TrL{Kpxq �
n
°

k�1

σkpxq for all x P L (exemple 1.10.6 (2)). We have

TrL{Kpxixjq �

ņ

k�1

σkpxixjq �

ņ

k�1

σkpxiqσkpxjq

so that

�

TrL{Kpxixjq
�

1¤i,j¤n
�

tMM where M � pσipxjqq1¤i,j¤n P MnpKq. We have thus

Dpx1, . . . , xnq � det
�

tMM
�

� detpMq

2
� det

�

pσipxjqq1¤i,j¤n
�2
.
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It remains to 
he
k that detpMq � 0. Let X � pλiq1¤i¤n P M1�npKq su
h that XM � 0. We have

then

n
°

i�1

λiσipxjq � 0 for all j P t1, . . . , nu. By K-linearity, this implies

n
°

i�1

λiσi � 0 in HomK- linpL,K q.

Dedekind's theorem (theorem 1.10.21) implies that X � 0: the matrixM is invertible, and detpMq � 0. �

Corollary 1.10.23. Let L{K be a separable �eld extension of degree n. A family px1, . . . , xnq P L
n
is a

K-basis of L if and only if Dpx1, . . . , xnq � 0.

Proposition 1.10.24. (Transitivity of dis
riminant). Let K{F and L{K be two �nite separable �eld

extensions, x1, . . . , xn a basis of K over F and py1, . . . , ymq a basis of L over K. Then

Dpxiyjq 1¤i¤n
1¤j¤m

� Dpx1, . . . , xnq
rL:Ks NK{F pDpy1, . . . , ymqq.

Proof. Write HomF -algpK,F q � tρ1, . . . , ρnu and HomK-algpL, F q � tτ1, . . . , τnu (where F is an algebrai



losure of F ). Fix liftings pρ1, . . . , pρn P HomF -algpF , F q of ρ1, . . . , ρn: we have HomF -algpL, F q �
 

pρiτj
(

1¤i¤n
1¤j¤m

(
f lemma 1.10.10). On the other hand, we have Dpxiyjq 1¤i¤n
1¤j¤m

� detpMq

2
where M P MmnpF q is the

matrix with entries pρiτjpxkyℓq � ρipxkqpρiτjpyℓq for pi, jq, pk, ℓq P
�

t1, . . . , nu � t1, . . . ,mu
�2

(
f proposition

1.10.22). Put Y � pτjpyℓqq1¤j,ℓ¤m P MmpF q: we have M �

�

ρ1px1qpρ1pY q ��� ρ1pxnqpρ1pY q
...

...
ρnpx1qpρnpY q ��� ρnpxnqpρnpY q




� M1M2 (blo
k

matrix) where M1 � diag
�

pρ1pY q, . . . , pρnpY q
�

P MmnpF q and M2 �

�

ρ1px1q Im ��� ρ1pxnq Im
...

...
ρnpx1q Im ��� ρnpxnq Im




P MmnpF q. We

have detpM1q
2
�

±

ρPHom
-

alg F pK,F q
pρpdetpY q2q � NK{F pDpy1, . . . , ymqq. On the other hand, there exists a

permutation matrix P P GLmnpZq su
h that P
�1M2P � diagpX, . . . , Xq with X � pρipxkqq1¤i,k¤n P MnpF q.

We thus have detpM2q � detpXqm, when
e detpM2q
2
� Dpx1, . . . , xnq

rL:Ks
(be
ause rL : Ks � m). At the

end, we have Dpxiyjq 1¤i¤n
1¤j¤m

� detpMq

2
� detpM1q

2 detpM2q
2
� Dpx1, . . . , xnq

rL:KsNK{F pDpy1, . . . , ymqq.

�

Corollary 1.10.25. (Transitivity of dis
riminant). Let A be an integral domain, F � FracpAq and

K{F and L{K �nite separable �elds extensions. Let B (resp. C) be the integral 
losure of A in K

(resp. L). Assume B is free over A and C is free over B. Then dC{A � d
rkBpCq

B{A
NB{ApdC{Bq (where

(14)

NB{ApdBq � NB{ApdqA).

1.10.26. Dis
riminant of polynomials.

De�nition 1.10.27. Let K a �eld, P P KrXs moni
 and α1, . . . , αn P K the roots of P in an algebrai



losure K of K (
ounted with multipli
ities). The dis
riminant of P is

discpP q �
¹

1¤i j¤n

pαi � αjq
2
� p�1q

npn�1q

2

¹

1¤i�j¤n

pαi � αjq

It is a symmetri
 polynomial in the roots of P , hen
e a polynomial in the 
oe�
ients of P , and discpP q P K.

By de�nition, P is separable if and only if discpP q � 0.

Lemma 1.10.28. With notations of de�nition 1.10.27, we have

discpP q � p�1q
npn�1q

2

n
¹

i�1

P 1

pαiq

Proof. We have P 1

pXq �
n
°

i�1

±

1¤j�i¤n

pX � αjq, hen
e P 1

pαiq �
±

1¤j�i¤n

pαi � αjq whi
h implies that

n
±

i�1

P 1

pαiq �
±

1¤i�j¤n

pαi � αjq � p�1q
npn�1q

2 discpP q. �

Example 1.10.29. (1) The dis
riminant of X2
� aX � b is a2 � 4b. That of X3

� pX � q is �4p3 � 27q2

(exer
ise).

(2) Let n P Z
¡0 and P pXq � Xn

� 1 P QrXs. Put µn � tz P C ; zn � 1u: we have P pXq �
±

ζPµn

pX � ζq.

For ζ P µn, we have P
1

pζq � nζn�1
: as

±

ζPµn

ζ � p�1qn�1
, we have

±

ζPµn

P 1

pζq � nnp�1qn
2
�1
, and thus

discpP q � p�1q
npn�1q

2

¹

ζPµn

P 1

pζq � p�1q
n2
�n�2
2 nn

(14)

This does not depend on the 
hoi
e of the generator d.
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Remark 1.10.30. Up to a normalization, the dis
riminant is nothing but the resultant of P and P 1

.

Proposition 1.10.31. Let L{K a separable �eld extension of degree d, α P L su
h that L � Krαs and

P P KrXs the minimal polynomial of α over K. Then p1, α, α2, . . . , αn�1
q is a basis of L over K and

Dp1, α, α2, . . . , αn�1
q � discpP q � p�1q

npn�1q

2 NL{KpP
1

pαqq

Proof. Let K be an algebrai
 
losure of K and HomK-algpL,K q � tσ1, . . . , σnu. the 
onjugates of α are the

αi :� σipαq for i P t1, . . . , nu. The extension L{K is separable: by proposition 1.10.22, we have

Dp1, α, . . . , αn�1
q � det

�

pσipα
j�1

qq1¤i,j¤n

�2
� det

�

pα
j�1
i q1¤i,j¤n

�2

As det
�

pα
j�1
i q1¤i,j¤n

�

�

±

1¤i j¤n

pαi � αjq (Vandermonde determinant), this proves the �rst equality.

By lemma 1.10.28, we have discpP q � p�1q
npn�1q

2

n
±

i�1

P 1

pαiq. For i P t1, . . . , nu, we have αi � σipαq, hen
e

n
±

i�1

P 1

pαiq �
n
±

i�1

σpP 1

pαqq � NL{KpP
1

pαqq, proving the se
ond equality. �

Example 1.10.32. Let K be a �eld and P pXq � Xn
� aX � b P KrXs, that we assume irredu
ible and

separable. If α is a root of P in an algebrai
 
losure of K, we have

(15)

Dp1, α, α2, . . . , αn�1
q � discpP q � p�1q

npn�1q

2 NKpαq{KpP
1

pαqq

� p�1q
npn�1q

2

�

nnbn�1
� p�1qn�1

pn� 1qn�1an
�

For n P t2, 3u, we re
over formulas of example 1.10.29 (1).

1.10.33. Integral 
losure in a separable extension.

Proposition 1.10.34. Let L{K be a �nite separable �eld extension.

L� LÑ K

px, yq ÞÑ TrL{Kpxyq

is a non degenerate pairing.

Proof. Bilinearity follows from proposition 1.10.3. Let x P L be su
h that TrL{Kpxyq � 0 for all y P L. LetK

an algebrai
 
losure de K and HomK-algpL,K q � tσ1, . . . , σnu, we have TrL{Kpxyq �
n
°

i�1

σipxqσipyq, so that

n
°

i�1

σipxqσi. As tσ1, . . . , σnu is linearly independent in HomK-lin

pL,K q (Dedekind's theorem, 
f theorem

1.10.21), this implies σipxq � 0 for all i P t1, . . . , nu, thus x � 0. The kernel of the bilinear map is zero: it

is non degenerate. �

Remark 1.10.35. By 
orollary 1.10.5, the pre
eding proposition is an equivalen
e.

Corollary 1.10.36. Let L{K be a �nite separable �eld extension. The map

LÑ HomK- linpL,Kq

x ÞÑ
�

y ÞÑ TrL{Kpxyq
�

is an isomorphism of K-ve
tor spa
es. If px1, . . . , xnq is a basis de L over K, there exists a unique basis

py1, . . . , ynq of L over K su
h that TrL{Kpxiyjq � δi,j for all i, j P t1, . . . , nu: it is 
alled the dual basis of

px1, . . . , xnq.

Proof. The map f : L Ñ HomK- linpL,Kq is is the linear map asso
iated to the symmetri
 bilinear map

px, yq ÞÑ TrL{Kpxyq. As the latter is not degenerate, the map f is inje
tive: it is an isomorphism sin
e

dimK

�

HomK- linpL,Kq
�

� dimKpLq. If px1, . . . , xnq is a basis of L over K, the family pfpx1q, . . . , fpxnqq is

a basis of HomK- linpL,Kq over K. The family py1, . . . , ynq satis�es TrL{Kpxiyjq � fpxiqpyjq � δi,j for all

i, j P t1, . . . , nu if and only if it is the dual basis of pfpx1q, . . . , fpxnqq in L: it exists and is unique. �

Proposition 1.10.37. Let A be an integrally 
losed domain, K its fra
tion �eld and L{K a �nite separable

�eld extension. Let B be the integral 
losure of A in L. Then B 
ontains a basis of L over K, and it is a

sub-A-module of a free A-module of rank rL : Ks 
ontained in L.

(15)

We have P 1

pαq � nαn�1
� a � n�aα�b

α
� a � �

nb
α
� pn� 1qa. The minimal polynomial of α�1

being Xn
�

a
b
Xn�1

�

1
b
,

that of �

nb
α

is QpXq � Xn
�naXn�1

�p�nqnbn�1
and that of P 1

pαq is thus QpX�pn�1qaq: we have NKpαq{KpP
1

pαqq �

p�1qnQppn� 1qaq � nnbn�1
� p�1qn�1

pn� 1qn�1an.
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Proof. If pe1, . . . , enq is a basis of L overK, there exists a P Azt0u su
h that xi :� aei P B for all i P t1, . . . , nu

(
f proposition 1.9.12). The family px1, . . . , xnq is still a basis of L over K, made of elements in B.

Let py1, . . . , ynq be the dual basis of px1, . . . , xnq for the tra
e form, and B1

the sub-A-module of L generated

by ty1, . . . , ynu. As py1, . . . , ynq is a basis of L over K, the A-module B1

is free of rank n � rL : Ks. If

x P B, write x �
n
°

j�1

λjyj with λ1, . . . , λn P K: as xix P B thus TrL{Kpxixq �
n
°

j�1

λj TrL{Kpxiyjq � λi P A

for all i P t1, . . . , nu (
orollary 1.10.7), we have x P B1

. �

Proposition 1.10.38. Under the hypothesis of proposition 1.10.37, we have in fa
t the following more

expli
it statement. If px1, . . . , xnq is a basis of L over K made of elements in B, we have

B �

1

d

�

Ax1 ` � � � `Axn
�

where d � Dpx1, . . . , xdq.

Proof. By the proof of proposition 1.10.37, if py1, . . . , ynq is the dual basis of px1, . . . , xnq, we have

B � B1

� Ay1 ` � � � `Ayn

Write yi �
n
°

j�1

αi,jxj with αi,j P K for all i, j P t1, . . . , nu. We have

δi,j � TrL{Kpxiyjq �

ņ

k�1

αj,k TrL{Kpxixkq

so that if M �

�

TrL{Kpxixjq
�

1¤i,j¤n
P MnpAq and N � pαi,jq1¤i,j¤n P MnpKq, we have M tN � In, i.e.

tN �M�1
P

1
d
MnpAq by Cramer's formulas: we have αi,j P

1
d
A for all i, j P t1, . . . , nu. �

Corollary 1.10.39. Under the hypothesis of proposition 1.10.37, we have:

(1) if A is noetherian, then B is a �nite A-algebra (in parti
ular, B is noetherian);

(2) if A is a PID, then B is a free A-module of rank rL : Ks.

Proof. By proposition 1.10.37, there exists a sub-A-module B1

of L whi
h is free of rank rL : Ks and su
h

that B � B1

.

(1) If A is noetherian, so is B1

(proposition 1.3.4): the A-module B is of �nite type (thus noetherian by

proposition 1.3.4).

(2) If A is a PID, B is free of �nite rank as a sub-A-module of the free A-module of �nite rank B1

(theorem

1.4.11). As it 
ontains a basis de L over K (proposition 1.10.37), its rank is rL : Ks. �

Remark 1.10.40. Under the hypothesis of proposition 1.10.37, assume moreover that A is a PID. By


orollary 1.10.20, if x1, . . . , xn P B are su
h that Dpx1, . . . , xnq is squarefree in A (whi
h is a PID hen
e a

UFD), then px1, . . . , xnq is a basis of B over A.

1.11. Inverse limits.

1.11.1. Generalities. Let C be a 
ategory and pI,¤q a dire
ted set

(16)

(i.e. a preordered

(17)

set in whi
h

every pair of elements has an upper bound: p�i, j P Iq pDk P Iq i ¤ k, j ¤ kq).

De�nition 1.11.2. 
 A inverse system in C indexed by I is a pair

�

tXiuiPI , tui,jui,jPI
i¤j

�

where tXiuiPI is a

family of obje
ts of C , and tui,jui,jPI
i¤j

a family of morphisms Xj
ui,j
ÝÝÑ Xi (
alled transition morphisms) su
h

that ui,k � ui,j � uj,k whenever i ¤ j ¤ k in I. As often, it will be denoted by pXiqiPI alone.


 Let

�

tXiuiPI , tui,jui,jPI
i¤j

�

be a inverse system in C indexed by I. Its inverse limit

(18)

(or simply limit)

is an obje
t X P C with morphisms πi : X Ñ Xi for all i P I su
h that p�i ¤ j P Iq πi � ui,j � πj ,

(16)

Whi
h 
an be seen as a 
ategory whose obje
ts are elements of I and there is exa
tly one arrow i Ñ j if i ¤ j, and no

arrow otherwise.

(17)

Re�exive and transitive i.e. an order without the antisymmetry 
ondition.

(18)

�Limite proje
tive� in Fren
h.
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having the following universal property: whenever Y P C and ψi : Y Ñ Xi are morphisms su
h that

p�i ¤ j P Iq ψi � ui,j � ψj , then there exists a unique morphism

rψ : Y Ñ X su
h that p�i P Iq ψi � πi � rψ.

Xj

ui,j

��
Y

ψj ,,

rψ //

ψj

22

X

πj 77♥♥♥♥♥♥

πi ((PP
PP

PP

Xi

Being the solution of a universal problem, the inverse limits of

�

tXiuiPI , tui,jui,jPI
i¤j

�

, if it exists, is unique

up to isomorphism: it is denoted lim
�Ý

I

Xi.


 A dire
t system in C indexed by I is an inverse system in C
op
indexed by I. Its indu
tive limit (or 
olimit)

is the 
orresponding inverse limit.

Remark 1.11.3. An inverse system in C indexed by I is nothing but a 
ontravariant fun
tor I Ñ C . There

is the obvious in
lusion fun
tor i : C Ñ C Iop
that maps an obje
t to the 
orresponding 
onstant inverse

system. If

�

tXiuiPI , tui,jui,jPI
i¤j

�

is an inverse system in C indexed by I, its inverse limits, if it exists, is


hara
terized by

HomC Iop

�

ipY q, pXiqiPI

�

�

ÑHomC

�

Y, lim
�Ý

I

Xi

�

for all Y P C , i.e. is a �nal obje
t in the 
ategory of pairs pY, ψq where Y P C and ψ : ipY q Ñ pXiqiPI (one


an also say that it represents the 
ontravariant fun
tor Y ÞÑ HomC Iop

�

ipY q, pXiqiPI

�

).

Example 1.11.4. (1) When I is trivial (i.e. i ¤ j � i � j), the inverse limit is the produ
t

±

I

Xi.

(2) If C is preabelian

(19)

and u P HomC pX,Y q, the kernel of u is the inverse limit of X
u
ÝÑ Y � 0.

(3) Assume that C is a sub
ategory of Set that admits produ
ts indexed by I. Then

lim
�Ý

I

Xi �

!

pxiqiPI P
±

iPI

Xi ; p�i, j P Iq i ¤ j ñ ui,jpxjq � xi

)

�

±

iPI

Xi.

The map πk : lim
�Ý

I

Xi Ñ Xk is the restri
tion of the proje
tion on the fa
tor of index k. In parti
ular, inverse

limits exist in Set, Gr, ModR (where R is a 
ommutative ring) and Top.

(4) An inverse limit lim
�Ý

I

Xi in Gr (resp. ModR, resp. Top) 
oin
ide with the inverse limit in Set,

endowed with the stru
ture of group (resp. R-module, resp. topologi
al spa
e) indu
ed by the in
lusion

lim
�Ý

I

Xi �
±

iPI

Xi.

Remark 1.11.5. Assume I � Z
¥0 (endowed with the natural order). The data of an inverse system is

equivalent to that Of a sequen
e of sets pXnqnPZ
¥0
, and for ea
h n P Z

¥0, a map ρn : Xn�1 Ñ Xn. The

inverse limits is then simply:

lim
�Ý

n

Xn :�
!

pxnqnPZ
¥0
P

8

±

n�0

Xn ; p�n P Z
¥0q ρnpxn�1q � xn

)

�

8

±

n�0

Xn.

De�nition 1.11.6. A morphism of inverse systems

�

tXiuiPI , tui,jui,jPI
i¤j

�

Ñ

�

tYiuiPI , tvi,jui,jPI
i¤j

�

is a family

of morphisms pfi : Xi Ñ YiqiPI su
h that fi � ui,j � ui,j � fj whenever i ¤ j.

Proposition 1.11.7. (Fun
toriality of inverse limits). Let pfi : Xi Ñ YiqiPI be a morphism of inverse

systems in a 
ategory C . Assume that the inverse limits X � lim
�Ý

iPI

Xi and Y � lim
�Ý

iPI

Yi exist in C . Then there

exists a unique map f : X Ñ Y su
h that fi � πX,i � πY,i � f (where πX,i : X Ñ Xi and πY,i : Y Ñ Yi are

the proje
tions).

Proof. This follows from the universal property of Y :

Xj

ui,j

��

fj // Yj

vi,j

��

X

πX,j
99rrrrrr

f
//

πX,i %%▲
▲▲

▲▲
▲ Y

πY,j

99ssssss

πY,i
%%❑

❑❑
❑❑

❑

Xi
fi

// Yj

(19)

Whi
h means that C is additive and has kernels and 
okernels.
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�

1.11.8. Exa
tness properties. Referen
es for this se
tion are [12, �1.12℄ and [24, Se
tion 0594℄. Here, we

assume that C is a sub
ategory of Gr that is stable under inverse limits (hen
e under kernels) and 
okernels

(hen
e under images).

De�nition 1.11.9. An exa
t sequen
e in C is a sequen
e of morphisms pfn : Xn Ñ Xn�1qnPJ (where J � Z

is an interval)

� � � Ñ Xn
fn
ÝÑ Xn�1

fn�1
ÝÝÝÑ Xn�2 Ñ � � �

su
h that Impfnq � Kerpfn�1q for all n P J . A short exa
t sequen
e is an exa
t sequen
e of the form

0Ñ X 1

Ñ X Ñ X2

Ñ 0.

Proposition 1.11.10. The inverse limit fun
tor lim
�Ý

I

: C Iop
Ñ C is left exa
t.

Proof. Let 0 Ñ
�

tX 1

iuiPI , tu
1

i,jui,jPI
i¤j

�

pfiqiPI
ÝÝÝÝÑ

�

tXiuiPI , tui,jui,jPI
i¤j

�

pgiqi,jPI
ÝÝÝÝÝÑ

�

tX2

i uiPI , tu
2

i,jui,jPI
i¤j

�

Ñ 0 be an

exa
t sequen
e of inverse systems of groups. The �rst row in

0 //
±

iPI

X 1

i

f //
±

iPI

Xn

g //
±

iPI

X2

i
// 0

lim
�Ý

iPI

X 1

i

f //
?�

lim
�Ý

iPI

Xi

g //
?�

lim
�Ý

iPI

X2

i

?�

is exa
t. This implies the inje
tivity of f : lim
�Ý

iPI

X 1

i Ñ lim
�Ý

iPI

Xi. Let x � pxiqiPI P lim
�Ý

iPI

Xi be su
h that gpxq � e

(the unit in lim
�Ý

iPI

X2

i ). By the exa
tness of the �rst row, we have x � fpx1q for a unique x1 � px1iqiPI P
±

iPI

X 1

i.

If i ¤ j in I, we have xi � ui,jpxjq i.e. fipx
1

iq � ui,jpfjpx
1

jqq � fipu
1

i,jpx
1

jqq, thus x
1

i � u1i,jpx
1

jq by inje
tivity

of fi. Sin
e this holds for all i ¤ j in I, we get x1 P lim
�Ý

iPI

X 1

i, and the proposition follows. �

Remark 1.11.11. The inverse limit fun
tor is not exa
t in general. For instan
e, passing to the inverse

limit on the exa
t sequen
es 0Ñ pn ZÑ ZÑ Z {pnZÑ 0 gives the exa
t sequen
e 0Ñ 0Ñ ZÑ Zp, and

ZÑ Zp is not surje
tive.

De�nition 1.11.12. Let

�

tXiuiPI , tui,jui,jPI
i¤j

�

be an inverse system in Set. If i P I, the family pui,jpXjqqjPI

of subsets of Xi is de
reasing, in the sense that i ¤ j1 ¤ j2 ñ ui,j2pXj2q � ui,j1pXj1q � Xi. We say that

�

tXiuiPI , tui,jui,jPI
i¤j

�

satis�es the Mittag-Le�er 
ondition if for any i P I, the family pui,jpXjqqjPI stabilizes,

i.e. there exists npiq ¥ i su
h that

p�j ¥ npiqqui,jpXjq � ui,npiqpXnpiqq � Xi.

Remark 1.11.13. If the maps ui,j are all surje
tive, then

�

tXiuiPI , tui,jui,jPI
i¤j

�

satis�es the Mittag-Le�er


ondition. Conversely, assume that

�

tXiuiPI , tui,jui,jPI
i¤j

�

satis�es the Mittag-Le�er 
ondition. If i P I, let

npiq ¥ i be su
h that j ¥ npiq ñ ui,jpXjq � ui,npiqpXnpiqq �: rXi � Xi. If i ¤ j in I and x P rXj , let k P I be

su
h that k ¥ npiq and k ¥ npjq: we 
an write x � uj,kpyq with y P Xk, and ui,jpxq � ui,kpyq P rXi (sin
e

k ¥ npiq). Moreover, if z P rXi, there exists pz P Xk su
h that z � ui,kppzq � ui,jpuj,kppzqq P ui,jp rXjq, whi
h

shows that the maps ui,j : Xj Ñ Xj indu
e surje
tive maps ui,j : rXj Ñ
rXi. By fun
toriality, the in
lusions

rXi � Xi indu
e an inje
tive map lim
�Ý

iPI

rXi Ñ lim
�Ý

iPI

Xi. The latter is in fa
t an equality: if pxiqiPI P lim
�Ý

iPI

Xi, then

xi � ui,jpxjq P ui,jpXjq for all j ¥ i, hen
e xi P rXi for all i P I.

Lemma 1.11.14. Assume that I is 
ountable. Let

�

tXiuiPI , tui,jui,jPI
i¤j

�

be an inverse system of nonempty

sets satisfying the Mittag-Le�er 
ondition. Then lim
�Ý

iPI

Xi � ∅.

Proof. This is obvious when pI,¤q � pZ
¥0,¤q: we redu
e to this 
ase as follows. Write I � tinunPZ

¥0
:

one 
onstru
ts indu
tively a stri
tly in
reasing map ϕ : Z
¥0 Ñ Z

¥0 su
h that ϕp0q � 0 and iϕpnq ¥ in and

iϕpnq ¥ iϕpn�1q for all n P Z
¡0. Using notations of remark 1.11.13, we have

rXin � uin,iϕpmq

pXiϕpmq

q for some

m " n. As the sets Xiϕpmq

are nonempty, so are the sets

rXin . As the transition maps of the inverse system

https://stacks.math.columbia.edu/tag/0594
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�

t

rXiuiPI , tui,jui,jPI
i¤j

�

are surje
tive, we 
an �nd indu
tively a sequen
e pξnqnPZ
¥0
P lim
�Ý

nPZ
¥0

rXiϕpnq : 
hoose any

ξ0 P rX0, and ξ0, . . . , ξn being 
onstru
ted, 
hoose ξn�1 P
rXiϕpn�1q

su
h that uiϕpnq,iϕpn�1q
pξn�1q � ξn. If

i P I, let xi � ui,iϕpnqpξnq for n P Z
¥0 large enough so that i ¤ iϕpnq. Then pxiqiPI P lim

�Ý

iPI

rXi � lim
�Ý

iPI

Xi, so the

latter is nonempty �

Remark 1.11.15. Some examples that show that the hypothesis are really ne
essary in the previous lemma.

(1) Put I � Z
¥0, Xn � Z

¥0, and un,m : Z
¥0 Ñ Z

¥0; x ÞÑ x�m� n if n ¤ m. An element in X � lim
�Ý

n

Xn

is thus a sequen
e pxnqnPZ
¥0

su
h that xn � xn�1 � 1, so that xn � x0 � n for all n P Z
¥0. Su
h sequen
es

do not exist, so X � ∅.
(2) Put I � Z

¥0, Xn �s0, 1r, and un,m : Xm Ñ Xn; x ÞÑ

x
2m�n . Then u0,npXnq �

�

0, 1
2n

�

, so that if

pxnqnPZ
¥0
P X � lim

�Ý

n

Xn, we have x0 P
8

�

n�0

�

0, 1
2n

�

� ∅.

(3) For ea
h �nite subset A � R, let XA be the set of inje
tions AÑ N. If A � B, the restri
tion provides a

surje
tive map XB Ñ XA, so we get an inverse system (indexed by the �nite subsets of R, partially ordered

by the in
lusion) with surje
tive transition maps. However, the inverse limit is the set of inje
tions from R

to N: it is empty (this example is due to Waterhouse).

Proposition 1.11.16. Let

0Ñ
�

tX 1

iuiPI , tu
1

i,jui,jPI
i¤j

�

pfiqiPI
ÝÝÝÝÑ

�

tXiuiPI , tui,jui,jPI
i¤j

�

pgiqi,jPI
ÝÝÝÝÝÑ

�

tX2

i uiPI , tu
2

i,jui,jPI
i¤j

�

Ñ 0

be an exa
t sequen
e of inverse systems indexed by I in ModR (where R is a 
ommutative ring). Assume

that I is 
ountable and that

�

tX 1

iuiPI , tu
1

i,jui,jPI
i¤j

�

has the Mittag-Le�er property. Then the sequen
e

0Ñ lim
�Ý

iPI

X 1

i

f
ÝÑ lim

�Ý

iPI

Xi
g
ÝÑ lim
�Ý

iPI

X2

i Ñ 0

is exa
t.

Proof. By proposition 1.11.10, it is enough to show the surje
tivity of g. Let x2 � px2i qiPI P lim
�Ý

iPI

X2

i . For

i P I, put Ei � g�1
i ptx2i uq � Xi: the set Ei is nonempty sin
e gi is surje
tive. If j ¥ i in I and ξ P Ej ,

then gipui,jpξqq � u2i,jpgjpξqq � u2i,jpx
2

j q � x2i so that ui,jpξq P Ei. This implies that pEi, ui,j|Ej
qi,jPI is a

sub-inverse system of pXi, ui,jqi,jPI : we have an in
lusion E :� lim
�Ý

iPI

Ei � lim
�Ý

iPI

Xi, and gpxq � x2 for any

x P lim
�Ý

iPI

Ei. We have thus to show that E is nonempty. As I is 
ountable, it is enough to 
he
k that the

inverse system

�

tEiuiPI , tui,j|Ej
ui,jPI
i¤j

�

satis�es the Mittag-Le�er 
ondition (
f lemma 1.11.14).

As

�

tX 1

iuiPI , tu
1

i,jui,jPI
i¤j

�

has the Mittag-Le�er property, for ea
h i P I, there exists npiq ¥ i in I su
h that

ui,jpX
1

jq � ui,npiqpX
1

npiqq for all j ¥ npiq. Let j ¥ npiq. We have ui,jpEjq � ui,npiqpEnpiqq. Conversely, let

ξ P Enpiq. If η is any element in Ej , we have gnpiqpunpiq,jpηqq � u2npiq,jpgjpηqq � u2npiq,jpx
2

j q � x2npiq � gnpiqpξq,

so that ξ�unpiq,jpηq P Kerpgnpiqq � Impfnpiqq: we 
an write ξ�unpiq,jpηq � fnpiqpλq with λ P X
1

npiq. We have

ui,npiqpξq � ui,jpηq�ui,npiqpfnpiqpλqq � ui,jpηq�fipu
1

i,npiqpλqq. As u
1

i,npiqpλq P u
1

i,npiqpX
1

npiqq � u1i,jpX
1

jq, there

exists µ P X 1

j su
h that u1i,npiqpλq � u1i,jpµq, hen
e ui,npiqpξq � ui,jpηq � fipu
1

i,jpµqq � ui,jpη � fjpµqq. As

η� fjpµq P Ej , this shows that ui,npiqpξq P ui,jpEjq, showing that the inverse system
�

tEiuiPI , tui,j|Ej
ui,jPI
i¤j

�

satis�es the Mittag-Le�er 
ondition indeed. �

1.11.17. Pro�nite groups.

De�nition 1.11.18. A inverse limit of �nite sets (resp. groups) is 
alled a pro�nite set (resp. a pro�nite

group). We endow these �nite sets with the dis
rete topology, their produ
t with the produ
t topology and

their inverse limit with the indu
ed topology. Let p be a prime integer. A pro-p-group is an inverse limit of

p-groups.

Proposition 1.11.19. Pro�nite sets are 
ompa
t

(20)

.

(20)

Re
all it means Hausdor� (i.e. separated) and quasi-
ompa
t.
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Proof. Let

�

tXiuiPI , tui,jui,jPI
i¤j

�

be a inverse system of �nite sets. Being �nite, ea
h Xi is 
ompa
t: by

Ty
hono�'s theorem, the produ
t

±

iPI

Xi is 
ompa
t as well. If J � I is �nite, let πJ :
±

iPI

Xi Ñ
±

iPJ

Xi

be the proje
tion on fa
tors of index P J , and lim
�Ý

J

Xj the inverse limit of

�

tXjujPJ , tui,jui,jPJ
i¤j

�

. Then

πJ plim
�Ý

I

Xiq � lim
�Ý

J

Xj , and lim
�Ý

I

Xi �
�

J�I
J �nite

π�1
J plim

�Ý

J

Xjq. Sin
e
±

J

Xj is �nite, lim
�Ý

J

Xj is 
losed, so π
�1
J plim

�Ý

J

Xjq

is 
losed in

±

iPI

Xi (by de�nition of the produ
t topology). Being an interse
tion of 
losed subsets, lim
�Ý

I

Xi is


losed in

±

J

Xj , hen
e 
ompa
t

(21)

. �

Remark 1.11.20. If G is a pro�nite group and H � G an open subgroup, then H is 
losed as well: indeed

GzH �

�

gRH

gH is a union of open subsets, so it is open. Similarly, if H ¤ G is a subgroup of �nite index,

it is open if and only if it is 
losed in G.

Proposition 1.11.21. Let G be a topologi
al group. Then G is pro�nite if and only if it is 
ompa
t, and

admits a basis of neighborhoods of 1 
onsisting of normal subgroups.

Proof. Assume G is pro�nite: G � lim
�Ý

I

Gi. Sin
e

±

I

Gi is separated (ea
h Gi is), so is G. Moreover G is


ompa
t thanks to the previous proposition. Finally, a basis of neighborhoods of 1 is given by tKerpπiquiPI
where πi is the proje
tion to the fa
tor of index i, whi
h 
onsists of normal subgroups.

Conversely, assume G is Hausdor�, 
ompa
t, and admits a basis of neighborhoods of 1 
onsisting of normal

subgroups. Let tNiuiPI be the family of open normal subgroups. As G is 
ompa
t, the quotient Gi :� G{Ni
is �nite for all i P I. Write i ¤ j if Ni � Nj , so that I be
omes a dire
ted set (an upper bound of Ni and Nj
is given by Ni XNj). The family tGiuiPI is then a inverse system. The 
anoni
al maps πi : GÑ Gi indu
e

a 
anoni
al morphism ψ : GÑ lim
�Ý

I

Gi. Its kernel is
�

I

Ni � t1u (sin
e tNiuiPI is a basis of neighborhoods of

1), so ψ is inje
tive. A sub-basis of neighborhoods of 1 in

±

I

Gi is given by US �
±

iPIzS

Gi �
±

iPS

t1u, where S

runs through the �nite subsets of I. As ψ�1
pUSq �

�

iPS

Ni is open, the map ψ is 
ontinuous. In parti
ular,

as G is 
ompa
t, ψpGq is 
ompa
t hen
e 
losed inside lim
�Ý

I

Gi. In fa
t, ψ is surje
tive, be
ause ψpGq is dense

in lim
�Ý

I

Gi. Indeed, let g � pgiqiPI P lim
�Ý

I

Gi and S a �nite subset of I; let k P I be su
h that Nk �
�

iPS

Ni, and

g P G a lift of gk P Gk � G{Nk. Then gi � g mod Ni for all i P S, so ψpgq P gpUS X ψplim
�Ý

I

Giqq. As ψ is a


ontinuous and G is 
ompa
t, it maps 
losed subsets to 
losed subsets: it is open. This shows that ψ is an

isomorphism and a homeomorphism. �

Remark 1.11.22. If G is any group, its pro�nite 
ompletion is the natural map GÑ lim
�Ý

NEG
rG:Ns 8

G{N . In the

previous proof, we have seen that G is pro�nite if and only if this is an isomorphism and a homeomorphism.

Example 1.11.23. (1) If p is a prime number, Zp :� lim
�Ý

nPN
¡0

Z {pn Z.

(2) If we endow N
¡0 with the order given by n ¤ m � n | m, then tZ {nZunPN

¡0
is an inverse system,

whose inverse limit is denoted by

pZ. This is the pro�nite 
ompletion of Z.

Remark 1.11.24. The maps Z Ñ Zp and Z Ñ

pZ are inje
tive, but are not isomorphisms: their image is

only dense (be
ause Z {pn ZÑ Zp {p
nZp and Z {nZÑ pZ{npZ are isomorphisms for all n P N

¡0).

Example 1.11.25. The natural map

pZ
�

Ñ

±

pPP

Zp is an isomorphism and a homeomorphism. This follows

from the Chinese remainder theorem.

(21)

Another way of formulating it: X �

�

i¤j

pπi, ui,j � πjq
�1
p∆P q where P �

±

kPI

Xk and ∆P � tpx, xq ; x P P u is the diagonal

of P . As ∆P is 
losed in P �P , the sets pπi, ui,j � πjq
�1
p∆P q are 
losed in P for all i ¤ j, so that X is 
losed in P . As P

is 
ompa
t (by Ty
honof's theorem), this shows that X is 
ompa
t as well.
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1.11.26. Completion of a ring with respe
t to an ideal. Referen
es for this se
tion are [17, �8℄ and [21, II

�5℄. Let I � A be an ideal.

De�nition 1.11.27. Let M be an A-module.

(1) The I-adi
 topology on M is the topology for whi
h tInMunPZ
¡0

is a basis of neighborhoods of 0.

(2) The I-adi
 
ompletion of M is

xM � lim
�Ý

nPZ
¡0

M{InM . The A-module M is I-adi
ally 
omplete when the

natural map M Ñ

xM is bije
tive.

Remark 1.11.28. (1) The I-adi
 topology on M is separated if and only if

8

�

n�1

InM � t0u.

(2) The addition M �M Ñ M and the multipli
ation A �M Ñ M are 
ontinuous

(22)

. In parti
ular, the

ring operations are 
ontinuous on A for the I-adi
 topology.

(3) Ea
h InM is open in M , hen
e also 
losed sin
e its 
omplement in M is the open

�

mRInM

pm � InMq:

the quotient module M{InM is dis
rete.

(4)

xM is an

pA-module.

(5) If f : M1 ÑM2 is an A-linear map, then fpInM1q � InM2, so f indu
es a map M1{I
nM1 ÑM2{I

nM2

for all n P Z
¡0, hen
e a map

pf : xM1 Ñ
xM2 between the I-adi
 
ompletions.

(6) In general,

xM is I-adi
ally separated, but if n P Z
¡0, the natural map M{InM Ñ

xM{InxM may not be

an isomorphism, and the map

xM Ñ

x

xM not an isomorphism, i.e.

xM may not be 
omplete for the I-adi


topology.

Lemma 1.11.29. Let A be a ring, m � A a maximal ideal. Denote by

pA (resp.

xAm) the 
ompletion of

A (resp. Am) with respe
t to the m-adi
 (resp. mAm-adi
) topology. The natural map

pA Ñ

xAm is an

isomorphism.

Proof. Let n P Z
¡0. As lo
alization is an exa
t fun
tor, we have Am{m

nAm � S�1
pA{mnq where S denotes

the image of S � Azm in A{mn. If x P S , the image of x in A{m is nonzero, hen
e invertible sin
e m is

maximal: there exists y P A{mn su
h that xy � 1 mod m{mn, so that xy � 1 is nilpotent. This implies

that xy hen
e x is invertible in A{mn. In parti
ular, the map A{mn Ñ Am{m
nAm indu
ed by A Ñ Am is

an isomorphism for all n P Z
¡0: passing to the limit, the map

pAÑ

xAm is an isomorphism. �

Example 1.11.30. Assume m1, . . . ,mr are pairwise distin
t maximal ideals in A and e1, . . . , er P Z
¡0. Put

I � me11 � � �merr . Denote by

pAmi
the 
ompletion of the lo
al ring Ami

with respe
t to the miAmi
-topology.

The natural map

pAÑ

r
à

i�1

pAmi

is an isomorphism. Indeed, for all n P Z
¡0, the natural map

A{InAÑ

r
à

i�1

A{mneii

is an isomorphism (by the Chinese remainder theorem, 
f 1.1.14). Passing to inverse limits provides an

isomorphism

pAÑ

r
À

i�1

lim
�Ý

n

A{mneii : we 
on
lude by lemma 1.11.29.

Lemma 1.11.31. An A-module M is separated and 
omplete for the I-adi
 topology if and only if Cau
hy

sequen
es in M 
onverge.

Proof. The A-module M is separated and 
omplete if and only if for any sequen
e pmkqkPZ
¡0

su
h that

p�k P Z
¡0qmk�1 � mk P I

kM , there exists a unique m P M su
h that p�k P Z
¡0qmk � m mod IkM .

This 
ertainly holds if Cau
hy sequen
es 
onverge. Conversely, assume that M is separated and 
omplete

and let pxiqiPZ
¡0

be a Cau
hy sequen
e in M . If k P Z
¡0, there exists ϕpkq P Z

¡0 su
h that i, j ¥ ϕpkq ñ

xi � xj P I
kM . We 
an assume that the map ϕ is stri
tly in
reasing. Put mk � xϕpkq P M : we have

mk�1 �mk P I
kM for all k P Z

¡0, so there is a m P M su
h that mk � m mod IkM for all k P Z
¡0. If

i ¥ ϕpkq, we have thus xi �mϕpkq,mϕpkq �m P IkM , when
e xi � m mod IkM , showing that pxiqiPZ
¡0


onverges to m. �

(22)

If x, x1, y, y1 P M are su
h that x� x1, y � y1 P InM , then px � yq � px1 � y1q P InM ; moreover, if a, a1 P A are su
h that

a � a1 P In, then ax� a1x1 � apx� x1q � pa � a1qx1 P InM .



Number theory 43

Corollary 1.11.32. If M is an A-module whi
h is separated and 
omplete for the I-adi
 topology, then a

series

8

°

n�0

mn 
onverges in M if and only if its general term mn tends towards 0.

Theorem 1.11.33. (Hensel's lemma). Let A be a lo
al ring, m � A its maximal ideal and k � A{m its

residue �eld. Assume that A is m-adi
ally separated and 
omplete, and let F P ArXs be a moni
 polynomial.

Assume there are moni
 polynomials g, h P krXs su
h that gcdpg, hq � 1 and gh � F , where F is the image

of F in krXs. Then there exist moni
 polynomials F,G P ArXs su
h that F � GH , and whose images in

krXs are g and h respe
tively.

Proof. Note that the assumption imply that degpgq � degphq � d :� degpP q. Let i P t0, . . . , d � 1u. As

gcdpg, hq � 1, there exist ui, vi P krXs su
h that gui � hvi � X i
. Repla
ing ui by its remainder modulo h

and vi by its remainder modulo g, we may further assume

(23)

that degpuiq   degphq and degpviq   degpgq.

Choose lifts Ui, Vi P ArXs of ui and vi respe
tively su
h that degpUiq � degpuiq and degpViq � degpviq.

Let G1, H1 P ArXs be moni
 lifts of g and h respe
tively (so that G1 � g and H 1 � h). We 
onstru
t by

indu
tion moni
 polynomials Gn, Hn P ArXs su
h that

(�)

$

'

&

'

%

GnHn � P mod mnrXs

Gn�1 � Gn mod mnrXs

Hn�1 � Hn mod mnrXs

for all n P Z
¡0. Let n P Z¡0 be su
h that tGiu1¤i¤n and tHiu1¤i¤n have been 
onstru
ted. Conditions (�)

imply that Gn � g and Hn � h, and that

(24) degpGnq � degpgq and degpHnq � degphq. This implies in

parti
ular that degpGnUi�HnViq   d and that GnUi�HnVi � X i mod mrXs. Write P�GnHn �

d�1
°

i�0

αiX
i

with α0, . . . , αd�1 P mn: we have P �GnHn �

d�1
°

i�0

αipGnUi �HnViq mod mn�1
rXs. Put

$

'

'

&

'

'

%

Gn�1 � Gn �
d�1
°

i�0

αiVi

Hn�1 � Hn �

d�1
°

i�0

αiUi

so that Gn�1 � Gn mod mnrXs and Hn�1 � Hn mod mnrXs. We have

Gn�1Hn�1 � GnHn �

d�1̧

i�0

αipGnUi �HnViq mod m2n
rXs

� P mod mn�1
rXs

(as n � 1 ¤ 2n), whi
h 
ompletes the 
onstru
tion of the sequen
es pGnqnPZ
¡0

and pHnqnPZ
¡0
. As A is

separated and 
omplete for the m-adi
 topology, these sequen
es 
onverge in ArXs (note that both are given

by d sequen
es of 
oe�
ients): denote by G and H their limits. By 
onstru
tion we have F � GH . �

From now on, A is assumed to be noetherian.

Notation. 
 Put A �

8

À

n�0

In: this is naturally an A-algebra (the produ
t of x in the fa
tor In with y in the

fa
tor Im is xy in the fa
tor In�m). As I is of �nite type, so is A as an A-algebra: it is noetherian.


 More generally, let M be an A-module endowed with a de
reasing �ltration, i.e. a de
reasing sequen
e

of sub-A-modules pMnqnPZ
¥0

su
h that IMn � Mn�1 for all n P Z
¥0. The asso
iated graded group is

M �

8

À

n�0

Mn. It is naturally endowed with an A-module stru
ture (the produ
t of a in the fa
tor In with

m in the fa
tor Mm is am in the fa
tor Mn�m).

Lemma 1.11.34. Assume M is of �nite type over A. The following properties are equivalent:

(i) Mn�1 � IMn for n su�
iently large;

(ii) there exists c P Z
¥0 su
h that Mn�c � InMc for all n P Z

¥0;

(iii) M is a �nitely generated A-module.

(23)

Let indeed rui and rvi be these remainders: we have ui � rui � hδi with δi P krXs, so that gprui � hδiq � hvi � Xi
, i.e.

grui � hpvi � gδiq � Xi
. This implies that degphpvi � gδiqq � degpgrui � Xi

q   d, thus degpvi � gδiq   degpgq, i.e.

vi � gδi � rvi, and grui � hrvi � Xi
.

(24)

The degree of a moni
 polynomial is equal to that of its redu
tion modulo m.
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Proof. (i)�(ii) is trivial. If (ii) holds then M is generated by

c
°

i�0

Mi, so that we have (iii). Conversely,

assume (iii): the A-moduleM 
an be generated by �nitely many elements x1, . . . , xr , with xi homogeneous,

i.e. belonging to some fa
tor Mni
�M for i P t1, . . . , ru. Then Mn�1 � IMn for all n ¥ c :� max

1¤i¤r
ni. �

Theorem 1.11.35. (Artin-Rees lemma). LetM be an A-module of �nite type. If N �M is a submodule,

there exists c P Z
¥0 su
h that for every n P Z

¥0, we have I
n�cM XN � InpIcM XNq for all n P Z

¥0.

Proof. For n P Z
¥0, put Mn � InM and Nn � Mn X N : we have N � M . As A is noetherian and M

�nitely generated as an A-module (by lemma 1.11.34), so is N : by lemma 1.11.34 again, there exists c P Z
¥0

su
h that Nn�c � InNc i.e. I
n�cM XN � InpIcM XNq. �

Remark 1.11.36. This theorem essentially says that the I-adi
 topology on N 
oin
ides with the topology

indu
ed on N by the I-adi
 topology on M .

Corollary 1.11.37. Let 0 Ñ M 1

Ñ M Ñ M2

Ñ 0 be an exa
t sequen
e of A-modules of �nite type. The

sequen
e 0Ñ xM 1

Ñ

xM Ñ

xM2

Ñ 0 is exa
t.

Proof. By right exa
tness of the tensor produ
t (
f proposition 1.7.5), the sequen
e

M 1

{InM 1

ÑM{InM ÑM2

{InM2

Ñ 0

is exa
t (re
all that M{InM � M bA pA{I
n
q) for all n P Z

¥0. On the other hand, there exists c P Z
¥0

su
h that InM XM 1

� In�cpIcM XM 1

q for integers n ¥ c (Artin-Rees lemma, 
f theorem 1.11.35). This

implies that for n P Z
¥c, we have

InM 1

� InM XM 1

� In�cpIcM XM 1

q � In�cM 1

and the sequen
e

0ÑM 1

{pIn�cpIcM XM 1

qq ÑM{InM ÑM2

{InM2

Ñ 0

is exa
t. This gives an exa
t sequen
e of inverse systems. The inverse system pM 1

{pIn�cpIcM XM 1

qqqnPZ
¡0

has the Mittag-Le�er property (the transition maps are surje
tive): by proposition 1.11.16, the sequen
e

0Ñ lim
�Ý

n

M 1

{pIn�cpIcM XM 1

qq Ñ

xM Ñ

xM2

Ñ 0

is exa
t. Moreover, the surje
tive maps

M 1

{InM 1

ÑM 1

{pIn�cpIcM XM 1

qq ÑM 1

{InM 1

provide surje
tive maps

xM 1

Ñ lim
�Ý

n

M 1

{pIn�cpIcM XM 1

qq Ñ

xM 1

(here again the surje
tivity follows from

the Mittag-Le�er 
ondition satis�ed by the kernels of these maps), whose 
omposite is the identity: we

have lim
�Ý

n

M 1

{pIn�cpIcM XM 1

qq

�

Ñ

xM 1

hen
e the result. �

Corollary 1.11.38. Let M be an A-module of �nite type. Then

pAbAM
�

Ñ

xM .

Proof. This is obvious when M is free. In the general 
ase, let L1 Ñ L0 Ñ M Ñ 0 be an exa
t sequen
e

where L0 and L1 are free of �nite rank (su
h a sequen
e exists sin
e M in of �nite type and A noetherian).

The exa
tness of 
ompletion on short exa
t sequen
es of A-modules of �nite type imply that the sequen
e

pL1 Ñ
pL0 Ñ

xM Ñ 0 is exa
t. We thus have the following 
ommutative diagram with exa
t rows

pAbA L1
//

φ1 ��

pAbA L0
//

φ0 ��

pAbAM //

φ ��

0

pL1
// pL0

// xM // 0

As φ0 and φ1 are isomorphisms, so is φ. �

Corollary 1.11.39.

pA is �at over A.

Proof. This follows from 
orollaries 1.11.37 and 1.11.38. �
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1.12. Exer
ises. The following two exer
ises show that the ring Z
�

1�i
?

19
2

�

is not eu
lidean, though a PID.

Exer
ise 1.12.1. Put A � Zrζs where ζ2 � ζ � 5 � 0. We denote by N the norm of the number �eld Qrζs.

(1) Compute Npx� yζq for x, y P Q an determine Zrζs�.

(2) Let a, b P Zrζszt0u. Show that there exist q, r P Zrζs su
h that: (r � 0 or Nprq   Npbq) and (a � bq� r

or 2a � bq � r).

(3) Show that the ideal 2Zrζs is maximal in A.

(4) Show that A is a PID.

Exer
ise 1.12.2. Let A be an integral domain whi
h is not a �eld. We 
onstru
t (by indu
tion on n P Z
¥0)

a sequen
e of subsets of A by: A0 � t0u and An�1 � An Y tx P A ; A � xA � Anu for all n P Z
¥0. For

x P
8

�

n�0

An, we put φpxq � inftn P Z
¥0 ; x P Anu.

(1) Assume that A �

8

�

n�0

An. Show that A eu
lidean for the eu
lidean fun
tion φ.

(2) Assume that A is eu
lidean for a eu
lidean fun
tion ψ : Azt0u Ñ Z
¡0. Show that:

(i) φpxq ¤ ψpxq for all x P
�

nPN

An;

(ii) A �

8

�

n�0

An [Hint: redu
tio ad absurdum using (i));

(iii) A is eu
lidean for the eu
lidean fun
tion φ;

(iv) if a divides b in A, then φpaq ¤ φpbq;

(v) there exists x P AzA� su
h that the restri
tion of the proje
tion AÑ A{xA to A�Yt0u is surje
tive.

(3) Determine φ in the following 
ases: A � Z and A � krXs (where k is a �eld).

(4) Let A � Zrζs � C where ζ2 � ζ � 5 � 0.

(i) Show that the equation z2 � z � 5 � 0 has no solution in F2 nor in F3.

(ii) Dedu
e that A is not eu
lidean [Hint: redu
tio ad absurdum using (2-v)℄.

Exer
ise 1.12.3. Let A be a domain.

(1) Show that if A is a UFD if and only if non-zero elements 
an be fa
tored into a produ
t of irredu
ible

elements, and irredu
ible elements are prime in A.

(2) Show that if A is noetherian, non-zero elements 
an be fa
tored into a produ
t of irredu
ible elements.

(3) Give an example of non noetherian UFD.

Exer
ise 1.12.4. Let A be a UFD, and S � A a multipli
ative part. Show that S�1A is a UFD.

Exer
ise 1.12.5. Let A be a domain and f, g P A su
h that A
�

1
f

�

X A
�

1
g

�

� A � FracpAq. Show that the

map ArXs Ñ A
�

f
g

�

;P ÞÑ P
�

f
g

�

(resp. A
�

X, 1
X

�

Ñ A
�

f
g
, g
f

�

;P ÞÑ P
�

f
g

�

) is surje
tive, with kernel xgX � fy

(resp.

�

gX � f, f
X
� g

D

).

Exer
ise 1.12.6. Let A be a ring, M an A-module of �nite type and ϕ : M Ñ An a surje
tive morphism.

Show that M � N `Kerpϕq, where N is a submodule of M isomorphi
 to An through ϕ. Show that Kerpϕq

is of �nite type.

Exer
ise 1.12.7. Let A be an integral domain and M an A-module. Assume that M 
an be generated by

n elements, and 
ontains a submodule whi
h is free of rank n. Show that M is free of rank n.

Exer
ise 1.12.8. (1) Let L{K is a �nite Galois extension with group G. Show that the natural map

LbK LÑ
à

σPG

L

xb y ÞÑ pxσpyqqσPG

is an isomorphism of L-algebras (for the left stru
ture on the LHS, and the 
omponentwise on the RHS).

(2) More generally, let L{K be a �nite separable extension, and F {K be any extension. Show that LbK F

is isomorphi
, as an F -algebra, to a �nite produ
t of separable extensions of F .

(3) Is it still true when L{K is not assumed to be separable?
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Exer
ise 1.12.9. (Nakayama's lemma). Let A be a ring, I � A an ideal and M an A-module of �nite

type su
h that IM �M .

(1) Show that there exists an element a P A su
h that a � 1 mod I and aM � t0u.

(2) Dedu
e that if I � radpAq, then M � t0u.

(3) Assume that A is lo
al and denote by k its residue �eld. Show that if k bAM � t0u, then M � t0u.

(4) Give a 
ounter-example of (3) when M is not assumed to be of �nite type.

Exer
ise 1.12.10. (Nakayama's lemma, 
ontinuation). Assume that A is lo
al, with residue �eld k,

and let M be an A-module of �nite type, N an A-module.

(1) If N is of �nite type over A and M bA N � t0u, show that M � t0u or N � t0u.

(2) Let f : N ÑM be an A-linear map su
h that Idk bf : k bA N Ñ k bAM is surje
tive. Show that f is

surje
tive.

Exer
ise 1.12.11. Let A be a ring and I � A be an ideal of �nite type su
h that I2 � I. Show that I is

generated by an element e P I su
h that e2 � e.

Exer
ise 1.12.12. Let A be a ring, M an A-module of �nite type and f P EndApMq a surje
tive endomor-

phism. Show that f is inje
tive.

Exer
ise 1.12.13. Let A be a ring. Show the following:

(i) if An � Am then n � m;

(ii) if there exists a surje
tive A-linear map An Ñ Am then n ¥ m;

(iii) [di�
ult℄ if there exists an inje
tive A-linear map An Ñ Am, then n ¤ m.

Exer
ise 1.12.14. Let A be a domain andM an torsion-free A-module. Let Σ be a set of maps σ : M ÑM ,

ea
h of whi
h is semi-linear with respe
t to a ring endomorphism σ of A, i.e. su
h that σpamq � σpaqσpmq

for all a P A and m PM . If FracpAqΣ � AΣ
, show that the natural map α : B bBΣ MΣ

ÑM is inje
tive.

Exer
ise 1.12.15. Let A be a ring. An A-module P is proje
tive if the fun
tor HomApP, .q is exa
t, i.e.

whenever a sequen
e

0ÑM 1

ÑM ÑM2

Ñ 0

is exa
t, so is the sequen
e

0Ñ HomApP,M
1

q Ñ HomApP,Mq Ñ HomApP,M
2

q Ñ 0.

(1) Show that a free module is proje
tive.

(2) Show that an A-module is proje
tive if and only if it is a dire
t fa
tor of a free module.

De�nition 1.12.16. Let A be a ring. An A-module M is of �nite presentation if there exists an exa
t

sequen
e

L1 Ñ LÑM Ñ 0

where L,L1 are free A-modules of �nite rank, i.e. if there exists a surje
tive A-linear map u : LÑM su
h

that L is free of �nite rank and Kerpuq of �nite type. Being of �nite presentation implies being of �nite

type, but the 
onverse is false in general. It holds true when A is noetherian.

Exer
ise 1.12.17. (Snake lemma). Let A be a 
ommutative ring.

(1) Assume there is a 
ommutative diagram of A-modules

M 1

a //

u

��

M
b //

v

��

M2 //

w

��

0

0 // N 1

c // N
d // N2

with exa
t rows. Show that there is an exa
t sequen
e of A-modules

Kerpuq
a
ÝÑ Kerpvq

b
ÝÑ Kerpwq

δ
ÝÑ Cokerpuq

b
ÝÑ Cokerpvq

d
ÝÑ Cokerpwq.

(2) Let 0 Ñ M 1

Ñ M Ñ M2

Ñ 0 be an exa
t sequen
e of A-modules with M of �nite type and M2

of

�nite presentation. Show that M 1

is of �nite type.
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Exer
ise 1.12.18. Let A be a lo
al ring, with maximal ideal m and residue �eld k � A{m.

(1) Let 0ÑM 1

ÑM Ñ M2

Ñ 0 be an exa
t sequen
e of A-modules with M2

�at over A. Show that the

sequen
e 0Ñ k bAM
1

Ñ k bAM Ñ k bAM
2

Ñ 0 is exa
t.

(2) Let M be an A-module. Show that the following are equivalent:

(i) M is �at of �nite presentation;

(ii) M is free of �nite rank.

(in parti
ular, when A is noetherian, then M is free of �nite rank if and only if it is �at of �nite type).

(3) Dedu
e that an A-module is proje
tive of �nite type if and only if it is free of �nite rank.

Exer
ise 1.12.19. Let A be a ring and M an A-module. Show that the following are equivalent:

(i) M is proje
tive of �nite type over A;

(ii) M is �at and �nitely presented over A.

Exer
ise 1.12.20. Let A be a lo
al ring with maximal ideal m and k � A{m its residue �eld. Let u : M Ñ N

be an A-linear map su
h that M is of �nite type, N is proje
tive, and kbu : kbAM Ñ kbAN is inje
tive.

(1) Show that M is free of �nite rank.

(2) Show that u is left invertible (i.e. there exists an A-linear map v : N ÑM su
h that v � u � IdM ).

Exer
ise 1.12.21. Let R be a ring, M � RZ
¡0

and A � EndRpMq: this is a non
ommutative ring. Use the

maps

ϕ1 : M ÑM ; px1, x2, . . .q ÞÑ px1, x3, x5, . . .q

ϕ2 : M ÑM ; px1, x2, . . .q ÞÑ px2, x4, x6, . . .q

ψ1 : M ÑM ; px1, x2, . . .q ÞÑ px1, 0, x2, 0, . . .q

ψ2 : M ÑM ; px1, x2, . . .q ÞÑ p0, x1, 0, x2, . . .q

to show that A2
� A (as left A-modules), so that the rank of a free module is not well de�ned in the non


ommutative setting.

Exer
ise 1.12.22. Let K be a �eld and A the sub-K-algebra of KrX,Y s generated by tXkY k�1
ukPZ

¥0
.

Show that ArXY s is in
luded in a sub-A-module of KrX,Y s of �nite type, but that XY is not integral over

A.

Exer
ise 1.12.23. Let A � B be a ring extension with A noetherian, x P B�

, and y P Arxs X Arx�1
s.

Show that there exists n P Z
¥0 su
h that the sub-A-module M � A�Ax� � � � �Axn � B is stable under

multipli
ation by y, and that y is integral over A.

Exer
ise 1.12.24. Let A be a domain and α P Azt0u. Assume that A{αA is redu
ed and that Arα�1
s is

integrally 
losed. Show that A is integrally 
losed.

Exer
ise 1.12.25. Let A Ñ B be an integral morphism of rings, p1 � p2 prime ideals in B su
h that

p1 XA � p2 XA. Show that p1 � p2.

Exer
ise 1.12.26. Let A be a ring, A � B a �nitely generated integral extension, and p � A a prime ideal.

Show that B has only a �nite number of prime ideals lying over p.

Exer
ise 1.12.27. (1) Let pXn, ρnqnPZ
¥0

be an inverse system of �nite and non empty sets. Show that

X � lim
�Ý

n

Xn is non empty. [Hint: redu
e to the 
ase where the maps ρn are surje
tive.℄

(2) Give an example of an inverse system (indexed by Z
¥0) of non empty sets whose inverse limit is empty.

Exer
ise 1.12.28. Prove that any 
ontinuous bije
tion from one pro�nite group to another is a homeomor-

phism.

Exer
ise 1.12.29. Let G and H be pro�nite groups, and let f : G Ñ H be a 
ontinuous group homomor-

phism. Prove that Kerpfq is a 
losed normal subgroup of G, that fpGq is a 
losed subgroup of H , and that

f indu
es an isomorphism G{Kerpfq
�

Ñ fpGq of pro�nite groups (here G{Kerpfq has the quotient topology

indu
ed by the topology on G, and fpGq has the relative topology indu
ed by the topology on H .
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Exer
ise 1.12.30. The pro�nite 
ompletion of a group G is the pro�nite group

pG � lim
�Ý

N

G{N , with N

ranging over the set of normal subgroups of G of �nite index in G, ordered by 
ontainment, the transition

maps being the natural ones.

(1) Prove that there is a natural group homomorphism ϕG : GÑ

pG, and that its image is dense in G. Find

a group G for whi
h it is not inje
tive.

(2) Prove that ϕG is an isomorphism if and only if G is pro�nite.

(3) What is the pro�nite 
ompletion of the additive group of Z?

Exer
ise 1.12.31. Let p be a prime number.

(1) Show that there is a group G whose pro�nite 
ompletion is isomorphi
 to the additive group Zp. Can

you �nd su
h a G that is 
ountable?

(2) Let A be the produ
t of a 
ountably in�nite 
olle
tion of 
opies of Z {pZ. Is there a 
ountable group G

su
h that A is isomorphi
 to the pro�nite 
ompletion of G?

Exer
ise 1.12.32. Show that for a pro�nite group G the following are equivalent:

(i) the topology of G is indu
ed by a metri
;

(ii) G � lim
�Ý

n

Gn, with Gn �nite and Gn�1 Ñ Gn surje
tive for all n P Z
¥0;

(iii) the number of open subgroups of G is 
ountable.

Show that the equivalent 
onditions (i)-(iii) imply that G 
ontains a 
ountable dense subset (soG is separable

as a topologi
al spa
e), and give an example showing that the 
onverse does not hold.

Exer
ise 1.12.33. Let p be a prime. Give examples of groups that are not separated for the p-adi
 topology.

Exer
ise 1.12.34. Let A be a topologi
al group. We say that A is pro�nite when the underlying abelian

group is pro�nite.

(1) Show that if A is pro�nite, then the natural map AÑ lim
�Ý

I

A{I is an isomorphism (where I runs through

the 
losed ideals of �nite index in A).

(2) Assume that A is noetherian, lo
al and that its topology is given by the powers if its maximal ideal.

Show that A is pro�nite if and only if its residue �eld is �nite.

Exer
ise 1.12.35. Find examples where Artin-Rees lemma's 
on
lusion does not hold be
ause one of its

assumptions is not ful�lled [Hint: try A � QrX,Z, Y1, Y2, . . .s{xX�ZiYiyiPZ
¡0

for the non noetherian 
ase.℄

Exer
ise 1.12.36. Let A be a ring, I � A and f : N Ñ M a surje
tive A-linear map. Show that the map

indu
ed on the I-adi
 
ompletions

pf : pN Ñ

xM is surje
tive. Dedu
e that if M is an A-module of �nite type,

the natural map

pAbAM Ñ

xM is surje
tive.

Exer
ise 1.12.37. Let A be a ring, α P A and M � N two A-modules. Assume that M is 
omplete and N

separated for the α-adi
 topology and that the indu
ed map M Ñ N{αN is surje
tive. Show that M � N .

Exer
ise 1.12.38. (1) Let A be a ring, α P A and N a torsion-free A-module whi
h is separated and


omplete for the α-adi
 topology. Let M � N be a sub-A-module: the in
lusion extends into an A-linear

map f : xM Ñ N where

xM � lim
�Ý

n

M{αnM is the α-adi
 
ompletion of M . Show that if αiN XM � αM for

some i P Z
¡0, then f is inje
tive [hint: show that αi�kN XM � αk�1M for all k P Z

¥0℄.

(2) Let p be a prime, A � Zp, N � ZprrXss and M � ZpppT q `
8

À

n�1

ZpppT
n�1

� T nq � N . Show that

x � pt� pppT 2
� T q � p2ppT 3

� T 2
q � � � � de�nes a non-zero element in

xM , whose image in N is zero.

Exer
ise 1.12.39. Let A be a ring, I � A an ideal and 0 Ñ M1 Ñ M2 Ñ M3 Ñ 0 an exa
t sequen
e

of A-modules. Assume M3 is annihilated by a power of I. Then 
ompletion produ
es an exa
t sequen
e

0Ñ xM1 Ñ
xM2 ÑM3 Ñ 0.
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Exer
ise 1.12.40. Let A be a ring, I � A and M an A-module. Denote by

xM the I-adi
 
ompletion of M .

(1) Show that

xM is I-adi
ally separated.

(2) Show that the following are equivalent:

(i) the A-module

xM is I-adi
ally 
omplete;

(ii) for all n P Z
¡0, the natural map M{InM Ñ

xM{InxM is surje
tive;

(iii) for all n P Z
¡0, we have I

n
xM � Kerpπnq where πn : xM ÑM{InM is the 
anoni
al map.

(3) Let K be a �eld, A � KrXisiPZ
¡0

and I � xXiyiPZ
¡0
� A. Show that

pA is not I-adi
ally 
omplete.

(4) Assume that I is �nitely generated. Show that InxM � KerpxM ÑM{InMq �

zInM for all n P Z
¥0 and

that

xM is I-adi
ally 
omplete.

Exer
ise 1.12.41. Let A be ring, I � A an ideal and M an A-module.

(1) Show that if A is I-adi
ally separated and 
omplete, then I � radpAq.

(2) Show that if M is I-adi
ally separated and 
omplete and a P I, the multipli
ation by 1 � a is an

automorphism of M .

Exer
ise 1.12.42. (Completion is not an exa
t fun
tor.) Let K be a �eld, A � KrXs,M � ApZ¡0q

and C �

8

À

n�1

A{XnA. Show that the 
ompletion for the X-adi
 topology of the natural exa
t sequen
e

0ÑM ÑM Ñ C Ñ 0 is not exa
t.

Exer
ise 1.12.43. (Formal Nakayama's lemma). Let A be a ring, I � A an ideal su
h that A is

I-adi
ally separated and 
omplete, and M an A-module of �nite type.

(1) Show that if M � IM , then M � t0u.

(2) Assume that f : M 1

ÑM is an A-linear map su
h that fbpA{Iq is surje
tive. Show that f is surje
tive.

Exer
ise 1.12.44. Let A be a ring, I � A an ideal and M an A-module. Assume that A is I-adi
ally

separated and 
omplete, and thatM is separated for the I-adi
 topology. Assume there are m1, . . . ,mr PM

whose images m1, . . . ,mr PM{IM generate M{IM . Show that m1, . . . ,mr generate the A-module M .

Exer
ise 1.12.45. Let A be a noetherian lo
al ring, with maximal ideal m and residue �eld k � A{m. Show

that the m-adi
 
ompletion

pA of A is a lo
al ring with maximal ideal m pA, and residue �eld k.

Exer
ise 1.12.46. Let A be a DVR, m its maximal ideal, and

pA the m-adi
 
ompletion of A. Show that

pA

is a DVR.

Exer
ise 1.12.47. Let A be a 
omplete DVR with uniformizer π and M an A-module. Let K � FracpAq

and k � A{πA the residue �eld. Put MK :� K bA M and Mk � K bA M . Assume that M is �at (i.e.

torsion-free) and that dimKpMKq � dimkpMkq   �8. Show that M is free of �nite rank over A. Give a


ounter-example without the �atness assumption.

Exer
ise 1.12.48. (Krull interse
tion theorem). Let A be a noetherian ring and I � A an ideal.

(1) Let M be an A-module of �nite type and N �

8

�

n�0

InM . Then there exists a P A su
h that a � 1

mod I and aN � 0.

(2) If I � radpAq, then any A-module of �nite type is I-adi
ally separated, and its submodules are all 
losed.

(3) If A is a domain and I a proper ideal, then

8

�

n�0

In � t0u.

Exer
ise 1.12.49. Let A be a noetherian ring and I � xξ1, . . . , ξny be an ideal. Let

pA be the I-adi



ompletion of A. Then there is a isomorphism

ArrX1, . . . , Xnss{xX1 � ξ1, . . . , Xn � ξny
�

Ñ

pA

that maps Xi to ξi for all i P t1, . . . , nu.

Exer
ise 1.12.50. Let A be a noetherian ring and I, J � A ideals. Assume that A is both I-adi
ally and

J-adi
ally separated and 
omplete. Show that A is I � J-adi
ally separated and 
omplete.
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Exer
ise 1.12.51. Let A be a noetherian ring and J � I � A ideals su
h that A is I-adi
ally separated and


omplete. Show that A is also J-adi
ally separated and 
omplete.

Exer
ise 1.12.52. Let A be a ring, I � xf1, . . . , fry � A a �nitely generated ideal, M an A-module and

xM

its I-adi
 
ompletion.

(1) Show that if M Ñ lim
�Ý

n

M{fni M is surje
tive for ea
h i P t1, . . . , ru, then M Ñ

xM is surje
tive.

(2) Let J � A be an ideal su
h that I � J . Show that if M is J-adi
ally 
omplete, then M is I-adi
ally


omplete.

Exer
ise 1.12.53. (1) Let g P Z
¡1, and de�ne Zg � lim

�Ý

n

Z {gnZ. Prove that Zg is a pro�nite group

isomorphi
 to

±

p|g

Zp, the produ
t ranging over the primes p dividing g.

(2) Prove that

pZ �

±

p

Zp, the produ
t ranging over all primes p.

Exer
ise 1.12.54. (1) Prove that ea
h a P pZ has a unique representation as a �
8

°

n�1

cnn!, with cn P t0, . . . , nu

for all n P Z
¡0. Give this representation for a � �1.

(2) Let b P Z
¥0, and de�ne the sequen
e panqnPZ

¥0
of non-negative integers by a0 � b and an�1 � 2an .

Prove that panqnPZ
¥0


onverges in

pZ and that the limit is independent of the 
hoi
e of b.

(3) Let a � lim
nÑ8

an be the limit of the sequen
e in (2), and write a �
8

°

n�1

cnn!. Determine cn for 1 ¤ n ¤ 10.

Exer
ise 1.12.55. Show that

pZ � EndpQ {Zq and pZ
�

� AutpQ {Zq.

Exer
ise 1.12.56. (1) Prove that for every positive integer n the natural map Z {nZ Ñ

pZ{npZ is an

isomorphism.

(2) Prove that there is a bije
tion from the set of positive integers to the set of open subgroups of

pZ mapping

n to npZ.

(3) Can you 
lassify all 
losed subgroups of

pZ?

Exer
ise 1.12.57. Let p be a prime number and view Zp � lim
�Ý

n

Z {pnZ as a 
losed subset of A �

8

±

n�1

Z {pnZ.

(1) Prove that A{Zp � A as pro�nite groups.

(2) Prove that A and Zp�pA{Zpq are isomorphi
 as groups, but not as pro�nite groups.

Exer
ise 1.12.58. Prove that

pZ
�

�

pZ�
8

±

n�1

Z {nZ as pro�nite groups.
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2. Dedekind rings

2.1. De�nition, �rst properties.

De�nition 2.1.1. Assume that A is an integral domain. We say that A is a Dedekind ring if:

(0) A is not a �eld;

(1) A is noetherian;

(2) A is integrally 
losed;

(3) nonzero prime ideals of A are maximal.

Proposition 2.1.2. PID that are not �elds are Dedekind rings.

Proof. If A is a PID, it is an integral domain and noetherian by de�nition. It is integrally 
losed by

proposition 1.9.10. Its nonzero prime ideals are maximal by proposition 1.1.30. �

Theorem 2.1.3. Let A be a Dedekind ring, K its fra
tion �eld, L{K a �nite separable �eld extension, and

B the integral 
losure of A in L. Then B is a Dedekind ring.

Proof. The ring A is noetherian: by 
orollary 1.10.39 (1), the ring B is noetherian. It is integrally 
losed

by proposition 1.9.12. Finally, if P � B is a nonzero prime ideal, the ideal p � PXA is prime and nonzero

(it 
ontains NL{Kpbq � 0 for all b P Pzt0u), hen
e maximal. This implies that P is maximal (
f proposition

1.9.19). �

Corollary 2.1.4. The ring of integers of a number �eld is a Dedekind ring.

2.2. Lo
al 
hara
terization of Dedekind rings.

Proposition 2.2.1. Let A be a Dedekind ring and S � A a mulipli
ative part. Then S�1A is a �eld or a

Dedekind ring.

Proof. The ring S�1A is noetherian by 
orollary 1.8.13. As A is integrally 
losed, so is S�1A by proposition

1.9.13. Also, proposition 1.8.14 provides an in
reasing bije
tion (for in
lusion)

tp P SpecpAq ; pX S � ∅u Ø SpecpS�1Aq

p ÞÑ S�1p

qXA :� ι�1
pqq �ß q

As nonzero elements in SpecpAq are maximal, so are nonzero elements in SpecpS�1Aq. �

Lemma 2.2.2. A lo
al Dedekind ring is a DVR.

Proof. Assume that A is a lo
al Dedekind ring: we have to show that A is a PID (
f de�nition 1.8.25). As

A is not a �eld: its maximal ideal m is nonzero, so SpecpAq � tp0q,mu.


 Let α P mzt0u. We �rst show that there exists r P Z
¡0 su
h that mr � αA. As A is noetherian, the ideal

m is of �nite type: there exists f1, . . . , fn P Azt0u su
h that m �

n
°

i�1

fiA. Let i P t1, . . . , nu. By proposition

1.8.14, we have SpecpA
pfiqq � tp P SpecpAq ; fi R pu � tp0qu, hen
e A

pfiq is a �eld (thus A
pfiq � FracpAq).

The element α is thus invertible in A
pfiq: there exists ri P Z

¥0 and ai P A su
h that

1
α
�

ai
f
ri
i

. We have of


ourse ri ¡ 0 (be
ause α R A� sin
e α P m), and f rii P αA. If r � r1 � � � � � rn P Z
¡0, we have indeed

mr � pf1A� � � � � fnAq
r
� f r11 A� � � � � f rnn A � αA.


 Next we show that m is prin
ipal. Let α P mzt0u and r P Z
¡0 minimal su
h that mr � αA. We have

mr�1
� αA: take β P mr�1

zαA and let π � α
β
P FracpAq. we have

π�1m �

β
α
m � α�1mr � A

and π�1m is an ideal of A. If this ideal was not the unit ideal, we would have π�1m � m, implying that

π�1
is integral over A (
f proposition 1.9.3 (iii)ñ (i)). As A is integrally 
losed, this would imply π�1

P A

i.e. β P αA whi
h is not: we ne
essarily have π�1m � A, so that m � πA is prin
ipal.


 Now let I � A be any stri
t nonzero ideal: we have I � m. Let α P Izt0u: we have α P mzt0u. By what

pre
edes, there exists r P Z
¡0 su
h that mr � αA � I. If we had I � mr�1

, this would imply πr P πr�1A,

i.e. 1 P πA � m whi
h is absurd. The set tn P Z
¥0 ; I � mnu is thus bounded above. As it is nonempty (it


ontains 1), it has a greatest element nI . We have I � πnIA i.e. π�nI I � A is an ideal of A, but π�nI I � m

(otherwise I � mnI�1
), thus π�nI I � A, i.e. I � πnIA. �



52 Number theory

Theorem 2.2.3. Let A be a noetherian integral domain whi
h is not a �eld. Then A is a Dedekind ring if

and only if for all maximal ideal m � A, the lo
alization Am is a DVR.

Proof. If A is a Dedekind ring and m � A a maximal ideal, the lo
alization Am is a lo
al Dedekind ring (by

proposition 2.2.1). As A is not a �eld, m is nonzero, and Am is not a �eld: this implies that Am is a DVR

(lemma 2.2.2).

Conversely, assume that for all maximal ideal m � A, the lo
alization Am is a DVR.

Let x P K � FracpAq be integral over A. Write x � a
b
with a, b P A and b � 0. For every maximal ideal

m � A, the element x is a fortiori integral over Am. As the latter is a Dedekind ring, we have x P Am, i.e.

aAm � bAm. By the lo
al-global prin
iple (proposition 1.8.22), this implies aA � bA, i.e. x P A, proving

that A is integrally 
losed.

Let p � A be a nonzero prime ideal. By Krull's theorem (theorem 1.1.7), there exists a maximal ideal m � A

su
h that p � m. By proposition 1.8.14, the ideal pAm is prime in Am. Being nonzero by assumption, it is

maximal, i.e. pAm � mAm, whi
h implies that p � m (thanks to proposition 1.8.22), and p is maximal. �

2.3. Fa
torization of ideals, 
lass group. Theorem 2.2.3 implies that Dedekind rings are lo
ally PIDs,

hen
e lo
ally UFDs. Nevertheless, there are Dedekind rings that are not UFDs.

Example 2.3.1. Let K � Qpi
?

5q: we have OK � Zri
?

5s. Assume 2 � xy with x, y P OK : write

x � a� ib
?

5 and y � c� id
?

5. We have NK{Qp2q � NK{QpxqNK{Qpyq i.e. 4 � pa2�5b2qpc2�5d2q, whi
h

implies b � d � 0 when
e x, y P Z, i.e. x P t�1u or y P t�1u. The element 2 is thus irredu
ible in OK . On

the other hand, we have p1 � i
?

5qp1 � i
?

5q � 6 P 2OK but 1 � i
?

5, 1 � i
?

5 R 2OK , i.e. 2 is not prime.

This implies that OK (whi
h is a Dedekind ring) is not a UFD (
f proposition 1.1.21).

As we will see, Dedekind rings have nevertheless a unique fa
torization property, not for nonzero elements

into a produ
t of prime elements, but for nonzero ideals into a produ
t of prime ideals.

Lemma 2.3.2. Let A be a noetherian ring and I � A a nonzero ideal.

(1) The ideal I 
ontains a produ
t p1 � � � pn of nonzero prime ideals (non ne
essarily distin
t).

(2) If A is a Dedekind ring, there are only �nitely many maximal ideals of A that 
ontain I.

Proof. (1) We use a noetherian indu
tion: let E be the set of nonzero ideals in A that do not 
ontain a

�nite produ
t of nonzero prime ideals. Assume E � ∅: as A is noetherian, it admits an element I whi
h is

maximal for the in
lusion (
f proposition 1.3.1 (1)). We have of 
ourse I � A (be
ause A 
ontains at least

a prime ideal by Krull's theorem, 
f theorem 1.1.7), and I itself is not prime: there exists x, y R I su
h that

xy P I. The ideals I�xA and I�yA stri
tly 
ontain I: by maximality of I in E , we have I�xA, I�yA R E ,

whi
h implies the existen
e of p1, . . . , pn and q1, . . . , qm nonzero prime ideals su
h that p1 � � � pn � I � xA

and q1 � � � qm � I � yA. We have then

p1 � � � pnq1 � � � qm � pI � xAqpI � yAq � I


ontradi
ting I P E . It follows that E is empty.

(2) By (1), there exists p1 � � � pn nonzero prime ideals (hen
e maximal sin
e A is a Dedekind ring) su
h that

p1 � � � pn � I. If m is a maximal ideal in A su
h that I � m, we have a fortiori p1 � � � pn � m. If pi � m for all

i P t1, . . . , nu, there exists ai P pizm, and a1 � � � an P p1 � � � pnzm whi
h is absurd: there exists i P t1, . . . , nu

su
h that pi � m. �

Theorem 2.3.3. Let A a Dedekind ring and I � A a nonzero ideal. There exist pairwise distin
t nonzero

prime ideals p1, . . . , pn and integers α1, . . . , αn P Z
¡0 su
h that

I � pα1

1 � � � pαn
n

This de
omposition is unique up to the order of fa
tors, and the set of nonzero prime ideals 
ontaining I is

pre
isely tp1, . . . , pnu.

Proof. 
 Let tp1, . . . , pnu be the set of prime ideals 
ontaining I (
f lemma 2.3.2 (2)). For i P t1, . . . , nu,

the ring Api
is a DVR (
f theorem 2.2.3). The ideal IApi

� Api
is stri
t: there exists αi P Z

¡0 su
h that

IApi
� pαi

i Api
. Put J � pα1

1 � � � pαn
n . By 
onstru
tion, we have IApi

� JApi
for all i P t1, . . . , nu. On

the other hand, if m R tp1, . . . , pnu is a maximal ideal in A, we have IAm � Am � JAm. The lo
al-global

prin
iple (
f proposition 1.8.22) implies that I � J .


 It remains to prove uni
ity up to the order. Assume that I � q
β1

1 � � � qβm
m where q1, . . . , qm are pairwise

distin
t nonzero prime ideals and β1, . . . , βm P Z
¡0. For i P t1, . . . , nu, we have q

β1

1 � � � qβm
m � pi: there

exists j P t1, . . . ,mu su
h that pi � qj . This implies that tp1, . . . , pnu � tq1, . . . , qmu. Ex
hanging the

fa
torizations, we have the reverse in
lusion, i.e. tp1, . . . , pnu � tq1, . . . , qmu, hen
e m � n, and after
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runumbering, pi � qi for all i P t1, . . . , nu. Also, we have p
βi

i Api
� IApi

� pαi

i Api
, whi
h implies αi � βi

for all i P t1, . . . , nu. �

Remark 2.3.4. A way to formulate uni
ity is to say that the ideals p1, . . . , pn that appear in the fa
torization

are exa
tly the nonzero prime ideals that 
ontain I (indeed its prime divisors), and that for all i P t1, . . . , nu,

the multipli
ity αi is the valuation of the ideal IApi
in the DVR Api

.

Example 2.3.5. With the notations of example 2.3.1, we have the isomorphism

ZrXs{xX2
� 5y

�

ÑOK

X ÞÑ i
?

5

It indu
es an isomorphism F2rXs{xp1�Xq
2
y

�

ÑOK{2OK : let p be the ideal generated by 2 and θ :� 1� i
?

5

(it is the image of the maximal ideal x1 � Xy of F2rXs{xp1� Xq2y by the pre
eding isomorphism). The

indu
ed isomorphism is an isomorphism OK{p
�

ÑF2, so that p is maximal. On the other hand, the image

of p2 in OK{2OK is zero: we have p2 � 2OK � p. As 2OK is not prime, we have 2OK � p, showing that

2OK � p2.

De�nition 2.3.6. Let A an integral domain and K its fra
tion �eld.

(1) A fra
tional ideal is a sub-A-module I � K su
h that there exists d P Azt0u with I � d�1A.

(2) Operations on fra
tional ideals. Let I, J � K be fra
tional ideals: there exists d, δ P Azt0u su
h that

I � d�1A and J � δ�1A. Let I�J (resp. IJ) be the sub-A-module of K generated by IYJ (resp. elements

of the form

(25) xy with x P I and y P J). Then IJ � pdδq�1A and I X J � I � J � pdδq�1A so that IJ ,

I X J and I � J are fra
tional ideals.

(3) If I � K is a fra
tional ideal, we put

I�1
� tx P K ; xI � Au

it is a sub-A-module of K. If I � t0u, then I�1
is a fra
tional ideal (if a P Izt0u, we have aI�1

� A, so

that I�1
� a�1A).

(4) A nonzero fra
tional ideal I � K is 
alled invertible if the in
lusion II�1
� A is an equality.

Remark 2.3.7. (1) A fra
tional ideal is nothing but a set of the form d�1a where a � A is an ideal and

d P Azt0u. In parti
ular, every ideal in A is a fra
tional ideal. Also, for all x P K�

, the set xA is a

fra
tional ideal. Su
h a fra
tional ideal is 
alled prin
ipal. A prin
ipal fra
tional ideal is invertible, and

pxAq�1
� x�1A.

(2) If I � J � K are fra
tional ideals, we have J�1
� I�1

. In parti
ular, if I � A, we have A � I�1
.

(3) If I, J � K are invertible fra
tional ideals, so is the produ
t IJ , and pIJq�1
� I�1J�1

.

(4) If S � A is a multipli
ative part and I � K a invertible fra
tional ideal over A, then S�1I is an invertible

fra
tional ideal over S�1A, and pS�1Iq�1
� S�1I�1

(indeed we have pS�1I�1
qpS�1Iq � S�1II�1

� S�1A).

Corollary 2.3.8. In a Dedekind ring, every nonzero fra
tional ideal is invertible.

Proof. Let A a Dedekind ring, K its fra
tion �eld and I � K a nonzero fra
tional ideal. Assume �rst that

I � A is an ideal. Let x P Izt0u � Azt0u. By theorem 2.3.3, there exists nonzero prime ideals p1, . . . , pn

and α1, . . . , αn P Z
¡0 su
h that xA � pα1

1 � � � pαn
n . As xA � I, we have ne
essarily I � p

β1

1 � � � pβn
n with

0 ¤ βi ¤ αi for all i P t1, . . . , nu. Put J � p
α1�β1

1 � � � pαn�βn
n � A: we have IJ � xA, thus Ipx�1Jq � A,

proving that I is invertible and I�1
� x�1J . In the general 
ase, we have I � d�1a with d P Azt0u and

a � A. By what pre
edes, the ideal a is invertible: we have aa�1
� A, hen
e Ipda�1

q � A, so that I is

invertible, with inverse da�1
. �

Theorem 2.3.9. Let A be a Dedekind ring, PA the set of its nonzero prime ideals and K its fra
tion �eld.

If I � K is a nonzero fra
tional ideal, there exists a unique family

�

vppIq
�

pPPA
P ZpPAq

su
h that

I �
¹

pPPA

pvppIq

(the produ
t is �nite sin
e only �nitely many vppIq are nonzero).

Proof. There exists a nonzero ideal a � A and d P Azt0u su
h that I � d�1a. By theorem 2.3.3 applied to

the ideals a, dA � A, the existen
e of the de
omposition follows. For uni
ity, assume that

¹

pPPA

pnp
�

¹

pPPA

pmp

(25)

We have thus IJ �

!

x P K, pDn P Z
¥0q pDx1, . . . , xn P Iq pDy1, . . . , yn P Jq x �

n
°

k�1

xkyk

)

.
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with pnpqpPPA
, pmpqpPPA

P ZpPAq
. We have

±

pPPA

pnp�mp
� A, i.e.

¹

pPPA

np�mp¥0

pnp�mp
�

¹

pPPA

np�mp 0

p�np�mp
� A.

By uni
ity in theorem 2.3.3, this implies that np �mp � 0 i.e. np � mp for all p P PA (note that the sets

tp P PA, np �mp ¥ 0u and tp P PA, np �mp   0u are disjoint). �

Notation. If A is an integral domain, we denote by FrpAq the set of its nonzero fra
tional ideals, and

PrincpAq the subset of its nonzero prin
ipal fra
tional ideals.

Proposition 2.3.10. Let A be a Dedekind ring and PA the set of its nonzero prime ideals.

(1) Endowed with the law pI, Jq ÞÑ IJ , the set FrpAq is an abelian group with unit element A and with

inverse map I ÞÑ I�1
. Moreover, the map

fA : ZpPAq
Ñ FrpAq

pnpqpPPA
ÞÑ

¹

pPPA

pnp

is a group isomorphism, with inverse I ÞÑ
�

vppIq
�

pPPA
. In parti
ular, we have

vppIJq � vppIq � vppJq

vppI
�1
q � �vppIq

for all I, J P FrpAq and p P PA.

(2) If I, J P FrpAq, we have I � J � p�p P PAq vppIq ¥ vppJq. In parti
ular I is an ideal in A if and only

if vppIq ¥ 0 for all p P PA.

Proof. (1) By de�nition 2.3.6, if I, J P FrpAq, then IJ P FrpAq and I�1
P FrpAq. The law pI, Jq ÞÑ IJ is

asso
iative, 
ommutative and admits A as unit element. Moreover, every element is invertible by 
orollary

2.3.8: FrpAq is an abelian group. The map fA is a group homomorphism, with inverse I ÞÑ
�

vppIq
�

pPPA

(theorem 2.3.9): it is thus an isomorphism.

(2) by theorem 2.3.3, if I � A is an ideal, we have vppIq ¥ 0 for all p P PA. The 
onverse is obvious. If

I, J P FrpAq, we have thus I � J � IJ�1
� A� p�p P PAq vppIq � vppJq � vppIJ

�1
q ¥ 0. �

De�nition 2.3.11. Let A be a Dedekind ring. The set PrincpAq is a subgroup of FrpAq. We denote

ClpAq � FrpAq{PrincpAq

the quotient group, that we 
all the ideal 
lass group of A.

Example 2.3.12. Let A be a Dedekind ring.

(1) A is a PID if and only if ClpAq � t1u.

(2) Let I be a nonzero fra
tional ideal. The 
lass of I in ClpAq is of �nite order if and only if there exists

n P Z
¡0 su
h that In is prin
ipal.

De�nition 2.3.13. A ring is semi-lo
al if it has only �nitely many maximal ideals.

Remark 2.3.14. (1) A lo
al ring is semi-lo
al.

(2) If A is a Dedekind ring and I � A a nonzero ideal, then A{I is semi-lo
al: let I � pα1

1 � � � pαr
r be the

de
omposition of I into a produ
t of nonzero prime ideals; the Chinese remainder theorem implies that

A{I �
Àr

i�1 A{p
αi

i , and ea
h fa
tor A{pαi

i is lo
al, with maximal ideal pi{p
αi

i .

Proposition 2.3.15. Let A be a Dedekind ring, p1, . . . , pn � A nonzero prime ideals and I � A an ideal.

There exists a P A su
h that p�i P t1, . . . , nuq IApi
� aApi

. In parti
ular, a semi-lo
al Dedekind ring is a

PID.

Proof. We have I � pα1

1 � � � pαn
n J with α1, . . . , αn P Z

¥0 and J prime to p1 � � � pn (theorem 2.3.3). By lemma

2.2.2, for all i P t1, . . . , nu, the ring Api
is a DVR: let πi P pi be su
h that piApi

� πiApi
. We have

IApi
� παi

i Api
for all i P t1, . . . , nu. As p1, . . . , pn are pairwise 
oprime, so are pα1�1

1 , . . . , pαn�1
n : by the


hinese remainder theorem (
f theorem 1.1.14), the natural morphism

A{pα1�1
1 � � � pαn�1

n Ñ pA{pα1�1
1 q � � � � � pA{pαn�1

n q

is an isomorphism: there exists a P A su
h that a � παi

i mod pαi�1
i hen
e aApi

� IApi
for all i P t1, . . . , nu.

If A is semi-lo
al, take tp1, . . . , pnu the set of maximal ideals of A. By the lo
al-global prin
iple (proposition

1.8.22), we have I � aA. As A is an integral domain by de�nition, it is a PID. �
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Corollary 2.3.16. Let A be a Dedekind ring, I � A a nonzero ideal and a P Izt0u. There exists b P A su
h

that I � aA� bA.

Proof. Let p1, . . . , pn � A be the nonzero prime ideals 
ontaining a (lemme 2.3.2 (2)). By proposition

2.3.15, there exists b P A su
h that p�i P t1, . . . , nuq IApi
� bApi

. Put J � aA� bA � A. If p is a maximal

ideal that does not 
ontain a, we have aAp � Ap: as a P I and a P J , this implies that IAp � JAp � Ap.

If i P t1, . . . , nu, we have aApi
� IApi

, hen
e IApi
� bApi

� JApi
� IApi

, so that JApi
� IApi

. By the

lo
al-global prin
iple (proposition 1.8.22), we have I � J . �

2.4. Fa
torization in an extension, rami�
ation. Let A be a Dedekind ring and K � FracpAq. The

aim of this se
tion is to explain the de
omposition of the ideal generated by an ideal of A in the integral


losure of A in a �nite separable extension of K. If p is a nonzero prime ideal in A, we denote κppq � A{p

the residue �eld of A at p.

De�nition 2.4.1. Let A be a Dedekind ring, and L{K a �nite separable �eld extension. Let B be the integral


losure of A in L. By 
orollary 1.10.39 (1) and theorem 2.1.3, B is a �nite A-algebra and a Dedekind ring.

(1) If p � A and P � B are nonzero prime ideals, we say that P divides p, or that P lies above p (and we

denote P | p) if PXA � p.

(2) As B is a Dedekind ring, we have

pB �

±

P|p

PeP

with eP � vPppBq P Z
¡0. The integer eP is 
alled the rami�
ation index of p en P.

(3) If P | p, the �eld κpPq � B{P is a �nite extension of κppq � A{p 
alled the residual extension at P.

We put fP �

�

κpPq : κppq
�

: this integer is 
alled the residual degree of p at P.

(4) If eP � 1 and the �eld extension κpPq{κppq is separable, we say that p (or even L{K) is unrami�ed

at P, and rami�ed at P otherwise. If p is unrami�ed at every prime ideal dividing it, we say that p is

unrami�ed, or that L{K is unrami�ed at p.

(5) When there is only one prime ideal P above p and fP � 1, we say that L{K is totally rami�ed at p.

(6) If the ideal pB is prime in B, we say that p is inert in L{K. If eP � fP � 1 for all P | p, we say that p

is totally split in L{K.

Theorem 2.4.2. Under the hypothesis of de�nition 2.4.1, we have

dimκppqpB{pBq � rL : Ks �
°

P|p

ePfP

Proof. There are isomorphisms A{p
�

ÑAp{pAp and B{pB
�

ÑS�1B{pS�1B (with S � Azp): repla
ing A by

Ap (whi
h is li
it by proposition 1.9.13), we may assume that A is a DVR, with maximal ideal p (
f lemma

2.2.2). The ring A is a PID: the A-module B is free of rank rL : Ks (
f 
orollary 1.10.39 (2)). This implies

that dimκppqpB{pBq � rL : Ks.

For P | p, the ideals PeP
are pairwise 
oprime: the Chinese remainder theorem provides an isomorphism

B{pB � B{
±

P|p

PeP �

Ñ

À

P|p

B{PeP

Consider the �ltration PeP
� PeP�1

� � � � � P2
� P � B. As BP is a DVR (lemma 2.2.2), we have

isomorphisms BP{PBP
�

ÑPkBP{P
k�1BP

�

�Pk
{Pk�1

(the �rst isomorphism is indu
ed by the multipli-


ation by πkP, where πP is a uniformizer of BP). This implies that Pk
{Pk�1

is a κpPq-ve
tor spa
e of

dimension 1, hen
e a κppq-ve
tor spa
e of dimension fP. This shows that

dimκppqpB{P
eP
q �

eP�1
°

k�0

dimκppqpP
k
{Pk�1

q � ePfP

hen
e dimκppqpB{pBq �
°

P|p

dimκppqpB{P
eP
q �

°

P|p

ePfP. �

Lemma 2.4.3. (prime avoidan
e). Let R be a ring, p1, . . . , pn � R prime ideals and I �
n
�

i�1

pi an ideal.

There exists i P t1, . . . , nu su
h that I � pi.

Proof. Removing some pi if ne
essary, we may assume that p�i P t1, . . . , nuq pi �
�

j�i

pj: let ai P piz
�

j�i

pj.

Assume moreover that for all i P t1, . . . , nu, we have I � pi: let xi P Izpi. Put x �
n
°

i�1

xi
±

j�i

aj P I. If
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i P t1, . . . , nu, we have ai P pi hen
e x � xi
±

j�i

aj mod pi. As xi R pi and aj R pi for j � i, we have

xi
±

j�i

aj R pi when
e x R pi, so that x P Iz
n
�

i�1

pi, 
ontradi
ting the hypothesis. �

Remark 2.4.4. The terminology 
omes from the 
ontrapositive.

Theorem 2.4.5. Under the hypothesis of theorem 2.4.2, assume moreover that the �eld extension L{K is

Galois. The group GalpL{Kq a
ts transitively on the set of prime ideals that divide p. The integers eP and fP
only depend of p and not of P: we denote them ep and fp respe
tively. If GalpL{KqP denotes the stabilizer of

P, then GalpL{KqσpPq � σGalpL{KqPσ
�1

for all σ P GalpL{Kq: the integer gp �
�

GalpL{Kq : GalpL{KqP
�

only depends of p and not of P. We have rL : Ks � epfpgp.

Proof. Let P and P1

be prime ideals above p su
h that P1

� σpPq for all σ P GalpL{Kq. As the ideals

P1

and σpPq are maximal, we have P1

� σpPq for all σ P GalpL{Kq: there exists x P P1

su
h that

x R σpPq for all σ P GalpL{Kq (
f lemma 2.4.3). This implies that y � NL{Kpxq �
±

σPGalpL{Kq

σpxq R P,


ontradi
ting the fa
t that y P A XP1

� p � P. The a
tion of GalpL{Kq on the set of prime ideals that

divide p is thus transitive, and the integers eP and fP thus only depend of p and not of P. We also have

GalpL{KqσpPq � σGalpL{KqPσ
�1

for all σ P GalpL{Kq. Moreover, we have #tP P SpecpBq ; P | pu �
�

GalpL{Kq : GalpL{KqP
�

� gp: this shows that

rL : Ks �
°

P|p

ePfP � #tP P SpecpBq ; P | puepfp � epfpgp

thanks to proposition 2.4.2. �

Proposition 2.4.6. Under the hypothesis of theorem 2.4.2, assume that B � Arθs. Let F P ArXs be the

minimal polynomial of θ over K. For a nonzero prime ideal p � A, the fa
torization of the redu
tion F

of F in κppqrXs has the form F pXq �
s
±

i�1

fipXq
ri

with f1, . . . , fs irredu
ible and pairwise 
oprime. The

de
omposition of pB is then

pB �

s
±

i�1

Pri
i

with Pi � pB�FipθqB (where Fi P ArXs is any lifting of fi). Moreover, we have B{Pi � κppqrXs{xfipXqy.

Proof. By hypothesis, there is an isomorphism

ArXs{xF pXqy
�

ÑB

X ÞÑ θ

It indu
es isomorphisms κppqrXs{xF pXqy
�

ÑB{pB thus κppqrXs{xfipXqy
�

ÑB{Pi for all i P t1, . . . , su. This

shows that Pi is maximal in B, divides p, and that fPi
� rκpPiq : κppqs � degpfiq.

On the other hand, if i � j, we have κppqrXs � fipXqκppqrXs � fjpXqκppqrXs (be
ause fi and fj are


oprime), hen
e ArXs � FipXqArXs � FjpXqArXs � prXs, whi
h implies that Pi � Pj � B: the ideals

P1, . . . ,Ps are pairwise 
oprime.

Conversely, let P � B be a maximal maximal ideal su
h that P | p. As F pXq �
s
±

i�1

FipXq mod prXs,

we have

s
±

i�1

Fipθq P P: there exists i P t1, . . . , su su
h that Fipθq P P, hen
e Pi � P, i.e. Pi � P by

maximality of Pi. The set of prime ideals of B that divide p is thus pre
isely tP1, . . . ,Psu.

It remains to show that for all i P t1, . . . , su, the rami�
ation index ePi
is ri. By the Chinese remainder

theorem, there is an isomorphism

B{pB � κppqrXs{xF pXqy
�

Ñ

s
±

i�1

κppqrXs{xfipXq
ri
y

For j � i, we have Fjpθq R Pi by what pre
edes: the lo
alization of the fa
tor κppqrXs{xfjpXq
rj
y at Pi is

zero. This shows that

BPi
{pBPi

� κppqrXs{xfipXq
ri
y

hen
e ePi
fPi

� dimppBPi
{pBPi

q � dimppκppqrXs{xfipXq
ri
yq � ri degpfiq � rifPi

, i.e. ePi
� ri. �
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2.4.7. Relative norm. If I � K is a nonzero nonzero fra
tional ideal, then IB is a nonzero fra
tional

ideal: this provides a group homomorphism FrpAq Ñ FrpBq. If I � xA is prin
ipal, so IB � xB: this

homomorphism indu
es a group homomorphism

iB{A : ClpAq Ñ ClpBq

We want to built an homomorphism in the reverse dire
tion. Re
all that we denote by PA (resp. PB)

the set of nonzero prime ideals of A (resp. B). If P P PB , we have p :� P X A P PA, and we have

fP :� rκpPq : κppqs. We put

NB{ApPq � pfP

As valuations indu
e group isomorphisms FrpAq
�

ÑZpPAq
and FrpBq

�

ÑZpPBq
(proposition 2.3.10), this

de�nes a unique group homomorphism

NB{A : FrpBq Ñ FrpAq

Proposition 2.4.8. (1) (Transitivity) Let M{L be a �nite separable �eld extension and C the integral


losure of A in M (or of B, this is the same). We have NB{ApNC{BpJqq � NC{ApJq for all nonzero fra
tional

ideal J �M .

(2) If I � K is a nonzero fra
tional ideal, we have NB{ApiB{ApIqq � In (where n � rL{Ks).

(3) If x P L�, we have NB{ApxBq � NL{KpxqA.

Proof. (1) We may assume that J is a nonzero prime ideal. Put P � B X J and p � A X J � A X P.

We have extensions κpJq{κpPq and κpPq{κppq, so that rκpJq : κpPqsrκpPq : κppqs � rκpJq : κppqs. As

NC{BpJq � PrκpJq:κpPqs
and NB{ApPq � prkpPq:κppqs, we get

NB{ApNC{BpJqq � NB{ApP
rκpJq:κpPqs

q � NB{ApPq
rκpJq:κpPqs

� prκpPq:κppqsrκpJq:κpPqs � prκpJq:κppqs � NC{ApJq

(2) We may assume that I � p is a nonzero prime ideal: we have iB{ApIq � pB �

±

P|p

PeP
hen
e

NB{ApiB{ApIqq �
¹

P|p

NB{ApPq
eP
� p

°

P|p

ePfP

� In

by theorem 2.4.2.

(3) 
 Assume that L{K is Galois with group Γ. We �rst show that iB{ApNB{ApJqq � NB{ApJqB �

±

γPΓ

γpJq

for all nonzero fra
tional ideal J � L. As above, we may assume that J � P is a nonzero prime ideal. Put

p � A X P: by theorem 2.4.5, the group Γ a
ts transitively on the set of prime ideals of B above p, and

the integers eP and fP only depend of p and not of P (they are denoted ep and fp respe
tively). Let ΓP

be the stabilizer of P: we have #Γ � rL : Ks � epfpgp with gp �
�

Γ : ΓP

�

, so #ΓP � epfp. Moreover, we

have pB �

±

γPΓ{ΓP

γpPqep , whi
h implies

NB{ApJqB � pfpB �

±

γPΓ{ΓP

γpPqepfp �
±

γPΓ{ΓP

γpPq#ΓP
�

±

γPΓ

γpPq

as wanted. Applied to J � xB with x P L�, this formula gives NB{ApxBqB �

±

γPΓ

γpxqB � NL{KpxqB. This

shows that the valuations of the fra
tional ideals NB{ApxBq and NL{KpxqA are the same at every nonzero

prime ideal of A: they are equal.


 In the general 
ase, let M be a normal 
losure of L{K and C the integral 
losure of A in M . The �eld

extensions M{L and M{K are Galois: by what we have seen above, if x P L we have

NM{KpxqA � NC{ApxCq � NB{ApNC{BpxCqq � NB{ApNM{LpxqBq � NB{Apx
dBq � NB{ApxBq

d

(where d � rM : Ls). On the other hand, we have NM{Kpxq � NL{KpNM{Lpxqq � NL{Kpx
d
q � NL{Kpxq

d
by

proposition 1.10.9: we have NL{Kpxq
dA � NB{ApxBq

d
, whi
h implies NL{KpxqA � NB{ApxBq (looking at

p-adi
 valuations). �

Corollary 2.4.9. The group homomorphism NB{A : FrpBq Ñ FrpAq indu
es a group homomorphism

NB{A : ClpBq Ñ ClpAq

Proof. Follows from proposition 2.4.8 (3), whi
h implies that NB{ApPrincpBqq � PrincpAq. �
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Remark 2.4.10. (1) By proposition 2.4.8 (2), the morphism iB{A : FrpAq Ñ FrpBq is inje
tive. The indu
ed

morphism iB{A : ClpAq Ñ ClpBq is not inje
tive in general (non prin
ipal ideals may "be
ome" prin
ipal in

an extension). Similarly, the map NB{A is not inje
tive in general.

(2) If S � A is a multipli
ative part and J � L a nonzero fra
tional ideal, we have

NS�1B{S�1ApS
�1Jq � S�1 NB{ApJq.

2.5. Di�erent and dis
riminant. Let A be a Dedekind ring, K its fra
tion �eld, L{K a �nite separable

extension, and B the integral 
losure of A in L. By 
orollary 1.10.39 (1) and theorem 2.1.3, B is a �nite

A-algebra and a Dedekind ring. Let

B�

� ty P L ; p�x P Bq TrL{Kpxyq P Au

By de�nition, it is a sub-B-module of L.

Lemma 2.5.1. B�

is a fra
tional ideal of L that 
ontains B.

Proof. Put n � rL : Ks. Let pe1, . . . , enq be a basis of L made of elements in B, and px1, . . . , xnq in L

the dual basis. Let x P B�

: we 
an write x �
n
°

j�1

λjxj with λ1, . . . , λn P K. For i P t1, . . . , nu, we have

λi � TrL{Kpeixq P A. This implies that B�

� Ax1` � � � `Axn � d�1B for any element d P Bzt0u su
h that

dxi P B for all i P t1, . . . , nu (we 
an in fa
t take d in Azt0u). This shows that B�

is a fra
tional ideal of L.

We have obviously B � B�

be
ause TrL{KpBq � A by 
orollary 1.10.7. �

Remark 2.5.2. Of 
ourse, the proof is very 
lose to that of proposition 1.10.37.

De�nition 2.5.3. The di�erent of B{A is the inverse of the fra
tional ideal B�

(the latter is 
alled the

inverse di�erent). It is an ideal of B denoted DB{A.

Remark 2.5.4. When there is no ambiguity on A, the di�erent is often simply denoted DL{K . Similarly,

the dis
riminant is often denoted dL{K .

Proposition 2.5.5. Let a (resp. b) be a fra
tional ideal in K (resp. L). The following are equivalent:

(i) TrL{Kpbq � a;

(ii) b � aD�1
B{A

.

Proof. This is obvious if a � t0u: assume a � t0u. Then we have the equivalen
es

TrL{Kpbq � a� a�1TrL{Kpbq � A� TrL{Kpa
�1bq � A� a�1b � D�1

B{A
� b � aD�1

B{A
.

�

Remark 2.5.6. The previous proposition is a 
hara
terization of the di�erent.

Proposition 2.5.7. Let A be a Dedekind ring, K � FracpAq and L{K a �nite separable �eld extension of

degree n. Denote B the integral 
losure of A in L. Fix x P B su
h that L � Kpxq, put C � Arxs � B and

let P P ArXs the minimal polynomial of x over K.

(1) We have TrL{K
�

xk

P 1pxq

�

�

#

0 if 0 ¤ k ¤ n� 2

1 if k � n� 1
.

(2) The A-module C�

is free with basis

�

xk

P 1pxq

�

0¤k n
.

(3) For all c P C, we have cB � C � c P P 1

pxqD�1
B{A

(so that DB{A divides P 1

pxqB).

(4) We have B � C � DB{A � P 1

pxqB, in whi
h 
ase Ω1
B{A � B{DB{A.

Proof. (1) 
 Let K be an algebrai
 
losure of K, and x1, . . . , xn P K are the 
onjugates of x over K:

as L � Kpxq, we have rL : Ks � n. As L{K is separable, the polynomial P is separable: we have

P pT q �
n
±

i�1

pT �xiq where the roots x1, . . . , xn are pairwise distin
t. We have thus

1
P pT q

�

n
°

i�1

λi

T�xi
, so that

1 �
n
°

i�1

λi
P pT q

T�xi
. Evaluation at xi gives 1 � λiP

1

pxiq when
e
1

P pT q
�

n
°

i�1

1
P 1pxiqpT�xiq

.


 For all i P t1, . . . , nu, we have

1
T�xi

�

1
T

�

1 � xi

T

�

�1
�

8

°

k�0

xk
i

Tk�1 P K
��

1
T

��

. What pre
edes implies that

1
P pT q

�

8

°

k�0

1
Tk�1

n
°

i�1

xk
i

P 1pxiq
�

8

°

k�0

TrL{K
�

xk

P 1pxq

�

1
Tk�1 . On the other hand, P pT q � T n � a1T

n�1
� � � � � an,

so that P pT q � T n
�

1� a1
T
�� � ��

1
Tn

�

, whi
h implies that

1
P pT q

P

1
Tn �

1
Tn�1K

��

1
T

��

. Identifying 
oe�
ients

gives the required formulas.
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(2) It is enough to show thatM :�
�

TrL{K
�

xi xj

P 1pxq

��

0¤i,j n
P GLnpAq. By (1), we have TrL{K

�

xi xj

P 1pxq

�

� 0

if i � j   n � 1 and TrL{K
�

xi xj

P 1pxq

�

� 1 if i � j � n � 1. Moreover, if n ¤ i � j   2n� 1, then we have

TrL{K
�

xi xj

P 1pxq

�

� TrL{K
�

xn x
i�j�n

P 1pxq

�

P A sin
e xn is an A-linear 
ombination of 1, x, . . . , xn � 1. This shows

that

M �

�

1
. .
.
�

1 � �

	

P MnpAq

so that detpMq � p�1qnpn�1q{2
.

(3) Note that (2) means that C�

�

1
P pxq

C (sin
e C � Arxs �
n�1
À

k�0

Axk). If c P C, we have thus

cB � C � P 1

pxq�1cB � C�

� TrL{KpP
1

pxq�1cBq � A� P 1

pxq�1c P D�1
B{A

� c P P 1

pxqD�1
B{A

(be
ause P 1

pxq�1cB is a sub-C-module of L). The set of su
h c is a sub-B-module of B i.e. an ideal in B

by its very de�nition, so is P 1

pxqD�1
B{A

: we have P 1

pxqB � DB{A, i.e. DB{A divides P 1

pxqB.

(4) 
 We have C � B, so that B � C � 1 P tc P C ; cB � Cu. By (3), this is equivalent to 1 P P 1

pxqD�1
B{A

,

i.e. B � P 1

pxqD�1
B{A

that is DB{A � P 1

pxqB. As the reverse in
lusion always holds, this is equivalent to the

equality DB{A � P 1

pxqB.


 If B � C, we have ArXs{xP y
�

ÑArxs � B, whi
h implies that Ω1
B{A is the B-module generated by dx,

and that the annihilator of dx is P 1

pxqB: we have Ω1
B{A � B{xP 1

pxqy � B{DB{A. �

Proposition 2.5.8. Let S � A be a multipli
ative part. Then DS�1B{S�1A � S�1DB{A.

Proof. Re
all that the integral 
losure 
ommutes with lo
alization: the integral 
losure of S�1A in L is

S�1B (
f proposition 1.9.13). As S�1D�1
B{A

� pS�1DB{Aq
�1

(
f remark 2.3.7 (4)), it is enough to show

that D�1
S�1B{S�1A

� S�1D�1
B{A

.

If x P B, y P D�1
B{A

and s, t P S, we have TrL{Kps
�1xt�1yq � pstq�1 TrL{Kpxyq P S

�1A: as this holds for all

x P B and s P S, this shows that t�1y P D�1
S�1B{S�1A

, showing that S�1D�1
B{A

� D�1
S�1B{S�1A

.

Conversely, let tb1, . . . , bru be a generating family of B as an A-module, and let β P D�1
S�1B{S�1A

: for all

i P t1, . . . , ru, we have TrL{Kpbiβq P S
�1A. Taking a 
ommon denominator, there exists s P S su
h that

sTrL{Kpbiβq P A for all i P t1, . . . , ru, whi
h implies that sβ P DB{A, hen
e β P S
�1DB{A. �

Proposition 2.5.9. Assume

(26)

that B is free over A. Then dB{A � NB{ApDB{Aq.

Proof. As integral 
losure, dis
riminant, di�erent and relative norm 
ommute with lo
alization (
f propo-

sitions 1.9.13, 1.10.17, 2.5.8 and remark 2.4.10 (2)), this 
an be 
he
ked after lo
alizing at nonzero prime

ideals of A. We thus may assume that A is a DVR, with maximal ideal p.


 Let pe1, . . . , enq be a basis of B over A, and denote by B � pe�1 , . . . , e
�

nq the dual basis for the tra
e

map. Then we have B� :� D�1
B{A

� Ae�1 ` � � � ` Ae�n. For all i P t1, . . . , nu, we have ei �
n
°

j�1

xi,je
�

j where

M � pxi,jq1¤i,j¤n P MnpAq. Then eiej �
n
°

k�1

xi,ke
�

kej so that TrL{Kpeiejq � xi,j for all i, j P t1, . . . , nu.

This implies that dB{A is the ideal generated by detpMq. On the other hand, M is the matrix, in the basis

B of an A-linear endomorphism u of B�

, whose image is B. By theorem 1.4.7, there exist P,Q P SLnpAq

su
h that M � P�1 diagpa1, . . . , anqQ where a1, . . . , an P A are su
h that a1A � � � � � anA. Changing the

basis B, we may assume that P � In: this implies that Cokerpuq �
n
À

i�1

A{aiA. Writing aiA � pℓi , we have

dB{A � detpMqA � a1 � � � anA � pℓ, where ℓ �
n
°

i�1

ℓi is the length of Cokerpuq � B�

{B.

On the other hand, write DB{A �
±

P|p

PαP
: we have NB{ApDB{Aq � pδ with δ �

°

P|p

fPαP. Moreover, we

have B�

{B � D�1
B{A

{B � B{DB{A �

À

P|p

B{PαP
: as the length of B{PαP

as an A-module is fPαP (
f

proof of theorem 2.4.2), that of B�

{B is ℓ � δ, proving the equality. �

Proposition 2.5.10. (Transitivity of the different). Let M{L be a �nite separable �eld extensions,

and C the integral 
losure of B in M . Then DC{A � DC{BDB{A.

(26)

As observed earlier, this 
ondition is not really ne
essary.
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Proof. Let c �M be a nonzero fra
tional ideal. We have

c � D�1
C{B

� TrM{Lpcq � B � D�1
B{A

TrM{Lpcq � D�1
B{A

� TrL{KpD
�1
B{A

TrM{Lpcqq � A

� TrL{KpTrM{LpD
�1
B{A

cqq � A� TrM{KpD
�1
B{A

cq � A� D�1
B{A

c � D�1
C{A

� c � DB{AD
�1
C{A

(here we used the transitvity of the tra
e, 
f proposition 1.10.9) whi
h shows that D�1
C{B

� DB{AD
�1
C{A

, i.e.

DC{A � DC{BDB{A. �

This allows to re
over 1.10.24 in a spe
ial 
ase.

Corollary 2.5.11. Under the assumtions of proposition 2.5.10, assume that C is free over B and B is free

over A. Then dC{A � NB{ApdC{Bqd
rM :Ls

B{A
.

Proof. We apply NC{A to the equality DC{A � DC{BDB{A (
f proposition 2.5.10). By proposition 2.5.9,

this shows that dC{A � NC{ApDC{BqNC{ApDB{Aq. The equality the follows from NC{A � NB{A �NC{B,

whi
h implies NC{ApDC{Bq � NB{ApdC{Bq and NC{ApDB{Aq � NB{ApD
rM :Ls

B{A
q � d

rM :Ls

B{A
. �

2.6. Rings of integers of number �elds. In what follows, Q denotes the algebrai
 
losure of Q in C.

Re
all that a number �eld is a �nite extension of Q, and that if K is a number �eld, we denote by OK the

ring of integers of K, i.e. the integral 
losure of Z in K.

Proposition 2.6.1. Let K be a number �eld and n � rK : Qs. The ring of integers OK is a free Z-module

of rank n.

Proof. Follows from the fa
t that Z is PID and from 
orollary 1.10.39 (2). �

Example 2.6.2. (1) Let d P Z zt0, 1u be a square free integer, and K � Qp
?

dq. Then

OK �

#

Z
�

1�
?

d
2

�

if d � 1 mod 4Z

Zr
?

ds otherwise

(2) If p is an odd prime integer, ζ P C a primitive p-th root of unity and K � Qpζq, then OK � Zrζs.

Proposition 2.6.3. Let px1, . . . , xnq be a basis of OK over Z and M � pmi,jq1¤i,j¤n P MnpZq su
h that

detpMq � 0. For i P t1, . . . , nu, put yi �
n
°

j�1

mi,jxj . If R �

n
°

i�1

Z yi � OK , then rOK : Rs � #pOK{Rq is

�nite and Dpy1, . . . , ynq � rOK : Rs2Dpx1, . . . , xnq.

Proof. The hypothesis detpMq � 0 implies that R is a free Z-module of rank n. It is a sub-module of OK

whi
h is also of rank n (proposition 2.6.1), it is of �nite index (this follows from the adapted basis theorem,


f 1.4.11), i.e. rOK : Rs � #pOK{Rq   �8. We have Dpy1, . . . , ynq � detpMq

2 Dpx1, . . . , xnq: it is enough

to show that |detpMq| � rOK : Rs, whi
h follows from theorem 1.4.7. �

De�nition 2.6.4. Let px1, . . . , xnq and py1, . . . , ynq be Z-bases of OK . Let M � pmi,jq1¤i,j¤n P GLnpZq be

the 
hange of basis matrix, i.e. su
h that yi �
n
°

j�1

mi,jxj for all i P t1, . . . , nu. Proposition 2.6.3 implies

that

Dpy1, . . . , ynq � detpMq

2 Dpx1, . . . , xnq � Dpx1, . . . , xnq

(be
ause detpMq P t�1u � Z�). The integer

dK � Dpx1, . . . , xnq

does not depend on the 
hoi
e of the basis px1, . . . , xnq. It is 
alled the absolute dis
riminant of K.

Corollary 2.6.5. If px1, . . . , xnq is a basis de K over Q, made of elements in OK , and R �

n
À

i�1

Zxi � OK ,

then

Dpx1, . . . , xnq � rOK : Rs2dK .

Corollary 2.6.6. A prime p rami�es in K if and only if p | dK .

Proof. This is a spe
ial 
ase of theorem 3.5.24. �
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Example 2.6.7. (1) Let d P Z zt0, 1u be squarefree and K � Qp
?

dq. If d � 1 mod 4Z, then OK � Zrαs

with α � 1�
?

d
2

: the family p1, αq is a basis of OK over Z (
f example 2.6.2 (1)). The minimal polynomial

of α over Q is P pXq � X2
�X �

d�1
4
: we have thus dK � Dp1, αq � discpP q � d (
an be 
he
ked by dire
t


omputation). If d � 1 mod 4Z, we have OK � Zr
?

ds: the family p1,
?

dq is a basis of OK over Z. The

minimal polynomial of

?

d over Q is P pXq � X2
� d: we have thus dK � Dp1,

?

dq � discpP q � 4d. At the

end, we have

dK �

#

d if d � 1 mod 4Z

4d if d � 1 mod 4Z

(2) If p is an odd prime integer, ζ P C a primitive p-th root of unity and K � Qpζq, we have OK � Zrζs (
f

example 2.6.2 (2)) and thus dK � p�1q
p�1
2 pp�2

. By 
orollary 2.6.6, p is the unique prime whi
h is rami�ed

in K.

Proposition 2.6.8. Let K be a number �eld and n � rK : Qs.

(1) A family x1, . . . , xn P OK is a basis of OK over Z if and only if Dpx1, . . . , xnq � dK .

(2) If x1, . . . , xn P OK is su
h that Dpx1, . . . , xnq � 0 is squarefree, then px1, . . . , xnq is a Z-basis of OK .

Proof. Follows from proposition 1.10.19 and 
orollary 1.10.20. �

It is usually di�
ult to 
ompute the ring of integers of a number �eld K. Using the primitive element

theorem, we 
an start from an element α su
h that K � Qpαq. After multiplying α by an appropriate

integer (as small as possible), we may assume that α P OK , so that Zrαs � OK . In general, the in
lusion is

stri
t, but Zrαs is of �nite index in OK . More pre
isely, by proposition 1.10.38, we have Zrαs � OK �

1
d
Zrαs

with d � Dp1, α, . . . , αn�1
q (where n � rK : Qs), whi
h is easily 
omputed using the minimal polynomial

of α over Q and proposition 1.10.31. This redu
es a lot the number of possibilities for OK . From this, on


an sear
h 
onditions on 
oordinates in the basis p1, α, . . . , αn�1
q for an element x P K to belong to OK .

To �nd su
h 
onditions, one uses the tra
e and the norme. For instan
e, if x P K is integral over Z, so is

αix, hen
e TrK{Qpα
ixq P Z for all i P t0, . . . , n� 1u.

Remark 2.6.9. Unlike number �elds, rings of integers of number �elds are not monogen in general: if K is

a number �eld, in general, there is no α P K su
h that OK � Zrαs.

Example 2.6.10. Let p be an odd prime integer, ζ P C a primitive p-th root of unity and K � Qpζq. We

have of 
ourse Zrζs � OK . The minimal polynomial of ζ over Q is

ΦppXq � Xp�1
�Xp�2

� � � � �X � 1 �
Xp

� 1

X � 1

We have pX � 1qΦ1

ppXq � ΦppXq � pXp�1
, thus Φ1

ppζq �
pζp�1

ζ�1
: by exemple 1.10.8 (2), we have thus

NK{QpΦ
1

ppζqq �
NK{QppqNK{Qpζq

p�1

NK{Qpζ�1q
�

pp�1

p
� pp�2

(we have NK{Qpζq � 1 and NK{Qpζ � 1q � p), whi
h

implies that

Dp1, ζ, ζ2, � � � , ζp�2
q � discpΦpq � p�1q

pp�1qpp�2q

2 pp�2
� p�1q

p�1
2 pp�2

(proposition 1.10.31). We thus have

Zrζs � OK �

1
pp�2 Zrζs.

Let's prove that OK � Zrζs.

First observe p1� ζqOK XZ � pZ. Indeed we have p P p1� ζqOK be
ause 1� ζ | NK{Qpζ � 1q � p. If the

in
lusion pZ � p1 � ζqOK X Z was stri
t, we would have p1 � ζqOK X Z � Z, thus 1 P p1 � ζqOK : there

would exist z P OK su
h that 1 � p1� ζqz, when
e 1 � pNK{Qpzq in Z, whi
h is absurd.

If x � x0 � x1ζ � � � � � xp�2ζ
p�2

P OK (with x0, . . . , xp�2 P Q), we have

p1� ζqx � x0p1� ζq � x1pζ � ζ2q � � � � � xp�2pζ
p�2

� ζp�1
q

As TrK{Qp1� ζq � p and TrK{Qpζ
k
� ζk�1

q � 0 for 1 ¤ k   p� 1, we have

TrK{Qpp1� ζqxq � px0

As 
onjugates of p1 � ζqx are of the form p1 � ζkqy with k P Z and y P OK , hen
e dividible by 1 � ζ, we

have TrK{Qpp1� ζqxq P p1� ζqOK X Z � pZ. This implies that x0 P Z.

If we have x0, . . . , xk�1 P Z with k   p� 2, then

ζ�k
�

x� px0 � x1ζ � � � � � xk�1ζ
k�1

q

�

� xk � xk�1ζ � � � � � xp�2ζ
p�2�k

P OK

whi
h implies that xk P Z from what pre
edes. At the end, we have x0, . . . , xp�2 P Z and x P Zrζs.
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Proposition 2.6.11. (Sti
kelberger). Let K be a number �eld. We have dK � 0 mod 4Z or dK � 1

mod 4Z.

Proof. Write HomQ -algpK,Qq � tσ1, . . . , σnu: if tα1, . . . , αnu is a basis ofOK over Z, we have dK � detpMq

2

with M � pσipαjqq1¤i,j¤n (proposition 1.10.22). We have detpMq � S � A where S �

°

τPSn

εpτq�1

n
±

i�1

σipατpiqq

and A �

°

τPSn

εpτq��1

n
±

i�1

σipατpiqq. We thus have dK � pS �Aq2 � 4SA: we have to see that S �A,SA P Z. As

S and A are polynomials in σipαjq P OK , we have S,A P OK : it is enough to show that S � A,SA P Q.

Let L � Q be the Galois 
losure of K. If g P GalpL{Qq, the map

HomQ -algpK,Qq Ñ HomQ -algpK,Qq

σ ÞÑ g � σ

is a permutation. If the latter is even, we have gpSq � S and gpAq � A, if it is odd, we have gpSq � A and

gpAq � S: in all 
ases we have gpS �Aq � S �A and gpSAq � SA, hen
e S �A,SA P LGalpL{Qq

� Q. �

Corollary 2.6.12. (Re�nement of proposition 2.6.8 (2)). If K is a number �eld of degree n and tx1, . . . , xnu

a family whose dis
riminant is 4a with a � 2, 3 mod 4Z and squarefree, then px1, . . . , xnq is a basis of OK

over Z.

Proof. Let B be a basis of OK over Z and M P MnpZq the matrix whose 
olumns are the 
oordinates

of px1, . . . , xnq in the basis B. By proposition 1.10.13, we have 4a � Dpx1, . . . , xnq � detpMq

2dK . If

px1, . . . , xnq was not a basis, we would have detpMq ¡ 1 thus detpMq � 2 sin
e a is squarefree. This would

imply dK � a � 2, 3 mod 4Z, 
ontradi
ting proposition 2.6.11. �

2.7. Exer
ises.

Exer
ise 2.7.1. Let L{K be an extension of number �elds. Denote by n its degree and �x p � OK a

maximal ideal: we know that OL{pOL is a kppq-ve
tor spa
e of dimension n (where kppq � OK{p is the

residue �eld of p). A family of elements in OL is 
alled independent modulo p if its image in OL{pOL

is linearly independent over kppq. Let P1, . . . ,Pr be the nonzero prime ideals of OL above p. For ea
h

i P t1, . . . , ru, �x Bi � OL whose image modulo Pi is a basis of OL{Pi (so that Bi has fi elements, where

fi :� fPi{p is the residul degree at Pi). Let ei � ePi{p be the rami�
ation index at Pi.

(1) Let N ¥ maxte1, . . . , eru. For i P t1, . . . , ru and j P t1, . . . , eiu, show there exist αi,j P P
j�1
i X

�

k�i

PN
k

su
h that αi,j R P
j
i .

(2) Put L �
 

αi,jβ ; i P t1, . . . , ru, j P t1, . . . , eiu, β P Bi

(

. Show that #L � n.

(3) Assume

°

ℓPL

λℓℓ P pOL with λℓ P OK for all ℓ P L. Looking modulo Pi for all i P t1, . . . , ru, then modulo

P2
i for all i P t1, . . . , ru, et
, show that p�ℓ P Lq λℓ P p, and dedu
e that L is independent modulo p.

We assume hen
eforth that K � Q, so that p � pZ where p is a prime number.

(4) Let tα1, . . . , αnu � OL be an independent family modulo p. Show that it is a basis of L over Q.

(5) Let A be the sub-Z-module of OL generated by tα1, . . . , αnu. Show that OL{A is �nite, then that

p ∤ rOL : As [hint: redu
tio ad absurdum℄.

(6) Dedu
e that discpα1, . . . , αnq � mdL with p ∤ m.

(7) Assume now that tα1, . . . , αnu is the family 
onstru
ted in question (3). Show that ps | discpα1, . . . , αnq,

then that ps | dL, with s �
r
°

i�1

pei � 1qfi � n�
r
°

i�1

fi.

Exer
ise 2.7.2. Let fpXq � Xn
� a1X

n�1
� � � � � an�1X � an P ZrXs and p a prime number dividing an.

Write an � pdbn with p ∤ bn. Assume that pd | ai for all i P t1, . . . , nu and that fpXq is irredu
ible(27) in

ZrXs. Let α P C be a root of fpXq and L � Qrαs.

(1) Show that αn � pdβ with β P OL prime to p.

(2) Dedu
e that pdOL is the n-th power of an ideal of OL.

(3) Show that if d is prime to n, then pOL is the n-th power of an ideal of OL, and 
on
lude that p is totally

rami�ed in L in that 
ase.

(4) Show that if d is prime to n, then pn�1
| dL [hint: use exer
ise 2.7.1℄.

(5) What 
an be said when gcdpd, nq ¡ 1?

(27)

By Eisenstein's 
riterion, this is automati
 when d � 1.
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Exer
ise 2.7.3. Let A be a 
ommutative ring. Show that A is a DVR if and only if A is lo
al, noetherian,

and its maximal ideal is prin
ipal, generated by a non nilpotent ideal.

Exer
ise 2.7.4. A Dedekind ring whi
h is a UFD is a PID.

Exer
ise 2.7.5. Show that the ring of integers of Qp
?

10q (i.e. the integral 
losure of Z in Qp
?

10q) is a

Dedekind ring but not a PID [hint: show that the ideal generated by 3 and

?

10� 1 is not prin
ipal℄.

Exer
ise 2.7.6. Show that a module over a Dedekid ring is �at if and only if it is torsion-free.

Exer
ise 2.7.7. Let R be a Dedekind ring and I � R a nonzero ideal. Show that R{I 
ontains only �nitely

many ideals.

Exer
ise 2.7.8. Let R be a Dedekind ring, and I, J nonzero ideals of R. Show that there exists an integral

ideal I1 � R whi
h is prime to both I and J and su
h that II1 � xay is prin
ipal in R [hint: use the Chinese

remainder theorem℄. Prove also that there exists a nonzero element α P FracpRq su
h that αI and J are


oprime integral ideals in R.

Exer
ise 2.7.9. Let A be a Dedekind ring, K its fra
tion �eld, and I, J � K nonzero fra
tional ideals.

(1) Let X be a �nite set of nonzero prime ideals of A, and pnpqpPX a sequen
e of integers. Show that there

exists x P K su
h that vppxq � np for all p P X and vppxq ¥ 0 if p R X .

(2) Show that there are x, y P K�

su
h that xI and yJ are 
oprime ideals of A.

(3) Dedu
e that I ` J � A` IJ .

(4) Let I, J � K be nonzero fra
tional ideals in K, and n,m P Z
¥0. Show that An ` I � Am ` J if and

only if n � m and rIs � rJs in ClpAq (i.e. if and only if there exists z P K�

su
h that J � zI).

Exer
ise 2.7.10. Let A be a Dedekind ring, and M an A-module of �nite type.

(1) Show that if M is torsion-free, then it is proje
tive.

(2) Show that if M is torsion-free, then M is isomorphi
 to a dire
t sum of ideals [hint: indu
tion on the

rank of a free A-module 
ontaining M ℄.

(3) In general, show that M � Ak ` a` T where k P Z
¥0, a � A is an ideal and T is the torsion of M .

(4) Show that T , k and ras P ClpAq are uniquely determined.

Exer
ise 2.7.11. Let A be a Dedekind ring, and M a nonzero �nitely generated torsion A-module.

(1) Put I � annApMq � ta P A ; p�m PMq am � 0u. Show that I is a nonzero ideal in A. Let p1, . . . , pr be

nonzero the prime ideals of A that divide I.

(2) Show that S :� Az
r
�

i�1

pi is a multipli
ative part in A, and that S�1A is a PID.

(3) Let N be an A-module su
h that IN � 0. Show that N � pA{Iq bA S
�1N .

(4) Show that there are uniquely determined ideals I1 � I2 � � � � � Im � 0 su
h that

M �

m
à

k�1

A{Ik.

Exer
ise 2.7.12. Let A � Z
�

?

�5
�

and K � FracpAq � Qp
?

�5q. Explain why I � 3A� p1�
?

�5qA � K

is a proje
tive A-module. Show it expli
itely as a dire
t fa
tor of A2
. Show that it is not free.

Exer
ise 2.7.13. Let A be an integral domain whi
h is not a �eld and su
h that for ea
h ideal I � A and

ea
h a P Izt0u, there exists b P I su
h that I � xa, by. Show that A is a Dedekind ring [hint: show that for

ea
h nonzero prime ideal p, the ring Ap is a DVR℄.

Exer
ise 2.7.14. Let A be a ring. Show that A is a Dedekind ring if and only if A is a noetherian integrally


losed domain su
h that A{I is artinian

(28)

for every non-zero ideal I � A.

Exer
ise 2.7.15. Let K be a �eld, A � KrX,Y s and I � XA� Y A. Show that I�1
� A, hen
e I is not

invertible.

(28)

I.e. satis�es the des
ending 
hain 
ondition on ideals; that is, there is no in�nite des
ending sequen
e of ideals.
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Exer
ise 2.7.16. Let A � Z
�

?

�3
�

� K � Qp
?

�3q and I � A�Aj � K the fra
tional ideal generated by

1 and j � �1�
?

�3
2

. Is I invertible?

Exer
ise 2.7.17. Let A be an integral domain in whi
h every nonzero ideal is invertible. Show that A is a

�eld or a Dedekind ring [hint: start by showing that A is noetherian, then that every nonzero ideal has a

unique (up to the order) fa
torization as a produ
t of maximal ideals℄.

Exer
ise 2.7.18. Let A be a noetherian integral domain in whi
h every maximal ideal is invertible. Show

that A is a �eld or a Dedekind ring.

Exer
ise 2.7.19. Let B � CrX,Y s{xY 2
� pX3

� Xqy. The aim of this exer
ise is to show that B is a

Dedekind ring. Put A � CrXs and K � CpXq � FracpAq. Let y P K be a root of Y 2
� pX3

�Xq P ArY s,

L � Krys and OL the ring of elements in L that are integral over A.

(1) Show that B is isomorphi
 to Arys.

(2) What is dimKpLq? Show that FracpArysq � L and that Arys � OL.

(3) Let z � apXq� bpXqy P OL. Using the tra
e, show that apXq P A and that there exists P P A su
h that

bpxq �
P pXq

X3
�X

.

(4) Using the norm, show that X3
�X divides P 2

. Dedu
e that bpXq P A.

(5) Show that B is a Dedekind ring.

Exer
ise 2.7.20. Let A be a Dedekind ring, K its fra
tion �eld and X an indeterminate.

(1) The 
ontent of a polynomial P P ArXs is the ideal cpP q generated by the 
oe�
ients of P . Show that

cpPQq � cpP qcpQq for all P,Q P ArXs.

(2) Let S � tP P ArXs ; cpP q � Au. Show that S is a multipli
ative part in ArXs: let

B � S�1
pArXsq � FracpArXsq

be the asso
iated lo
alization. Show that if P,Q P ArXs and Q � 0, then P
Q
P B if and only if cpP q � cpQq.

(3) Show that K XB � A. Let J � B be an ideal: show that J � IB where I � J XA, and that the map

I ÞÑ IB is a bije
tion between the set of ideals of A onto the set of ideals of B.

(4) Prove that B is a PID.

Exer
ise 2.7.21. (1) Let R be a noetherian lo
al ring with maximal ideal m and residue �eld κ. Show that

m{m2
is a κ-ve
tor spa
e of �nite dimension, and that d � dimκpm{m

2
q is the minimal number of generators

of the ideal m.

(2) Let A be a noetherian integral domain whi
h is not a �eld. Show that A is a Dedekind ring if and only

if for every maximal ideal p of A, there are no ideals I � R su
h that p2 � I � p.

Exer
ise 2.7.22. Let m,n P Z zt0, 1u be 
oprime squarefree integers. Assume that m,n � 1 mod 4Z and

put K � Qp
?

m,
?

nq where α �
1�

?

m

2
and β �

1�
?

n

2
.

(1) Show that rK : Qs � 4.

(2) Compute TrQp
?

mq{Qp
?

mq, and dedu
e TrK{Qp
?

mq. Likewise, 
ompute TrK{Qp
?

nq and TrK{Qp
?

mnq.

(3) Show that Dp1, α, β, αβq � m2n2
.

(4) What are the rings of integers of Qp
?

mq, Qp
?

nq and Qp
?

mnq?

(5) Let x � a� b
?

m� c
?

n� d
?

mn P K (with a, b, c, d P Q). Compute TrK{Qp
?

mqpxq, TrK{Qp
?

nqpxq and

TrK{Qp
?

mnqpxq.

(6) Show that 4OK � Zrα, βs, and that OK � Zrα, βs.

We assume hen
eforth that m,n � 1 mod 8Z.

(7) What is the minimal polynomial of α (resp. β) over Q (resp. over Qp
?

mq)?

(8) Dedu
e an isomorphism

A :� pZ {2ZqrX,Y s{xX2
�X,Y 2

� Y y
�

ÝÑ OK{2OK

(9) Show that there are exa
tly four ring homomorphisms AÑ Z {2Z.

(10) Dedu
e that A is not isomorphi
 to pZ {2ZqrXs{xP pXqy with P pXq P pZ {2ZqrXs of degree 4 [hint:

the ring homomorphisms pZ {2ZqrXs{xP y Ñ Z {2Z are in bije
tion with the set of roots of P in Z {2Z℄.

(11) Dedu
e that there is no x P OK su
h that OK � Zrxs.

(12) What is the de
omposition of 2OK as a produ
t of nonzero prime ideals of OK? Same question for

pOK where p is a prime number dividing m.
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Exer
ise 2.7.23. Let A be a Dedekind ring, K � FracpAq and L{K a �nite separable �eld extension of

degree n. Denote B the integral 
losure of A in L. Fix x P B su
h that L � Kpxq, put C � Arxs � B and

let P P ArXs the minimal polynomial of x over K.

(1) Show that

1
P pT q

�

n
°

i�1

1
P 1pxiqpT�xiq

where x1, . . . , xn P K are the 
onjugates of x over K.

(2) Show that TrL{K
�

xk

P 1pxq

�

�

#

0 if 0 ¤ k ¤ n� 2

1 si k � n� 1
.

(3) Show that the A-module C�

is free with basis

�

xk

P 1pxq

�

0¤k n
.

(4) Show that for all c P C, we have cB � C � c P P 1

pxqD�1
B{A

(so that DB{A divides P 1

pxqB).

(5) Dedu
e that B � C � DB{A � P 1

pxqB.

(6) Assuming that B � C, show that Ω1
B{A � B{DB{A.

Exer
ise 2.7.24. Let A be a Dedekind ring, K � FracpAq and L{K a �nite separable �eld extension of

degree n. Denote B the integral 
losure of A in L. If P is a nonzero prime ideal in B above p � A is

su
h that κpPq{κppq is separable, show that vPpDB{Aq ¥ eP � 1, with equality if and only if eP is prime

to charpκppqq [hint: lo
alize an 
omplete to redu
e to the 
ase where A and B are 
omplete DVRs, and use

previous exer
ises℄.

Exer
ise 2.7.25. Let A � B be DVRs with fra
tion �elds K � L. Assume L{K that the residual extension

κL{κK is purely inseparable of height 1 (i.e. su
h that κ
p
L � κK , where p � charpκKq), and not monogeni
.

Show that Ω1
B{A is not monogeni
.

Exer
ise 2.7.26. Let A be a Dedekind ring, K � FracpAq and L{K a �nite and separable �eld extension.

Denote by B the integral 
losure of A in L, and PA the set of nonzero prime ideals of A. An A-order of L

is a subring R of L su
h that A � R and R is an A-module of �nite type.

(1) Let R be a subring of L su
h that A � R. Show that R is an A-order of L if and only if R � B.

(2) Assume that R is an A-order of L.

(i) Show that for all p P PA, the lo
alization Rp is an Ap-order of L.

(ii) Show that R � B if and only if Rp � Bp for all p P PA.

(iii) Show that nonzero prime ideals of R are maximal.

(3) Let R be an A-order of L and θ P R su
h that L � Kpθq. Denote by P pXq the minimal polynomial of

θ over K. Let p P PA and P the image of P in κppqrXs, where κppq � A{p. Show that if P is separable,

then Rp � Bp and the prime ideals of B above p are unrami�ed [hint: re
all that Arθs� � 1
P 1pθq

Arθs℄.

(4) Let R � R1

be an extension of rings, the 
ondu
tor of R1

{R is cR1{R � tr P R ; rR1

� Ru.

(i) Show that cR1{R is the largest ideal of R1

that is 
ontained in R.

(ii) Let R be an A-order of L and S � R a multipli
ative part. Show that cS�1B{S�1R � S�1cB{R [hint:

use the fa
t that B is �nite over R℄.

(iii) Let R be an A-order of L. Show that c :� cB{R � t0u if and only if FracpRq � L.

Assume hen
eforth that FracpRq � L.

(5) Show that cR�

� D�1
B{A

(where R�

� ty P L ; p�x P Rq TrL{Kpxyq P Au), and that this in
lusion is an

equality when R � Arθs for some θ P L su
h that L � Kpθq.

(6) In this question we assume that A � Z.

(i) Let a be an ideal of OL and put R � Z�a. Show that R is a Z-order of L, with 
ondu
tor dZ�a,

where d P Z
¡0 is su
h that ZXa � dZ.

(ii) Assume that L � Qp
?

5q. Show that R � Zr
?

5s is a Z-order of L. What is its 
ondu
tor?

(7) Let q P PB. Show that c � q if and only if c � q X R. Dedu
e that if FracpRq � L, there are only

�nitely many prime ideals of R that 
ontain c.

(8) (hard) Let p be a nonzero prime ideal of R. Show that the following are equivalent:

(a) p does not 
ontain c;

(b) R � tx P L ;xp � pu;

(
) p is invertible;

(d) Rp is a DVR.

[hint: to show (a)ñ(b), use the fa
t that p� c � R; to show (b)ñ(
), use the fa
t that if α P pzt0u, there

exists r P Z
¡0 su
h that prRp � αRp; to show (
)ñ(d), show that nonzero ideals of Rp are powers of pRp,

then that Rp is integrally 
losed.℄
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(9) (hard) Show that under the equivalent 
onditions of question (8), pB is the only maximal ideal of B

that 
ontains p [hint: take q P PB su
h that p � q, and show that Rp � Bq.℄
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3. Valued fields

In this se
tion, K denotes a �eld.

3.1. Absolute values.

De�nition 3.1.1. An absolute value on K is a map |.| : K Ñ R
¥0 su
h that:

(1) p�x P Kq p|x| � 0� x � 0q;

(2) p�x, y P Kq |xy| � |x| |y| (multipli
ativity);

(3) p�x, y P Kq |x� y| ¤ |x| � |y| (triangle inequality).

If it satis�es the stronger requirement

(3') p�x, y P Kq |x� y| ¤ maxt|x| , |y|u (strong triangle inequality),

the absolute value is 
alled non ar
himedean. It is 
alled ar
himedean otherwise.

The pair pK, |.|q is 
alled a valued �eld. We say that pK, |.|q is ar
himedean (resp. non ar
himedean) if |.| is.

Example 3.1.2. (0) The trivial absolute value on K is given by |0| � 0 and |x| � 1 for all x P K�

(it is non

ar
himedean).

(1) The �usual� absolute value |.|
8

on K � R, and the modulus |.|
8

on C are ar
himedean.

(2) Let p be a prime number, and vp : Z Ñ Z
¥0Yt�8u the p-adi
 valuation. It extends into a map

vp : QÑ ZYt�8u: if x P Q, put |x|p � p�vppxq. This de�nes a non ar
himedean absolute value 
alled the

p-adi
 absolute value.

Remark 3.1.3. (1) Let |.| be an absolute value on K. By (2), we have |1|
2
� |1|, so |1| � 1 sin
e |1| � 0 by

(1). In parti
ular, we have

�

�x�1
�

�

� |x|
�1

for all x P K�

, and |.| : K�

Ñ R
¡0 is a group homomorphism.

(2) Assume |.| is a non ar
himedean absolute value on K. If x, y P K are su
h that |x| � |y|, say |x|   |y|,

then |y| ¤ maxt|x| , |x� y|u by (3), so |y| ¤ |x� y| when
e |x� y| � |y|. This shows that (3') is an equality

whenever |x| � |y|.

(3) The group of the absolute value |.| is |K�

|: this is a subgroup of R
¡0. There exist notions of absolute

values with groups more 
ompli
ated that subgroups of R
¡0, but we will not need these. The absolute value

|.| is 
alled dis
rete if |K�

| is a dis
rete subgroup of R
¡0. Note that |K

�

| is dense in R
¡0 otherwise.

De�nition 3.1.4. Let pK1, |.|1q and pK2, |.|2q be valued �elds. A morphism of valuation �elds from K1 to

K2 is a morphism of �elds f : K1 Ñ K2 (so it is automati
ally inje
tive) su
h that |fpxq|2 � |x|1 for all

x P K1. It is an isomorphism when f is surje
tive.

De�nition 3.1.5. An absolute value on K de�nes a topology on K (indeed a metri
 spa
e stru
ture): a

basis of open neighborhoods of a P K is given by Bpa, rq � tx P K ; |x� a|   ru for r P R
¡0.

Two absolute values are equivalent when they de�ne the same topology on K.

Example 3.1.6. The topology de�ned by the trivial absolute value is the dis
rete topology.

Proposition 3.1.7. Two absolute values |.|1 and |.|2 on K are equivalent if and only if there exists γ P R
¡0

su
h that |.|2 � |.|
γ
1 .

Proof. Assume |.|1 and |.|2 are equivalent. If |.|1 is trivial, then the topology de�ned by |.|2 is dis
rete. If

x P K and |x|2   1, then lim
nÑ8

xn � 0, so x � 0. If x P K�

, then |x|2 ¥ 1, and also |x|
�1

2 � |x|
�1

2 ¥ 1,

i.e. |x|2 ¤ 1, so |x|2 � 1, and |.|2 is dis
rete as well. Assume from now on that |.|1 and |.|2 are not trivial:

there exists x0 P K su
h that 0   |x0|1   1. If |x|1   1, then lim
nÑ8

xn � 0, so |x|2   1 as well, in parti
ular

0   |x0|2   1: put γ �
lnp|x0|2q

lnp|x0|1q
P R

¡0.

Let x P K be su
h that 0   |x|1   1 and put λ �
lnp|x|1q

lnp|x0|1q
P R

¡0. If r P QXsλ,�8r, then r � m
n

with

m,n P Z
¡0, and the inequality λ   m

n
is equivalent to |x|

n
1   |x0|

m
1 , i.e.

�

�

�

xn

xm
0

�

�

�

1
  1. This implies that

�

�

�

xn

xm
0

�

�

�

2
  1 from what pre
edes, i.e.

lnp|x|2q

lnp|x0|2q
 

m
n
� r. Sin
e this holds for all r P QXsλ,�8r, we have

lnp|x|2q

lnp|x0|2q
¤ λ, i.e.

lnp|x|2q

lnp|x0|2q
¤

lnp|x|1q

lnp|x0|1q
. As |.|1 and |.|2 play symmetri
 roles, we have in fa
t

lnp|x|2q

lnp|x0|2q
�

lnp|x|1q

lnp|x0|1q
,

thus

lnp|x|2q

lnp|x|1q
� γ, i.e. |x|2 � |x|

γ
1 , whenever x P K

�

satis�es |x|1   1. Repla
ing x by x�1
shows that it holds

true also when |x|1 ¡ 1. Ex
hanging |.|1 and |.|2, we have similarly the impli
ation |x|2 � 1ñ |x|1 � 1, so

|x|1 � 1ñ |x|2 � 1, i.e. |x|2 � |x|
γ
1 for all x P K. �

Remark 3.1.8. If |.| is an ar
himedean absolute value on K, the map |.|
γ
is not an absolute value for any

γ P R
¡0 in general, for the triangle inequality might not be satis�ed by |.|

γ
(it is when 0   γ ¤ 1 by


onvexity of the map t ÞÑ tγ).
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De�nition 3.1.9. Let K be a �eld. A pla
e of K is a 
lass of equivalen
e of non trivial absolute values on

K. The set of pla
e is denoted VpKq.

Theorem 3.1.10. (Ostrowski). A non-trivial absolute value on Q is equivalent to either the �usual�

absolute value or to a p-adi
 absolute value.

Proof. Let |.| : QÑ R
¥0 be a non trivial absolute value. Let a, b P Z

¡1. For n P Z¥0, let

an � α0 � α1b� � � � � αrb
r

be the writing of an in base b: we have r � tn logbpaqu and αi P t0, . . . , b�1u for i P t0, . . . , ru (and αr � 0).

Then |a|
n
¤

r
°

i�0

|αi| |b|
i
¤ pr � 1qMbmaxt1, |b|

r
u, where Mb � max

0¤i b
|i|, so that

|a| ¤
�

n logbpaq � 1
�1{n

M
1{n

b max
 

1, |b|
logbpaq

(

.

As lim
nÑ8

�

n logbpaq � 1
�1{n

M
1{n

b � 1, we get |a| ¤ max
 

1, |b|
logbpaq

(

.


 First 
ase. |a| ¡ 1. This implies that |a| ¤ |b|
logbpaq

, so in parti
ular |b| ¡ 1, and |a|
1{ lnpaq

¤ |b|
1{ lnpbq

. As

|b| ¡ 1, we have |b|
1{ lnpbq

¤ |a|
1{ lnpaq

as well, so that |x|
1{ lnpxq

, hen
e c :�
ln|x|

lnpxq
does not depend on x P Z

¡1.

This implies that |x| � xc for all x P Z
¡1. The axioms of absolute value imply that |x| � |x|

c
8

for all x P Q,

and |.| is equivalent to the �usual� absolute value.


 Se
ond 
ase. For all a P Z
¡1, we have |a| ¤ 1 (so that |x| ¤ 1 for all x P Z). As |.| is non trivial, there

exists a P Z
¡1 su
h that |a|   1. Fa
toring a into a produ
t of primes, we get at least one prime p su
h

that |p|   1. If q is an other prime and n P Z
¥0, we have gcdppn, qnq � 1: there exist u, v P Z su
h that

upn� vqn � 1, so that 1 ¤ |u| |p|
n
�|v| |q|

n
¤ |p|

n
�|q|

n
. As lim

nÑ8

|p|
n
� 0, this implies that |q| ¥ 1, when
e

|q| � 1. This shows in parti
ular that |x| � 1 whenever x P Z zpZ, so that |x| � |x|
c
p with c � �

ln|p|

lnppq
for all

x P Z, when
e for all x P Q, so that |.| is equivalent to the p-adi
 absolute value. �

Remark 3.1.11. We have the produ
t formula

¹

vPVpQq

|x|v � 1

for all x P Q�

.

3.1.12. The approximation theorem. Let K be a �eld.

Lemma 3.1.13. Let |.| be an absolute value on K and x P K. Then

lim
mÑ8

xm

1� xm
�

#

0 if |x|   1

1 if |x| ¡ 1

Proof. We have

xm

1�xm � 1 � �

1
1�xm . �

Lemma 3.1.14. Let |.|1 , . . . , |.|n be pairwise non equivalent non trivial absolute values on K. There exists

a P K su
h that |a|1 ¡ 1 and |a|i   1 for all i P t2, . . . , nu. For ea
h ε P R
¡0, there exists α P K su
h that

|α� 1|1   ε and |α|i   ε for all i P t2, . . . , nu.

Proof. We use indu
tion on n P Z
¥2.


 Assume n � 2 and that su
h an a does not exist: for all x P K, we have |x|1 ¡ 1 ñ |x|2 ¥ 1. Applied

to x�1
when x � 0, this implies that |x|1   1 ñ |x|2 ¤ 1. Taking 
ontrapositives, we have the same

impli
ations after ex
hanging |.|1 and |.|2. As |.|1 and |.|2 are non trivial, there exists y1, y2 P K
�

su
h that

|y1|1   1 and |y2|2   1: this implies that |y|1   1 and |y|2   1 where y � y1y2. If x P K and n P Z
¡0 are

su
h that |x|1   |y|
n
1 , we have

�

�

�

x
yn

�

�

�

1
  1, whi
h implies that

�

�

�

x
yn

�

�

�

2
¤ 1 i.e. |x|2 ¤ |y|

n
2 . This shows that for

all a P K, we have B1pa, |y|
n
q � B2pa, |y|

n
2 q � B2pa, |y|

n�1

2 q. As the balls B2pa, |y|
n�1

2 q for a basis for the

topology on K de�ned by |.|2, this shows that the topology de�ned by |.|1 is �ner than that de�ned by |.|2.

Symmetri
ally, the topology de�ned by |.|2 is �ner than that de�ned by |.|1: they are the same, so |.|1 and

|.|2 are equivalent, 
ontradi
ting the hypothesis.


 Assume that n ¡ 2. By the indu
tion hypothesis, there exists b P K su
h that |b|1 ¡ 1 and |b|i   1 for all

i P t2, . . . , n� 1u. By the 
ase n � 2, there exists c P K su
h that |c|1 ¡ 1 and |c|n   1.

Case where |b|n ¤ 1. For m P Z
¡0, put am � cbm. We have |am|1 � |c|1 |b|

m
1 ¡ 1 and |am|n � |c|n |b|

m
n   1.

If i P t2, . . . , n� 1u, we have |am|i � |c|i |b|
m
i ÝÝÝÝÑ

mÑ8

0, so we 
an take a � am with m is large enough.
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Case where |b|n ¡ 1. For m P Z
¡0, put am �

cbm

1�cbm
. As |b|1   1 and |b|n ¡ 1, lemma 3.1.13 implies that

lim
mÑ8

am � c for the absolute values |.|1 and |.|n. As |c|1 ¡ 1 and |c|n   1, this implies that |am|1 ¡ 1 and

|am|n   1 whenever m is large enough. On the other hand, if i P t2, . . . , n � 1u, we have lim
mÑ8

am � 0 for

the absolute value |.|i, so that |am|i   1 for m large enough. Here again we 
an take a � am with m is large

enough.


 Using the a we 
onstru
ted, we have lim
mÑ8

am

1�am
� 1 for the absolute value |.|1 and lim

mÑ8

am

1�am
� 0 for the

absolute values |.|i if i P t2, . . . , nu: we 
an take α � am

1�am
with m large enough. �

Theorem 3.1.15. (Approximation theorem). Let |.|1 , . . . , |.|n be pairwise non equivalent non trivial

absolute values on K. Given ε P R
¡0 and y1, . . . , yn P K, there exists x P K su
h that |x� yi|i   ε for all

i P t1, . . . , nu.

Proof. Let M � max
1¤i¤n

n
°

k�1

|yk|i. By lemma 3.1.14, there exist a1, . . . , an P K su
h that |αi � 1|i  
ε
M

and

|αi|j  
ε
M

for all j P t1, . . . , nuztiu. Put x �
n
°

k�1

αkyk. For i P t1, . . . , nu, we have

|x� yi|i �

�

�

�

�

pαi � 1qyi �
°

k�i

αkyk

�

�

�

�

i

¤ |αi � 1|i |yi|i �
°

k�i

|αk|i |yk|i  
ε
M

n
°

k�1

|yk|i ¤ ε.

�

3.2. Valuations.

De�nition 3.2.1. A valuation

(29)

on a �eld K is a map v : K Ñ RYt�8u su
h that:

(1) vpxq � �8� x � 0;

(2) p�x, y P Kq vpxyq � vpxq � vpyq;

(3) p�x, y P Kq vpx� yq ¥ mintvpxq, vpyqu.

Remark 3.2.2. In 
ondition (3), we have

(30) vpx� yq � mintvpxq, vpyqu as soon as vpxq � vpyq (
f remark

3.1.3 (2)).

De�nition 3.2.3. (1) The valuation v is trivial if vpK�

q � t0u. Condition (2) in de�nition 3.2.1 implies

that vpK�

q is a subgroup of pR,�q. It also implies that vp1q � 0. The valuation v is 
alled dis
rete when

vpK�

q is a dis
rete subgroup of R: it is then of the form λZ for some λ P R
¥0. A dis
rete valuation v is


alled normalized when vpK�

q � Z.

(2) Let K be a �eld and v : K Ñ RYt�8u be a valuation. Then

OK,v � tx P K ; vpxq ¥ 0u

is a subring of K 
alled the ring of integers of v. Similarly,

mK,v � tx P K ; vpxq ¡ 0u

is an ideal in OK,v.

Proposition 3.2.4. An element x P OK,v is invertible in OK,v if and only if vpxq � 0. In parti
ular, OK,v

is a lo
al ring with maximal ideal mK,v. For all x, y P OK,vzt0u, we have x | y in OK,v if and only if

vpxq ¤ vpyq. Moreover K � OK,vrα
�1
s for all α P mK,vzt0u, and OK,v is integrally 
losed.

Proof. 
 If x P O�

K,v, then x
�1
P OK,v, i.e. vpx

�1
q ¥ 0. As vpxq�vpx�1

q � vp1q � 0, we must have vpxq � 0.

Conversely, assume that vpxq � 0: as vpxq � vpx�1
q � vp1q � 0 we have vpx�1

q � 0, i.e. x�1
P OK,v and

x P O�

K,v.


 Let x P OK,vzmK,v: we have vpxq � 0, so that x P O�

K,v by what pre
edes. This implies that OK,v is a

lo
al ring with maximal ideal mK,v.


 Let x, y P OK,vzt0u. If y � xz with z P OK,v, then vpyq � vpxq � vpzq ¥ vpxq sin
e vpzq ¥ 0. Conversely,

assume that vpxq ¤ vpyq. Put z � x�1y P K. We have vpzq � vpyq � vpxq ¥ 0, hen
e z P OK,v i.e. x | y.


 Assume α P mK,vzt0u. We 
ertainly have OK,vrα
�1
s � K: let x P K. As lim

nÑ8

vpxq � nvpαq � �8 (sin
e

vpαq ¡ 0), there exists n P Z
¥0 su
h that vpαnxq ¥ 0, i.e. αnx P OK,v, so that x P OK,vrα

�1
s.


 Let z P K�

be integral overOK,v: write z �
x
y
with x, y P OK,vzt0u. Let z

n
�a1z

n�1
�� � ��an�1z�an � 0

be an equation of integral dependen
e over OK,v. We have xn � a1x
n�1y� � � � � any

n
� 0, so that nvpxq ¥

(29)

Some authors 
all �valuation� what we 
alled �absolute value�.

(30)

The proof is the same: if vpxq � vpyq, say vpxq   vpyq, then vpyq ¡ vpxq � vpx � y � yq ¥ mintvpx � yq, vpyqu, so

vpx � yq ¥ vpxq ¥ vpx� yq i.e. vpx � yq � vpxq.
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min
1¤i¤n

pvpaiq�pn�iqvpxq�ivpyqq: there exists i0 P t1, . . . , nu su
h that nvpxq ¥ vpai0q�pn�i0qvpxq�i0vpyq,

hen
e i0vpxq ¥ i0vpyq i.e. vpxq ¥ vpyq, so that vpzq ¥ 0 i.e. z P OK,v. �

Corollary 3.2.5. The valuation v is non trivial and dis
rete if and only if OK,v is a DVR

(31)

.

Proof. 
 Assume v is non trivial and dis
rete: write vpK�

q � αZ with α P R
¡0. Let π P OK,v be su
h that

vpπq � α : if x P OK,V zt0u, we have u :� xπ�vpxq P O�

K,v (be
ause vpuq � 0, 
f proposition 3.2.4). This

implies that OK,v is a PID (its ideals are t0u and xπyn with n P Z
¥0), whose only nonzero prime ideal is

xπy, so that OK,v is a DVR (
f de�nition 1.8.25).


 Conversely, assume that OK,v is a DVR: let π P K be a uniformizer. Any non-zero element x P K�


an

be written in a unique way x � uπn with u P OK,v and n P Z: we have vpxq � vpuq � nvpπq � nvpπq, so

that vpK�

q � vpπqZ. �

Remark 3.2.6. The map v indu
es a group homomorphism K�

Ñ R. By proposition 3.2.4, its kernel is

O�

K,v � tx P K ; vpxq � 0u (this is the unit group of v), so that v indu
es a group isomorphism

K�

{O�

K,v

�

Ñ vpK�

q � R .

De�nition 3.2.7. The quotient �eld κK,v � OK,v{mK,v is 
alled the residue �eld of K at v.

Proposition 3.2.8. Let A be a UFD, p P A a irredu
ible element and vp : A Ñ Z
¥0 the p-adi
 valuation

(
f de�nition 1.1.19). Then vp extends uniquely into a normalized valuation vp : FracpAq Ñ ZYt�8u. If

x P FracpAq, then x P A if and only if vppxq ¥ 0 for every irredu
ible element p P A.

Proof. (1) If x �

a
b
P FracpAq, with a P A and b P Azt0u, then vppxq � vppaq � vppbq P ZYt�8u,

proving uni
ity. If x �

a1

b1
is an other writing, then ab1 � a1b (be
ause A is an integral domain), so

vppaq � vppb
1

q � vppa
1

q � vppbq (by proposition 1.1.20) i.e. vppaq � vppbq � vppa
1

q � vppb
1

q, proving the

existen
e. The fa
t that this map is a valuation on FracpAq follows from proposition 1.1.20.

(2) Let x � a
b
P FracpAq with a P A and b P Azt0u. Assume that vppxq ¥ 0 i.e. vppaq ¥ vppbq for every

irredu
ible element p P A. Then b | a (
f proposition 1.1.20 (2)), so x P A. The 
onverse is trivial. �

Example 3.2.9. Let A be a DVR with maximal ideal m and π a uniformizer. The π-adi
 valuation map

v : Azt0u Ñ Z
¥0 extends uniquely into a normalized dis
rete valuation v : FracpAq Ñ ZYt�8u, and we

have A � tx P FracpAq ; vpxq ¥ 0u and m � tx P FracpAq ; vpxq ¡ 0u.

Proposition 3.2.10. Let v be a valuation on K and ρ Ps0, 1r. Then the map

K Ñ R
¥0

x ÞÑ ρvpxq

is a non ar
himedean absolute value. Conversely, if |.| is a non ar
himedean absolute value on K, then

� ln |.| : K Ñ RYt�8u (with the 
onvention that � lnp0q � �8) is a valuation on K.

De�nition 3.2.11. (1) A valuation v on K de�nes a topology on K for whi
h a basis of neighborhoods of

0 is given by tx P K ; vpxq ¥ rurPR.

(2) We say that two valuations v and v1 are equivalent if they de�ne the same topology. By propositions

3.2.10 and 3.1.7, this is equivalent to the existen
e of a 
onstant γ P R
¡0 su
h that v1 � γv.

Remark 3.2.12. (1) The topology de�ned by a valuation v and the absolute value ρv (for any ρ Ps0, 1r) are

the same.

(2) If v is a valuation on K and α P mK,vzt0u, the α-adi
 topology 
oin
ides with that de�ned by v on

OK,v (be
ause αnOK,v � tx P OK,v ; vpxq ¥ nvpαqu). Note that in general, the mK,v-topology does not


oin
ide with that de�ned by v on OK,v: when vpK
�

q is a divisible group for instan
e, one has m2
K,v � mK,v.

Nevertheless, these topologies 
oin
ide when v is dis
rete.

Example 3.2.13. (1) On Z the p-adi
 valuation indu
es a valuation vp on Q for every prime number p. The

asso
iated p-adi
 absolute value is de�ned by |x|p � p�vppxq for all x P Q. The ring of integers of Q with

respe
t to vp is the lo
alization Z
ppq with respe
t to the prime ideal pZ. Its residue �eld is Fp.

(2) Let F be a �eld and K � F pXq � FracpF rXsq the �eld of rational fra
tions with 
oe�
ients in F . The

map � deg : F rXs Ñ Z
¥0Yt8u extends into a valuation on K (with the 
onvention that degp0q � �8), so

that for any r P R
¡1, the map R ÞÑ rdegpRq de�nes a non ar
himedean absolute value.

(31)

Obviously, the terminology well thought-out.
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3.3. Complete valued �elds. Assume K is endowed with an absolute value |.|.

De�nition 3.3.1. (1) A sequen
e pxnqnPZ
¥0

with values in K is a Cau
hy sequen
e if for every ε P R
¡0

there exists N P Z
¥0 su
h that for all m,n ¥ N , we have |xn � xm|   ε.

(2) A 
onvergent sequen
e is a Cau
hy sequen
e, and we say that K is 
omplete (for |.|) when the 
onverse

holds.

Example 3.3.2. The �eld Q is not 
omplete for the ar
himedean absolute value |.|
8

, nor for the p-adi


absolute values.

Proposition 3.3.3. There exists a 
omplete valued �eld p

pK, |.|q and a morphism of valued �elds ι : K Ñ

pK

su
h that ιpKq is dense in pK.

Proof. Let C pKq be the set of Cau
hy sequen
es with values in K. This is a ring when endowed with


omponentwise addition and multipli
ation. Denote by I pKq the set of sequen
es with values in K that


onverge to 0. This is an ideal in C pKq: put pK � C pKq{I pKq, and let ι : K Ñ

pK be the map de�ned by

ιpxq � πpx, x, x, . . .q where π : C pKq Ñ pK is the proje
tion. The map ι is a ring homomorphism making

pK

into a K-algebra.


 The ring

pK is a �eld. Let x � pxnqnPZ
¥0
P C pKqzI pKq: we have to show that πpxq is invertible. There

exists ε0 Ps0, 1r su
h that for all N P Z
¥0, there exists n ¥ N su
h that |xn| ¥ ε0. As x is Cau
hy, there

exists N0 P Z
¥0 su
h that n,m ¥ N0 ñ |xn � xm|  

ε0
2
. By what pre
edes, there exists N1 ¥ N0 su
h that

|xN1
| ¥ ε0. This implies that |xn| ¡

ε0
2
for all n ¥ N1. Now 
hanging �nitely many terms in x does not

modify πpxq: we may assume that xn � 1 for all n   N1. This implies in parti
ular that |xn| ¡
ε0
2
hen
e

xn � 0 for all n P Z
¥0: we may 
onsider the sequen
e y � px�1

n qnPZ
¥0
. Let's show it is a Cau
hy sequen
e:

�x ε P R
¡0. There existsN P Z

¥0 su
h that n,m ¥ N ñ |xn � xm|  
ε20ε

4
. Then

�

�x�1
n � x�1

m

�

�

�

|xn�xm|

|xnxm|

  ε

for all n,m ¥ N . Thus y P C pKq, and xy � 1.


 The �eld

pK is valued. Let x � pxnqnPZ
¥0
P C pKq. For all n,m P Z

¥0, we have ||xn| � |xm|| ¤ |xn � xm|:

this implies that p|xn|qnPZ
¥0

is a Cau
hy sequen
e in R: it 
onverges. Its limit in R depends only on πpxq:

this de�nes a map |.| : pK Ñ R
¥0. The absolute value axioms pass to the limit: the map |.| : pK Ñ R

¥0 is

an absolute value. It extends |.| on K, so ι is a morphism of valued �elds.


 If x � pxnqnPZ
¥0
P C pKq, the sequen
e pιpxnqqnPZ

¥0

onverges to πpxq in p pK, |.|q. Indeed, let ε P R

¡0:

there exists N P Z
¥0 su
h that n,m ¥ N ñ |xn � xm|   ε, so that |ιpxnq � πpxq| � lim

mÑ8

|xn � xm| ¤ ε for

all n ¥ N . In parti
ular, ιpKq is dense in pK.


 p

pK, |.|q is 
omplete. Let pξnqnPZ
¥0

be a Cau
hy sequen
e in

pK. For ea
h n P Z
¥0, 
hoose xn P K su
h that

|ξn � ιpxnq|  
1

n�1
. Let ε P R

¡0: there existsN P Z
¥0 su
h that n,m ¥ N ñ |ξn � ξm|  

ε
3
. We 
an assume

that

1
N�1

 

ε
3
: then |xn � xm| � |ιpxnq � ιpxmq| ¤ |ξn � ιpxnq|�|ξn � ξm|�|ξm � ιpxmq|   ε: the sequen
e

x :� pxnqnPZ
¥0

is Cau
hy in K. Put ℓ � πpxq P pK: we have |ξn � ℓ| ¤ |ξn � ιpxnq|�|ιpxnq � ℓ| ÝÝÝÑ
nÑ8

0. �

De�nition 3.3.4. The valued �eld p

pK, |.|q has the following universal property: if pL, |.|Lq is a 
omplete

valued �eld and f : K Ñ L a morphism of valued �elds, there exists a unique morphism of valued �elds

pf : pK Ñ L su
h that f � pf � ι. In parti
ular, the valued �eld p

pK, |.|q is unique up to unique isomorphism.

It is 
alled the 
ompletion of pK, |.|q.

Remark 3.3.5. The 
ompletion of Q with respe
t to the �usual� absolute value |.|
8

is nothing but R (this

is in fa
t the very de�nition of R). Note that the proof of proposition 3.3.3 uses R (essentially to de�ne the

absolute value on

pK), so rigorously, one has to build the ordered �eld R �rst.

De�nition 3.3.6. Let p be a prime integer. The 
ompletion of Q with respe
t to the p-adi
 absolute value

is denoted by Qp. It is 
alled the �eld of p-adi
 numbers.

Lemma 3.3.7. Let A be a ring, α P A and

pA � lim
�Ý

n

A{αnA its α-adi
 
ompletion. Then

pA is separated and


omplete for the α-adi
 topology.

Proof. For all integers 0   n ¤ m, the sequen
e 0 Ñ Kn Ñ A
αn

ÝÝÑ αnA Ñ 0 is exa
t: tensoring by

A{αmA gives the exa
t sequen
e Kn bA pA{α
mAq Ñ A{αmA

αn

ÝÝÑ αnA bA pA{α
mAq Ñ 0. By right

exa
tness of the tensor produ
t, the maps Kn bA pA{α
m�1Aq Ñ Kn bA pA{α

mAq are surje
tive, so that

the inverse system tKn bA pA{α
mAqumPZ

¡0
has the Mittag-Le�er property. This implies that the map

pA
αn

ÝÝÑ

zαnA � lim
�Ý

m

αnAbA pA{α
mAq is surje
tive.
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On the other hand, the sequen
e 0 Ñ αnA{αmA Ñ A{αmA Ñ A{αnA Ñ 0 is exa
t for all m ¥ n. The

inverse system tαnA{αmAum¥n has the Mittag-Le�er property: the sequen
e 0ÑzαnAÑ

pAÑ A{αnAÑ 0

is exa
t.

Put together, this provides an exa
t sequen
e

pA
αn

ÝÝÑ

pA Ñ A{αnA Ñ 0, so that A{αnA
�

Ñ

pA{αn pA: passing

to inverse limit gives an isomorphism

pA
�

Ñ

x

xA, when
e the result. �

Proposition 3.3.8. (Algebrai
 
onstru
tion of the 
ompletion in the non ar
himedean 
ase).

Assume |.| is a non ar
himedean valuation on K, and let v be an asso
iated valuation. Let α P mK,vzt0u,

and

pOK,v be the α-adi
 
ompletion of OK,v. Then O
xK,v

�

pOK,v and
pK �

pOK,vrα
�1
s.

Proof. 
 Let x � pxnqnPZ
¡0
P

pOK,v � lim
�Ý

n

OK,v{α
nOK,v. For ea
h n P Z

¡0, let rxn P OK,v be a lift of xn.

Assume that x � 0: there exist N P Z
¡0 su
h that rxN R αNOK,v. If n ¥ N , we have rxn � rxN P αNOK,v,

so that vprxnq � vprxN q (
f remark 3.2.2). This implies that vprxnq does not depend on n large enough.

Likewise, vprxnq does not depend on the 
hoi
e of the lifting when n is large enough. This implies that the

map v : pOK,v Ñ R
¥0Yt8u de�ned by x ÞÑ lim

nÑ8

vprxnq is well de�ned. The valuation properties extend to

v on

pOK,v. Condition (2) imply in parti
ular that

pOK,v is an integral domain.


 Let x P pOK,vzt0u: we have vpxq P R
¥0. Let m P Z

¥0 large enough su
h that vpxq   mvpαq. Using

previous notations, we may assume that vprxnq   mvpαq for all n ¥ m. By proposition 3.2.4, we have

rxm�1 | α
m
in OK,v: let y P OK,v be su
h that rxm�1y � αm. This implies that xy P αm � αm�1

pOK,v: there

exists z P pOK,v su
h that xy � αmp1�αzq. As 1�αz is invertible in pOK,v (the series

8

°

n�0

pαzqn 
onverges),

we dedu
e that x | αm in

pOK,v, whi
h implies that x is invertible in

pOK,vrα
�1
s, whi
h thus is the �eld of

fra
tions of

pOK,v.


 The valuation v extends uniquely to pOK,vrα
�1
s. The natural map OK,v Ñ

pOK,v lo
alizes into a morphism

of valued �elds K Ñ

pOK,vrα
�1
s. If x P pOK,vrα

�1
s, there exists m P Z

¥0 su
h that αmx P pOK,v: if N P Z
¥0,

we 
an 
hoose y P OK,v su
h that vpαmx � yq ¥ N �m, so that vpx � α�myq ¥ N . As α�my P K, this

shows that the image of K in

pOK,vrα
�1
s is dense.


 Let pxnqnPZ
¥0

be a Cau
hy sequen
e in

pOK,vrα
�1
s. It is bounded: there exists m P Z

¥0 su
h that

αmxn P pOK,v for all n P Z
¥0. The ring

pOK,v is 
omplete for the α-adi
 topology (
f lemma 3.3.7), hen
e

for the topology de�ned by v (
f remark 3.2.12 (2)). This implies that pαmxnqnPZ
¥0

is 
onvergent in

pOK,v,

so that

pOK,vrα
�1
s is 
omplete for v. By the universal property, we have

pK �

pOK,vrα
�1
s. Hen
eforth, we

identify them and write abusively

pK �

pOK,vrα
�1
s.


 We 
ertainly have

pOK,v � O
xK,v

. Let x P O
xK,v

. Fix m P Z
¥0 su
h that y � αmx P pOK,v: we have

vpyq � mvpαq � vpxq ¥ mvpαq. By proposition 3.2.4 applied to the valuation ring

pOK,v, we know that

αm | y in

pOK,v, whi
h means that x P pOK,v, showing the equality O
xK,v

�

pOK,v. �

Example 3.3.9. Algebrai
 
onstru
tion of Qp. The ring of integers of Q with respe
t to the p-adi
 valuation

is Z
ppq, the lo
alization of Z at the prime ideal pZ. Then Qp � Zprp

�1
s where

Zp � lim
�Ý

n

Z
ppq {p

nZ
ppq

�

� lim
�Ý

n

Z {pnZ

The ring of integers Zp is 
alled the ring of p-adi
 integers.

Theorem 3.3.10. (Newton's lemma). Assume that pK, |.|q is a 
omplete non ar
himedean valued �eld

with ring of integers OK . Let P P OKrXs and α P OK . Assume that there exists ε P r0, 1r su
h that

|P pαq| ¤ ε
�

�P 1

pαq
�

�

2
.

Then there exists a unique rα P OK su
h that P prαq � 0 and |rα� α| ¤ ε |P 1

pαq|.

Proof. 
 If P pαq � 0, we take rα � α: assume that P pαq � 0, the hypothesis imply that P 1

pαq � 0. We have

P pα � Xq � P pαq � P 1

pαqX � P r2s
pαqX2

� � � � � P rns
pαqXn

where n � degpP q (here P ris
is the divided

i-th derivative, whi
h formally is

1
i!
P piq

: it is

�

n
i

�

Xn�i
P ZrXs when P � Xn

, so P ris
P OK rXs). Put

x1 � �

P pαq

P 1pαq
P K. We have |x1| �

|P pαq|

|P 1pαq|
¤ ε |P 1

pαq| ¤ ε   1 (sin
e P 1

P OK , when
e P
1

pαq P OK). This

implies that x1 P OK , so α1 � α� x1 P OK . Moreover, we have

P pα1q � P r2s
pαqx21 � � � � � P rns

pαqxn1
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so that |P pα1q| ¤ max
2¤i¤n

t

�

�P ris
pαq

�

�

|x1|
i
u. As

�

�P ris
pαq

�

�

¤ 1 (be
ause P ris
pαq P OK) and |x1| ¤ 1, we dedu
e

that |P pα1q| ¤ |x1|
2
¤ ε2 |P 1

pαq|
2
. Note also that

P 1

pα1q � P 1

pαq � P p2q
pαqx1 � � � � � pP

1

q

rn�1s
pαqxn�1

1

so that |P 1

pα1q � P 1

pαq| ¤ |x1| ¤ ε |P 1

pαq|: as ε P r0, 1r, this implies that |P 1

pα1q| � |P 1

pαq|.

What pre
edes show that we 
an 
onstru
t indu
tively a sequen
e pαmqmPZ
¥0

of elements in OK su
h

that α0 � α, |P pαmq| ¤ ε2
m

|P 1

pαq|
2
, |αm�1 � αm| ¤ ε2

m

|P 1

pαq| (and αm�1 � αm if P pαmq � 0) for all

m P Z. By 
onstru
tion, the sequen
e pαmqmPZ
¥0

is Cau
hy, hen
e 
onverges to a limit rα P OK (sin
e K is


omplete). Passing to the limit we have P prαq � 0 and |rα� α| ¤ ε |P 1

pαq|.


 The uni
ity of rα is obvious if P 1

pαq � 0 (we must have rα � α): assume that P 1

pαq � 0. Let rα1 P OK

be su
h that P prα1q � 0 and |rα1 � α| ¤ ε |P 1

pαq|. What pre
edes shows that |P 1

prαq| � |P 1

pαq|. We have

0 � P prα1q�P prαq �
n
°

i�1

P ris
prαqprα1�rαqi. Assume that rα1 � rα: dividing the pre
eding equality by rα1�rα gives

�P 1

prαq �
n
°

i�1

P ris
prαqprα1 � rαqi�1

, so that |P 1

prαq| ¤ max
2¤i¤n

�

�P ris
prαq

�

�

|rα1 � rα|
i�1

. As P P OKrXs and rα P OK ,

we have

�

�P ris
prαq

�

�

¤ 1, and as rα1, rα P OK , we have |rα1 � rα| ¤ 1. This implies that |P 1

prαq| ¤ |rα1 � rα|,


ontradi
ting the inequalities |rα1 � rα| ¤ maxt|rα1 � α| , |rα� α|u ¤ ε |P 1

prαq| and ε   1. �

Remark 3.3.11. The 
onvergen
e of the sequen
e pαmqmPZ
¥0

is quadrati
.

Example 3.3.12. (Roots of unity in Qp). Let p be a prime number. If α P K is a root of unity: assume

αd � 1 with d P Z
¡1. We have |α|

d
� 1, so |α| � 1 i.e. α P Z�p . Let α be the image of α in Fp � Zp {pZp.


 Assume that d � p. As αp � α, we have α � 1, i.e. α � 1� x with x P pZp. Then 1 � αp � p1� xqp �

1�px�
p�1
°

i�2

�

p
i

�

xi�xp. If x � 0, this implies that p�
p�1
°

i�2

�

p
i

�

xi�1
�xp�1

� 0: as vp
��

p
i

�

x
�

¥ 2 (sin
e p |
�

p
i

�

),

we have vppx
p�1

q � 1, thus p � 2 and α P t�1u. This shows that if p � 2, we have α � 1.


 Assume d � 4 and p � 2. We have α2
P t�1u by what pre
edes. If we had α2

� �1, this would imply

that p1� αq2 � 2α, hen
e 2v2p1� αq � 1 (be
ause v2pαq � 0), so that v2p1� αq � 1
2
R Z, whi
h is absurd.

This shows that α2
� 1. More generally, if α2r

� 1 with r P Z
¡0, then α � t�1u.


 Assume that p ∤ d. As α � 0, we have αp�1
� 1, so that αp�1

� 1� x for some x P pZp. Here again we

have 1 � αpp�1qd
� 1� dx�

p�1
°

i�2

�

d
i

�

xi � xd. If x � 0, this implies that d�
p�1
°

i�2

�

d
i

�

xi�1
� xd�1

� 0: this is a


ontradi
tion sin
e p |
p�1
°

i�2

�

d
i

�

xi�1
� xd�1

. So we must have x � 0, i.e. αp�1
� 1.


 What pre
edes imply that α2
� 1 if p � 2 and αp�1

� 1 if p � 2. Conversely, let's show that roots of

unity in Qp are t�1u if p � 2 and µp�1 if p � 2. This is trivial if p � 2: assume that p � 2. Consider the

polynomial P � Xp�1
� 1. It splits with simple roots in Fp. For any α P Zp lifting an element of F�

p , we

have P 1

pαq � pp� 1qαp�2
P Z�p , so that |P 1

pαq|p � 1, whereas |P pαq|p ¤
1
p
. Newton's lemma applies (with

ε � 1
p
): there exists a root rα P Zp of P su
h that |rα� α|   1, so that rα and α have same redu
tion mod p.

This means that the p� 1 elements in F�

p 
an be lifted by p� 1 roots of unity.

3.4. Normed ve
tor spa
es. Let pK, |.|q be a valued �eld.

De�nition 3.4.1. 
 Let V be a K-ve
tor spa
e. A norm on V is a map

}.} : V Ñ R
¥0

su
h that

(1) p�v P V q }v} � 0� v � 0 (separation);

(2) p�λ P Kq p�v P V q }λv} � |λ| }v} (multipli
ativity);

(3) p�v1, v2 P V q }v1 � v2} ¤ }v1} � }v2} (triangle inequality).

When pK, |.|q is not ar
himedean, we require the stronger:

(3') p�v1, v2 P V q }v1 � v2} ¤ maxt}v1} , }v2}u (strong triangle inequality),

The pair pV, }.}q is then 
alled a normed ve
tor spa
e.


 A normed K-algebra is a K-algebra A endowed with a norm }.} su
h that:

(4) p�a, b P Aq }ab} ¤ }a} }b}.

Example 3.4.2. (1) If pL, |.|q is a valued �eld and K � L a sub�eld, endowed with the restri
tion of |.|,

then the absolute value |.| endows L with a normed ve
tor spa
e (even a normed K-algebra) stru
ture.
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(2) Let X be a set and BpX,Kq the spa
e of bounded maps on X with values in K. If f P BpX,Kq, put

}f}
8

� sup
xPX

|fpxq|. Then pBpX,Kq, }.}
8

q is a normed ve
tor spa
e over K.

As a spe
ial 
ase, x � px1, . . . , xnq ÞÑ }x}
8

� max
1¤i¤n

|xi| is a norm on Kn
.

(3) Let ℓ1pKq �
!

x � pxnqnPZ
¥0

P KZ
¥0 ;

8

°

n�0

|xn|   �8

)

. For x � pxnqnPZ
¥0

P ℓ1pKq, we put

}x}1 �
8

°

n�0

|xn|. The map }.}1 satis�es 
onditions (1), (2) and (3) of de�nition 3.4.1, but not 
ondition

(3') (even when pK, |.|q is non ar
himedean). Thus pℓ1pKq, }.}1q is a normed ve
tor spa
e over K when K

is ar
himedean, but not when pK, |.|q is non ar
himedean.

De�nition 3.4.3. Let pV, }.}q be a normed K-ve
tor spa
e. Then the open balls Bpv, rq (with v P V and

r P R
¡0) form a basis for a topology on V . In what follows, V will always be endowed with this topology.

Assuming that K is 
omplete, we say that pV, }.}q is a Bana
h spa
e when pV, }.}q is 
omplete.

Proposition 3.4.4. If pK, |.|q is 
omplete, then pBpX,Kq, }.}
8

q is.

Proof. Let pfnqnPZ
¥0

be a Cau
hy sequen
e in pBpX,Kq, }.}
8

q: for x P X , the sequen
e pfnpxqqnPZ
¥0

is Cau
hy in K, hen
e 
onverges to a limit fpxq P K. Let ε P R
¡0: there exists N P Z

¥0 su
h that

N ¤ n ¤ m ñ }fn � fm}
8

  ε. For x P X , we have |fpxq � fnpxq| ¤ |fpxq � fmpxq| � |fmpxq � fnpxq|  

|fpxq � fmpxq| � ε. Passing to the limit as m Ñ 8, we get |fpxq � fnpxq| ¤ ε. As this holds for all x P X ,

we thus have }f � fn}
8

¤ ε as soon as n ¥ N . This shows that f P BpX,Kq, and also that pfnqnPZ
¥0


onverges to f for }.}
8

. �

Example 3.4.5. The spa
e pKn, }.}
8

q is 
omplete.

De�nition 3.4.6. Let V be a K-ve
tor spa
e. Two norms }.} , }.}
1

on V are equivalent when they de�ne the

same topology on V .

Form now on, we assume that the absolute value |.| is non trivial.

Proposition 3.4.7. Two norms }.} , }.}
1

on V are equivalent if and only if there exist 
onstants c1, c2 P R
¡0

su
h that

p�v P V q c1 }v} ¤ }v}
1

¤ c2 }v}

Proof. Assume }.} , }.}
1

are equivalent. The ball Bp0, 1q is open for the topology de�ned by }.}
1

: there exists

r P R
¡0 su
h that Bp0, rq1 � Bp0, 1q. Let π P K be su
h that

(32) 0   |π|   1. If v P V zt0u there exists n P Z

su
h that |π| r ¤ |π|
n
}v}

1

  r. Then we have |π|
n
}v} � }πnv} ¤ 1, i.e.

|π|r

}v}1
}v} ¤ 1, so that c1 }v} ¤ }v}

1

with c1 � |π| r. This also holds when v � 0. Similarly, there exists c2 P R
¡0 su
h that }v}

1

¤ c2 }v} for all

v P V . The 
onverse is obvious. �

Remark 3.4.8. Assume that |.| is the trivial absolute value, and let V be a K-ve
tor spa
e. If }.} and }.}
1

are two equivalent norms on V , there might not exist 
onstants c1, c2 P R
¡0 as in the previous statement.

For instan
e, if V � KrrXss, and ρ Ps0, 1r, let }.}ρ be the norm on V de�ned by }f}ρ � ρordpfq where

ordpfq � inftn P Z
¥0 ; an � 0u (this 
orresponds to the X-adi
 norm, with }X}ρ � ρ). If r Ps0, 1r, there

exists t P R
¡0 su
h that r � ρt, so that }.}r � }.}

t
ρ, so that the norms }.}r and }.}ρ de�ne the same

balls hen
e the same topology: they are equivalent. Assume r ¡ ρ, and that we have c P R
¡0 su
h that

}.}r ¤ c }.}ρ: applied to Xn
, this gives rn ¤ cρn, i.e.

�

r
ρ

�n
¤ c: this is a 
ontradi
tion.

Nevertheless, proposition 3.4.7 is still valid when |.| is trivial if V has �nite dimension: let pe1, . . . , edq be

a basis of V over K and }.} a norm on V . If v �
d
°

i�1

λiei P V , we have }v} ¤
d
°

i�1

|λi| }ei} ¤ c2 :�
d
°

i�1

}ei}.

On the other hand, for n P Z
¡0, let Vn be the span of ve
tors v P V su
h that }v}   1

n
. The sequen
e of

sub-spa
es pVnqnPZ
¡0

is de
reasing: V being �nite dimensional, there exists N P Z
¡0 su
h that Vn � VN

for all n ¥ N . If v P VN and n ¥ N , then v 
an be written as a linear 
ombination of elements in Vn:

the previous 
omputation implies that }v} ¤ d
n
. As n is arbitrary, we have }v} � 0, hen
e VN � t0u: this

implies that if v � 0, then c1 :� 1
N
¤ }v} ¤ c2.

Proposition 3.4.9. Let pV, }.}V q and pW, }.}W q be normed ve
tor spa
es over pK, |.|q, and ϕ P HomKpV,W q.

The following are equivalent:

(1) ϕ is 
ontinuous;

(2) ϕ is 
ontinuous at 0;

(3) there exists c P R
¥0 su
h that p�v P V q }ϕpvq}W ¤ c }v}V .

(32)

Re
all that |.| is not trivial.
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Proof. (1)�(2) and (3)ñ(2) are obvious.

Assume (2): there exists r P R
¡0 su
h that ϕpBp0, rqV q � Bp0, 1qW , thus ϕpBp0, 1qV q � B

�

0, 1
r

�

W
. Let

v P V zt0u. There exists n P Z su
h that |π| ¤ |π|
n
}v}V   1, so that }ϕpπnvq}W  

1
r
, i.e. }ϕpvq}W ¤ c }v}V

with c � 1
|π|r

. This also holds when v � 0. �

De�nition 3.4.10. We denote by HomK,
ontpV,W q the set of elements in HomKpV,W q that are 
ontinuous.

If ϕ P HomK,
ontpV,W q, we put

~ϕ~ � sup
vPV zt0u

}ϕpvq}W
}v}V

P R
¥0 .

This is the smallest 
onstant c P R
¥0 su
h that p�v P V q }ϕpvq}W ¤ c }v}V .

Proposition 3.4.11. If pV, }.}V q and pW, }.}W q be normed ve
tor spa
es over pK, |.|q, then HomK,
ontpV,W q

is a sub-K-ve
tor spa
e of HomKpV,W q. The map ~.~ : HomK,
ontpV,W q Ñ R
¥0 is a norm. Finally

pHomK,
ontpV,W q,~.~q is a Bana
h spa
e when pW, }.}W q is.

Proof. The �rst point is obvious. We 
ertainly have ~ϕ~ � 0ñ ϕ � 0, and ~λϕ~ � |λ| ~ϕ~ for all λ P K.

If ϕ, ψ P HomK,
ontpV,W q and v P V , we have

}pϕ� ψqpvq}W ¤ }ϕpvq}W � }ψpvq}W ¤ ~ϕ~ }v}V � ~ψ~ }v}V when pK, |.|q is ar
himedean,

}pϕ� ψqpvq}W ¤ maxt}ϕpvq}W , }ψpvq}W u ¤ maxt~ϕ~ }v}V ,~ψ~ }v}V u otherwise,

whi
h implies that ~ϕ� ψ~ ¤ ~ϕ~ � ~ψ~ if pK, |.|q is ar
himedean and ~ϕ� ψ~ ¤ maxt~ϕ~ ,~ψ~u

otherwise.

Assume now that pW, }.}W q is 
omplete, and let pϕnqnPZ
¥0

be a Cau
hy sequen
e in pHomK,
ontpV,W q,~.~q.

If v P V , then }ϕnpvq � ϕmpvq}W ¤ ~ϕn � ϕm~ }v}V for all n,m P Z
¥0, so that the sequen
e pϕnpvqqnPZ

¥0

is Cau
hy in pV, }.}W q: it 
onverges to a limit ϕpvq P W . The linearity of the maps ϕn imply that of

ϕ. Moreover, a Cau
hy sequen
e is bounded: there exists C P R
¥0 su
h that p�n P Z

¥0q ~ϕn~ ¤ C,

so that for any v P V , we have }ϕnpvq}W ¤ C }v}V , thus }ϕpvq}W ¤ C }v}V � }ϕpvq � ϕnpvq}W , when
e

}ϕpvq}W ¤ C }v}V (passing to the limit as nÑ8). This shows that ϕ P HomK,
ontpV,W q.

Let ε P R
¡0: there exists N P Z

¥0 su
h that N ¤ n ¤ m ñ ~ϕn � ϕm~   ε. If v P V , we have

}ϕpvq � ϕnpvq}W ¤ }ϕpvq � ϕmpvq}W �}ϕnpvq � ϕmpvq}W ¤ }ϕpvq � ϕmpvq}W � ε }v}V . This implies that

}ϕpvq � ϕnpvq}W ¤ ε }v}V (passing to the limit as m Ñ 8) for all v P V , when
e ~ϕ� ϕn~ ¤ ε. This

shows that the sequen
e pϕnqnPZ
¥0


onverges to ϕ in pHomK,
ontpV,W q,~.~q. �

Theorem 3.4.12. Assume pK, |.|q is 
omplete. Let pV, }.}q be a normed ve
tor spa
e of �nite dimension over

K, and B � pe1, . . . , enq a basis of V . Then the dual basis B�

� pe�1 , . . . , e
�

nq is made of 
ontinuous linear

forms. Moreover, all norms on V are equivalent, and V is a Bana
h spa
e. In parti
ular, sub-K-ve
tor

spa
es are 
losed in V .

Proof. We pro
eed by indu
tion on n � dimKpV q. This is trivial when n P t0, 1u: assume n ¡ 1. Let

H � Vectpe1, . . . , en�1q: by indu
tion hypothesis, this is a Bana
h spa
e when endowed with the restri
tion

of }.}. Assume that e�n is not 
ontinuous. This implies that there exists a sequen
e pviqiPZ
¥0

in V su
h that

lim
iÑ8

vi � 0 but pe�npviqqiPZ¥0
does to 
onverge to 0: after extra
ting a sub-sequen
e, we may assume that

there exists ε P R
¡0 su
h that |e�npviq| ¥ ε for all i P Z

¥0. For i P Z
¥0, put ui �

vi
e�n pviq

: we have e�npuiq � 1

i.e. ui � en P H , and }ui} ¤
}vi}

ε
ÝÝÝÑ

iÑ8

0. This implies in parti
ular that the sequen
e pui � enqiPZ
¥0
,

whi
h has values in H , 
onverges to �en. But H being 
omplete, this shows that en P H , whi
h is absurd.

Thus we have shows that e�n is 
ontinuous. Permuting the elements in B, we dedu
e that e�1 , . . . , e
�

n are all


ontinuous.

Consider the map }.}B : V Ñ R
¥0 given by }v}B � }fpvq}

8

, where fpvq � pe�1 pvq, . . . , e
�

npvqq P K
n
for

all v P V : this de�nes a norm }.}B on V . We have }v} �

�

�

�

�

n
°

i�1

e�i pvqei

�

�

�

�

¤

n
°

i�1

|e�i pvq| }ei} ¤ c }v}B where

c �
n
°

i�1

}ei} P R
¡0, when
e c1 }v} ¤ }v}B with c1 � c�1

for all v P V . On the other hand, the linear forms

e�1 , . . . , e
�

n, hen
e f , are 
ontinuous: there exists c2 P R
¥0 su
h that p�v P V q }v}B � }fpvq}

8

¤ c2 }v}.

This shows that the norms }.} and }.}B are equivalent, so all norms are equivalent to }.}B.

As f : V Ñ Kn
is an isometry for the norms }.}B and }.}

8

, and sin
e pKn, }.}
8

q is a Bana
h, so in V . �

Remark 3.4.13. Theorem 3.4.12 is not valid without the assumtion of 
ompleteness. For instan
e 
onsider

Qp
?

2q � R as a Q-ve
tor spa
e, endowed with the restri
tion }.} of the �usual� absolute value |.|
8

, and

let B � p1,
?

2q. Pell's equation x2 � 2y2 � �1 has in�nitely many solutions: one 
an 
onstru
t a sequen
e
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pun, vnqnPZ
¥0

in Z2
¡0 su
h that

�

�un � vn
?

2
�

�

8

¤

1

un�vn
?

2
and un, vn ÝÝÝÑ

nÑ8

�8. This implies that if

xn � un � vn
?

2 P Qp
?

2q, the sequen
e pxnqnPZ
¥0


onverges to 0 in pQp
?

2q, }.}q, whereas the sequen
es of


oordinates punqnPZ
¥0

and pvnqnPZ
¥0

do not. In parti
ular, the norm x � y
?

2 ÞÑ maxt|x| , |y|u and }.} are

not equivalent on Qp
?

2q.

3.4.14. The Hahn-Bana
h theorem. What follows is taken from [7℄. Assume pK, |.|q is 
omplete and let

pV, }.}q be a normed K-ve
tor spa
e.

Theorem 3.4.15. LetW � V be a 
losed sub-K-ve
tor spa
e and x1, . . . , xn P V . ThenW�Kx1�� � ��Kxn
is a 
losed sub-K-ve
tor spa
e of V . In parti
ular, every �nite dimensional sub-K-ve
tor spa
e of V is 
losed.

Proof. The se
ond statement follows from the �rst. By indu
tion, it is enough to show the �rst statement

when n � 1: write x � x1. If x PW , there is nothing to do: we may assume that x P V zW . Let pwnqnPZ
¥0

and pλnqnPZ
¥0

be sequen
es in W and K respe
tively, su
h that pwn�λnxqnPZ
¥0


onverges in V . Let ℓ P V

be its limit: we have to show that ℓ PW �Kx. As W is 
losed in V , it is enough to show that the sequen
e

pλnqnPZ
¥0


onverges in K (indeed, if λ P K is its limit, the sequen
e pwnqnPZ
¥0


onverges in V , hen
e in W

sin
e W is 
losed in V : let w PW be its limit; passing to the limit, we have ℓ � w � λx PW �Kx).


 Assume ℓ � 0, and that the sequen
e pλnqnPZ
¥0

does not 
onverge to 0 in K: there exists ε P R
¡0 and a

stri
tly in
reasing map ϕ : Z
¥0 Ñ Z

¥0 su
h that

�

�λϕpnq
�

�

¥ ε for all n P Z
¥0. We have

�

�

�

λ�1
ϕpnq

pwϕpnq � λϕpnqxq
�

�

�

�

�

�λϕpnq
�

�

�1 �
�wϕpnq � λϕpnqx

�

�

¤ ε�1
�

�wϕpnq � λϕpnqx
�

�

whi
h 
onverges to 0. This implies that lim
nÑ8

λ�1
ϕpnq

wϕpnq � �x: as W is 
losed, this shows that x P W ,


ontradi
ting the hypothesis. We thus have shown that if ℓ � 0, then lim
nÑ8

λn � 0.


 General 
ase. For n P Z
¥0, put w

1

n � wn�1 � wn and λ1n � λn�1 � λn. As lim
nÑ8

pwn � λnxq � ℓ, we have

lim
nÑ8

pw1n�λ
1

nxq � 0: by the spe
ial 
ase treated above, we have lim
nÑ8

λ1n � 0. This implies that the sequen
e

pλnqnPZ
¥0

is Cau
hy, hen
e 
onverges (sin
e pK, |.|q is 
omplete). �

Theorem 3.4.16. (Hahn-Bana
h). Assume that |.| is non ar
himedean and dis
rete. Let W � V be a

sub-K-ve
tor spa
e and ϕ : W Ñ K a 
ontinuous linear form. Then there exists a 
ontinuous linear form

rϕ : V Ñ K su
h that ϕ � rϕ
|W and ~rϕ~ � ~ϕ~.

Proof. We of 
ourse may assume that ϕ � 0, so that M :� ~ϕ~ ¡ 0.


 Case where |.| is trivial. Let E � tx P V ; }x}   M�1
u: as |.| is trivial, this is a sub-K-ve
tor spa
e

of V . If x P E XW , we have |ϕpxq| ¤ M }x}   1, hen
e ϕpxq � 0: the map ϕ fa
tors through a linear

form ϕ : W {pW X Eq Ñ K. We 
an extend ϕ into a linear form

rϕ : V {E Ñ K (by the axiom of 
hoi
e).

Let π : V Ñ V {E be the proje
tion and rϕ � rϕ � π : V Ñ K: this is a linear form su
h that ϕ � rϕ
|W . If

x P V zKerprϕq, we have x R E, when
e }x} ¥ M�1
, i.e. |rϕpxq| � 1 ¤ M }x}. As this obviously holds for

x � 0, we have ~rϕ~ � ~ϕ~.


 Case where |.| is not trivial. Using Zorn's lemma as usual, we redu
e to the 
ase where V � W �Kx

with x P V zW . As pK, |.|q is 
omplete, we 
an extend ϕ by 
ontinuity to the 
losure of W : we may assume

that W is 
losed. Put ρ � inf
�

|K|Xs1,�8r
�

: as |.| is dis
rete and non trivial, we have ρ ¡ 1, and there

exists λ P K su
h that |λ| � ρ. Let d � inf
wPW

}x� w} be the distan
e form x to W : as W is 
losed and

x RW , we have d ¡ 0. Let k P Z be su
h that ρk�1
¤ dM   ρk, i.e. M�1ρk�1

¤ d  M�1ρk: there exists

w0 P W su
h that }x� w0}   M�1ρk. Repla
ing x by x � w0, we may assume that }x}   M�1ρk (and

d ¤ }x� w} for all w P W as before). If v P V , we 
an write uniquely v � w � λx with w P W and λ P K.

Put rϕpvq � ϕpwq. This de�nes a linear form rϕ : V Ñ K su
h that ϕ � rϕ
|W . Moreover, we have

|rϕpvq| � |ϕpwq| ¤M }w}

so that |rϕpvq| ¤ M }v} as soon as }w} ¤ }v}. Assume now that }w � λx} � }v}   }w}: this implies that

λ � 0 and }w} � }λx}, when
e
�

�λ�1w
�

�

� }x}   M�1ρk, so that

�

�λ�1ϕpwq
�

�

  ρk. As the absolute value

is dis
rete, this implies that

�

�λ�1ϕpwq
�

�

¤ ρk�1
¤ Md, i.e. |rϕpvq| � |ϕpwq| ¤ Md |λ|. Now λ�1w P W , so

d ¤
�

�x� λ�1w
�

�

, so d |λ| ¤ }λx� w} � }v}, so we get |rϕpvq| ¤M }v}, as required. �

Remark 3.4.17. A 
ounterexample when the absolute value is not dis
rete. Let V be the set of all power

series v � a1t
α1
� a2t

α2
� � � � where α1   α2 � � � is a stri
tly in
reasing sequen
e of rational numbers and

a1, a2, . . . P Qp. Put }v} � e�α1
. De�ning addition and multipli
ation in the obvious way, V is a �eld, and

}.} is an absolute value on V . Let K be the sub�eld 
onsisting of all elements a1t
α1
� a2t

α2
� � � � su
h that

lim
iÑ8

αi � �8, and denote by |.| the restri
tion of }.} to K. Consider V as a normed K-ve
tor spa
e. K is

itself a subspa
e of V , and ϕpλq � λ (for λ P K) de�nes a linear form on K su
h that ~ϕ~ � 1.
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Assume there exists a linear form rϕ : V Ñ K su
h that ~rϕ~ � 1. Consider v � a1t
α1
� a2t

α2
� � � � P V su
h

that lim
iÑ8

αi � α. Write

rϕpvq � c1t
γ1
� c2t

γ2
� � � � P K.

As |rϕpvq| ¤ }v}, we have α1 ¤ γ1. If we had α1   γ1, we 
ould write

rϕpa2t
α2
� � � � q � �a1t

α1
� c1t

γ1
� c2t

γ2
� � � �

so that |rϕpa2t
α2
� � � � q| � e�α1

¡ e�α2
� }a2t

α2
� � � � } (sin
e α1   α2), 
ontradi
ting ~rϕ~ � 1. We thus

have α1 � γ1, and

rϕpa2t
α2
� � � � q � pc1 � a1qt

α1
� c2t

γ2
� � � �

whi
h again implies that c1 � a1. By indu
tion, one thus shows that αi � γi and ai � ci for all i P Z
¡0,

whi
h is impossible sin
e lim
iÑ8

αi � α and lim
iÑ8

γi � �8.

3.5. Extensions of absolute values. Let pK, |.|q be a non ar
himedean valued �eld, and L{K an extension.

Lemma 3.5.1. For P pXq � a0 � a1X � � � � � anX
n
P KrXs, put

}P } � max
0¤i¤n

|ai| .

Then }PQ} � }P } }Q} for all P,Q P KrXs. In parti
ular, }.} extends into an absolute value on KpXq that

extends |.|.

Proof. Write P pXq �
8

°

i�0

aiX
i
and QpXq �

8

°

j�0

bjX
j
with paiqiPZ

¥0
, pbjqjPZ

¥0
P KpZ

¥0q
. Then we have

P pXqQpXq �
8

°

n�0

cnX
n
with cn �

n
°

i�0

aibn�i, so |cn| ¤ max
0¤i¤n

|aibn�i| ¤ }P } }Q}: as this holds for all

n P Z
¥0, we get }PQ} ¤ }P } }Q}.

Assume now that PQ � 0, and let i0 � minti P Z
¥0 ; |ai| � }P }u and j0 � mintj P Z

¥0 ; |bj| � }Q}u

so that |ai|   }P } if i   i0 and |bj |   }Q} if j   j0. Then ci0�j0 �
°

i,jPZ
¥0

i�j�i0�j0

aibj. If i, j P Z
¥0 are

su
h that i � j � i0 � j0 and i   i0 or j   j0, we have |aibj|   }P } }Q}. As |ai0bj0 | � }P } }Q}, we have

|ci0�j0 | � }P } }Q} (be
ause |.| in non ar
himedean, 
f remark 3.1.3 (2)). Thus we have }PQ} � }P } }Q}.

We 
ertainly have }P } � 0 ñ P � 0, and }P1 � P2} ¤ maxt}P1} , }P2}u for all P1, P2 P KrXs. Extend }.}

to KpXq � FracpKrXsq by putting

�

�

�

�

P

Q

�

�

�

�

�

}P }

}Q}

for all P,Q P KrXs with Q � 0. The multipli
ativity proved above implies that }.} is multipli
ative

on KpXq. Moreover, if R P KpXq, we have }R} � 0 ñ R � 0, and if R1, R2 P KpXq, there exists

Q P KrXszt0u su
h that P1 � QR1, P2 � QR2 P KrXs: as }P1 � P2} ¤ maxt}P1} , }P2}u, we dedu
e

}R1 �R2} ¤ maxt}R1} , }R2}u, so that }.} is an absolute value on KpXq, that obviously extends |.|. �

De�nition 3.5.2. The norm }.} on KrXs de�ned in lemma 3.5.1 is 
alled the Gauss norm, and we will

hen
eforth denote by |.|Gauss the absolute value it indu
es on KpXq.

Theorem 3.5.3. (Krull's existen
e theorem, 
f [18, Theorem 14.1℄

(33)

). There exists an absolute

value on L that extends |.|.

Remark 3.5.4. Of 
ourse, any extension of |.| to L is non ar
himedean.

Proof of theorem 3.5.3. This is obvious if |.| is trivial: assume from now on that it is non trivial.


 Case where L{K is �nite. Consider the set Σ of maps ν : LÑ R
¥0 having the following properties:

(1) p�λ P Kq p�x P Lq νpλxq � |λ| νpxq;

(2) p�x, y P Lq νpxyq ¤ νpxqνpyq;

(3) νp1q � 1;

(4) p�x P Lq p�k P Z
¥0q νpx

k
q � νpxqk;

(5) p�x, y P Lq νpx� yq ¤ maxtνpxq, νpyqu.

(33)

The senten
e �Obviously ρ satis�es properties (2)-(7)� on the last line of [18, p.38℄ is �shy, be
ause of property (7), whi
h

explains why we modi�ed the latter.
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Observe that if ν P Σ and x P L�, then 1 � νpxx�1
q ¤ νpxqνpx�1

q, so νpxq ¡ 0, when
e νpxq � 0� x � 0.

� We �rst show that Σ is non empty. Let pe1, . . . , edq be a basis of L over K. If x �
d
°

i�1

λiei P L, put

}x}1 � max
1¤i¤d

|λi|. This de�nes a norm }.}1 : L Ñ R
¥0. If x �

d
°

i�1

λiei P L and y �
d
°

i�1

µiei P L, we have

xy �
°

1¤i,j¤d

λiµjeiej , so }xy} ¤ max
1¤i,j¤d

|λiµj | }eiej}, i.e. }xy} ¤ C }x} }y} where C � max
1¤i,j¤d

}eiej} P R
¡0.

If }.}2 � C }.}1, then }.}2 is a norm on L su
h that }xy}2 ¤ }x}2 }y}2 for all x, y P L. Now put

ν0pxq � lim sup
kÑ8

k

b

}xk}2

for all x P L. As

�

�xk
�

�

2
¤ }x}

k
2 for all k P Z

¥0, this de�nition makes sense, and 0 ¤ ν0pxq ¤ }x}2 for all

x P L.

Let x P L and a � inf
kPZ

¡0

k
a

}xk}2. If ε P R
¡0, there exists d P Z

¡0 su
h that

�

�xd
�

�

2
¤ pa� εqd. If k P Z

¡0,

let k � qpkqd � rpkq with qpkq P Z
¥0 and 0 ¤ rpkq   d be the eu
lidean division of k by d: we have

�

�xk
�

�

2
¤

�

�xd
�

�

qpkq

2

�

�xrpkq
�

�

2
¤ pa� εqqpkqd

�

�xrpkq
�

�

2
, whi
h implies that a ¤ k

a

}xk}2 ¤ pa � εqqpkqd{kb1{k where

b � max
0¤r d

}xr}2. As lim
kÑ8

qpkqd

k
� 1 and lim

kÑ8

b1{k � 1, this implies that lim
kÑ8

k
a

}xk}2 � a, so that in fa
t

ν0pxq � lim
kÑ8

k

b

}xk}2 � inf
kPZ

¡0

k

b

}xk}2.

As }λx}2 � |λ| }x}2 for all λ P K and x P L, the map ν0 satis�es (1). As }xy}2 ¤ }x}2 }y}2 for all x, y P L, it

satis�es (2). Moreover ν0p1q � lim
kÑ8

k
a

}1}2 � 1 so ν0 satis�es (3). Also, ν0px
k
q � lim

mÑ8

m
a

}xkm}2 � ν0pxq
k

so ν0 satis�es (4). To prove it satis�es (5), let x, y P L�. By symmetry, we may assume that ν0pxq ¤ ν0pyq.

After s
aling x and y by some appropriate λ P K, we may further assume that ν0pyq ¡ 1 (re
all that |.| is

non trivial). Let ε P R
¡0: there exists N P Z

¥2 su
h that i ¥ N ñ

�

�xi
�

�

2
¤ pν0pxq � εqi ¤ pν0pyq � εqi.

As ν0pyq ¡ 1, we may also assume that N is large enough so that k ¥ N ñ 1 ¤
�

�yk
�

�

2
¤ pν0pyq � εqk. If

n P Z
¥0, we have

}px� yqn}2 �

�

�

�

�

�

ņ

k�0

�

n

k




xn�kyk

�

�

�

�

�

2

¤ max
0¤k¤n

�

�xn�k
�

�

2

�

�yk
�

�

2

Assume n ¡ N2
¥ 4, so that n ¡ 2

?

n. If 0   k ¤
?

n, we have 0   k ¤
?

n ñ n � k ¡
?

n ¥ N , whi
h

implies that

�

�xn�k
�

�

2

�

�yk
�

�

2
¤ pν0pyq�εq

n�k
}y}

k
2 ¤ pν0pyq�εq

nmax
 

1, }y}
?

n
2

(

. If

?

n   k ¤ n, then k ¡ N ,

so

�

�yk
�

�

2
¤ pν0pyq� εq

k
. If N ¤ n� k, then

�

�xn�k
�

�

2
¤ pν0pyq� εq

n�k
, when
e

�

�xn�k
�

�

2

�

�yk
�

�

2
¤ pν0pyq� εq

n
.

If n � k   N , we have

�

�xn�k
�

�

2
¤ maxt1, }x}

N
u, so that

�

�xn�k
�

�

2

�

�yk
�

�

2
¤ maxt1, }x}

N
upν0pyq � εqn. All

together, we get }px� yqn}2 ¤ pν0pyq � εqnmax
 

1, }y}
?

n
2 , }x}

N
2

(

, thus

n

b

}px� yqn}2 ¤ pν0pyq � εqmax
!

1, }y}
1{
?

n
2 , }x}

N{n
2

)

.

Passing to the limit as n Ñ 8, we get ν0px � yq ¤ ν0pyq � ε. As this holds for all ε P R
¡0, we have

ν0px� yq ¤ ν0pyq: we have proved that ν0 satis�es (5), i.e. ν0 P Σ.

� If ν1, ν2 P σ, we write ν1 ¤ ν2 if ν1pxq ¤ ν2pxq for all x P L. This endows Σ with a partial order. If

pνλqλPΛ is a 
hain in Σ, then ν : x ÞÑ inf
λPΛ

νλpxq de�nes an element in Σ. Indeed, properties (1), (3) and

(4) are obvious. Property (2) follows from the fa
t that pνλqλPΛ is a 
hain. Assume x, y P L are su
h that

νpxq ¤ νpyq: if ε P R
¡0, there exists λ0 P Λ su
h that νλ0

pxq ¤ νpxq � ε. If λ P Λ is su
h that νλ ¤ νλ0
,

we have νpx � yq ¤ νλpx � yq ¤ maxtνλpxq, νλpyqu ¤ maxtνpxq � ε, νλpyqu ¤ maxtνpyq � ε, νλpyqu, whi
h

implies that νpx � yq ¤ νpyq � ε by taking the in�mum on λ. As this holds for all ε P R
¡0, we have

νpx � yq ¤ νpyq � maxtνpxq, νpyqu, showing that ν has property (5). Thus ν is a lower bound for pνλqλPΛ
in Σ: by Zorn's lemma (
f theorem 9.1.1), Σ 
ontains a minimal element ν.

� Fix a P L� (so νpaq ¡ 0) and let x P L�: for all k P Z
¡0 we have νpxakq ¤ νpxak�1

qνpaq, hen
e

νpxakqνpaq�k ¤ νpxak�1
qνpaq�pk�1q

: the sequen
e pνpxakqνpaq�kqkPZ
¥0

is de
reasing in R
¡0: it 
onverges

to a limit τpxq P R
¥0, and τpxq ¤ νpxq.

The map τ obviously satis�es (1). As νpxya2kqνpaq�2k
¤ νpxakqνpyakqνpaq�2k

for all k P Z
¥0, we have

τpxyq ¤ τpxqτpyq for all x, y P L, so τ satis�es (2). As ν satis�es (4), τ satis�es (3). If x P L and k, n P Z
¡0,

we have νpxkaknqνpaq�kn � pνpxanqνpaq�nqk so τpxkq � τpxqk by passing to the limit as n Ñ 8, showing

that τ satis�es (4). Finally, if x, y P L, we have

νppx � yqakqνpaq�k � νpxak � yakqνpaq�k ¤ maxtνpxakqνpaq�k, νpyakqνpaq�ku
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(sin
e ν has property (5)). Passing to the limit as k Ñ8 gives τpx� yq ¤ maxtτpxq, τpyqu.

This implies that τ P Σ. As τ ¤ ν, we have τ � ν by minimality of ν. This shows that the inequalities

τpxq ¤ νpxaqνpaq�1
¤ νpxq are equalities, so that νpxaq � νpxqνpaq, whi
h implies that ν : L Ñ R

¥0 is an

absolute value. As it has properties (1) and (3), it extends |.|.


 General 
ase. Let S be the set of pairs pF, |.|F q where F is a sub�eld of L 
ontaining K, and |.|F an

absolute value extending |.|. We endow S with the partial order given by pF1, |.|1q ¤ pF2, |.|2q if and only

if F1 � F2 and |.|2|F1
� |.|1. If pFλ, |.|λqλPΛ is a 
hain in S, then F �

�

λPΛ

Fλ is a sub�eld of L, 
ontains

K, and the map |.|F : F Ñ R
¥0 given by |x|F � |x|λ whenever x P Fλ is well de�ned, and is an absolute

value on F . The pair pF, |.|F q is an upper bound for pFλ, |.|λqλPΛ. We may apply Zorn's lemma (
f theorem

9.1.1): there exists an maximal element pF, |.|F q in S. If F � L, 
hoose α P LzF . If α is algebrai
 (resp.

trans
endant) over F , the absolute value |.|F extends to F pαq by what pre
edes (resp. by lemma 3.5.1),


ontradi
ting the maximality of pF, |.|F q. This means that F � L. �

Remark 3.5.5. The situation is 
ompletely di�erent for ar
himedean valued �elds. If L{C is a 
omplete

valued extension ofC, then L � C (this is a 
onsequen
e of a theorem of Gel'fand-Mazur). As a 
onsequen
e,

a 
omplete ar
himedean �eld is topologi
ally isomorphi
 to R or C.

Theorem 3.5.6. Assume pK, |.|q is 
omplete and L{K is algebrai
. Then there is a unique absolute value

extending |.| on L.

Proof. We already know the existen
e of su
h an absolute value |.|L.


 Assume that |.| is trivial. If x P L�, then xn�a1x
n�1

�� � ��an � 0 for some n P Z
¥0 and a1, . . . , an P K.

This implies the existen
e of 0 ¤ i   j ¤ n su
h that

�

�aix
n�i

�

�

L
�

�

�ajx
n�j

�

�

L
¡ 0 (with the 
onvention

a0 � 1), so that |x|
n�i
L � |x|

n�j
L , i.e. |x|

j�i
L � 1, when
e |x|L � 1, and |.|L is the trivial absolute value.


 Assume that |.| is non trivial. Let |.|
1

L be a other absolute value extending |.| on L. As L is a �nite

dimensional K-ve
tor spa
e and pK, |.|q is 
omplete, the norms |.|L and |.|
1

L are equivalent (
f theorem

3.4.12): they de�ne the same topology. This implies that the absolute values |.|L and |.|
1

L are equivalent:

there exists γ P R
¡0 su
h that |.|

1

L � |.|
γ
L (
f proposition 3.1.7). As |λ|L � |λ|

1

L � |λ|, we have |λ| � |λ|
γ

for all λ P K. As |.| is non trivial, this implies that γ � 1, when
e |.|
1

L � |.|L. �

Corollary 3.5.7. Assume pK, |.|q is 
omplete and let K an algebrai
 
losure of K. Then |.| extends uniquely

to K .

Corollary 3.5.8. Assume pK, |.|q is 
omplete and let L{K and L1{K be �nite extensions. Denote by |.|L
(resp. |.|L1) the unique absolute value on L (resp. L1) extending |.|. Then |σpxq|L1 � |x|L for all x P L and

all K-morphism σ : LÑ L1.

Proposition 3.5.9. Under the hypothesis of theorem 3.5.6, assume L{K is �nite. Then the unique absolute

value |.|L extending |.| is given by:

|x|L �
rL:Ks

b

�

�NL{Kpxq
�

�

for all x P L.

Proof. Let N be a normal 
losure of L{K. Denote by x1, . . . , xd P N the 
onjugates of x over K (i.e.

the roots of the minimal polynomial of x over K), 
ounted with multipli
ities, so that d � rKpxq : Ks.

For ea
h i P t1, . . . , nu, there exists a unique K-morphism σi : Kpxq Ñ N su
h that σipxq � xi: by


orollary 3.5.8, we have |xi|N � |x|L, where |.|N is the unique absolute value on N extending |.|. Then

�

�NKpxq{Kpxq
�

�

�

�

�

�

�

d
±

i�1

xi

�

�

�

�

N

� |x|
d
L. As NL{Kpxq � NKpxq{KpNL{Kpxqpxqq � NKpxq{Kpxq

rL:Kpxqs
, we dedu
e

�

�NL{Kpxq
�

�

� |x|
drL:Kpxqs
L � |x|

rL:Ks
L .

�

Corollary 3.5.10. Assume pK, |.|q is 
omplete, let L{K be a �nite extension and denote by |.| the unique

absolute value on L extending |.|. Then pL, |.|q is 
omplete, and the ring of integers OL is the integral


losure of OK in L.

Proof. 
 As pK, |.|q is 
omplete and pL, |.|q is a �nite dimensional normed ve
tor spa
e overK, it is 
omplete

by theorem 3.4.12.


 Let x P L be integral over OK . Its 
onjugates over K are integral over OK (apply an automorphism to

an equation of integral dependen
e for x over OK): their produ
t NL{Kpxq P K is integral over OK . As
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the latter is integrally 
losed (
f proposition 3.2.4), we have NL{Kpxq P OK , so

�

�NL{Kpxq
�

�

¤ 1, when
e

|x| � n

b

�

�NL{Kpxq
�

�

¤ 1, i.e. x P OL.


 Conversely, let x P OL. The 
oe�
ients of its minimal polynomial P are (up to a sign) elementary

symmetri
 polynomials in the 
onjugates of x (repla
ing L by its normal 
losure, we may assume that L{K

is normal). As ea
h of these belongs to the ring OL, so do the 
oe�
ients of P , whi
h thus belong to

K XOL � OK , and x is integral over OK . �

Remark 3.5.11. The ring of integers of a valuation thus deserves its name.

Until the end of this se
tion, we drop the assumption on |.| (i.e. we allow it to be ar
himedean).

Proposition 3.5.12. Assume |.| is not trivial, and that L{K is �nite. There are �nitely many absolute

values |.|1 , . . . , |.|n extending |.| on L. The map

δ : pK bK LÑ
n
À

i�1

xLi

indu
ed by the diagonal map (where

xLi denotes the 
ompletion of L with respe
t to |.|i) is surje
tive. In

parti
ular, we have

n
°

i�1

r

xLi : pKs ¤ rL : Ks and there are at most rL : Ks absolute values extending |.| on L.

When |.| is non ar
himedean, Kerpδq is the radi
al of pK bK L.

Proof. 
 Let |.|1 , . . . , |.|n be distin
t absolute values extending |.| on L. The 
omposite L
∆
ÝÑ

n
À

i�1

LÑ
n
À

i�1

xLi

(where ∆ is the diagonal map) is K-linear: as

xLi is a pK-ve
tor spa
e for all i P t1, . . . , nu, it extends into

the

pK-linear map δ. Note that the absolute values |.|1 , . . . , |.|n are pairwise nonequivalent, otherwise there

would exist integers 0   i   j ¤ n and γ P R
¡0 su
h that |.|j � |.|

γ
i , and we would have γ � 1 (be
ause

|.| � |.|
γ
and |.| is not trivial), 
ontradi
ting the hypothesis.


 Let pz1, . . . , znq P
n
À

i�1

xLi: for ε P R
¡0, there exists py1, . . . , ynq P Ln su
h that |zi � yi|i   ε for all

i P t1, . . . , nu. By theorem 3.1.15, there exists x P L su
h that |x� yi|i   ε, when
e |x� zi|i   2ε for all

i P t1, . . . , nu. This shows that the image of δ is dense in
n
À

i�1

xLi. As dim
xK
p

pK bK Lq � rL : Ks   8, this

image is also a �nite dimensional sub-

pK-ve
tor spa
e: by theorem 3.4.12, it is 
losed in the �nite dimensional

pK-ve
tor spa
e

n
À

i�1

xLi (sin
e rxLi : pKs   8 for all i P t1, . . . , nu), so δ is surje
tive.


 As δ is

pK-linear and surje
tive, we have dim
xK

� n
À

i�1

xLi

	

¤ dim
xK
p

pK bK Lq, i.e.
n
°

i�1

r

xLi : pKs ¤ rL : Ks.

this shows that there are �nitely many absolute values extending |.| on L.


 Assume that |.| is non ar
himedean. Take n maximal, i.e. so that |.|1 , . . . , |.|n are exa
tly the absolute

values extending |.| on L. The pK-algebra

pK bK L has �nite dimension: its prime ideals are maximal, and

there are only �nitely many of them, that we denote m1, . . . ,mr. This implies that radp pK bK Lq �
r
�

i�1

mi is

the nilradi
al of

pKbK L. If x P radp pKbK Lq, there exists m P Z
¡0 su
h that xm � 0: if δpxq � px1, . . . , xnq,

we have xmi � 0 in

xLi, hen
e xi � 0 for all i P t1, . . . , nu, so that x P Kerpδq. Conversely, let i P t1, . . . , ru.

Put

rLi :� p

pK bK Lq{mi: this is a �nite �eld extension of

pK: by theorem 3.5.6, there exists a unique

absolute value }.}i on
rLi that extends |.|: there exists a unique σpiq P t1, . . . , nu su
h that }.}i|L � |.|σpiq.

Moreover,

rLi is 
omplete (by theorem 3.5.6 again) and L is dense in

rLi: we have rLi � zLσpiq. This implies

in parti
ular that if x R mi, then the image of x P zLσpiq is nonzero, so that x R Kerpδq. We thus have

Kerpδq �
r
�

i�1

mi � radp pK bK Lq. �

Corollary 3.5.13. Under the hypothesis of proposition 3.5.12, the following are equivalent:

(i)

pK bK L is redu
ed;

(ii) δ is an isomorphism;

(iii)

n
°

i�1

r

xLi : pKs � rL : Ks.
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If these 
onditions are satis�ed, then χx,L{KpXq �
n
±

i�1

χ
x,xLi{

xK
pXq so in parti
ular TrL{Kpxq �

n
°

i�1

Tr
xLi{K

pxq

and NL{Kpxq �
n
±

i�1

N
xLi{K

pxq for all x P L. Moreover, we have

�

�NL{Kpxq
�

�

�

n
±

i�1

|x|
r

xLi:xKs
i for all x P L.

Proof. The equivalen
e between the three statements is obvious, as is the equality of 
hara
teristi
 polyno-

mials, that imply the equalities of tra
es and norms. Taking the absolute value of NL{Kpxq �
n
±

i�1

N
xLi{K

pxq

provides the last equality, noting that

�

�

�

N
xLi{K

pxq
�

�

�

� |x|
r

xLi:xKs
i by proposition 3.5.9. �

Corollary 3.5.14. Under the hypothesis of proposition 3.5.12, if L{K is separable, the 
onditions of 
orollary

3.5.13 are satis�ed.

Proof. If L{K is separable, there exists α P L su
h that L � Kpαq (primitive element theorem). Let

P P KrXs be the minimal polynomial of α over K: we have L � KrXs{xP y, so that

pK bK L � pKrXs{xP y.

As P is separable, the ring

pKrXs{xP y is a produ
t of �nite extensions of pK (
orresponding to the irredu
ible

fa
tors of P in

pKrXs): it is redu
ed. �

Proposition 3.5.15. Under the hypothesis of proposition 3.5.12, assume that L{K is Galois. Then the

extensions

pLi{ pK are Galois, and

GalppLi{ pKq � tσ P GalpL{Kq ; p�x P Lq |σpxq|i � |x|iu

(the RHS is the de
omposition subgroup of L{K relative to |.|i).

Proof. 
 By hypothesis, L is the de
omposition �eld of a separable polynomial P pXq P KrXs � pKrXs. As

L � pLi, the polynomial P is split in

pLi. Let rLi be the subextension of

pLi{ pK generated by the roots of P :

we have L � rLi. As rLi is 
losed in

pLi with respe
t to |.|i (sin
e
pLi is �nite dimensional) and L is dense in

pLi, we have rLi � pLi, implying that

pLi{ pK is Galois.


 Put Di :� tσ P GalpL{Kq ; p�x P Lq |σpxq|i � |x|iu: any σ P Di extends by 
ontinuity into an automor-

phism of

pLi, so we have an inje
tive group homomorphism Di Ñ GalppLi{ pKq. If σ P GalppLi{ pKq, we have

σ
|K � IdK and σpLq � L (sin
e L{K is Galois), so the restri
tion σ

|L belongs to GalpL{Kq. As p

pK, |.|q is


omplete, 
orollary 3.5.8 implies that |σpxq|i � |x|i for all x P
pLi, so a fortiori for all x P L, so that σ

|L P Di,

and showing that Di Ñ GalppLi{ pKq is an isomorphism. �

3.5.16. Completion of Dedekind rings. Let L{K be a �nite separable �eld extension, |.| a non ar
himedean

dis
rete absolute value on K and A � OK,|.| its ring of integers (this is a DVR). We have

pK � Fracp pAq

(
f proposition 3.3.8). Let B be the integral 
losure of A in L: this is a Dedekind ring by theorem 2.1.3.

Denote by p the maximal ideal of A and let pB �

r
±

i�1

Pei
i if fa
torization in B (so that the nonzero prime

ideals of B are tP1, . . . ,Pru). In parti
ular, B is semi-lo
al: by proposition 2.3.15, it is in fa
t a PID.

Proposition 3.5.17. There are exa
tly r absolute values |.|1 , . . . , |.|r extending |.| to L. If
xLi denotes the


ompletion of L with respe
t to |.|i, there is an isomorphism

δ : pK bK L
�

Ñ

r
À

i�1

xLi

indu
ing an isomorphism

pAbA B
�

Ñ

r
À

i�1

xBi

where

xBi is the ring of integers of

xLi for all i P t1, . . . , ru. Moreover, we have r

xLi : pKs � eifi where

fi � rκpPiq : κppqs.

Proof. 
 Let i P t1, . . . , ru. The lo
alization BPi
is a DVR: let πi P B be a uniformizer. As PjBPi

� BPi

if j � i, we have pBPi
� Pei

i BPi
� πeii BPi

: there exists ui P B
�

Pi
su
h that uiπ

ei
i is a uniformizer of

A. Denote |.|i the unique absolute value on L � FracpBPi
q whose ring of integers is BPi

and su
h that

|πi|
ei
i � |uiπ

ei
i |: this normalization implies that |.|i extends |, | on L. We have Pi � B X mL,|.|i , showing

that the absolute values |.|1 , . . . , |.|r are pairwise distin
t.


 Let }.} be an absolute value extending |.| on L. As OL,}.} is integrally 
losed (
f proposition 3.2.4) and


ontains A, it 
ontains B, and B X mL,}.} is a nonzero prime ideal of B: there exists i P t1, . . . , ru su
h

that B XmL,}.} � Pi. This implies that BzPi � O�

L,}.}
, so that BPi

� OL,}.}. As }.} extends |.|, we must
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have }πi}
ei
� |uiπ

ei
i |, so that }.} and |.|i 
oin
ide on BPi

hen
e on L. This shows that the absolute values

extending |.| on L are exa
tly |.|1 , . . . , |.|r.


We have pnB �

r
±

i�1

Pnei
i : by the Chinese remainder theorem, the natural map B{pnB Ñ

r
À

i�1

B{Pnei
i is an

isomorphism. As A is a DVR, it is a PID, so B is a free A-module of �nite rank, so lim
�Ý

n

B{pnB �

pAbA B:

passing to the limit provides a natural isomorphism

pAbAB
�

Ñ

r
À

i�1

xBi, where xBi � lim
�Ý

m

B{Pm
i . Note that for

all i P t1, . . . , ru, we have B{Pm
i

�

ÑBPi
{Pm

i BPi
, so that

xBi 
oin
ides with the 
ompletion of the DVR BPi
.

Moreover,

pKbAB �

pKbK L (be
ause L � KB) and similarly

pKbA
xBi is a �eld: this is the 
ompletion

xLi

of L with respe
t to |.|i. The pre
eding isomorphism thus indu
es a

pK-linear isomorphism

pKbK L
�

Ñ

r
À

i�1

xLi.


 The statement on rings of integers follows, noting that

xBi � lim
�Ý

m

BPi
{Pm

i BPi
is the ring of integers of

xLi

sin
e BPi
is that of L for the absolute value |.|i.


We have seen that pBPi
� Pei

i BPi
: this implies that e

xLi{
xK
� ei. Similarly, we have κ

xLi
�Pi

{Pi � κpPiq

and κ
xK
� A{p � κppq, so that f

xLi{
xK
� rκpPiq : κppqs: the equality r

xLi : pKs � eifi follows from theorem

3.8.4. �

Remark 3.5.18. (1) Taking dimensions, the isomorphism δ implies the equality of theorem 2.4.2.

(2) As A is noetherian and B is of �nite type,

pAbAB is nothing but the p-adi
 
ompletion of B (
f 
orollary

1.11.38).

(3) The previous proposition is a spe
ial 
ase of proposition 3.5.12 and its 
orollaries.

Corollary 3.5.19. If x P L, we have TrL{Kpxq �
r
°

i�1

Tr
xLi{
xK
pxq and NL{Kpxq �

r
±

i�1

N
xLi{
xK
pxq.

Corollary 3.5.20. If L{K is Galois, so is

xLi{ pK, and GalpxLi{ pKq identi�es with the de
omposition subgroup

Di � tσ P GalpL{Kq ; σpPiq � Piu.

Proof. Any σ P Di extends by 
ontinuity into an element in Aut
xK
p

xLiq: the statement follows from the

equalities #Di � eifi � r

xLi : pKs (
f theorem 2.4.5). �

Proposition 3.5.21. Let P be a nonzero prime ideal in B and p � A X P. Denote by

pB (resp.

pA) the

P-adi
 (resp. p-adi
) 
ompletion of B (resp. A). Then D
pB{ pA

�

pB bB DB{A (i.e. "the di�erent of the


ompletion is the 
ompletion of the di�erent").

Proof. As

pA 
oin
ides with the p-adi
 
ompletion of Ap (and similarly for B) by lemma 1.11.29, and as

taking integal 
losure 
ommutes with lo
alization (
f proposition 1.9.13), we may repla
e A by Ap, and

assume that A is a DVR. We use the notation of se
tion 3.5.16.

By proposition 3.5.17, the isomorphism δ : pKbKL
�

Ñ

r
À

i�1

xLi indu
es an isomorphism

pAbAB
�

Ñ

r
À

i�1

xBi, where

xBi is the ring of integers of

xLi. The K-bilinear form L � L Ñ K de�ned by the tra
e TrL{K indu
es a

pK-bilinear map ψ : p pKbK Lq�p pKbKLq Ñ pK by extension of s
alars. Then we have p

pAbABq
�

�

pAbAB
�

(this 
an be seen using dual bases of B and B�

). Moreover, ψ indu
es the bilinear map atta
hed to Tr
xLi{
xK

on

xLi �xLi for all i P t1, . . . , ru. With obvious notations, this implies that

r
À

i�1

p

pA bA B
�

i q �
pA bA B

�

�

� r
À

i�1

xBi

	

�

�

r
À

i�1

xBi
�

, hen
e

pAbAB
�

i �
xBi

�

for all i P t1, . . . , ru (sin
e the fa
torsxLi are pairwise orthogonal

for ψ). Taking inverses, this gives D
xBi{

pA
�

pAbA DBPi
{A �

xBi bB DB{A. �

Corollary 3.5.22. Let p be a nonzero prime ideal in A, and pdB{A the ideal of

pA � lim
�Ý

n

A{pn generated by

dB{A. Then pdB{A �
±

P|p

d
yBP{

pA
(where

yBP � lim
�Ý

n

B{Pn
).

Proof. Follows from proposition 3.5.21 by taking the norm (
f proposition 2.5.9). �

Theorem 3.5.23. Let P be a nonzero ideal of B and p � AXP. The extension L{K is unrami�ed at P if

and only if P does not divide the di�erent DB{A.
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Proof. Normalization and the di�erent ideal are 
ompatible with lo
alization (
f propositions 1.9.13 and

2.5.8): we may repla
e A by Ap and assume that A is a DVR with maximal ideal p. By proposition 3.5.21,

we may also repla
e A (resp. B) by its p-adi
 (resp. P-adi
) 
ompletion, and assume that B is a DVR with

maximal ideal P. In that 
ase, L{K is unrami�ed (at P) if and only if B{pB is a separable �eld extension

of κppq � A{p: we have to prove this is equivalent to DB{A � B, i.e. to dB{A � A (
f proposition 2.5.9).

Let px1, . . . , xdq a basis de B over A (so that dB{A � Dpx1, . . . , xdqA). As d
pB{pBq{κppq � Dpx1, . . . , xdqA{p

(be
ause px1, . . . , xdq is a basis de B{pB over κppq), it is enough to show that B{pB is a separable extension

of κppq if and only if d
pB{pBq{κppq � t0u. If B{pB is a separable extension of κppq, then d

pB{pBq{κppq � t0u by

proposition 1.10.22. Conversely, assume that d
pB{pBq{κppq � 0. We have pB � Pe

: assume that e ¡ 1. We

may assume that some elements in the basis px1, . . . , xdq belong to P{pB. By de�nition, this implies that

d
pB{pBq{κppq P P{pB hen
e d

pB{pBq{κppq � t0u, whi
h is not: we have ne
essarily e � 1, so that B{pB � κpPq

is a �eld, and a �nite extension of κppq. If it was not separable, we would have TrκpPq{κppq � 0 (
f 
orollary

1.10.5), so that dκpPq{κppq � 0, whi
h is not: κpPq{κppq is separable. �

Theorem 3.5.24. Assume

(34)

that B is a free A-module. Nonzero prime ideals of A that are rami�ed in

the extension L{K are pre
isely the divisors of the dis
riminant ideal dB{A. In parti
ular, there are only

�nitely many su
h ideals.

Proof. Follows from theorem 3.5.23 sin
e dB{A � NB{ApDB{Aq (
f proposition 2.5.9). �

3.6. Hensel's lemma. Let pK, |.|q be a 
omplete non ar
himedean valued �eld. Re
all that KpXq is

endowed with the Gauss absolute value |.|Gauss de�ned by

|P |Gauss � max
0¤i¤n

|ai|

for P � a0 � a1X � � � � � anX
n
P KrXs (
f lemma 3.5.1 and de�nition 3.5.2)

For n P Z
¥0, we putWn � tP P KrXs ; degpP q   nu. If F,G P KrXs are su
h degpF q � n and degpGq � m,

the determinant of the K-linear map

Θ: Wn `Wm Ñ Wn�m

pf, gq ÞÑ fG� gF

is, up to a sign, the Sylvester resultant RespF,Gq of F and G (in the 
anoni
al bases ofWn,Wm andWn�m).

Theorem 3.6.1. (Hensel's lemma). Assume P, F,G P OKrXs and ε P r0, 1r are su
h that:

(i) degpF q � n, degpGq � m and degpP q � n�m;

(ii) |P � FG|Gauss ¤ ε |RespF,Gq|
2
;

(iii) P � FG PWn�m, i.e. degpP � FGq   n�m.

Then there exist

rF , rG P OKrXs su
h that:


 P �

rF rG;




rF � F PWn and

rG�G PWm;


 |

rF � F |Gauss ¤ ε |RespF,Gq| and | rG�G|Gauss ¤ ε |RespF,Gq|.

Proof. 
 We 
an of 
ourse assume that |RespF,Gq| ¡ 0. Put Vn � tf P Wn ; |f |Gauss ¤ ε |RespF,Gq|u and

Vm � tg P Wm ; |g|Gauss ¤ ε |RespF,Gq|u and }pf, gq} :� maxt|f |Gauss , |g|Gaussu for all pf, gq P Vn ` Vm.

Property (iii) implies that the map

Φ: Vn ` Vm ÑWn�m

pf, gq ÞÑ P � FG� fg

is well de�ned, so we 
an 
onsider the map Θ�1
� Φ: Vn ` Vm ÑWn `Wm. By 
ondition (ii), we have

|P � FG� fg|Gauss ¤ maxt|P � FG|Gauss , |fg|Gaussu

¤ maxtε |RespF,Gq| , ε2 |RespF,Gq|
2
u � ε |RespF,Gq|

2
.

As F,G P OKrXs, the matrix of Θ in the 
anoni
al bases has 
oe�
ients in OK . By Cramer's formulae,

we have

�

�Θ�1
�

�

¤

1
|RespF,Gq|

, so that

�

�

pΘ�1
�Φqpf, gq

�

�

¤ ε |RespF,Gq|, i.e. pΘ�1
� Φqpf, gq P Vn ` Vm. This

implies that Θ�1
� Φ indu
es a map Λ: pVn ` Vmq Ñ Vn ` Vm.

(34)

Again, this is not really ne
essary on
e the dis
riminant ideal has been properly de�ned.
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 Let pf1, g1q, pf2, g2q P Vn ` Vm. We have

}Λpf1, g1q � Λpf2, g2q} �
�

�Θ�1
pf2g2 � f1g1q

�

�

�

�

�Θ�1
pf2pg2 � g1q � g1pf2 � f1qq

�

�

¤

1

|RespP,Qq|
maxt|f2|Gauss |g2 � g1|Gauss , |g1|Gauss |f2 � f1|Gaussu

¤ εmaxt|g2 � g1|Gauss , |f2 � f1|Gaussu

whi
h shows that Λ is a 
ontra
tive map. Now Wn and Wm are �nite dimensional K-ve
tor spa
es: they

are 
omplete (
f theorem 3.4.12). The same holds for the 
losed subsets Vn and Vm. We may thus apply

the �xed point theorem: there exists pf, gq P Vn ` Vm su
h that Λpf, gq � pf, gq, i.e. Φpf, gq � Θpf, gq,

whi
h means that P � FG � fg � fG � gF , in other words P � pF � fqpG � gq, so that P �

rF rG where

rF � F � f and

rG � G� g satisfy the 
ontition of the statement. �

Remark 3.6.2. Newton's lemma (theorem 3.3.10) is a spe
ial 
ase of theorem 3.6.1: let α P OK be su
h that

|P pαq| ¤ ε |P 1

pαq|
2
. Put F pXq � X�α and GpXq �

P pXq�P pαq

X�α
�

degpP q
°

i�1

P ris
pαqpX �αqi�1

in OKrXs. The

assumption (i) of theorem 3.6.1 is satis�ed with n � 1 andm � d�1 where d � degpP q. As P�FG � P pαq,

the assumtion (iii) is also satis�ed. As RespF,Gq is the determinant

�

�

�

�

�

�

�

1 0 ��� 0 P rdspαq

0
. . .

. . .
...

......
. . .

. . . 0
......

. . . 1 P r2spαq

0 ��� ��� 0 P 1pαq

�

�

�

�

�

�

�

� P 1

pαq

(we made the 
hange of variable Y � X � α), the hypothesis |P pαq| ¤ ε |P 1

pαq|
2
translates into the

inequality |P � FG|Gauss ¤ ε |RespF,Gq|
2
, whi
h is pre
isely assumtion (ii) of theorem 3.6.1. We thus have

rF , rG P OKrXs satisfying the 
on
lusion thereof: we have P �

rF rG and

rF pXq � X � rα, so that P prαq � 0,

and |rα� α| � |

rF � F |Gauss ¤ ε |RespF,Gq| � ε |P 1

pαq|.

Corollary 3.6.3. Let P, F,G P OK rXs be su
h that:

(i) degpF q � n, degpGq � m and degpP q � n�m;

(ii) P � FG has degree n�m and gcdpF ,Gq � 1 (where P denotes the image of P in κKrXs);

(iii) P � FG PWn�m,

Then there exist

rF , rG P OKrXs su
h that:


 P �

rF rG;




rF � F PWn and

rG�G PWm;


 |

rF � F |Gauss   1 and |

rG�G|Gauss   1.

Proof. As F,G P OKrXs, we have RespF,Gq P OK . As degpP q � n � m, we have degpF q � n and

degpGq � m, so that RespF,Gq � RespF ,Gq. As gcdpF ,Gq � 1 by hypothesis, we have RespF ,Gq P κ�K , so

|RespF,Gq| � 1. As P � FG, we have ε :� |P � FG| P r0, 1r: the result follows from theorem 3.6.1. �

3.7. Stru
ture of 
omplete dis
rete valuation �elds. In this se
tion, we assume that pK, |.|q is a


omplete and dis
rete non ar
himedean valued �eld. This implies that OK is noetherian. Let vK be the

normalized valuation asso
iated to |.|, i.e. su
h that vKpK
�

q � Z, and πK a uniformizer of K.

3.7.1. Stru
ture of the additive group.

Proposition 3.7.2. (Stru
ture of the ring of integers of a finite extension). If L{K be a �nite

separable extension of degree d, then OL is a free OK-module of rank d.

Proof. As OL is the integral 
losure of OK in L (
f 
orollary 3.5.10), it is noetherian hen
e of �nite type

over OK (
f 
orollary 1.10.39 (1)). As OK is a PID and OL is torsionfree, it is a free OK-module (
f


orollary 1.4.15). Its rank is d � rL : Ks sin
e L � OL

�

1
πK

�

� K bOK
OL. �

We have the �ltration

t0u � � � � � mn�1
K � mnK � � � � � mK � OK

and fra
tional ideals in K are of the form mnK � πnKOK with n P Z.
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Proposition 3.7.3. Let Σ � OK be a 
omplete set of representatives for κK 
ontaining 0. For ea
h

n P Z, let πn P K
�

be su
h that vKpπnq � n (for instan
e one may take πn � πnK for all n P Z). Put

E � tpxnqnPZ P ΣZ ; xn � 0 for n ! 0u, and

f : E Ñ K

pxnqnPZ ÞÑ
¸

nPZ

xnπn.

Then f is a bije
tion.

Proof. First observe that f is well de�ned, be
ause K is 
omplete for vK .


 Let x � pxnqnPZ and y � pynqnPZ be distin
t elements in E : there exists N P Z su
h that xN � yN

and p�i   Nqxi � yi. We thus have fpyq � fpxq �
8

°

n�N

pyn � xnqπn P K. As yN � xN , we have

vKpyN � xN q � 0, hen
e vKppyN � xN qπN q � N   n ¤ vKppyn � xnqπnq for all n ¡ N . This implies that

vKpfpyq � fpxqq � N   �8, so that fpyq � fpxq � 0, showing that the map f is inje
tive.


 Let x P K�

. There exists a unique n0 P Z su
h that x P πn0

K OKzπ
n0�1
K OK , i.e. x P πn0

O�

K (we have

vKpxq � n0vKpπKq). By de�nition of Σ, there exists a unique xn0
P Σzt0u su
h that x�xn0

πn0
P πn0�1OK .

Let m ¥ n0 be su
h that xn0
, . . . , xm P Σ have been 
onstru
ted su
h that x�

m
°

n�n0

xnπn P πm�1OK : write

x�
m
°

n�n0

xnπn � πm�1ym�1 with ym�1 P OK . By de�nition of Σ again, there exists a unique xm�1 P Σ su
h

that ym�1 � xm�1 mod mK , and we have x �
m�1
°

n�n0

xnπn P πm�2OK . By indu
tion, we thus 
onstru
t a

sequen
e x � pxnqnPZ P E su
h that xn � 0 for all n   n0 and x�
m
°

n�n0

xnπn P πm�1OK for all n P Z
¥n0

.

Passing to the limit an mÑ8, we get x � fpxq, showing that f is surje
tive. �

Corollary 3.7.4. We have CardpKq � CardpκKq
N
. In parti
ular, K is un
ountable.

Corollary 3.7.5. The restri
tion of f indu
es an homeomorphism

f : ΣZ
¥0 �

ÑOK

where ΣZ
¥0

is endowed with the produ
t topology, ea
h 
opy of Σ being endowed with the dis
rete topology.

Proof. 
 We know that f : ΣZ
¥0

�

ÑOK is bije
tive by proposition 3.7.3.


 Let a P OK and N P Z
¥0. Write f�1

paq � panqnPZ
¥0
. By 
onstru
tion we have

f�1
pa� πNKOKq � tpxnqnPZ

¥0
; p�n   Nqxn � anu.

This implies that via f , the open subsets ta� πNKOKu aPOK

NPZ
¥0

(whi
h form a basis for the topology on OK)


orrespond to the open subsets

 

tpxnqnPZ
¥0

; p�n   Nqxn � anu
(

aPOK

NPZ
¥0

(whi
h form a basis for the produ
t

topology on ΣZ
¥0
). This pre
isely means that the bije
tion f is an homeomorphism. �

Example 3.7.6. If K � Qp, we have κK � Fp, and we 
an take Σ � t0, 1, . . . , p � 1u. An other 
hoi
e is

given by Σ � t0uYµp�1 (
f example 3.3.12). In parti
ular, we have CardpQpq � CardpZpq � pN � CardpRq.

3.7.7. Stru
ture of the multipli
ative group. The sequen
e

t1u Ñ O�

K Ñ K�

vK
ÝÝÑ ZÑ t0u

is exa
t. The 
hoi
e of the uniformizer πK provides a splitting for this sequen
e: we have

K�

� O�

K � πZ
K

De�nition 3.7.8. For i P Z
¥0, we put

U
piq

K �

#

O�

K if i � 0

1�miK � tx P K ; vKpx� 1q ¥ iu if i ¡ 0

This de�nes a �ltration of O�

K by subgroups

t1u � � � � � U
pi�1q

K � U
piq
K � � � � � U

p1q

K � U
p0q

K � O�

K
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Remark 3.7.9. As OK � Bp0, 1q � B
�

0, 1
?

|πK |

�

is both open and 
losed in K, so are the subgroups U
piq

K in

K�

. Note that as open balls are both open and 
losed, the topology on K is totally dis
onne
ted, i.e. its


onne
ted 
omponents are its points.

Proposition 3.7.10. (1) The 
anoni
al proje
tion OK Ñ κK ; x ÞÑ px mod mKq indu
es a group isomor-

phism

U
p0q

K {U
p1q

K

�

Ñκ�K .

(2) The map U
piq
K Ñ κK ; 1� πiKx ÞÑ px mod mKq indu
es a group isomorphism

U
piq
K {U

pi�1q

K

�

ÑκK .

Proof. (1) As x P OK is invertible if and only if x mod mK P κ�K , the 
anoni
al map U
p0q

K Ñ κ�K is

surje
tive. Its kernel is tx P OK ; x � 1 mod mKu � U
p1q

K , when
e the result.

(2) The map U
piq
K Ñ κK ; 1 � πiKx ÞÑ px mod mKq is surje
tive (be
ause OK Ñ κK is) and its kernel is

U
pi�1q

K . �

3.8. Rami�
ation. Here again, we assume that pK, |.|q is a non ar
himedean valued �eld.

De�nition 3.8.1. Let L{K be a �nite extension, and |.|L an absolute value extending |.| to L. As pK, |.|q is

non ar
himedean, so is pL, |.|Lq. Denote by OK and OL (resp. κK and κL) the rings of integers (resp. the

residue �elds) of pK, |.|q and pL, |.|Lq respe
tively (note that OL and κL depend on the extension |.|L).

The in
lusion OK � OL indu
es a �eld extension κL{κK , whose degree

fL{K �

�

κL : κK
�

is 
alled the residual degree of the extension pL, |.|Lq{pK, |.|q. As |.|L extends |.|, the subgroup |K�

| � R
¡0

is a subgroup in |L�|L. The index

eL{K �

�

�

�L�
�

�

L
:
�

�K�

�

�

�

is 
alled the rami�
ation index of the extension pL, |.|Lq{pK, |.|q.

Theorem 3.8.2. eL{KfL{K ¤ rL : Ks.

Proof. Let n,m P Z
¡0 be su
h that n ¤ eL{K and m ¤ fL{K . Fix x1, . . . , xn P L

�

su
h that the 
osets

t|xi|L |K
�

|u1¤i¤n are pairwise distin
t. Similarly, let y1, . . . , ym P OL whose images y1, . . . , ym P κL are

linearly independant over κK : we have to show that txiyju 1¤i¤n
1¤j¤m

are linearly independent over K.


 We �rst prove that if λ1, . . . , λm P K and α �
m
°

j�1

λjyj P L, then |α|L � max
1¤j¤m

|λj |. This is obvious if

λ1 � � � � � λm � 0: assume the 
ontrary. Renumbering if ne
essary, we may assume that |λ1| � max
1¤j¤m

|λj |.

Dividing α by λ1, we redu
e to the 
ase where λ1 � 1 and λj P OK for all j P t1, . . . ,mu. As the elements

y1, . . . , ym P κL are linearly independant over κK , the image of α in κL is non zero, so |α|L � 1, proving

the 
laim.


 Let pλi,jq 1¤i¤n
1¤j¤m

be elements in K su
h that

°

1¤i¤n
1¤j¤m

λi,jxiyj � 0: we have
n
°

i�1

αixi � 0 with αi �
m
°

j�1

λi,jyj

for i P t1, . . . , nu. If one among the α1, . . . , αn is non zero, there exist 1 ¤ i1   i2 ¤ n su
h that

|αi1xi1 |L � |αi2xi2 |L ¡ 0. Then αi1 , αi2 � 0, so |αi1 |L � max
1¤j¤m

|λi1,j | P |K
�

|, and similarly |αi2 |L P |K
�

|,


ontradi
ting the fa
t that the 
osets |xi1 | |K
�

| and |xi2 |L |K
�

| are distin
t. This implies that we have

α1 � � � � � αn � 0, when
e λi,j � 0 for all i P t1, . . . , nu and j P t1, . . . ,mu (sin
e |αi| � max
1¤j¤m

|λi,j | by

what pre
edes). �

Remark 3.8.3. The theorem implies the �niteness of eL{K and fL{K . Note that the inequality in theorem

3.8.2 
an be stri
t.

Theorem 3.8.4. Assume pK, |.|q is 
omplete and |.| is dis
rete. Then eL{KfL{K � rL : Ks.

Proof. Put e � eL{K and f � fL{K . We know that |.|L is unique (
f theorem 3.5.6). As e is �nite and |.|

is dis
rete, so is |.|L: let πL P OL be a uniformizer. As |L�|L and |K�

| are isomorphi
 to Z, the quotient

group |L�|L { |K
�

| is 
y
li
 of order e. This implies that |πL|
eZ
L � |K�

|.
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Let y1, . . . , yf P OL whose images y1, . . . , yf P κL are linearly independant over κK . This implies that

OL � y1OK � � � � � yfOK � πLOL: an immediate indu
tion shows that

OL �

¸

0¤i¤e�1
1¤j¤f

πiLyjOK � πeLOL �

¸

0¤i¤e�1
1¤j¤f

πiLyjOK � πKOL

where πK is a uniformizer of K. By indu
tion, we have OL �
°

0¤i¤e�1
1¤j¤f

πiLyjOK � π
n
KOL for all n P Z

¡0. As

OL is 
omplete for the πK-adi
 topology, we dedu
e OL �
°

0¤i¤e�1
1¤j¤f

πiLyjOK , when
e L �

°

0¤i¤e�1
1¤j¤f

KπiLyj,

so rL : Ks � ef . �

Proposition 3.8.5. Assume that pK, |.|q is 
omplete, |.| dis
rete, and let L{K be a �nite extension su
h that

κL{κK is separable. Then there exists α P OL su
h that OL � OKrαs.

Proof. 
 As κL{κK is separable, there exists α P OL whose image α P κL is a primitive element, i.e.

su
h that κL � κKpαq. Let πL P OL be a uniformizer. Put e � eL{K and f � fL{K . The proof of

previous theorem shows that tπiLα
j
u0¤i e
0¤j f

generates the OK-module OL. As OK is a DVR hen
e a PID,

the OK-module OL is free (of rank n � ef): this shows that tπiLα
j
u0¤i e
0¤j f

is an OK-basis of OL.


 Denote by vL the normalized valuation on OL. Let P P OKrXs be a moni
 polynomial (ne
essarily of

degree f) lifting the minimal polynomial of α over κK � A{mA: we have P pαq P mL.

Assume that vLpP pαqq ¡ 1. As κL{κK is separable, we have P 1

pαq � 0 (where P P κKrXs denotes the

image of P mod mArXs), i.e. P 1

pαq P O�

L . Now we have P pα � πLq � P pαq � P 1

pαqπL � βπ2
L (where

β �
f
°

i�2

P ris
pαqπi�2

L P OL). As vLpP
1

pαqπLq � 1   mintvLpP pαqq, vLpβπ
2
Lqu, we have vLpP pα � πLqq � 1:

repla
ing α by α� πL if ne
essary, we 
an assume that vLpP pαqq � 1, i.e. that π :� P pαq is a uniformizer

of L.


 As above, tπiαju0¤i e
0¤j f

is an OK-basis of OL. As πiαj P OKrαs for all i, j P Z
¥0, this implies that

OL � OKrαs. The reverse in
lusion is trivial sin
e α P OL. �

De�nition 3.8.6. Assume that pK, |.|q is 
omplete, and let L{K be a �nite extension: the absolute value |.|

extends uniquely into an absolute value |.| on L.

(1) The extension L{K is unrami�ed when κL{κK is a separable extension of degree rL : Ks. By theorem

3.8.2, this implies that eL{K � r|L�| : |K�

|s � 1 (the 
onverse holds automati
ally when |.| is dis
rete and

κK perfe
t by theorem 3.8.4).

(2) The extension L{K is totally rami�ed when κL � κK (i.e. fL{K � 1).

Theorem 3.8.7. Assume that pK, |.|q is 
omplete, let L{K be a �nite extension, and k a subextension of

κL{κK su
h that k{κK is separable. Then there exists a unique subextension M of L{K su
h that M{K is

unrami�ed and κM � k.

Proof. 
 Existen
e. By hypothesis, there exists α P κL su
h that k � κKrαs and the minimal polynomial P

of α over κK is separable, when
e P 1

pαq � 0. Let P P OKrXs be any moni
 lift of P , and α P OL any lift

of α. Put ε � |P pαq| P r0, 1r (sin
e the image of P pαq in κL is P pαq � 0). We have |P 1

pαq| � 1 sin
e the

image of P 1

pαq in κL is P 1

pαq � 0. As |P pαq| ¤ ε |P 1

pαq|
2
, Newton's lemma (
f theorem 3.3.10) implies the

existen
e of a root rα of P in L, su
h that |rα� α| ¤ ε |P 1

pαq| � ε   1, so that the image of rα in κL is α.

Repla
ing α by rα, we may assume that P pαq � 0. PutM � Kpαq � L. Note that sin
e P is moni
 and P is

irredu
ible in κKrXs, the polynomial P is irredu
ible in OKrXs, hen
e in KrXs (assume P � P1P2 inKrXs:

res
aling P1 and P2, we 
an assume that P1 and P2 are moni
, so that |P1|Gauss ¥ 1 and |P2|Gauss ¥ 1; as

|P1|Gauss |P2|Gauss � |P |Gauss � 1, we have in fa
t |P1|Gauss � |P2|Gauss � 1, i.e. P1, P2 P OKrXs). This

implies that rM : Ks � degpP q � degpP q � rk : κKs. As α P κM , we have k � κM , when
e

rM : Ks � rk : κKs ¤ rκM : κKs ¤ rM : Ks

(the se
ond inequality follows from theorem 3.8.2), so κM � k and rκM : κKs � rM : Ks, when
e M{K is

unrami�ed.


 Uni
ity. Let M 1

be an other subextension of L{K su
h that M 1

{K is unrami�ed and κpM 1

q � k. As

α P k � κpM 1

q, Newton's lemma (
f theorem 3.3.10) applied to P P M 1

rXs provides a root β P M 1

of

P , whose image in κpM 1

q is α. Then we have 0 � P pβq � P pαq �
degpP q
°

i�1

pβ � αqiP ris
pαq. If β � α, we
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an divide this equality by β � α, and get 0 � P 1

pαq �
degpP q
°

i�2

pβ � αqi�1P ris
pαq. As P ris

P OKrXs for all

i P Z
¡0 and α, β P OL, we have P 1

pαq P pβ � αqOL, thus |P
1

pαq|   1 sin
e β � α P mL (be
ause β and

α both lift α). This 
ontradi
ts the fa
t that |P 1

pαq| � 1: we have β � α, so that M � Kpαq � M 1

. As

rM 1 : Ks � rk : κKs � rM : Ks, we have M 1

�M . �

Proposition 3.8.8. Under the assumptions of theorem 3.8.7, if α P OM maps to α P k su
h that k � κKpαq,

then OM � OKrαs. Moreover, if x �
d�1
°

i�0

λiα
i
PM � Kpαq (with d � rM : Ks and λ0, . . . , λd�1 P K), then

|x| � max
0¤i d

|λi|.

Proof. We have α P M thus Kpαq � M , and k � κKpαq, thus rM : Ks � rk : κKs | rKpαq : Ks | rM : Ks:

this implies that rKpαq : Ks � rM : Ks, i.e. M � Kpαq. Let x �
d�1
°

i�0

λiα
i
PM with λ0, . . . , λd�1 P K. Fix

i0 P t0, . . . , d�1u su
h that |λi0 | � max
0¤i d

|λi|: if x � 0, we have λi0 � 0. Then λ�1
i0
x �

d�1
°

i�0

λ�1
i0
λiα

i
P OKrαs

be
ause

�

�λ�1
i0
λi
�

�

¤ 1, with equality for i � i0: as p1, α, α
2, . . . , αd�1

q is a basis of k over κK , this implies that

the image of λ�1
i0
x in κM � k is not zero, when
e

�

�λ�1
i0
x
�

�

� 1, i.e. |λi0 | � |x|, proving the se
ond assertion.

If x P OM , this implies that |λi| ¤ |x| ¤ 1 i.e. λi P OK for all i P t0, . . . , d� 1u, so that x P OKrαs: we have

OM � OKrαs. The reverse in
lusion is obvious. �

Corollary 3.8.9. Assume that pK, |.|q is 
omplete, and let L{K be a �nite extension su
h that κL{κK is

separable. There exists a unique subextension T of L{K su
h that T {K is unrami�ed and L{T is totally

rami�ed. If M is a subextension of L{K su
h that M{K is unrami�ed, then M � T . Conversely, any

subextension M of T {K is unrami�ed over K.

Proof. By theorem 3.8.7 applied to k � κL, there exists a unique subextension T of L{K su
h that T {K is

unrami�ed and κT � κL. This last property means that L{T is totally rami�ed.

LetM be a subextension of L{K su
h thatM{K is unrami�ed. Theorem 3.8.7 applied to the extension T {K

and k � κM implies that there exists a unique subextension M 1

of T {K su
h that M 1

{K is unrami�ed and

κM 1

� κM . Similarly, it implies that M is the unique subextension of L{K su
h that M{K is unrami�ed

and whose residue �eld is κM : by uni
ity, we have M 1

�M , so that M � T .

If M is a subextension of T {K, we have rκT : κM s ¤ rT : M s and rκM : κKs ¤ rM : Ks. The produ
t of

these inequalities is the equality rκT : κKs � rT : Ks: these inequalities must be equalities, in parti
ular

rκM : κKs � rM : Ks. As κM{κK is separable sin
e κT {κK is, the extension M{K is unrami�ed. �

De�nition 3.8.10. The subextension T of L{K is 
alled the maximal unrami�ed subextension

(35)

of L{K.

Corollary 3.8.11. Under the assumptions of 
orollary 3.8.9, if M1 and M2 are two subextensions of L{K

that are unrami�ed over K, their 
ompositum M1M2 is unrami�ed over K.

Theorem 3.8.12. Assume that pK, |.|q is 
omplete, and let L{K be a �nite Galois extension su
h that

κL{κK is separable. Then κL{κK is Galois, and there exists a natural, surje
tive group homomorphism

GalpL{Kq Ñ GalpκL{κKq, whose kernel is GalpL{T q, where T is the maximal unrami�ed subextension of

L{K. It indu
es a group isomorphism GalpT {Kq
�

ÑGalpκL{κKq.

Proof. As we have seen during the proof of theorem 3.8.7, if α P κL is su
h that κL � κKpαq, and if

P P OKrXs is any moni
 polynomial lifting the minimal polynomial P P κKrXs of α over κK , then P is

irredu
ible in KrXs, has a unique root α P L lifting α, and T � Kpαq.


 As L{K is Galois and P pαq � 0, the polynomial P is split in LrXs with simple roots in L (sin
e α

is separable over K sin
e L is): we 
an write P pXq �
d
±

i�1

pX � αiq, where α � α1, . . . , αd are pairwise

distin
t elements in L. If i P t1, . . . , du, there exists σ P GalpL{Kq su
h that αi � σpαq, whi
h implies

that |αi| � |σpαq| � |α|, so that αi P OL: let αi be its image in κL. The fa
torization above indu
es the

fa
torization P pXq �
d
±

i�1

pX�αiq. This implies in parti
ular that κL � κKpαq is a splitting �eld for P over

κK : as P is separable over κK (sin
e α is, be
ause κL{κK is), the extension κL{κK is Galois.


 Let σ P GalpL{Kq. We have σpOLq � OL and σpmLq � mL (be
ause σ is an isometry by uni
ity of the

absolute value on L extending |.| on K). This implies that σ indu
es a ring homomorphism σ : κL Ñ κL,

(35)
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i.e. a �eld automorphism of κL. As σ
|K � IdK , we have σ

|κK
� IdκK

, so that σ P GalpκL{κKq. The indu
ed

map GalpL{Kq Ñ GalpκL{κKq is obviously a group homomorphism.


 Let γ P GalpκL{κKq : there exists i P t1, . . . , du su
h that γpαq � αi (sin
e the 
onjugates of α over κK
are α1, . . . , αd be
ause P is irredu
ible). As α and αi are 
onjugate over K (being roots of the irredu
ible

polynomial P ), there exists σ P GalpL{Kq su
h that σpαq � αi. This implies that γ and σ 
oin
ide on α:

they are equal sin
e κL � κKpαq. This shows the surje
tivity of the map GalpL{Kq Ñ GalpκL{κKq.


 Let σ P GalpL{Kq be su
h that σ � IdκL
. This implies that σpαq maps to α in κL. As the only root of P

lifting α is α, we have σpαq � α, and σ P GalpL{T q. The 
onverse is obvious.


 As GalpL{T q � KerpGalpL{Kq Ñ GalpκL{κKqq, the subgroup GalpL{T q is normal in GalpL{Kq, so that

T {K is Galois (a fa
t that 
an be 
he
ked dire
tly by observing that T � Kpαq 
ontains all the 
onjugates

α1, . . . , αd of α over K), thus GalpT {Kq
�

ÑGalpκL{κKq passing to the quotient. �

De�nition 3.8.13. Under the assumptions of theorem 3.8.12, the subgroup IL{K :� GalpL{T q is normal in

GalpL{Kq. It is 
alled the inertia subgroup of the extension L{K. We thus have an exa
t sequen
e

t1u Ñ IL{K Ñ GalpL{Kq Ñ GalpκL{κKq Ñ t1u

Proposition 3.8.14. Assume that pK, |.|q is 
omplete, and let L{K and L1{K two �nite and unrami�ed

extensions. The natural map

HomK-algpL,L
1

q Ñ HomκK -algpκL, κL1q

is a bije
tion.

Proof. 
 The extension κL{κK is �nite and separable: there exists α P k su
h that k � κKpαq (primitive

element theorem). Let P P κKrXs be the minimal polynomial of α over κK , and P P OKrXs a moni
 lifting

of P . As α is separable over κK , we have P
1

pαq � 0: we 
an apply Newton's lemma (
f theorem 3.3.10),

so there exists a unique element α P OL mapping to α in κL and su
h that P pαq � 0.


 Let σ P HomK-algpL,L
1

q: we have σpOLq � OL1 , so that σ indu
es a morphism σ : κL Ñ κL1 of κK-

algebras. As P pαq � 0 in L, we have P pσpαqq � 0 in L1 as well (sin
e P P OKrXs). The image of σpαq in

κL1 
oin
ides with σpαq. Again, we 
an apply Newton's lemma to P in OL1 : the uni
ity implies that σpαq

is the unique element α1 P OL1 mapping to σpαq in κL1 and su
h that P pα1q � 0. This shows that there is a

bije
tion between the possible values for σpαq (these are the roots of P in κL1) and the possible values for

σpαq (these are the roots of P in L1). As σ and σ are uniquely determined by σpαq and σpαq respe
tively,

this proves the bije
tivity. �

Theorem 3.8.15. Assume that pK, |.|q is 
omplete, and let k{κK be a �nite and separable extension. There

exists a �nite unrami�ed extension L{K su
h that κL � k. This extension is unique up to isomorphism.

Proof. 
 As k{κK is �nite and separable, there exists α P k su
h that k � κKpαq (primitive element

theorem): let P P κKrXs be its minimal polynomial over κK . Let P P OKrXs be any moni
 lift of P : as

P is irredu
ible in κKrXs, so is P in OKrXs, hen
e in KrXs. This implies that L � KrXs{xP pXqy is a

�nite �eld extension of K, and that rL : Ks � rk : κKs. Put A � OK rXs{xP pXqy: as P P OKrXs, the

in
lusion OK � KrXs indu
es a morphism of OK algebras A Ñ OL, when
e a morphism of κK-algebras

κKrXs{xP y Ñ OL{mKOL. Composed with the 
anoni
al map OL{mKOL Ñ κL, we dedu
e a morphism

k Ñ κL of extensions of κK . This implies in parti
ular that rκL : κKs ¥ rk : κKs � rL : Ks: we must have

rκL : κKs � rk : κKs � rL : Ks, so that the map k Ñ κL is an isomorphism, and L{K is unrami�ed.


 The uni
ity follows from proposition 3.8.14. �

Corollary 3.8.16. Assume that pK, |.|q is 
omplete. The fun
tor L ÞÑ κL is an equivalen
e of 
ategories

between the 
ategory of �nite unrami�ed extensions of K and that of �nite and separable extensions of κK .

Proof. This is proposition 3.8.14 and theorem 3.8.15. �

Remark 3.8.17. The pre
eding statement is a spe
ial 
ase of a very general result (on �nite étale 
overings

of s
hemes).

3.8.18. The 
ase of a �nite residue �elds. Here we assume that pK, |.|q is a non ar
himedean 
omplete valued

�eld, su
h that κK � Fq is a �nite �eld (so that q is a power of a prime p). If L{K is a �nite extension, then

κL{κK is a �nite extension of degree f , so κL � Fqf � Fq
�

ζqf�1

�

, where ζqf�1 is a primitive pqf � 1q-th

root of unity, i.e. a root of the separable polynomial Φqf�1pXq, the latter has a root in L, and T is a

splitting �eld of Φqf�1pXq: we have T � Kpζqf�1q where ζqf�1 is a (any) primitive pqf �1q-th root of unity

in L.
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The extension κL{κK being Galois, T {K is Galois as well, and GalpT {Kq
�

ÑGalpFqf {Fqq is 
y
li
 of order

f , generated by the Frobenius automorphism ϕ de�ned by ϕpxq � xq for all x P Fqf . This means that

GalpT {Kq is generated by the Frobenius automorphism ϕ, whi
h is 
hara
terized by

ϕpxq � xq mod mT

for all x P T . Note that by uni
ity of lifts of roots of Xqf�1
� 1 in T , we have ϕpζqf�1q � ζ

q

qf�1
.

Proposition 3.8.19. Let K be an algebrai
 
losure of K. For f P Z
¡0, there exists a unique subextension

Kf of K{K whi
h is unrami�ed and whose residue �eld is Fqf .

By what theorem 3.8.15, Kf is the splitting �eld of Xqf
�X in K .

Notation. We denote by Qq the unique unrami�ed extension of Qp (in some �xed algebrai
 
losure of Qp)

whose residue �eld is Fq. Its ring of integers is denoted Zq.

De�nition 3.8.20. (Tei
hmüller representatives) Let Qp be an algebrai
 
losure of Qp. If f P Z
¡0

and x P Fpf , then x is a root of the polynomial Xpf
�X . As the latter is separable modulo p, Newton's

lemma (
f theorem 3.3.10) implies that there is a unique element rxs P Zpf whi
h is a root of Xpf
�X , and

whose image in Fpf is x. Put together, those maps provide a 
anoni
al map

r.s : Fp Ñ OQp

whi
h is a se
tion of the 
anoni
al proje
tion OQp
Ñ Fp. Note that by uni
ity, we have rxys � rxsrys for

all x, y P Fp. The element rxs is 
alled the Tei
hmüller (or multipli
ative) representative of x.

Of 
ourse, we have r0s � 0 and r1s � 1. If x generates Fpf , then x is a primitive ppf � 1q-th root of unity

in Fp, hen
e rxs is a primitive ppf � 1q-th root of unity in Qp.

3.8.21. Totally rami�ed extensions. If L{K is a �nite extension whose residual extension κL{κK is separable,

there is a unique subextension T of L{K su
h that T {K is unrami�ed with residue �eld κL, and L{T is

totally rami�ed. We have rT : Ks � fL{K , when
e rL : T s � eL{K (be
ause rL : Ks � eL{KfL{K by theorem

3.8.4). As unrami�ed �nite extensions are well understood by 
orollary 3.8.9 and theorem 3.8.12, we now

explain the stru
ture of totally rami�ed �nite extensions, in the 
ase where the value group |K�

| is dis
rete.

We hen
eforth assume that pK, |.|q is a 
omplete and dis
rete non ar
himedean valued �eld.

Let K be a �xed algebrai
 
losure of K and EpXq � Xe
�a1X

e�1
�� � ��ae�1X�ae P KrXs an Eisenstein

polynomial, i.e. su
h that ai P mK for all i P t1, . . . , eu and ae P mKzm
2
K (in other words vKpaiq ¡ 0 for

i P t1, . . . , eu and vKpaeq � vKpπKq). Let Π P K be a root of E and L � KpΠq. As rL : Ks � e is �nite, |.|

extends uniquely to L by theorem 3.5.6 (i.e. vK extends uniquely into a valuation vL on L).

Lemma 3.8.22. The extension L{K is totally rami�ed, Π is a uniformizer of L and OL � OKrΠs.

Proof. 
 Note that L is 
omplete sin
e it is �nite dimensional over K (
f theorem 3.4.12). As P pΠq � 0,

we have Π P OL, and

(�) Πe � uπK

where u � �

1
πK

�

ae � ae�1Π � � � � � a1Π
e�1

�

. For i P t1, . . . , eu, we have

�

�

�

aiΠ
e�i

πK

�

�

�

¤ 1 sin
e |ai| ¤ |πK |

(be
ause ai P mK � πKOK) and |Π| ¤ 1 sin
e Π P OL. This implies that u P OL: equation (�) implies that

|Π|
e
� |u| |πK |   1, showing that Π P mL. This implies that

�

�

�

aiΠ
e�i

πK

�

�

�

  1 if i P t1, . . . , e� 1u. On the other

hand, we have

�

�

�

ae
πK

�

�

�

� 1 be
ause ae P πKO�

K (sin
e E is an Eisenstein polynomial). As

�

�

�

ae
πK

�

�

�

¡

�

�

�

aiΠ
e�i

πK

�

�

�

for

all i P t1, . . . , e � 1u, we have |u| � max
1¤i¤e

�

�

�

aiΠ
e�i

πK

�

�

�

� 1, so that u P O�

L . This implies that |Π| � |πK |
1{e

,

showing that

e
a

|K�

| � |L�|, when
e r|L�| : |K�

|s ¥ e � rL : Ks. By theorem 3.8.4, this implies that L{K

is totally rami�ed, and |L�| � |Π|
Z
�

e
a

|K�

|. In parti
ular, Π is a uniformizer of L.


 As Π P OL, we have OKrΠs � OL. Conversely, let x P OLzt0u. As p1,Π,Π2, . . . ,Πe�1
q is a K-basis of

L, we 
an write x � λ0 � λ1Π � � � � � λe�1Π
e�1

with λ0, . . . , λe�1 P K. If 0 ¤ i   j   e are integers, we

have

�

�λiΠ
i
�

�

�

�

�λjΠ
j
�

�

unless λi � λj � 0, be
ause |Π|
j�i

R |K�

|. This implies that |x| � max
0¤i e

|λi| |Π|
i
. As

x P OL, have thus |λi| |Π|
i
¤ 1, i.e. |λi| ¤ |Π|

�i
  |πK |

�1
for all i P t0, . . . , e� 1u, i.e. |λi| ¤ 1 i.e. λi P OK

for all i P t0, . . . , e� 1u, hen
e x P OKrΠs. �

Theorem 3.8.23. A �nite extension L{K is totally rami�ed if and only if L � KpπLq, where πL is a

uniformizer of L, and a root of an Eisenstein polynomial over K. Then OL � OKrπLs.
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Proof. 
 Assume L{K is totally rami�ed, and let πL a uniformizer of L. We have |L�| � |πL|
Z
and

|K�

| � |πK |
Z
: as r|L�| : |K�

|s � e :� rL : Ks, we have |πK | � |πL|
e
. The family p1, πL, π

2
L, . . . , π

e�1
L q

is linearly independent over K: if we had a non trivial relation λ0 � λ1πL � � � � � λe�1π
e�1
L � 0 with

λ0, . . . , λe�1 P K, there would be 0 ¤ i   j   e integers su
h that 0  
�

�λiπ
i
L

�

�

�

�

�

�

λjπ
j
L

�

�

�

, 
ontradi
ting the

fa
t that πL
j�i

R |K�

|. This implies that p1, πL, π
2
L, . . . , π

e�1
L q is a basis of L over K, so that L � KpπLq.

Let EpXq � Xe
� a1X

e�1
� � � � � ae�1X � ae P KrXs be the minimal polynomial of πL over K. As πL

belongs to OL, it is integral over OK (
f 
orollary 3.5.10): we have EpXq P OKrXs. If i P t1, . . . , eu, the


oe�
ient ai is, up to the sign, the i-th elementary symmetri
 polynomial in the 
onjugates of πL. Sin
e all

of these belong to mN (where N is a normal 
losure of L{K), we have ai P mN XK � mK . Moreover, the


onstant term satis�es ae � �NL{KpπLq, so that |ae| �
�

�NL{KpπLq
�

�

� |πL|
e
� |πK | (
f proposition 3.5.9),

whi
h shows that E is an Eisenstein polynomial.


 The 
onverse and the statement on OL are nothing but lemma 3.8.22. �

3.8.24. Tame and wild rami�
ation. Here again, we assume that pK, |.|q is a 
omplete and dis
rete non

ar
himedean valued �eld.

De�nition 3.8.25. A �nite extension L{K is tamely rami�ed when its residual extension is separable and

eL{K is prime to charpκKq, and wildly rami�ed otherwise.

Remark 3.8.26. When charpκKq � 0, every �nite extension is tamely rami�ed.

In what follows, we put p � charpκKq if charpκKq ¡ 0 and p � 1 if charpκKq � 0.

Lemma 3.8.27. Let L{K be a totally rami�ed extension. Write rL : Ks � prm with gcdpp,mq � 1. It

z P L is su
h that zm � 1, then z P K.

Proof. Put e � rL : Ks, and let πL be a uniformizer of L: we have OL �

e�1
À

i�0

OKπ
i
L. As |z| � 1, we have

z P OL: there exists a unique y P OK su
h that z � y P
e�1
À

i�1

OKπ
i
L: we have |z � y| ¤ |πL|, so in parti
ular

|y| � 1. Let P pXq � Xm
� 1 P OK rXs. We have |P pyq| � |P pyq � P pzq| � |ym � zm| ¤ |y � z| ¤ |πL|. On

the other hand, we have P 1

pyq � mym�1
, so that |P 1

pyq| � 1 sin
e gcdpp,mq � 1 and |y| � 1. Newton's

lemma (
f theorem 3.3.10) implies that there exists a unique element ry P K su
h that P pryq � 0 and

|ry � y| ¤ |πL|. This implies that |ry � z| ¤ |πL|. Applying uni
ity in L then shows that z � ry P K. �

Theorem 3.8.28. Let L{K be a totally rami�ed extension of degree e � prm with gcdpp,mq � 1. There

exists a unique subextension V of L{K su
h that V {K is tamely rami�ed and rL : V s � pr. Moreover, there

exists a uniformizer π of K su
h that V � Kp m
?

πq.

Proof. 
 Existen
e of V . Let πK (resp. πL) be a uniformizer in K (resp. L). As the extension L{K is

totally rami�ed, we have OL �

e�1
À

i�0

OKπ
i
L, and π

e
L � uπK , with u P O�

L . As κL � κK , there exists u0 P O�

K

su
h that u and u0 have same image in κL, so that z � u
u0
P OL satis�es |z � 1|   1.

Now let P pXq � Xm
� z P OLrXs: as |z � 1|   1, we have |P p1q|   1. Also, |P 1

p1q| � |m| � 1 sin
e

gcdpp,mq � 1: by Newton's lemma (
f theorem 3.3.10), there exists a unique w P OL su
h that P pwq � 0

and |w � 1| ¤ |P p1q| � |z � 1|. We thus have π
prm
L � u0w

mπK , so that πV :�
π
pr

L

w
P OL is su
h that

πmV � u0πK �: π is a uniformizer of K. Let V � KpπV q: as πV is a root of the Eisenstein polynomial

Xm
� π P OK , we have rV : Ks � m: the extension V {K is tamely rami�ed, and rL : V s �

rL:Ks

rV :Ks
� pr.


 Uni
ity of V . Let V 1

be a subextension of L{K su
h that rV : Ks � m. Applying the 
onstru
tion above

inside V 1

instead of L provides an element πV 1 P V
1

su
h that πmV 1 is a uniformizer of K: if x �
πV 1

πV
P OL, we

have λ :� xm P O�

K . There exists y P OK su
h that |x� y| ¤ |πL|, then |y
m
� xm| ¤ |πL|, i.e. |Qpyq| ¤ |πL|,

where QpXq � Xm
� λ P OK . As |Q

1

pyq| �
�

�mym�1
�

�

� 1 (sin
e gcdpp,mq � 1 and |y| � |x| � 1), Newton's

lemma again provides an element ry P O�

K su
h that rym � λ. If z � x
ry
P OL, we have z

m
� 1. Lemma 3.8.27

implies that z P O�

K , so that x � ryz P O�

K , showing that πV 1 P V , when
e V
1

� V . �

Remark 3.8.29. In the previous theorem, one 
annot take any uniformizer π.

De�nition 3.8.30. Let L{K be a �nite �eld extension su
h that κL{κK is separable. Let L{K be a �nite

extension whose residual extension is separable. What pre
edes shows that there are unique subextensions
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T � V su
h that T {K is unrami�ed, L{T is totally rami�ed, V {K is tamely rami�ed and L{V is totally

rami�ed of degree a power of p.

K
unrami�ed

T
tame

totally rami�ed

V
wild

L

The subextension V of L{K is the maximal subextension of L{K whi
h is tamely rami�ed over K: it is


alled the maximal tamely rami�ed subextension

(36)

of L{K. Note that by theorem 3.8.28, there exists a

uniformizer π of T su
h that V � T p m
?

πq, where eL{K � prm and gcdpp,mq � 1. Note that in general, one

may not take π in K.

3.9. Exer
ises.

Exer
ise 3.9.1. Let k be a �nite �eld. Show that the only absolute value on k is the trivial one.

Exer
ise 3.9.2. Let pK, |.|q be a valued �eld.

(1) Show that if |.| is non ar
himedean, then |.|
γ
is an absolute value for all γ P R

¡0.

(2) Show that if |.| is ar
himedean, then |.|
γ
is an absolute value for all γ Ps0, 1s.

(3) What are the γ P R
¡0 su
h that |.|

γ
8

is an absolute value on Q?

Exer
ise 3.9.3. Let p and q be two distin
t prime numbers. Show that the absolute values |.|p and |.|q are

not equivalent. Show also that |.|p and |.|8 are not equivalent.

Exer
ise 3.9.4. (In
ompleteness of Q). Let pK, |.|q be a 
omplete valued �eld, su
h that |.| is non

trivial. Using Baire's theorem, show that K is un
ountable. Dedu
e that Q is non 
omplete any of its non

trivial absolute values.

Exer
ise 3.9.5. Let pK, |.|q be a non ar
himedean valued �eld. Show that CardpKq ¤ CardpκKq
Cardp|K�

|q

.

Exer
ise 3.9.6. Let p be a prime number. Show that Qp is not algebrai
ally 
losed.

Exer
ise 3.9.7. Show that Qp {Zp � Zrp�1
s{Z.

Exer
ise 3.9.8. Show that if p � 2, then 1 is the only p-th root of unity in Qp.

Exer
ise 3.9.9. (Approximation). Let K be a �eld.

(1) Let |.| and |.|
1

be two absolute values on K. Show that the following are equivalent:

(i) |.| and |.|
1

are equivalent;

(ii) for all x P K, we have |x|   1� |x|
1

  1.

Let v0, . . . , vn be pairwise distin
t pla
es, and |.|1 , . . . , |.|n absolute values representing v1, . . . , vn.

(2) Show by indu
tion on n P Z
¡0 that there exists x P K su
h that |x|0 ¡ 1 and |x|i   1 for i P t1, . . . , nu.

(3) Dedu
e that the diagonal morphism K Ñ

n
±

i�1

Kvi has dense image, where Kvi denotes the �eld K

endowed with the topology de�ned by vi.

Exer
ise 3.9.10. Let K be a �eld, r1, . . . , rn P R and |.|1 , . . . , |.|n non-trivial inequivalent absolute values

on K. Assume that |x|
r1
1 � � � |x|

rn
n � 1 for all x P K�

. Prove that r1 � � � � � rn � 0 (in other words, there is

no �nite produ
t formula).

Exer
ise 3.9.11. Let pK, |.|q be a valued �eld.

(1) Show that the following are equivalent:

(i) |.| is ultrametri
;

(ii) |n| ¤ 1 for all n P Z.

(iii) |2| ¤ 1.

[Hint: to prove (ii)ñ(i), use the binomial expansion.℄

(2) Dedu
e that if charpKq � 0, then every absolute value on K is ultrametri
.

(36)

Verzweigungskörper in German.
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Exer
ise 3.9.12. Let K be a �eld, |.| a nontrivial non ar
himedean absolute value on K, and OK its ring

of integers.

(1) Show that OK is integrally 
losed.

(2) Show that the following are equivalent:

(i) OK is a DVR;

(ii) OK is noetherian;

(iii) the maximal ideal mK :� tx P K ; |x|   1u is prin
ipal;

(iv) |K�

| is a dis
rete subgroup of R
¡0.

Exer
ise 3.9.13. Let K be a �eld. A subring A � K is a valuation ring of K when p�x P Kqx R A ñ

x�1
P A (this implies in parti
ular that K � FracpAq).

(1) Show if A is a valuation ring of K and I, J are ideals in A, then either I � J or J � I. Dedu
e that A

is lo
al (we denote hen
eforth its maximal ideal by mA).

(2) Let F be a �eld, A � F rrX,Y ss the ring of formal series and K � F ppX,Y qq � FracpAq the �eld of formal

Laurent series. Is the lo
al ring A a valuation ring of K?

(3) Show that a valuation ring of K is integrally 
losed.

(4) Let A � K be a subring and p � A a maximal ideal. The aim of this question is to show that there

exists a valuation ring R of K su
h that A � R and AXmR � p.

(a) Show that the set E of subrings B � K su
h that A � B and 1 R pB 
ontains an element R whi
h

is maximal for the in
lusion [hint: Zorn℄.

(b) Show that R is lo
al, and that its maximal ideal mR satis�es A X mR � p [hint: 
onsider the

lo
alization of R at maximal ideal m � R su
h that pR � m℄.

(
) Let x P K�

be su
h that x, x�1
R R. Using the fa
t that Rrxs, Rrx�1

s R E , show that there exist

relations 1 � a1x � � � � � anx
n
and 1 � b1x

�1
� � � � � bmx

�m
with a1, . . . , an, b1, . . . , bm P mR.

Assuming n,m P Z
¡0 minimal, derive a 
ontradi
tion an dedu
e that R is a valuation ring.

(5) Let A � K be a subring, B � K the integral 
losure of A in K, and B1

the interse
tion of all the

valuation rings of K that 
ontain A.

(a) Show that B � B1

.

(b) Let x P K su
h that x is not integral over A. Show that x�1Arx�1
s is a stri
t ideal in Arx�1

s.

Con
lude that there exists a valuation ring R su
h that x R R [hint: use question (4)℄.

(
) Con
lude that B1

� B.

(6) Let A be a PID, K � FracpAq. Show that the valuation rings of K that 
ontain A and are distin
t from

K are the lo
alizations ApA where p is a prime element in A.

(7) Let A � K be a valuation ring su
h that there exists a prime ideal p � A su
h that t0u � p � mA.

Show that the ring R � ArrXss is not integrally 
losed [hint: take a P mAzp and b P pzt0u, and show that

the polynomial T 2
� aT �X has a root f su
h that bf P XR but f R R℄.

Exer
ise 3.9.14. Let A be a 
omplete DVR, π P A a uniformizer, and Σ � A a 
omplete set of representatives

for A{πA. Show that any element in A 
an be written uniquely as the sum of a 
onvergent series x0�x1π�

x2π
2
� � � � in A.

Exer
ise 3.9.15. Let pK, |.|q be a non ar
himedean valued �eld and pL, |.|q its 
ompletion. Show that

|K�

| � |L�| and that κK � κL.

Exer
ise 3.9.16. Let K be a �eld and |.|1 , |.|2 two equivalent non ar
himedean absolute values on K. Show

that their value groups (resp. residue �elds) are isomorphi
.

Exer
ise 3.9.17. Let pK, |.|q be a non ar
himedean valued �eld. Prove the following:

(1) for ea
h r P R
¡0, the balls Bp0, rq � tx P K ; |x|   ru and Bp0, rq � tx P K ; |x| ¤ ru are additive

subgroups of K;

(2) the unit sphere is a multipli
ative subgroup of K�

;

(3) Bp1, 1q � tx P K ; |x� 1|   1u is a multipli
ative subgroup of the unit sphere;

(4) for ea
h r Ps0, 1r, the balls Bp1, rq and Bp1, rq are multipli
ative subgroups of Bp1, 1q.

Exer
ise 3.9.18. Let pK, |.|q be a non ar
himedean lo
ally 
ompa
t valued �eld. Show that its residue �eld

is �nite and its value group is dis
rete.
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Exer
ise 3.9.19. Find examples of two 
omplete non ar
himedean valued �elds whose respe
tive residue

�elds and value groups are isomorphi
, but whi
h are not isomorphi
 as �elds.

Exer
ise 3.9.20. Show that every non-trivial non ar
himedean absolute value on R has divisible value

group and algebrai
ally 
losed residue �eld.

Exer
ise 3.9.21. Let pK, |.|q be a 
omplete valued �eld su
h that |2| � 2.

(1) Show that R � K and that |.| extends the �usual� absolute value on R.

(2) Show that if K � R, then K � C endowed with its �usual� absolute value |.|
8

[hint: if α P KzR, show

that the map f : CÑ R
¥0; z ÞÑ

�

�α2
� pz � zqα� zz

�

�

has a zero.℄

Exer
ise 3.9.22. Let pV, }.}V q and pW, }.}W q be normed ve
tor spa
es over a 
omplete valued �eld pK, |.|q.

Assume that V is �nite dimensional. Show that ea
h sub-K-ve
tor spa
e of V is 
losed, and that any

K-linear map f : V ÑW is 
ontinuous.

Exer
ise 3.9.23. Find an example of a (ne
essarilly non 
omplete) non ar
himedean �eld pK, |.|q and a

�nite dimensional K-ve
tor spa
e that admits two unequivalent norms.

Exer
ise 3.9.24. (Ostrowski for fun
tion fields). Let K be a �eld. As KrXs is fa
torial, we 
an

asso
iate an absolute value |.|P on KpXq to any moni
 irredu
tible P P KrXs: �x c Ps0, 1r, we have

|R|P � cvP pRq where vP pRq is the P -adi
 valuation of R P KpXq. Also we have the absolute value |.|
8

whose restri
tion to KrXs is given by |F |
8

� c� degpF q
for any F P KrXs.

(1) Compute the rings of integers and the residue �elds of the absolute values mentionned above.

(2) Show that |.|
8


an be seen, after an appropriate 
hange of indeterminate, as a P -adi
 absolute value.

(3) Show that any nontrivial absolute value on KpXq that is trivial on K is equivalent to |.|P for some

moni
 irredu
ible P P KrXs or to |.|
8

.

(4) Explain how to normalize the absolute values |.|P so that the produ
t formula

±

vPV

|R|v � 1 holds, where

V is the set of irredu
ible moni
 polynomials union t8u.

(5) When K � Q, 
onstru
t absolute values on QpXq that are not equivalent to the absolute values above.

(6) What happens when K is �nite?

Exer
ise 3.9.25. (Newton polygons). Let pK, |.|q be a 
omplete non ar
himedean valued �eld, K an

algebrai
 
losure of K and v an asso
iated valuation. If P pXq � anX
n
�an�1X

n�1
�� � ��a1X�a0 P KrXs,

the Newton polygon NPpP q of P is the 
onvex hull in R2
of the set of points tpi, vpaiqqu0¤i¤n Y t8u where

8 denotes the point at in�nity of the positive verti
al axis.





M0




M1







M2










M3


M4

(1) Let λ P R. Show that PλpXq :�
±

αPK
vpαq��λ
P pαq�0

pX � αq P KrXs.

(2) Let λ P R. Show that the number (
ounting multipli
ities) of roots x of P (in K) su
h that vpxq � �λ

is equal to the length of the proje
tion on the horizontal of the side of NPpP q of slope λ (so it is 0 if there

is no su
h side).

(3) Dedu
e that if NPpP q has more than one �nite slope, then P is redu
ible in KrXs.

(4) (Irredu
ibility 
riterion) Assume that v is dis
rete and normalized, that P is moni
 and that NPpP q

has only one side of �nite slope �

m
n

where gcdpm,nq � 1. Show that P is irredu
ible in Krxs. Re
over

Eisenstein's irredu
ibility 
riterion.
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Exer
ise 3.9.26. Let x P Q�

p and x �

8

°

n�vppxq

anp
n
(with an P t0, 1, . . . , p � 1u for all n) its p-adi


development. What is the p-adi
 development of �x?

Exer
ise 3.9.27. Let x P Qp. Show that x P Q if and only if its p-adi
 development x �
8

°

n�vppxq

anp
n
(with

an P t0, 1, . . . , p� 1u) eventually be
omes periodi
 [hint: redu
e to the 
ase where x P Q
 0XZp℄.

Exer
ise 3.9.28. Let x �
8

°

k�0

2k! P Q2. Show that x is trans
endental over Q.

Exer
ise 3.9.29. Let x P Q�

p and x �
8

°

n�v

anp
n
its p-adi
 development. Let n0   n1   � � � be the sequen
e

of indi
es su
h that ank
� 0. Assume that lim sup

kÑ8

nk�1

nk
� �8. Show that x is trans
endental over Q.

Exer
ise 3.9.30. Let pK, |.|q be a 
omplete non ar
himedean valued �eld. Denote by OK its ring of integers

and let P pXq � a0 � a1X � � � � � an�1X
n�1

� anX
n
P KrXs su
h that a0an � 0.

(1) Show that if P is irredu
ible, then |P |Gauss � maxt|a0| , |an|u.

(2) Assume that P is moni
, irredu
ible, and a0 P OK . Show that P P OKrXs.

Exer
ise 3.9.31. Let p be a prime integer.

(1) Let u P Q�

p . Show that the following are equivalent:

(i) u P Z�p ;

(ii) up�1
is an n-th power in Qp for in�nitely many n P Z

¡0.

(2) Prove that the only �eld automorphism of Qp is IdQp
.

Exer
ise 3.9.32. Assume that p is odd. Show that Q�

p {Q
�p
p � pZ {pZq2.

Exer
ise 3.9.33. Let p be a prime number, K be a 
omplete dis
retely valued extension of Qp. Denote

by v : K�

Ñ Z its normalized valuation and by e � vppq its absolute rami�
ation index. For i P N
¡0, put

U iK � 1�miK , where mK is the maximal ideal of K. Prove that

�

U iKq
p
� U i�eK when i ¥ e

p�1
.

Exer
ise 3.9.34. (1) Let F be a �eld su
h that charpF q � 2 and x, y P F zF 2
. Show that F p

?

xq � F p
?

yq

if and only if there exists z P F�

su
h that y � xz2.

(2) Let x P Q�

2 : write x � 2v2pxqu with u P Z�2 . Show that x is a square in Q2 if and only if 2 | v2pxq and

u � 1 mod 8Z2. Des
ribe the group Q�

2 {Q
�2
2 .

(3) Des
ribe quadrati
 extensions of Q2.

Exer
ise 3.9.35. Let a P Z. Show that the polynomial X2
�X�a has a root in Q2 if and only if a is even.

Exer
ise 3.9.36. Show that Q�2
p � tx2uxPQ�

p
is open in Q�

p .

Exer
ise 3.9.37. (Hensel's lemma). Let pK, |.|q be a 
omplete dis
retely valued �eld and P P OKrXs a

moni
 polynomial.

(1) Show that if P is irredu
ible in OKrXs, its image in κKrXs is the power of an irredu
ible polynomial.

(2) Assume that the image P of P in κKrXs fa
tors as P pXq � g1pXqg1pXq where g1, g2 P κKrXs are moni


polynomials su
h that gcdpg1, g1q � 1. Show that there exist unique G1, G2 P OKrXs moni
 polynomials

whose images in κKrXs are g1 and g2 respe
tively, and P pXq � G1pXqG2pXq.

Exer
ise 3.9.38. (A multivariate Newton's lemma). Let pK, |.|q be a non ar
himedean valued �eld,

n P Z
¡0 and P1, . . . , Pn P OKrX1, . . . , Xns. Endow Kn

with the norm de�ned by }x} � max
1¤i¤n

|xi| for

all x � px1, . . . , xnq P Kn
, and put P � pP1, . . . , Pnq. Assume that a � pa1, . . . , anq P On

K satis�es

}P paq} ¤ ε |detpJpaqq|
2
with ε Ps0, 1r, where Jpaq P MnpOKq denotes the Ja
obian matrix of P at a. Show

that there exists b P On
K su
h that }b� a} ¤ ε |detpJpaqq| and }P pbq} ¤ ε2 |detpJpaqq|

2
. In parti
ular, if

pK, |.|q is 
omplete, there exists ra P On
K su
h that }ra� a} ¤ ε |Jpaq| and P praq � 0.
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Exer
ise 3.9.39. Let p be a prime. Show that Zp � tx P Qp ; pDy P Qpq y
2
� 1� p3x4u (this shows that Zp

is algebrai
ally de�nable in Qp).

Exer
ise 3.9.40. Is the p-adi
 absolute value the only non trivial absolute value on Qp, up to equivalen
e?

Exer
ise 3.9.41. Let pK, |.|q be a non ar
himedean valued �eld, and ρ P R
¡0. If P pXq � a0 � a1X � � � � �

anX
n
, put |P |ρ � max

0¤i¤n
|ai| ρ

i
. Che
k that |.|ρ extends into an absolute value on KpXq. When are two su
h

absolute values equivalent?

Exer
ise 3.9.42. (Classifi
ation of degree 1 trans
endental valued extensions). (
f [16, �0.2℄)

Let K be an algebrai
ally 
losed �eld, X an indeterminate, and |.| be an absolute value on KpXq. Put

rX � inf
αPK

|X � α|

(1) Assume that there exist α0, π P K su
h that rX � |X � α0| � |π|. Show that |KpXq�| � |K�

| and that

κKpXq is purely trans
endental extension of degree 1 of κK (the extension of valued �elds KpXq{K is 
alled

inert).

(2) Assume that there exists α0 P K su
h that rX � |X � α0| R |K
�

|. Show that |KpXq�| � |K�

| rZX and

κKpXq � κK (the extension of valued �elds KpXq{K is 
alled totally rami�ed).

(3) Assume that |X � α| ¡ rX for all α P K. Show that |KpXq�| � |K�

| and κKpXq � κK (then KpXq is


alled an immediate (valued) extension of K).

Exer
ise 3.9.43. Show that the map C Ñ R
¥0; z ÞÑ |z| �

?

zz is the unique absolute value on C that

extends the absolute value |.| of R.

Exer
ise 3.9.44. Let L{K be an algebrai
 extension, and |.| an absolute value on L. Show that if the

restri
tion of |.| to K is trivial, then |.| is trivial.

Exer
ise 3.9.45. Let L{K be a �nite extension of valued �elds. Shows that if α P L is integral over OK ,

then α P OL. The 
onverse holds when K is 
omplete: show with an example that the 
onverse does not

hold in general.

Exer
ise 3.9.46. Let L{K be a purely inseparable �eld extension. Show that any absolute value on K has

a unique extension to L.

Exer
ise 3.9.47. Let pK, |.|q be a 
omplete non ar
himedean valued �eld, and L{K a �nite extension. Show

that if }.} is any norm on the K-ve
tor spa
e L, the map x ÞÑ lim
nÑ8

n
a

}xn} 
oin
ides with the unique absolute

value extending |.| on L.

Exer
ise 3.9.48. Let p be a prime number. Show that X2
� p is irredu
ible in QprXs. Let K � Qpp

?

pq

and |.|K the extension of |.|p to K. If x � a�b
?

p P K (where a, b P Qp), show that |x|K � max
!

|a|p ,
|b|p
?

p

)

.

What are the residue �eld and the value group of pK, |.|Kq?

Exer
ise 3.9.49. Let p be a prime number su
h that p � 3 mod 4. Show that X2
� 1 is irredu
ible in

QprXs. Let K � Qppiq (where i is a root of X2
� 1) and |.|K the extension of |.|p to K. Find a formula for

|a� ib|K , where a, b P Qp.

Exer
ise 3.9.50. How many extensions to Qp
n
?

2q does the ar
himedean absolute value |.| of Q admit?

Exer
ise 3.9.51. Let P pXq � X3
� 17 and j P Q3 a primitive 
ubi
 root of unity.

(1) Show that j R Q3 [hint: 
ompute pj � 1q2℄.

(2) What are the degrees of the irredu
ible fa
tors of P in Q3rXs [hint: 
ompute P p5q℄?

(3) How many extensions to Qp 3
?

17q does the 3-adi
 absolute value have?

Exer
ise 3.9.52. Let pK, |.|q be a non ar
himedean valued �eld. Is the map |.| : K Ñ R
¥0 
ontinuous when

R
¥0 is endowed with its �usual� topology? What if R

¥0 is endowed with the dis
rete topology?



Number theory 97

Exer
ise 3.9.53. Let pK, |.|q be a 
omplete non ar
himedean valued �eld and P P KrXszK.

(1) Let pxnqnPZ
¥0

be a sequen
e of elements in K su
h that lim
nÑ8

|P pxnq| � 0. Show that there is a

subsequen
e of pxnqnPZ
¥0

that 
onverges to a root of P in K.

(2) If F � K is 
losed, then its image P pF q is 
losed.

(3) If C � K is 
ompa
t, then its inverse image P�1
pCq is 
ompa
t.

Exer
ise 3.9.54. Let Qp be an algebrai
 
losure of Qp. The p-adi
 absolute value extends uniquely to an

absolute value |.|p on Qp. For n P Z
¡0, put Hn � tx P Qp ; rQppxq : Qps ¤ nu.

(1) Show that Hn is 
losed.

(2) Show that Hn � Qp for all n P Z
¡0.

(3) Show that Hn �Hm � Hnm for all n,m P Z
¡0.

(4) Dedu
e that Qp is not 
omplete for |.|p [hint: Baire℄.

Exer
ise 3.9.55. Prove that there are exa
tly two non-isomorphi
 
ubi
 extensions of Q2.

Exer
ise 3.9.56. Let Q2 be an algebrai
 
losure of Q2, and �x a sequen
e pαnqnPZ
¥0

in Q2 su
h that α0 � 2

and α2
n�1 � αn for all n P Z

¥0. Let F � Q2pαnqnPZ¥0
� Q2: the 2-adi
 absolute value |.|2 extends uniquely

to Q2. Let pK, |.|q be the 
ompletion of pF, |.|2q, and L � Kpiq where i2 � �1.

(1) For n P Z
¥0, put xn � 1 � 2pα�1

1 � � � � � α�1
n q. Show that v2pi � xnq � 1 � 1

2n�1 [Hint: 
ompute

v2p1� x2nq℄. Dedu
e that rQ2pαn, iq : Q2pαnqs � 2.

(2) Determine the residue �eld of Q2pαn, iq for all n P Z
¥0.

(3) Show that the rami�
ation index e and the residual degree f of L{K are equal to 1, so that the inequality

ef ¤ rL : Ks is stri
t.

Exer
ise 3.9.57. Let pK, |.|q be a 
omplete non ar
himedean valued �eld, and L{K a �nite extension su
h

that the residual extension κpLq{κpKq is Galois. Let T be the maximal unrami�ed subextension of L{K.

Show that T {K is Galois and that there exists a natural group isomorphism GalpT {Kq
�

ÑGalpκpLq{κpKqq.

Exer
ise 3.9.58. Let pK, |.|q be a 
omplete non ar
himedean valued �eld, K an algebrai
 
losure, and L,

M �nite subextensions. Show that if L{K is unrami�ed, so is ML{M .

Exer
ise 3.9.59. Let pK, |.|q be a 
omplete non ar
himedean valued �eld, K an algebrai
 
losure of K and

e P Z
¡0 prime to charpκKq. Show that if α P K is su
h that αe P O�

K , the extension Kpαq{K is unrami�ed.

Exer
ise 3.9.60. Let |.| be the Gauss absolute value on Q2pXq, and pK, |.|q the 
ompletion thereof. Let L

the de
omposition �eld of the polynomial P pY q � pY 2
�Xq2 � 2 P KrY s, and |.| the unique absolute value

on L that extends |.|.

(0) What is the residue �eld κK of K?

(1) Show that rL : Ks � 8, that eL{K � 4 and fL{K � 2.

(2) Show that there is no subextension M of L{K su
h that rM : Ks � 2 and κM � κL.

Exer
ise 3.9.61. Let A � Z
p2q and α �

�1�
?

4
?

2�3

2
P R. Put B � Arαs. Show that B is a DVR whose

residue �eld is F4 and whose rami�
ation index is eB{A � 2. Show that there is no DVR C � B whi
h is

unrami�ed over A and whose residue �eld is F4 [hint: determine the subextensions of Qpαq{Q℄.

Exer
ise 3.9.62. Let pK, |.|q be a 
omplete and dis
rete non ar
himedean valued �eld, L{K a �nite extension

and α P O�

L su
h that L � Kpαq. Denote by α the image of α in κL. Let P pXq P OKrXs (resp.

ΠpXq P κKrXs) be the minimal polynomial of α (resp. α) over K (resp. over κK), and P pXq the image of

P pXq in κKrXs. Show that P pXq � ΠpXqd, for some integer d su
h that e | d (where e � eL{K denotes the

rami�
ation index of L{K).

Exer
ise 3.9.63. Show that the unique unrami�ed extension of degree n of Qp (in a �xed algebrai
 
losure

Qp of Qp) is the de
omposition �eld of Xpn
�X .
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Exer
ise 3.9.64. Let pK, |.|q be a 
omplete dis
rete non ar
himedean valued �eld, and K an algebrai



losure.

(1) Let M � L be �nite subextensions of K{K. Show that L{K is tamely rami�ed if and only if L{M and

M{K are tamely rami�ed.

(2) Assume that L{K is a �nite subextension of K , and T {K a �nite unrami�ed subextension of K . Show

that L{K is tamely rami�ed if and only if LT {T is tamely rami�ed.

(3) Let e P Z
¡0 be prime to charpκKq and b P OKzt0u, and L � K be the extension obtained by adjoining a

root of Xe
� b. Show that L{K is tamely rami�ed, and that eL{K � e1 :� e

gcdpe,vKpbqq
(where vK denotes the

normalized valuation onK) [hint: by question (2), this 
an be 
he
ked after 
omposition with any unrami�ed

extension of K: use an appropriate one to redu
e to the 
ase where b � πe
1

K with πK a uniformizer in K℄.

(4) Let L, M be �nite subextensions of K{K. Show that if L{K is tamely rami�ed, so is ML{M .

(5) Dedu
e that if L{K and M{K are both tamely rami�ed, so is ML{K.

Exer
ise 3.9.65. Let C be an algebrai
 
losed �eld of 
hara
teristi
 0, and K � CppXqq � FracpKrrXssq

the �eld of formal Laurent series with 
oe�
ients in C. Let K be an algebrai
 
losure of K. Show that

K �

�

nPZ
¡0

CppX1{n
qq.

Exer
ise 3.9.66. Let L{K be a �nite extension of lo
al �elds, and M1, M2 two subextensions su
h that

M1{K and M2{K are totally rami�ed. Is the 
omposite M1M2{K ne
essarily totally rami�ed?

Exer
ise 3.9.67. Let p be a prime number. Show that the maximal unrami�ed extension of Qp in Qp is

obtained by adjoining all roots of unity of order prime to p.

Exer
ise 3.9.68. Let L{K be a totally tamely rami�ed �nite extension of 
omplete, dis
rete non ar
himedean

valued �elds. Show that the intermediate �elds of L{K 
orrespond bije
tively to subgroups of |L�| { |K�

|

(where |.| denotes the absolute value on L).

Exer
ise 3.9.69. (1) Let L{K be a �nite tamely rami�ed Galois extension of 
omplete and dis
rete non

ar
himedean valued �elds. Denote by T be the maximal unrami�ed subextension of L{K. Put GL{K �

GalpL{Kq and IL{K � GalpL{T q, so that we have an isomorphism GL{K{IL{K
�

ÑGalpκL{κKq. Show that

IL{K is abelian and that GalpκL{κKq a
ts on I by pσI, τq ÞÑ στσ�1
.

(2) Show that every tamely rami�ed extension of K 
an be embedded into a �nite tamely rami�ed extension

L{K su
h that GL{K � IL{K � GalpκL{κKq.

Exer
ise 3.9.70. Show that the maximal tamely rami�ed abelian extension V of Qp is �nite over the

maximal unrami�ed extension T of Qp.

Exer
ise 3.9.71. Show that the maximal unrami�ed extension of K � FpppXqq is T �

�

nPZ
¡0

FpnppXqq and

that the maximal tamely rami�ed extension is V � T
�

 

n
?

X
(

nPZ
¡0

p∤n

	

.

Exer
ise 3.9.72. Let p be an odd prime number, ΦppXq � Xp�1
� � � � �X � 1 P QprXs and ζ P Qp a root

of Φp. Put K � Qppζq.

(1) Set Y � X � 1: show that ΦppXq � P pY q where P is an Eisenstein polynomial. Dedu
e that K{Qp is

tamely totally rami�ed.

(2) Show that K � Qppπq where π
p�1

� �p [hint: use the polynomial �

1
p
P pπZq to show that ζ P Qppπq℄.

Exer
ise 3.9.73. Let α be a root of P pXq � X4
� 50 P Q5rXs (in some algebrai
 
losure of Q5) and

K � Q5pαq.

(1) Prove that K{Q5 is a 
y
li
 extension of degree 4.

(2) Prove that the maximal unrami�ed subextension T of K{Q5 is quadrati
 over Q5, so K{T is a totally

tamely rami�ed extension with degree 2.

(3) Find a uniformizer π of T su
h that K � T p
?

πq.

(4) Show that su
h a π 
annot be found inside Q5.
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Exer
ise 3.9.74. Let pK, |.|q be a non ar
himedean 
omplete valued �eld and L{K a �nite separable exten-

sion.

(1) Assume that L{K is unrami�ed. Show that TrL{KpOLq � OK .

(2) Assume that |.| is dis
rete. Show that TrL{KpOLq � OK if and only if is tamely rami�ed.

Exer
ise 3.9.75. Let K be a 
omplete dis
retely valued �eld of 
hara
teristi
 0, whose residue �eld κK has


hara
teristi
 p ¡ 0. We denote by vK : K Ñ ZYt8u its normalized valuation.

(1) Let L{K be a totally rami�ed �nite extension and EpXq � Xe
� ae�1X

e�1
� � � � � a0 P OKrXs the

minimal polynomial overK of a uniformizer πL of L. Put cpLq � vLpDL{Kq�e�1 (where vL : LÑ ZYt8u

is the normalized valuation and DL{K the di�erent of L{K). Show that cpLq P Z
¥0 and that cpLq � 0 if

and only if L{K is tamely rami�ed [hint: use the equality DL{K � E1

pπLqOL℄.

(2) Show that if L{K is not tamely rami�ed, then cpLq � mintevKpeq, evKpaiq � e� iu1¤i e.

Let K be a �xed separable 
losure of K and π a uniformizer of K. We denote by UK � 1� πOK the group

of prin
ipal units of K. Hen
eforth, we assume that κK is �nite: let q be its order.

(3) Show that an element u P O�

K 
an be written uniquely u � rαsru where α P κ�K , rαs P O�

K is the unique

pq � 1q-th root of unity lifting α and ru P UK .

We denote by Σe the set of subextensions L{K of K that are totally rami�ed of degree e P Z
¡0.

(4) Assume that p ∤ e. Re
all that, being tamely rami�ed overK, elements in Σe are of the form Kθ :� Kpθq

where θ P K is a root of the polynomial Xe
� uπ for some u P O�

K .

(a) Let ru P UK . Show that there exists λ P UK su
h that λe � ru. Dedu
e that we may restri
t to

elements u of the form rαs with α P κ�K .

(b) Let α, α1 P κ�K and θ, θ1 P K su
h that θe � rαsπ and θ1e � rα1sπ. Show that Kθ � Kθ1 if and only

if there exists β P κ�K su
h that α1 � βeα and an e-th root of unity ζ P K su
h that θ1 � rβsζθ.

Dedu
e that it is equivalent to the existen
e of γ P κ�K su
h that θ1 � rγsθ.

(
) Show that #Σe � e.

(5) In this question, we assume that p | e: by question (1), we have L P Σe ñ cpLq P t1, . . . , evKpequ.

(a) For ea
h j P t1, . . . , e� 1u, 
onstru
t an element L P Σe su
h that cpLq � j.

(b) Dedu
e that #Σe ¥ e.

(
) Assume #Σe � e. Using (2), show that vKpeq � 1, then that e � p is a uniformizer of K [hint:


onsider the extension generated by the roots of Xe
� π, then that generated by a root of Xe

� uπ

for an appropriate root of unity u P O�

K ℄.

(d) Dedu
e #Σe ¡ e.

Exer
ise 3.9.76. Let pK, |.|q be a 
omplete dis
retely valued �eld and K an algebrai
 
losure of K. We

assume that the residue �eld κK of K 
ontains the �nite �eld Fq (where q � pf with f P Z
¡0). Fix a

uniformizer π of K and let P pXq � Xq
�πX P KrXs. Choose a sequen
e pπnqnPZ

¥0
in K su
h that π0 � 0,

π1 � 0 and P pπnq � πn�1 for all n P Z
¡0. For n P Z

¥0, we put Kn � Kpπnq.

(1) Explain why the group µq�1pKq of pq � 1q-th roots of unity is 
y
li
 of order q � 1.

(2) Show that K1{K is totally rami�ed and that π1 is a uniformizer of K1.

(3) Show that K1{K is Galois and des
ribe its Galois group.

(4) Show that for all n P Z
¡0, the extension Kn�1{Kn is separable, totally rami�ed of degree q, and that

πn�1 is a uniformizer of Kn�1 [hint: use indu
tion℄.

(5) Show that OKn
� OKrπns for all n P Z

¥0.

(6) Compute the di�erent DKn�1{Kn
[ do the 
ase n � 0 separately℄, and dedu
e DKn{K and the dis
rim-

inant dKn{K for all n P Z
¥0.



100 Number theory

4. Lo
al fields

4.1. De�nition and �rst properties.

De�nition 4.1.1. A lo
al �eld is a 
omplete dis
rete valued �eld pK, |.|q su
h that |.| is non trivial and

whose residue �eld is perfe
t

(37)

.

Hen
eforth, pK, |.|q denotes a lo
al �eld, πK a uniformizer of K, and vK a valuation on K asso
iated to |.|.

4.1.2. Galois extensions of lo
al �elds. Let L{K be a �nite Galois extension. By theorem 3.8.12, the

extension T {K is Galois, and we have the exa
t sequen
e

t1u Ñ IL{K Ñ GalpL{Kq Ñ GalpκL{κKq Ñ t1u

where IL{K � GalpL{T q is the inertia subgroup. Assume now that charpκKq � p ¡ 0. The extension

L{T is totally rami�ed. Let V be the unique subextension of L{T su
h that V {T is tamely rami�ed and

rL : V s � pr, where r � vpprL : T sq. If σ P GalpL{T q, then σpV q � L satis�es rσpV q : T s � rV : T s, so by

uni
ity we have σpT q � T : the extension V {T is Galois.

4.2. Stru
ture of rings of integers of lo
al �elds. Let pK, |.|q be a lo
al �eld, and π a uniformizer of

K. If charpKq � p ¡ 0, then charpκKq � p. There are two possibilities:


 charpKq � charpκKq: this is the equi
hara
teristi
 
ase;


 charpKq � 0 and charpκKq � p ¡ 0: this is the mixed 
hara
teristi
 
ase.

4.2.1. The equi
hara
teristi
 
ase.

Theorem 4.2.2. Assume charpKq � charpκKq. Then OK is isomorphi
 to κKrrT ss.

De�nition 4.2.3. A �eld of representatives in OK is a �eld F � OK whi
h is also a 
omplete set of

representatives for κK , in other words su
h that the 
anoni
al map OK Ñ κK indu
es an isomorphism

F
�

ÑκK .

Lemma 4.2.4. If charpκKq � 0, then OK admits a �eld of 
oe�
ients.

Proof. As Z Ñ OK Ñ κK is inje
tive (sin
e charpκKq � 0), we have ZXmK � t0u, so that Q is a sub�eld

of OK . By Zorn's lemma (
f theorem 9.1.1), there exists a maximal sub�eld F � OK : we have to show

that the 
omposite F � OK Ñ κK is surje
tive (it is automati
ally inje
tive sin
e F is a �eld). Let F be

the image of F in κK .


 Assume κK{F is not algebrai
: there exists x P O�

K whose image x in κK is trans
endental over F . The

proje
tionOK Ñ κK maps F rxs surje
tively hen
e bije
tively onto F rxs. This implies that F rxsXmK � t0u,

so that elements in F rxszt0u are invertible in OK : we have F pxq � OK , 
ontradi
ting the maximality of F .


 Let x P κK . As κK{F is algebrai
, we 
an 
onsider the minimal polynomial P pXq P F rXs of x over F .

Let P pXq P F rXs be a moni
 lifting of P (so P is irredu
ible in F rXs), and x0 P OK be any lifting of

x. As charpκKq � 0, the polynomial P is separable, so P 1

pxq � 0: we have |P px0q|   1 and |P 1

px0q| � 1.

Newton's lemma (
f theorem 3.3.10) implies that there exists a unique x P OK su
h that P pxq � 0 and

|x� x0| ¤ |P px0q|   1. This implies that the 
omposite F rXs{xP y
�

ÑF pxq Ñ F pxq is an isomorphism,

hen
e F pxq is a sub�eld of OK : by maximality we have F pxq � F , i.e. x P F , when
e x P F . This shows

that F � κK , and F is a �eld of 
oe�
ients for OK . �

Lemma 4.2.5. If charpκKq � 0, then OK admits a �eld of 
oe�
ients.

Proof. 
 Let x P κK . For ea
h n P Z
¥0, let pxn, rxn P OK be liftings of xp

�n

P κK (re
all that κK is perfe
t):

the elements pxp
n

n and rxp
n

n are lifts of x. We have pxn � rxn mod πKOK , so pxpn � rxpn mod π
p
KOK (by the

binomial theorem, and the fa
t that charpOKq � p), and pxp
n

n � rxp
n

n mod π
pn

K OK by an immediate indu
tion.

Applied with rxn � px
p
n�1, we dedu
e that px

pn�1

n�1 � pxp
n

n mod π
pn

k OK , whi
h implies that

�

pxp
n

n

�

nPZ
¥0

is a

Cau
hy sequen
e in OK for the πK -adi
 topology. As OK is 
omplete, this sequen
e 
onverges to a limit

ρpxq P OK , whi
h lifts x. The 
ongruen
e pxp
n

n � rxp
n

n mod π
pn

K OK proved above shows that this limit ρpxq

does not depend on the 
hoi
e of the lifts ppxnqnPZ
¥0
, but only on x. This provides a map ρ : κK Ñ OK ,

that is a se
tion of the 
anoni
al map OK Ñ κK .


 If x, y P κK , let ppxnqnPZ
¥0

and ppynqnPZ
¥0

sequen
es in OK lifting the sequen
es

�

xp
�n�

nPZ
¥0

and

�

yp
�n�

nPZ
¥0

respe
tively. Then the sequen
e of produ
ts ppxnpynqnPZ
¥0

lifts

�

pxyqp
�n�

nPZ
¥0
, whi
h implies

that ρpxyq � lim
nÑ8

pxp
n

n pyp
n

n � ρpxqρpyq. Similarly, the sequen
e of sums ppxn�pynqnPZ
¥0

lifts

�

px�yqp
�n�

nPZ
¥0

(37)

Some authors restri
t this terminology to the �nite residue �eld 
ase.
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(be
ause px � yqp
�n

� xp
�n

� yp
�n

), so that ρpx � yq � lim
nÑ8

ppxn � pynq
pn
� ρpxq � ρpyq (as charpOKq � p,

we have ppxn � pynq
pn
� pxp

n

n � pyp
n

n for all n P Z
¥0). This implies that ρ is a ring homomorphism. As κK is a

�eld, it is an isomorphism onto its image: the latter is a �eld of 
oe�
ients for OK . �

Proof of theorem 4.2.2. Lemmas 4.2.4 and 4.2.5 show that OK has a �eld of 
oe�
ients F . As OK is πK -

adi
ally separated and 
omplete, there exists a unique 
ontinuous morphism of F -algebras h : F rrT ss Ñ OK

su
h that hpT q � πK . Corollary 3.7.5 imply that h is an isomorphism. Composed with the isomorphism

κKrrT ss
�

ÑF rrT ss gives the result. �

4.2.6. Witt ve
tors. The referen
es for this part are [20, Chap. II, �6℄, [5, Chap. IX, �1℄ and [10, Chap. I℄.

In what follows, �ring� means 
ommutative unitary ring. Let p be a prime integer. Let X � pX0, X1, . . .q

be a indeterminate.

De�nition 4.2.7. Let n P Z
¥0, the n-th Witt polynomial is

ΦnpXq � X
pn

0 � pX
pn�1

1 � � � � � pn�1X
p
n�1 � pnXn �

ņ

i�0

piX
pn�i

i

If A is ring, the ghost map is:

ΦA : AZ
¥0
Ñ AZ

¥0

a ÞÑ
�

Φnpaq
�

nPZ
¥0

Lemma 4.2.8. Let A be a ring, and x, y P A su
h that x � y mod pA. Then xp
i

� yp
i

mod pi�1A for

every i P Z
¥0.

Proof. We pro
eed by indu
tion on i P Z
¥0, the 
ase i � 0 being the hypothesis. Let i P Z

¥0 be su
h

that xp
i

� yp
i

mod pi�1A: write xp
i

� yp
i

� pi�1z with z P A. By the binomial theorem, we have

xp
i�1

�

�

yp
i

� pi�1z
�p

� yp
i�1

�

p�1
°

k�1

�

p
k

�

pkpi�1qyp
i
pp�kqzk � pppi�1qzp. For k P t1, . . . , p � 1u, we have

vp
��

p
k

�

pkpi�1q
�

� 1� kpi� 1q ¥ i� 2, and ppi� 1q ¥ i� 2 (be
ause p ¥ 2), so xp
i�1

� yp
i�1

mod pi�2A. �

Lemma 4.2.9. (Dwork). Let ϕ : A Ñ A be a ring homomorphism su
h that ϕpaq � ap mod pA for all

a P A. Then a sequen
e pxnqnPZ
¥0
P AZ

¥0
is in the image of ΦA if and only if ϕpxnq � xn�1 mod pn�1A

for all n P Z
¥0.

Proof. 
 As ϕ is a ring homomorphism, we have ϕpΦnpaqq �
n
°

i�0

piϕpaiq
pn�i

for all a � panqnPZ
¥0
. As

ϕpaiq � a
p
i mod pA, we have ϕpaiq

pn�i

� a
pn�1�i

i mod pn�1�iA for all i P t0, . . . , nu by lemma 4.2.8. This

implies that ϕpΦnpaqq �
n
°

i�0

pia
pn�1�i

i mod pn�1A, i.e. ϕpΦnpaqq � Φn�1paq mod pn�1A.


 Conversely, assume that pxnqnPZ
¥0

P AZ
¥0

satis�es ϕpxnq � xn�1 mod pn�1A for all n P Z
¥0: we


onstru
t a � panqnPZ
¥0

P AZ
¥0

indu
tively su
h that xn � Φnpaq for all n P Z
¥0. Put a0 � x0 P A.

Let n P Z
¥0 be su
h that a0, . . . , an P A have been 
onstru
ted su
h that for all k P t0, . . . , nu, we have

xk � Φkpa0, . . . , akq. By the 
omputation above, we have ϕpxnq � ϕpΦnpaqq �
n
°

i�0

pia
pn�1�i

i mod pn�1A

i.e. xn�1 �

n
°

i�0

pia
pn�1�i

i P pn�1A (sin
e xn�1 � ϕpxnq � 0 mod pn�1A): there exists an�1 P A (that may

not be unique when A has p-torsion) su
h that xn�1 �

n�1
°

i�0

pia
pn�1�i

i � Φn�1pa0, . . . , an�1q. �

Let Y � pY0, Y1, . . .q be a indeterminate.

Proposition 4.2.10. (
f [20, Chap. II, �6, Theorem 5℄). There exist unique sequen
es of polynomials

pSnqnPZ
¥0
, pPnqnPZ

¥0
P ZrX,Y sZ¥0

and pInqnPZ
¥0
P ZrXsZ¥0

su
h that:

SnpX,Y q, PnpX,Y q P ZrX0, . . . , Xn, Y0, . . . , Yns

InpXq P ZrX0, . . . , Xns

Φn
�

S0pX,Y q, . . . , SnpX,Y q
�

� ΦnpXq � ΦnpY q

Φn
�

P0pX,Y q, . . . , PnpX,Y q
�

� ΦnpXqΦnpY q

Φn
�

I0pXq, . . . , InpXq
�

� �ΦnpXq
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Proof. 
 Let A � ZrX,Y s be the polynomial ring. Denote by ϕ : A Ñ A the unique ring endomorphism

su
h that ϕpXnq � Xp
n and ϕpYnq � Y pn for all n P Z

¥0. We have ϕpaq � ap mod pA for all a P A.

As ϕ is a ring endomorphism and Φn has integral 
oe�
ients, we have ϕpΦnpXq � ΦnpY qq � ΦnpϕpXqq �

ΦnpϕpY qq (resp. ϕpΦnpXqΦnpY qq � ΦnpϕpXqqΦnpϕpY qq, resp. ϕp�ΦnpXqq � �ΦnpϕpXqq) for all n P Z
¥0.

As ΦnpϕpXqq � Φn�1pXq � pn�1Xn�1 and ΦnpϕpY qq � Φn�1pY q � pn�1Yn�1 by de�nition, this implies

that ϕpΦnpXq � ΦnpY qq � Φn�1pXq � Φn�1pY q mod pn�1A (resp. ϕpΦnpXqΦnpY qq � Φn�1pXqΦn�1pY q

mod pn�1A, resp. ϕp�ΦnpXqq � �Φn�1pXq mod pn�1A) for all n P Z
¥0. Lemma 4.2.9 thus implies that

ΦApXq�ΦApY q, ΦApXqΦApY q and �ΦApXq belong to the image of ΦA, whi
h pre
isely means the existen
e

of the sequen
es of polynomials pSnqnPZ
¥0
, pPnqnPZ

¥0
P ZrX,Y sZ¥0

and pInqnPZ
¥0
P ZrXsZ¥0

.


 The uni
ity is obvious in Zrp�1
srX,Y s by indu
tion. �

Example 4.2.11. One has

#

S0pX0, Y0q � X0 � Y0

P0pX0, Y0q � X0Y0

and

$

&

%

S1pX0, X1, Y0, Y1q � X1 � Y1 �
p�1
°

i�1

1
p

�

p
i

�

X i
0Y

p�i
0

P1pX0, X1, Y0, Y1q � X1Y
p
0 �X

p
0Y1 � pX1Y1

De�nition 4.2.12. Let A be a ring. Put

WpAq � AZ
¥0

(as a set). If a � pa0, a1, . . .q, b � pb0, b1, . . .q PWpAq, put

a� b �
�

Snpa, bq
�

nPZ
¥0

a.b �
�

Pnpa, bq
�

nPZ
¥0

�a �
�

Inpaq
�

nPZ
¥0

Remark 4.2.13. The map ΦA : AZ
¥0
Ñ AZ

¥0
above is seen as a map ΦA : WpAq Ñ AZ

¥0
.

Proposition 4.2.14. (1) A ÞÑ pWpAq,�, .q is a fun
tor on Ring to the 
ategory of sets endowed with two


omposition laws.

(2) If p is not a zero-divisor (resp. is a unit) in A, then ΦA is inje
tive (resp. bije
tive).

(3) pWpAq,�, .q is a 
ommutative ring with zero element 0 � p0, 0, . . .q and unit p1, 0, 0, . . .q. The map ΦA
is a ring homomorphism.

Proof. (1) and (2) are obvious. For (3), let B Ñ A be a surje
tive ring homomorphism, su
h that p is not

a zero-divisor in B (one 
an take B � ZrXasaPA, and B Ñ A; Xa ÞÑ a). As ΦB is inje
tive, pWpBq,�, .q

identi�es (via ΦB) with a subring of BZ
¥0

(with the produ
t stru
ture). Sin
e B Ñ A is surje
tive, so is

WpBq Ñ WpAq, and pWpAq,�, .q ful�lls the ring axioms. �

De�nition 4.2.15. Let A be a ring. The Tei
hmüller representative of a P A is ras :� pa, 0, 0, . . .q PWpAq.

Proposition 4.2.16. Let A be a ring. If a, b P A, then rabs � ras.rbs in WpAq.

Proof. Here again, it is enough to 
he
k the equality when A has no p-torsion, hen
e after applying ΦA
(sin
e it is inje
tive in the p-torsionfree 
ase), but ΦAprasq � pa, ap, ap

2

, . . .q is multipli
ative. �

Proposition 4.2.17. There exists a sequen
e pFnqnPZ
¥0
P ZrXsZ¥0

su
h that FnpXq P ZrX0, . . . , Xn�1s and

p�n P Z
¥0q Φn

�

F0pXq, . . . , FnpXq
�

� Φn�1pXq

Proof. As in the proof of proposition 4.2.10, it is enough, using lemma 4.2.9, to 
he
k that if A � ZrXs,

we have ϕpΦnpXqq � Φn�1pXq mod pn�1A for all n P Z
¥0, whi
h is trivial. Here again, the uni
ity in

Zrp�1
srXs is obvious by indu
tion. �

Example 4.2.18. We have

$

&

%

F0pX0, X1q � X
p
0 � pX1

F1pX0, X1, X2q � X
p
1 � pX2 �

p
°

i�1

�

p
i

�

pi�1X i
1X

ppp�iq
0

De�nition 4.2.19. Let A be a ring. The Frobenius map of WpAq is

F paq �
�

F0paq, F1paq, . . .
�
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Proposition 4.2.20. Let A be a ring.

(1) p�a P AqF prasq � raps.

(2) p�n P Z
¥0qFnpXq � Xp

n mod pZrXs. In parti
ular, it pA � 0, then F pa0, a1, . . .q � pa
p
0, a

p
1, . . .q.

Proof. (1) Considering a surje
tive ring homomorphism B Ñ A where B has no p-torsion, whi
h gives

rise to a surje
tive ring homomorphism WpBq Ñ WpAq, we may redu
e to the 
ase where A has no p-

torsion. Then ΦA : WpAq Ñ AZ
¥0

is inje
tive: it is enough to 
he
k that ΦApF prasqq � ΦApra
p
sq, i.e. that

Φn�1prasq � ap
n�1

� Φnpra
p
sq.

(2) By indu
tion on n P Z
¥0, the 
ase n � 0 following from the equality F0pXq � X

p
0 �pX1. Let n P Z

¡0 be

su
h that FipXq � X
p
i mod pZrXs for i P t0, . . . , n� 1u: we have FipXq

pn�i

� X
pn�1�i

i mod pn�1�i ZrXs

for i P t0, . . . , n� 1u by lemma 4.2.8, hen
e

Φn�1pXq � Φn
�

F0pXq, . . . , FnpXq
�

�

ņ

i�0

piFipXq
pn�i

� pnFnpXq �

n�1̧

i�0

piX
pn�1�i

i mod pn�1 ZrXs

As

n�1
°

i�0

piX
pn�1�i

i � Φn�1pXq � pnXp
n � pn�1Xn�1, this implies that pnFnpXq � pnXp

n mod pn�1 ZrXs i.e.

FnpXq � Xp
n mod pZrXs. �

De�nition 4.2.21. Let A be a ring. The Vers
hiebung of a � pa0, a1, . . .q PWpAq is

V paq � p0, a0, a1, . . .q

Proposition 4.2.22. Let A be a ring and a, b PWpAq.

(1) We have

#

ΦApF paqq �
�

Φ1paq,Φ2paq, . . .q � fpΦApaqq

ΦApV paqq �
�

0, pΦ0paq, pΦ1paq, . . .q � vpΦApaqq

where fpXq � pX1, X2, . . .q and vpXq � p0, pX0, pX1, . . .q.

(2) F is a ring endomorphism.

(3) V is an group endomorphism of pWpAq,�q.

(4) FV � p Id
WpAq and V F paq � p0, 1, 0, . . .q.a.

(5) V pa.F pbqq � V paq.b and V paq.V pbq � pV pa.bq.

(6) F paq � ap mod pWpAq.

(7) a � ra0s � V pa1q where a1 � pa1, a2, . . .q. In parti
ular a �
8

°

n�0

V npransq.

Proof. (1) is 
omputation. Using the usual tri
k, the proof of properties (2)-(7) redu
es to the 
ase when

A has no p-torsion, hen
e after applying ΦA sin
e the latter is inje
tive. (2) (resp. (3)) follows from the

fa
t that f (resp. v) is a ring (resp. a group) homomorphism. (4) follows from the equality f � v � p and

ΦAp0, 1, 0, 0, . . .q � p0, p, p, . . .q. (5) follows from the 
orresponding statements on f and v in ZrXsZ¥0
. To

prove (6), we 
he
k that ΦApF paqq � ΦApa
p
q mod p ImpΦAq, i.e. that fpΦApaqq � ΦApa

p
q P p ImpΦAq. By

lemma 4.2.9, this follows from the 
ongru
en
es

ϕ
�

Φn�1pXq � ΦnpXq
p
�

� Φn�2pXq � Φn�1pXq
p mod pn�2 ZrXs,

whi
h are obvious sin
e ϕpΦnpXqq � Φn�1pXq�p
n�1Xn�1. Finally, (7) follows from the equalities Φ0paq � a0

and Φnpaq � a
pn

0 � pΦn�1pa
1

q for all n P Z
¡0, whi
h pre
isely mean that ΦApaq � ΦApra0s � V pa1qq. �

De�nition 4.2.23. Let A be a ring. For n P Z
¥0, let

FilnWpAq � V npWpAqq �
 

p0, . . . , 0, an, an�1, . . .q ; pakqk¥n P A
Z
¥n
(

�WpAq.

This de�nes a de
reasing �ltration on WpAq.

As V npa� bq � V npaq � V npbq and V npaq.b � V npa.Fnpbqq, FilnWpAq is an ideal of WpAq.

De�nition 4.2.24. Let A be a ring. The ring of Witt ve
tors of length n is WnpAq :�WpAq{FilnWpAq.

Remark 4.2.25. In general, we have V npWpAqqV mpWpAqq � V n�mpWpAqq, so the �ltration is not 
om-

patible with the ring stru
ture (however this is true if pA � 0).

Proposition 4.2.26. Let A be a ring su
h that pA � 0.

(1) FV paq � V F paq � pa � p0, a
p
0, a

p
1, . . .q (so p0, 1, 0, 0 . . .q � p).

(2) V npaqV mpbq � V n�m
�

Fmpaq.Fnpbq
�

.

(3) The p-adi
 and the V pWpAqq-adi
 �ltration are the same, and �ner than that de�ned by the �ltration.

In parti
ular, WpAq is 
omplete and separated for the p-adi
 topology.
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(4) If A is perfe
t

(38)

, all these topologies are the same, and WpAq{pWpAq
�

ÑA, and(39)

a � pa0, a1, . . .q �

8

¸

n�0

V npransq �

8

¸

n�0

V nFn
��

ap
�n

n

��

�

8

¸

n�0

pn
�

ap
�n

n

�

Proof. (1) Follows from proposition 4.2.20 (2): if a � panqnPZ
¥0
P WpAq, we have F paq � pa

p
0, a

p
1, . . .q, so

V F paq � p0, a
p
0, a

p
1, . . .q � FV paq, so that V F � FV � p Id

WpAq.

By proposition 4.2.22 (5), we have V paq.b � V pa.F pbqq, hen
e V npaq.b � V npa.Fnpbqq by an immediate

indu
tion on n P Z
¥0. Applied to Vmpbq instead of b, we get V npaq.V mpbq � V n

�

a.FnVmpbq
�

. As

FnV mpbq � V mFnpbq (by (1)), we have a.FnV mpbq � V mpFmpaq.Fnpbqq, hen
e the result.

For (3), one proves by indu
tion that pV pWpAqqqk � pk�1V pWpAqq (using the se
ond formula of proposition

4.2.22 (5)). As pWpAq � V F pWpAqq � V pWpAqq, one has pkWpAq � pV pWpAqqqk � pk�1
WpAq. Moreover,

we have

(�) pkWpAq � V nFnpWpAqq �
 

p0, . . . , 0, ak, ak�1, . . .q PWpAq ; p�n P Z
¥0q an P A

pk
(

� FilkWpAq

so that the p-adi
 topology is �ner that that de�ned by the �ltration Fil
WpAq.

(4) follows from the fa
t that (�) is an equality when A is perfe
t. �

4.2.27. The mixed 
hara
teristi
 
ase. In this paragraph, we assume that charpKq � 0 and charpκKq � p ¡ 0.

As p P OK maps to 0 in κK , there exists eK P Z
¡0 su
h that p P πeKO�

K . As charpKq � 0, we have Q � K,

so that K is an extension of Qp.

De�nition 4.2.28. The integer eK is 
alled the absolute rami�
ation index of K. It is nothing but the

rami�
ation index of the extension K{Qp. The �eld K is absolutely unrami�ed when eK � 1, i.e. when p

is a uniformizer of OK .

Lemma 4.2.29. (Multipli
ative representants). There exists a unique map ρ : κK Ñ OK whi
h

is a se
tion of the 
anoni
al map OK Ñ κK and su
h that ρpxpq � ρpxqp for all x P κK . This map is

multipli
ative, i.e. ρpxyq � ρpxqρpyq for all x, y P κK .

Proof. Existen
e. 
 Let s, s1 : κK Ñ OK be se
tions of the 
anoni
al map OK Ñ κK (so that spxq and

s1pxq are liftings of x in OK). For all n P Z
¥0, the elements s

�

xp
�n�

and s1
�

xp
�n�

both lift xp
�n

: we have

s
�

xp
�n�

� s1
�

xp
�n�

mod πOK , so that

(♣) s
�

xp
�n�pn

� s1
�

xp
�n�pn

mod πn�1OK

by an argument analogous to that of the lemma 4.2.8 (using the fa
t that π divides p). Applied with

s1 : x ÞÑ s
�

xp
�1�p

, we get

(♠) s
�

xp
�n�pn

� s
�

xp
�n�1�pn�1

mod πn�1OK ,

showing that

�

s
�

xp
�n�pn�

nPZ
¥0

is a Cau
hy sequen
e in OK : it 
onverges to a limit ρpxq P OK , whi
h is a

lifting of x. Equation (♣) implies that ρpxq does not depend on the 
hoi
e of s.


 Passing to the limit as nÑ 8 in (♠), we get ρpxq � ρ
�

xp
�1�p

hen
e ρpxpq � ρpxqp for all x P κK .


 If x, y P κK , and n P Z
¥0, the elements ρ

�

pxyqp
�n�

and ρ
�

xp
�n�

ρ
�

yp
�n�

both lift pxyqp
�n

in OK : we

have ρ
�

pxyqp
�n�

� ρ
�

xp
�n�

ρ
�

yp
�n�

mod πOK so ρ
�

pxyqp
�n�pn

� ρ
�

xp
�n�pn

ρ
�

yp
�n�pn

mod πn�1OK (by

lemma 4.2.8 again), i.e. ρpxyq � ρpxqρpyq mod πn�1OK for all n P Z
¥0, hen
e ρpxyq � ρpxqρpyq.

Uni
ity. Let ρ1 : κK Ñ OK be a se
tion of the 
anoni
al map OK Ñ κK and su
h that ρ1pxpq � ρ1pxqp for

all x P κK . Using s � ρ1, we have ρpxq � lim
nÑ8

ρ1
�

xp
�n�pn

� ρ1pxq for all x P κK , hen
e ρ
1

� ρ. �

Remark 4.2.30. (1) As the proof shows, the previous statement 
an be generalized to the following situation:

let A be a p-adi
ally separated and 
omplete ring su
h that the Frobenius endomorphism on A{pA is

surje
tive. Then there exists a unique se
tion ρ : A{pA Ñ A of the 
anoni
al map A Ñ A{pA su
h that

ρpxpq � ρpxqp for all x P A{pa, and ρ is multipli
ative.

(2) Of 
ourse, ρ is not additive sin
e charpKq � 0.

Proposition 4.2.31. There exists a unique ring homomorphism WpκKq Ñ OK that indu
es the identity on

residue �elds. It is inje
tive and OK is a freeWpκKq-module of rank eK (in parti
ular, we haveOK �WpκKq

when K is absolutely unrami�ed).

(38)

This means that the p-th power map A Ñ A is surje
tive.

(39)

Using proposition 4.2.22 (7).
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Proof. Uni
ity. Let f : WpκKq Ñ OK be a ring homomorphism indu
ing the identity on residue �elds. The

map κK Ñ OK ; x ÞÑ fprxsq is a multipli
ative (be
ause the Tei
hmüller map is), and it is a se
tion of the


anoni
al map OK Ñ κK (be
ause f indu
es the identity on residue �elds). By uni
ity in lemma 4.2.29,

we have fprxsq � ρpxq for all x P κK . Now if a � pa0, a1, . . .q P WpκKq, we have a �
8

°

n�0

pn
�

ap
�n

n

�

(
f

proposition 4.2.26 (4)): by 
ontinuity of f (sin
e fppmWpκKqq � pmOK for all m P Z
¥0), we have

(z) fpaq �

8

¸

i�0

piρ
�

a
p�i

i

�

whi
h proves uni
ity.

Existen
e. We have to show that the map f : WpκKq Ñ OK given by formula (z) is indeed a ring homo-

morphism that indu
es the identity on residue �elds.


 If a � pa0, a1, . . .q PWpκKq, the image of a in κK �WpκKq{pW pκKq is a0 (
f proposition 4.2.26 (4)), and

that of fpaq is that of ρpa0q i.e. a0: this shows that f indu
es the identity on residue �elds. Formula (z)

also implies that for all n P Z
¥0, we have fpp

n
WpκKqq � fpV npWpκKqqq � pnOK , so that f is 
ontinuous

for the p-adi
 topology.


 Let n P Z
¥0. By de�nitions of Witt ve
tors, the map Φn : WpOK{p

n�1OKq Ñ OK{p
n�1OK is a ring

homomorphism. Let a � paiqiPZ
¥0
, b � pbiqiPZ

¥0
P WpOK{p

n�1OKq su
h that ai � bi mod pOK{p
n�1OK

for all i P Z
¥0: lemma 4.2.8 implies that a

pn�i

i � b
pn�i

i mod pn�i�1OK{p
n�1OK , so that pia

pn�i

i � pib
pn�i

i

for all i P Z
¥0. This implies that Φnpaq only depends on the image of a in WpOK{pOKq, whi
h means that

Φn fa
tors through a ring homomorphism

rΦn : WpOK{pOKq Ñ OK{p
n�1OK .

WpOK{p
n�1OKq

Φn //

����

OK{p
n�1OK

WpOK{pOKq

rΦn

44❥❥❥❥❥❥❥❥❥❥

For the same reason, if a � paiqiPZ
¥0
, b � pbiqiPZ

¥0
P WpOK{pOKq su
h that ai � bi mod πOK{pOK for

all i P Z
¥0, we have a

pk

i � b
pk

i in OK{pOK if k P Z
¥eK�1, so that F kpaq only depends on the image of a in

WpκKq (re
all that sin
e OK{pOK has 
hara
teristi
 p, the Frobenius map on WpOK{pOKq is just raising

the 
omponents to the p-th power): the ring endomorphism F k fa
tors through a ring homomorphism

ϕk : WpκKq ÑWpOK{pOKq.

WpOK{pOKq
Fk

//

����

WpOK{pOKq

WpκKq
ϕk

55❥❥❥❥❥❥❥❥❥❥

Now let a � pa0, a1, . . .q PWpκKq. As pρpaiq mod pOKqiPZ
¥0
PWpOK{pOKq maps to a PWpκKq, we have

ϕkpaq � F k
�

pρpaiq mod pOKqiPZ
¥0

�

�

�

ρ
�

a
pk

i

�

mod pOK

�

iPZ
¥0

(here again, we used the fa
t the F is the

Frobenius map on 
omponents in WpOK{pOKq, and that ρ 
ommutes to p-th powers). Similarly, as

�

ρ
�

a
pk

i

�

mod pn�1OK

�

iPZ
¥0

maps to

�

ρ
�

a
pk

i

�

mod pOK

�

iPZ
¥0

in WpOK{pOKq, we have

p

rΦn � ϕkqpaq � rΦn
��

ρ
�

a
pk

i

�

mod pOK

�

iPZ
¥0

�

� Φn
��

ρ
�

a
pk

i

�

mod pn�1OK

�

iPZ
¥0

�

�

ņ

i�0

piρ
�

a
pk

i

�pn�i

mod pn�1OK

� pf � Fn�kqpaq mod pn�1OK

whi
h shows that

f � rΦn � ϕk � F
�n�k mod pn�1OK

for all k ¥ eK � 1. This implies that f mod pn�1OK is a ring homomorphism for all n P Z
¥0, so f is a

ring homomorphism (be
ause OK is separated for the p-adi
 topology).


 As f indu
e the identity on residue �elds, we have Kerpfq � pWpκKq: as OK has no p-torsion, this

implies that Kerpfq � pnWpκKq for all n P Z
¥0 by indu
tion, so that Kerpfq �

8

�

n�1

pnWpκKq � t0u, and f

is inje
tive.


 Passing to fra
tion �elds, we have an extension of lo
al �elds K{WpκKqrp
�1
s. The residue extension is

trivial, and the index of rami�
ation is eK : by theorem 3.8.4, we have rK : WpκKqrp
�1
ss � eK , and by

theorem 3.8.23, the WpκKq-module OK �WpκKqrπs is free of rank eK . �
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Corollary 4.2.32. OK is isomorphi
 to WpκKqrXs{xEpXqy where EpXq P WpκKqrXs is an Eisenstein

polynomial.

4.3. Rami�
ation groups. The 
ontent of this se
tion is taken from [20, Chapitre IV℄. Hen
eforth, K

denotes a 
omplete dis
rete valuation �eld, and L{K a �nite and Galois extension, with group G. We

assume that the residual extension κL{κK is separable (this is automati
 when K is a lo
al �eld). Let T the

maximal unrami�ed subextension of L{K. Denote by vL (resp. vK) the normalized valuation on L (resp.

K), so that vK � eL{KvL|K .

4.3.1. First de�nitions. By proposition 3.8.5, there exists α P OL su
h that OL � OKrαs.

Notation. If γ P G, we put iGpγq � vLpγpαq � αq P Z
¥0. If i P Z

¥�1, we put

Gi � tγ P G ; p�x P OLq vLpγpxq � xq ¥ i� 1u.

Proposition 4.3.2. Let γ P G and i P Z
¥�1. The following 
onditions are equivalent:

(i) γ a
ts trivially on OL{m
i�1
L ;

(ii) γ P Gi;

(iii) iGpγq ¥ i� 1.

In parti
ular, iG does not depend on the 
hoi
e of α P OL su
h that OL � OKrαs. Moreover, pGiqiPZ
¥�1

is

a de
reasing sequen
e of normal subgroups of G su
h that Gi � tIdLu for i " 0.

Proof. (i)�(ii) by de�nition and (ii)�(iii) is trivial. We have i�1
G ptiuq � Gi�1zGi for all i P Z

¥0, showing

that iG does not depend of the 
hoi
e of α. Finally, Gi � Ker
�

G Ñ AutpOL{m
i�1
L q

�

so Gi is a normal

subgroup of G, and Gi � tIdLu id i ¥ max
γPGztIdLu

iGpγq. �

Example 4.3.3. We have G
�1 � G and G0 � GalpL{T q is the inertia subgroup of L{K.

De�nition 4.3.4. The subgroup Gi is 
alled the i-th rami�
ation subgroup (with lower numbering) of G.

The groups pGiqiPZ
¥�1

form a de
reasing �ltration on G.

Proposition 4.3.5. (Ramifi
ation subgroups with lower numbering are 
ompatible with sub-

groups). Let H ¤ G be a subgroup and M � LH (so that H � GalpL{Mq). Then iHpηq � iGpηq for all

η P H , and Hi � H XGi for all i P Z
¥�1.

Proof. Follows immediately from 
hara
terisation (i) of proposition 4.3.2. �

Proposition 4.3.6. Let H � G be a normal subgroup, M � LH and σ P G{H � GalpM{Kq. Then

iG{Hpσq �
1

eL{M

°

γPG
γ ÞÑσ

iGpγq.

Proof. Both sides are equal to �8 when σ � IdM : assume that σ � IdM . Let β P OM be su
h that

OM � OKrβs: we have iG{Hpσq � vM pσpβq � βq so that eL{M iG{Hpσq � vLpσpβq � βq. If γ0 P G maps to

σ P G{H , the others preimages are of the form γ0η with η P H : we have to prove that a �
±

ηPH

pα� γ0ηpαqq

and b � σpβq � β have the same valuation, i.e. that they generate the same ideal in OL.


 Let P P OM rXs be the minimal polynomial of α over M : we have P pXq �
±

ηPH

pX � ηpαqq, so that

σpP qpXq �
±

ηPH

pX � γ0ηpαqq, i.e. a � σpP qpαq � σpP qpαq � P pαq. As the 
oe�
ients of σpP q � P are

divisible by b, we have a P bOL.


 To prove that b P aOL, write β � Qpαq, with Q P OKrXs. The polynomial QpXq�β P OM rXs vanishes at

α: it is divisible by P in OM rXs. Write QpXq�β � P pXqDpXq with D P OM rXs. As Q P OKrXs, we have

σpQq � Q, so QpXq�σpβq � σpP qpXqσpDqpXq: evaluating at α gives Qpαq�σpβq � σpP qpαqσpDqpαq, i.e.

b P aOL sin
e Qpαq � σpβq � �b and σpP qpαq � a. �

Corollary 4.3.7. If H � Gj with j P Z
¥0, we have

pG{Hqi �

#

Gi{H if i ¤ j

tIdMu if i ¥ j
.

Proof. Let σ P G{HztIdMu, there exists a unique i   j su
h that σ P pGi{HqzpGi�1{Hq. If γ P G maps to

σ P G{H , then γ P GizGi�1, when
e iGpγq � i� 1. Moreover, as j ¥ 0, we have H ¤ G0, so that L{M is

totally rami�ed, i.e. eL{M � rL : M s � #H . Proposition 4.3.6 implies thus that iG{Hpσq � i � 1, so that

the �ltration pGi{Hqi¤j 
oin
ides with ppG{Hqiqi¤j . As moreover pG{Hqj � Gj{H � tIdMu, we also have

pG{Hqi � tIdMu if i ¥ j. �
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Remark 4.3.8. For a general normal subgroup H � G, rami�
ation groups of G{H are also images of

rami�
ation groups of G in G{H , but one needs to modify the numbering (see theorem 4.3.31).

Theorem 4.3.9. We have

vLpDL{Kq �

¸

γPGztIdLu

iGpγq �

8

¸

i�0

p#Gi � 1q

(as Gi � tIdLu for i " 0, the sum is �nite).

Proof. 
 Let P P OK rXs be the minimal polynomial of α overK. We have DL{K � P 1

pαqOL by proposition

2.5.7 (be
ause OL � OKrαs). As P pXq �
±

γPG

pX � γpαqq, we have P 1

pαq �
±

γPGztIdLu

pα� γpαqq, proving the

�rst formula.




°

γPGztIdLu

iGpγq �
8

°

i�0

pi�1qp#Gi�#Gi�1q �

8

°

i�0

pi�1qp#Gi�1q�
8

°

i�0

pi�1qp#Gi�1�1q �
8

°

i�0

p#Gi�1q. �

Remark 4.3.10. We re
over the fa
t that L{K is unrami�ed if and only if DL{K � OL.

Corollary 4.3.11. Let H ¤ G be a subgroup and M � LH . We have vM pDM{Kq �
1

eL{M

°

γPGzH

iGpγq.

Proof. By proposition 4.3.9, we have vLpDL{Kq �
°

γPGztIdLu

iGpγq and vLpDL{M q �
°

γPHztIdLu

iGpγq. By the

transitivity of di�erent (
f proposition 2.5.10), we have DL{K � DL{MDM{K , when
e

eL{MvM pDM{Kq � vLpDM{Kq � vLpDL{Kq � vLpDL{M q �
°

γPGzH

iGpγq.

�

4.3.12. The quotients Gi{Gi�1. Let π be a uniformizer of L. Re
all (
f se
tion 3.7.7) that we de�ned a

�ltration of O�

L by subgroups

U
piq

L :�

#

O�

L if i � 0

1�miL if i P Z
¡0

This is a basis of neighbourhoods of 1 in O�

L for the topology indu
ed by that on L�. As O�

L is 
losed hen
e


omplete, we have O�

L � lim
�Ý

i

O�

L {U
piq

L .

Lemma 4.3.13. Let γ P G0 � GalpL{T q and i P Z
¥0. We have γ P Gi �

γpπq

π
P U

piq

L .

Proof. By proposition 4.3.5 applied with H � G0, we have pG0qi � Gi (sin
e i ¥ 0). As OL � OT rπs

(theorem 3.8.23), we have iG0
pγq � γpπq � π, i.e. γ P Gi � vLpγpπq � πq ¥ i� 1�

γpπq

π
� 1 mod miL. �

Proposition 4.3.14. If i P Z
¥0, the map γ ÞÑ

γpπq

π
indu
es as isomorphism θi from Gi{Gi�1 onto a subgroup

of U
piq
L {U

pi�1q

L . This isomorphism is independent of the 
hoi
e of π.

Proof. 
 If π1 is another uniformizer, we have π1 � uπ with u P O�

L , so that

γpπ1q

π1
�

γpuq

u

γpπq

π
. If γ P Gi, we

have γpuq � u P mi�1
L , so

γpuq

u
� 1 mod mi�1

L , showing that θi does not depend on the 
hoi
e of π.


 If γ1, γ2 P Gi, we have

pγ1γ2qpπq

π
�

γ1pπq

π

γ2pπq

π

γ1puq

u
with u �

γ2pπq

π
P O�

L . As

γ1puq

u
� 1 mod mi�1

L (
f

above), we get

pγ1γ2qpπq

π
�

γ1pπq

π

γ2pπq

π
mod mi�1

L , showing that θi is a group homomorphism. It is obviously

inje
tive. �

Corollary 4.3.15. (1) The group G0{G1 is 
y
li
, and identi�es (via θ0) to a subgroup of the group of roots

of unity in κ�L . Its order is prime to charpκLq.

(2) If charpκLq � 0, then G1 � tIdLu, so G0 is 
y
li
.

(3) If charpκLq � p ¡ 0, and i P Z
¡0, the group Gi{Gi�1 is a Fp-ve
tor spa
e of �nite dimension. In

parti
ular G1 is a p-group.

Proof. (1) By proposition 4.3.14, the map θ0 indu
es an isomorphism from G0{G1 onto a subgroup of

U
p0q

L {U
p1q

L

�

Ñκ�L (
f proposition 3.7.10). Finite subgroups of κ�L are 
y
li
, made of roots of unity, of order

prime to charpκLq.

(2) By proposition 4.3.14, θi indu
es an isomorphism from Gi{Gi�1 onto a subgroup of U
piq
L {U

pi�1q

L

�

ÑκL
(
f proposition 3.7.10). If charpκLq � 0, the additive group κL has no torsion, so that Gi{Gi�1 � t0u:

this implies that Gi � G1 for all i P Z
¡0. As Gi � tIdLu for i " 0, we dedu
e that G1 � tIdLu, so that

G0
�

ÑG0{G1 is 
y
li
.
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(3) If charpκLq � p ¡ 0, the group θipGi{Gi�1q identi�es with a subgroup of the additive group κL, whi
h

is killed by p: so is Gi{Gi�1, whi
h is thus a Fp-ve
tor spa
e, ne
essarily of �nite dimension. �

Corollary 4.3.16. If charpκLq � p ¡ 0, the group G0 is a semi-dire
t produ
t of 
y
li
 subgroup of order

prime to p by a normal subgroup of order a power of p. In parti
ular, the group G0 is solvable. If moreover

κL is �nite, the group G is solvable.

Proof. By 
orollary 4.3.15, it is enough to show that there exists a subgroup H of G0 whi
h proje
ts

isomorphi
ally onto G0{G1. Let γ P G0 whose image in G0{G1 is a generator. Put #pG0{G1q � m and

#G1 � pr. As p ∤ m, there exists N P Z
¥r su
h that pN � 1 mod mZ. Put σ � γp

N

P G0. As we have

pN � 1 mod m, the images of γ and σ in G0{G1 are the same. Moreover, we have #G0 � mpr | mpN

(sin
e N ¥ r), so that σm � γmp
N

� IdL, showing that the order of σ in G0 divides m. As it is at least m

sin
e the image of σ generates G0{G1, it has to be m, thus H :� xσy � Z {mZ.

If κL is �nite, then G{G0 � GalpκL{κKq is 
y
li
, so G is solvable. �

Corollary 4.3.17. Assume k is algebrai
ally 
losed of 
hara
teristi
 0, and let K � kppT qq. An algebrai



losureK ofK is the union of the sub�eldsKn :� kppT 1{n
qq for all n P Z

¡0, and GalpK{Kq � pZ :� lim
�Ý

n

Z {nZ.

Proof. As k is algebrai
ally 
losed, we have G � G0 for every �nite subextension L of K{K, and 
orollary

4.3.15 (2) shows that G is 
y
li
. If L1 is another �nite extension of K su
h that rL : Ks | rL1 : Ks, the


omposite extension LL1{K is 
y
li
: we have GalpLL1{L1q ¤ GalpLL1{Lq, whi
h shows that L � L1. This

shows in parti
ular that Kn � L i.e. L � Kn with n � rL : Ks. �

Let i P Z
¥0. As Gi and Gi�1 are normal subgroups of G0, the latter a
ts by 
onjugation on Gi{Gi�1.

Proposition 4.3.18. Let γ P G0 and σ P Gi{Gi�1, where i P Z
¥0. Then

θipγσγ
�1
q � θ0pγq

iθipσq

(here we see θ0pγq as an element of κ�L , a
ting on the one dimensional κL-ve
tor spa
e miL{m
i�1
L ).

Proof. Let σ P Gi be a lifting of σ and π1 � γ�1
pπq (this is a uniformizer of L). We have σpπ1q � π1p1� aq

with a P miL, and θipσq is the image a of a in miL{m
i�1
L . Applying γ, we have pγσγ�1

qpπq � γpπ1qp1� γpaqq,

i.e.

pγσγ�1
qpπq

π
� 1� γpaq, so that θipγσγ

�1
q is the image of γpaq in miL{m

i�1
L . Write a � bπi with b P OL,

so that γpaq � γpbqγpπqi. As γ P G0, we have γpbq � b mod mL, so that γpaq �
�

γpπq

π

�i
a mod mi�1

L , i.e.

the image of γpaq in miL{m
i�1
L is θ0pγq

iθipσq. �

Corollary 4.3.19. Let γ P G0 and σ P Gi with i P Z
¡0. Then γσγ�1σ�1

P Gi�1 if and only if γi P G1 or

σ P Gi�1.

Proof. We have γσγ�1σ�1
P Gi�1 if and only if γσγ�1

and σ have same image in Gi{Gi�1: by inje
tivity

of θi, this is equivalent to θipγσγ
�1
q � θipσq, i.e. θ0pγq

iθipσq � θipσq in miL{m
i�1
L . As i ¡ 0, the latter

is a κL-ve
tor spa
e of dimension 1: this is equivalent to θ0pγq
i
� 1 (i.e. γi P Kerpθ0q) or θipσq � 0 (i.e.

σ P Kerpθiq), i.e. to γ
i
P G1 or σ P Gi�1. �

Corollary 4.3.20. Assume G is abelian. If #pG0{G1q ∤ i, we have Gi � Gi�1.

Proof. Fix γ P G0 mapping to a generator of G0{G1. If σ P Gi, we have γσγ
�1σ�1

� IdL P Gi�1, so that

γi P G1 or σ P Gi�1 by 
orollary 4.3.19: as γi R G1 sin
e #pG0{G1q ∤ i, we must have σ P Gi�1, i.e.

Gi � Gi�1. �

Proposition 4.3.21. (1) Integers i P Z
¥1 su
h that Gi � Gi�1 are 
ongruent modulo p � charpκLq.

(2) Let i, j P Z
¥1, γ P Gi and σ P Gj . Then γσγ

�1σ�1
P Gi�j�1.

Lemma 4.3.22. Let i, j P Z
¥1, γ P Gi and σ P Gj . Then γσγ

�1σ�1
P Gi�j and

θi�jpγσγ
�1σ�1

q � pj � iqθipγqθjpσq.

Proof. Write γpπq � πp1�aq and σpπq � πp1�bq with a � xπi P miL and b � yπj P m
j
L, where x, y P OL. We

get pγσqpπq � πp1� aqp1� γpbqq � πp1�a� γpbq� aγpbqq. As γpbq � γpyqγpπqj � γpyqπjp1� aqj , γpyq � y

mod mi�1
L and p1 � aqj � 1 � ja mod mi�1

L (sin
e i ¡ 0), we have γpbq � yπjp1 � jaq mod m
i�j�1
L , i.e.

γpbq � b� jab mod m
i�j�1
L . This implies that pγσqpπq � πp1� cq with c � a� b� pj � 1qab mod m

i�j�1
L .

Similarly, we have pσγqpπq � πp1� dq with d � a� b� pi� 1qab mod m
i�j�1
L .

Put π1 � σγpπq: this is a uniformizer of L, and

pγσγ�1σ�1
qpπ1q � pγσqpπq � πp1� cq � π1p1� cqp1� dq�1

� π1p1� eq
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where e � p1 � cqp1 � dq�1
� 1 � c � d mod m

i�j�1
L , i.e. e � pj � iqab mod m

i�j�1
L . This shows that

pγσγ�1σ�1
qpπ1q

π1
� 1 P m

i�j
K (sin
e a P miL and b P m

j
L), and that θi�jpγσγ

�1σ�1
q is the image of pj � iqab in

mi�1
L {m

i�j�1
L , i.e. θi�jpγσγ

�1σ�1
q � pj � iqθipγqθjpσq. �

Proof of proposition 4.3.21. (1) If G1 � tIdLu, there is nothing to do: assume that G1 � tIdLu, so that

charpκLq � p ¡ 0. Let j P Z
¡0 be the integer su
h that Gj � tIdLu and Gj�1 � tIdLu. Let i P Z

¡0 be su
h

that Gi � Gi�1. Let γ P GizGi�1 and σ P GjztIdLu. By lemma 4.3.22, we have γσγ�1σ�1
P Gi�j � tIdLu,

so that θi�jpγσγ
�1σ�1

q � 0. By lemma 4.3.22 again, this implies that pj � iqθipγqθjpσq � 0 in the one

dimensional κL-ve
tor spa
e m
i�j
L {m

i�j�1
L . As θipγq P pm

i
L{m

i�1
L qzt0u and θjpσq P pm

j
L{m

j�1
L qzt0u, the image

of θipγqθjpσq in nonzero in mi�1
L {m

i�j�1
L , implying that j � i � 0 in κL, i.e. p | j � i.

(2) If γ P Gi�1 or σ P Gj�1, we have γσγ
�1σ�1

P Gi�j�1 by lemma 4.3.22. Otherwise, we have Gi � Gi�1

and Gj � Gj�1, so that j � i mod pZ: this implies that θi�jpγσγ
�1σ�1

q � pj � iqθipγqθjpσq � 0, when
e

γσγ�1σ�1
P Gi�j�1. �

4.3.23. Upper numbering and Herbrand's theorem.

Notation. If t P r�1,�8r, we put

Gt � G
rts

so that γ P Gt � iGpγq ¥ t� 1. Put

ϕL{Kpxq �

» x

0

dt

rG0 : Gts

(where rG0 : Gts � 1 for �1   t ¤ 0, so that ϕL{Kpxq � x for all x P r�1, 0s).

Proposition 4.3.24. The map ϕL{K is a 
ontinuous, pie
ewise linear, in
reasing and 
on
ave map, su
h

that ϕL{Kp0q � 0. Moreover, we have ϕ1L{K,lptq � ϕ1L{K,rptq �
1

rG0:Gts
if t R Z, but ϕ1L{K,lptq �

1
rG0:Gts

and

ϕ1L{K,rptq �
1

rG0:Gt�1s
if t P Z.

Remark 4.3.25. If i P Z
¥0 and i ¤ x ¤ i� 1, we have ϕL{Kpxq �

i�1
°

k�0

1
rG0:Gk�1s

�

x�i
rG0:Gi�1s

i.e.

ϕL{Kpxq �
1

#G0

�

#G1 � � � � �#Gi � px� iq#Gi�1

�

.

De�nition 4.3.26. The map ϕL{K indu
es an homeomorphism from r�1,�8r onto itself: we denote by

ψL{K : r�1,�8rÑ r�1,�8r the inverse map. It is 
alled the Hasse-Herbrand map.

Proposition 4.3.27. The map ψL{K is a 
ontinuous, pie
ewise linear, in
reasing and 
onvex map, su
h

that ψL{Kp0q � 0. The slopes of the linear pie
es of the graph of ψL{K are integers. Moreover, we have

ψL{KpZ¥0q � Z
¥0.

Proof. The only non trivial statement is the last one: let y P Z
¥0 and i � tψL{Kpyqu. By remark 4.3.25, we

have#G0y � #G1�� � ��#Gi�pψL{Kpyq�iq#Gi�1, so that ψL{Kpyq � i�rG0 : Gi�1sy�
i
°

k�1

rGk : Gi�1s P Z

(sin
e Gi�1 ¤ Gk for all k P t0, . . . , iu). �

De�nition 4.3.28. (Ramifi
ation groups with upper numbering). If y P r�1,�8r, we put

Gy � GψL{Kpyq.

Remark 4.3.29. By de�nition, we have Gx � GϕL{Kpxq
for all x P r�1,�8r.

Example 4.3.30. We have G�1
� G, G0

� G0 and Gy � tIdLu if y " 0.

The following result shows that the upper numbering is 
ompatible passing to the quotient (
f remark

4.3.8).

Theorem 4.3.31. Let H � G be a normal subgroup. We have pG{Hqy � GyH{H for all y P r�1,�8r.

Proposition 4.3.32. (Transitivity of Hasse-Herbrand map). If M � LH , we have

ϕL{K � ϕM{K � ϕL{M and ψL{K � ψL{M � ψM{K .

Lemma 4.3.33. If x P r�1,�8r, we have ϕL{Kpxq � 1 � 1
#G0

°

γPG

inftiGpγq, x� 1u.
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Proof. Both sides are 
ontinuous, pie
ewise linear, and equal to 0 when x � �1: it is enough to show the

equality of derivatives on intervals of the form si, i � 1r. If i   x   i � 1, the derivative of the LHS is

1
rG0:Gi�1s

, and that of the RHS is

1
#G0

°

γPG
iGpγq¡x�1

1 �
#tγPG ; iGpγq¥i�2u

#G0
�

#Gi�1

#G0
�

1
rG0:Gi�1s

. �

Lemma 4.3.34. Let σ P G{H and jpσq � sup
sPG
sÞÑσ

iGpsq. Then iG{Hpσq � 1 � ϕL{M pjpσq � 1q.

Proof. Let s P G be su
h that iGpsq � jpσq. If η P Hjpσq�1 � H X Gjpσq�1, we have iGpηq ¥ jpσq, so

that iGpsηq ¥ jpσq (simply be
ause Gjpσq�1 is a group), when
e iGpsηq � jpσq (by de�nition of jpσq). If

η P HzHjpσq�1, we have iGpηq   jpσq, so(40) iGpsηq � iGpηq. In any 
ase, we have iGpsηq � inftiGpηq, jpσqu.

By proposition 4.3.6, this implies that

iG{Hpσq �
1

eL{M

°

γPG
γ ÞÑσ

iGpγq �
1

#H0

°

ηPH

inftiGpηq, jpσqu � ϕL{M pjpσq � 1q � 1

by lemma 4.3.33 applied to the extension L{M . �

Lemma 4.3.35. (Herbrand's theorem). We have GxH{H � pG{HqϕL{Mpxq for all x P r�1,�8r.

Proof. We have the equivalen
es:

σ P GxH{H � jpσq ¥ x� 1� ϕL{M pjpσq � 1q ¥ ϕL{M pxq � iG{Hpσq � 1 ¥ ϕL{M pxq � σ P pG{HqϕL{M pxq

proving the equality. �

Proof of proposition 4.3.32. The se
ond equality follows from the �rst. Both maps ϕL{K and ϕM{K �ϕL{M
are 
ontinuous, pie
ewise linear and vanish at 0: it is enough to show that their derivatives on intervals of

the form si, i� 1r are the same for all i P Z
¥�1. That of ϕM{K � ϕL{M at x Psi, i� 1r is

ϕ1
M{K

pϕL{M pxqqϕ
1

L{M
pxq � 1

rpG{Hq0:pG{HqϕL{M pxqs

1
rH0:Hxs

�

1
rG0H{H:GxH{Hs

1
rH0:Hxs

�

#pGxHq#Hx

#pG0Hq#H0
�

1
rG0:Gxs

� ϕ1L{Kpxq

sin
e #pGxHq#Hx � #pGxHq#pGx XHq � #Gx#H and similarly #pG0Hq#H0 � #G0#H . �

Proof of theorem 4.3.31. We have pG{Hqy � pG{Hqx with x � ψM{Kpyq. As pG{Hqx � GψL{M pxqH{H by

lemma 4.3.35, this gives pG{Hqy � GψL{KpyqH{H � GyH{H sin
e ψL{M pxq � ψL{M pψM{Kpyqq � ψL{Kpyq

by proposition 4.3.32. �

De�nition 4.3.36. A jump in the �ltration pGyqy¥�1 is an element y P r�1,�8r su
h that Gy � Gy�ε for

all ε P R
¡0.

A fundamental theorem of rami�
ation is the following:

Theorem 4.3.37. (Hasse-Arf). Assume that G is abelian. The jumps of the �ltration pGyqy¥�1 are

integers. Equivalently, if i P Z
¥�1 is su
h that Gi � Gi�1, then ϕL{Kpiq is an integer.

4.4. Exer
ises.

Exer
ise 4.4.1. Let p be a prime number and A a ring of 
hara
teristi
 p.

(1) Show that WpAq is an integral domain if and only if A is an integral domain.

(2) Show that WpAq is redu
ed if and only if A is redu
ed.

(3) Show that A is perfe
t if and only if WpAq{pWpAq is redu
ed.

Exer
ise 4.4.2. Let A be a ring of 
hara
teristi
 p. Show that the V -adi
 and the p-adi
 topologies 
oin
ide

if and only if the map AÑ A; a ÞÑ ap is surje
tive.

Exer
ise 4.4.3. Let k be a �eld of 
hara
teristi
 p. Show that Wpkq is noetherian if and only if k is perfe
t

[hint: 
ompute dimkpV pWpkqq{V pWpkqq
2
q℄.

(40)

Be
ause vLpsηpαq � αqq � vLpps � IdLqpηpαqq � pη � IdLqpαqq � mintvLpps � IdLqpηpαqq, vLpη � IdLqpαqq � iGpηq sin
e

vLpηpαq � αq � iGpηq   jpσq � vLpps� IdLqpηpαqqq, for α P OL su
h that OL � OK rαs (note that for su
h an α, we have

OL � ηpOLq � ηpOK rαsq � OKrηpαqs).
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Exer
ise 4.4.4. Let A be a ring and p a prime number whi
h is not a zero divisor in A. Let σ : AÑ A be

an endomorphism su
h that σpaq � ap mod pA for all a P A.

(1) Show that there exists a unique ring homomorphism sσ : A Ñ WpAq su
h that sσ � σ � FA � sσ and

Φ0 � sσ � IdA.

(2) Let B be a ring su
h that p is not a zero divisor in B, and σ1 : B Ñ B an endomorphism su
h that

σ1pbq � bp mod pB for all b P B, and u : AÑ B a ring homomorphism su
h that u � σ � σ1 � u. Show that

Wpuq � sσ � sσ1 � u.

(3) Let tσ : AÑWpA{pAq be the 
omposite of sσ and the natural ring homomorphism WpAq Ñ WpA{pAq.

Show that tσ indu
es a ring homomorphism tσ,n : A{p
nAÑWnpA{pAq for all n P Z

¡0.

(4) Show that tσ,n is an isomorphism when A{pA is perfe
t.

(5) Show that if A{pA is perfe
t and A is separated and 
omplete for the p-adi
 topology, then tσ is an

isomorphism.

Exer
ise 4.4.5. Let A be a ring and p a prime number whi
h is not a zero divisor in A.

(1) Show there exists a unique ring homomorphism sA : WpAq ÑWpWpAqq su
h that sA �FA � F
WpAq � sA

and Φ0 � sA � IdW pAq. Show that it is the unique ring homomorphism su
h that Φn � sσ � FnA for all

n P Z
¥0.

(2) Let A � ZrXnsnPZ
¥0

and X � pXnqnPZ
¥0
PWpAq. Write sApXq � psnpXqqnPZ

¥0
, where snpXq PWpAq.

Show that sApaq � psnpaqqnPZ
¥0

for all a � pa0, a1, . . .q PWpAq.

(3) For all ring homomorphism u : AÑ B, show that sB �Wpuq �WpWpuqq � sA.

(4) Show that the maps WpsAq � sA and s
WpAq � sA from W pAq to WpWpWpAqqq are equal.

Exer
ise 4.4.6. Let K be a lo
al �eld of 
hara
teristi
 p ¡ 0. Show that it has only one 
oe�
ient �eld.

Exer
ise 4.4.7. Let pK, |.|q be a lo
al �eld, K an algebrai
 
losure of K, and k{κK a �nite �eld extension.

Denote by L the unique subextension of K{K that is unrami�ed and su
h that κL � k. Show that

L �

#

k bκK
K if charpKq � charpκKq

Wpkq b
WpκKq

K if charpKq � charpκKq

Exer
ise 4.4.8. Let Qur
p be the maximal unrami�ed extension of Qp in Qp. Show that the 
ompletion of

Qur
p for |.|p is WpFpqrp

�1
s.

Exer
ise 4.4.9. Let A be the lo
alization of the polynomial ringRrXs with respe
t to the ideal p � xX2
�1y.

(1) Show that A is a DVR but that there is no se
tion κA Ñ A of the proje
tion.

(2) The 
ompletion

pA of the DVR A has a �eld of 
oe�
ients: expli
it an element in

pA whose square is �1.

Exer
ise 4.4.10. (Cohen rings). Let p be a prime number. A p-ring is a DVR of 
hara
teristi
 0 whose

maximal ideal is generated by p.

(1) Let A be a DVR, π P A a uniformizer, and k a �eld extension of κ :� A{πA. Show that there exists a

DVR B that 
ontains A and su
h that B{πB � k [hint: lift �rst a trans
endan
e basis of k over κ and use

Zorn's lemma℄.

(2) (Kedlaya) Let C be the 
ategory of 
omplete DVRs that are unrami�ed over A, in whi
h morphisms are

unrami�ed morphisms of rings (i.e. morphisms whi
h indu
e isomorphisms on value groups). If R,S P C

have residue �elds κR and κS respe
tively, and ϕ : κR Ñ κS is a morphism, we say the morphism f : RÑ S

is 
ompatible (with ϕ) if the diagram

R
f //

��

S

��
κR

ϕ // κS


ommutes. Show that if R P C and κR Ñ k is a separable �eld extension, there exists S P C with residue

�eld k and a 
ompatible morphism R Ñ S. Show moreover that if R,S, T P C are su
h that there are

morphisms κR Ñ κS Ñ κT and f : R Ñ S and h : R Ñ T are 
ompatible morphisms, there exists a unique


ompatible morphism g : S Ñ T su
h that h � g � f .
Remark 4.4.11. This implies in parti
ular that if f : R Ñ S is a 
ompatible morphism in C and κS{κR is Galois, then the group of f-equivariant

automorphisms of S is isomorphi
 to GalpκS{κRq.
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(3) Show that if k is a �eld of 
hara
teristi
 p, there exists a 
omplete p-ring having k as residue �eld (su
h

a DVR is 
alled a Cohen ring for k).

(4) Constru
t a Cohen ring for FpppT qq.

(5) Show that if k is perfe
t, then any Cohen ring for k is uniquely isomorphi
 to Wpkq.

Exer
ise 4.4.12. Let p be a prime. Can you �nd a Galois extension of Qp whose Galois group is isomorphi


to S5?

Exer
ise 4.4.13. Let p be a prime number and d P Z. Assume that d is not a square in Qp and put

K � Qpp

?

dq. Compute the rami�
ation groups of K{Qp [hint: treat the 
ases p odd and p � 2 separately℄.

Exer
ise 4.4.14. Let L{K be a �nite Galois extension of lo
al �elds of 
hara
teristi
 0, with residue �eld

of 
hara
teristi
 p ¡ 0. Let G � GalpL{Kq be its Galois group, and π a uniformizer of L.

(1) Let i P Z
¥0 and g P Gi. Write gpπq � πp1 � aq with a P miL. Let ϕ � g � IdL : L Ñ L. Show that

ϕpxq � jax mod m
j�i�1
L for all j P Z

¥0 and x P m
j
L.

(2) Let ψ � gp � IdL : LÑ L. Show that

ψpxq �

$

'

&

'

%

pjax mod m
j�i�eL�1
L if i ¡ eL

p�1

pjax� jp1� ip�1
qapx mod m

j�i�eL�1
L if i � eL

p�1

jp1� ip�1
qapx mod m

j�pi�1
L if i   eL

p�1

(3) Show that if i ¡ eL
p�1

and g R Gi�1, then g
p
P Gi�eLzGi�eL�1. Con
lude that i ¡

eL
p�1

ñ Gi � tIdLu.

(4) Similarly, show that if i � eL
p�1

, the group Gi is either trivial or 
y
li
 of order p, this last 
ase being

possible if and only if p | i.

(5) Assume that i   eL
p�1

. Show that if p ∤ i, then gp P Gpi�1. If p | i, show that gp P Gpi and θpipg
p
q � θipgq

p
.

Con
lude that if p | i, the group Gi{Gi�1 is either trivial, or 
y
li
 of order p, this last 
ase being possible

if and only if phi � eL
p�1

for some h P Z
¡0.

(6) Show that if the integers i P Z
¡0 su
h that Gi � Gi�1 all are divisible by p, then they are of the form

pki0 with k P t1, . . . , hu where phi0 �
eL
p�1

, and G1 is 
y
li
 of order ph.

Exer
ise 4.4.15. Let K be a �eld of 
hara
teristi
 0, with residue �eld of 
hara
teristi
 p ¡ 0. Assume that

K 
ontains the p-th roots of unity. Let K be an algebrai
 
losure of K and x P K su
h that xp � π is a

uniformizer of K. Put L � Kpxq. Show that L{K is a 
y
li
 extension of degree p. If G � GalpL{Kq, show

that Gi � G and Gi�1 � tIdLu for i �
peK
p�1

.

Exer
ise 4.4.16. Let K be a lo
al �eld of 
hara
teristi
 0, K an algebrai
 
losure of K, and n P Z
¡0 su
h

that n   peK
p�1

and p ∤ n, where p � charpκKq ¡ 0. Let y P K be su
h that vKpyq � �n and x P K su
h that

xp � x � y. Put L � Kpxq.

(1) Show that L{K is a 
y
li
 extension of degree p.

(2) Let G � GalpL{Kq. Show that Gn � G and Gn�1 � tIdLu.

Exer
ise 4.4.17. Let p be a prime number, ζp2 P Qp a primitive p2-th root of unity and ζp � ζ
p

p2
. Put

F � Qppζpq, K � Qppζp2 q, L � Kpp1{pq and Ki � Qppζp, p
1{pζip2q for i P t0, . . . , p� 1u.

(1) Explain why L{F is Galois.

(2) Show that there is an inje
tive group homomorphism pa, bq : GalpL{F q Ñ pZ {pZq2.

(3) Show that the extensions K{F and Ki{F are Galois (for i P t1, . . . , pu), and des
ribe their rami�
ation

�ltration (with lower numbering) [hint: show that if π � ζp� 1 P F then ̟i :�
π

ζi
p2
p1{p

P Ki is a uniformizer

of Ki℄.

(4) Dedu
e that Ki � K for all i P t1, . . . , pu, and that rL : F s � p2.

(5) Using these extensions, show that the lower numbering is not 
ompatible with quotients.

Exer
ise 4.4.18. Let p ¡ 3 be a prime and K a splitting �eld of P pXq � X3
� pX � p P QprXs.

(1) Show that G :� GalpK{Qpq �

#

A3 if

�

�3
p

�

� 1

S3 if

�

�3
p

�

� �1
[hint: the dis
riminant �4p3� 27p2 of P is δ2 with

δ � pα1 � α2qpα2 � α3qpα1 � α3q where α1, α2, α3 P K are the roots of P ℄.

(2) Compute the rami�
ation �ltration on G.
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Exer
ise 4.4.19. Let L{K be a totally rami�ed Galois extension of lo
al �elds of 
hara
teristi
 0. Assume

that its Galois group G � t�1,�i,�j,�ku is the quaternion group (so that C :� ZpGq � t�1u), and that

G4 � tIdLu. Show that G � G0 � G1, and G2 � G3 � C. What is the di�erent of L{K? Show that

Gy �

$

'

&

'

%

G if y ¤ 1

C if 1   y ¤ 3
2

tIdLu if

3
2
  y

Exer
ise 4.4.20. Let p be a prime number, Qp an algebrai
 
losure of Qp. If n P Z
¡0, let ζ P Qp be a

primitive pn-th root of unity, and Kn � Qppζq.

(1) Show that Kn{Qp is totally rami�ed of degree pn�1
pp� 1q, whose ring of integers is Zprζs, of whi
h a

uniformizer is ζ � 1.

(2) Show that Kn{Qp is Galois, and that there is an isomorphism G :� GalpKn{Qpq � pZ {pn Zq�. If

m P t1, . . . , n� 1u, what is the image of GalpKn{Kmq under this isomorphism?

(3) Show that the rami�
ation groups of Kn{Qp are given by

Gi �

$

'

&

'

%

G if i � 0

GalpKn{Kmq if pm�1
¤ i   pm for some m P t1, . . . , n� 1u

tIdKn
u if pn�1

¤ i

(4) Compute DKn{Qp
.

(5) Des
ribe the upper rami�
ation groups.

Exer
ise 4.4.21. Assume p ¡ 2 and let K{Qp be a totally rami�ed Galois extension of degree p. Denote

by π a uniformizer of K and vK its normalized valuation. Let EpXq � Xp
� ap�1X

p�1
� � � � � a0 P Zp be

the minimal polynomial of π over Qp. Re
all that vKpDK{Qp
q � mint2p� 1, vKpaiq � i� 1u1¤i p (where

DK{Qp
denotes the di�erent ideal of K{Qp).

(1) Show that p� 1 | vKpDK{Qp
q [hint: use the rami�
ation �ltration℄.

(2) Dedu
e that vKpDK{Qp
q � 2p� 2.

(3) Compute GalpK{Qpqx for x P r�1,�8r.

(4) Dedu
e GalpK{Qpq
y
for y P r�1,�8r.

(5) Assume L{Qp is a totally rami�ed Galois extension su
h that GalpL{Qpq � pZ {pZq2.

(a) Show that L � K1K2 where Ki{Qp is totally rami�ed Galois of degree p for i P t1, 2u.

(b) Show that GalpL{Qpq
y

ãÑ GalpK1{Qpq
y
� GalpK2{Qpq

y
for all y P r�1,�8r.

(
) Compute GalpL{Qpq
y
for all y P r�1,�8r.

(d) Dedu
e GalpL{Qpq1{GalpL{Qpq2.

(e) Derive a 
ontradi
tion and 
on
lude that no su
h L exists.

Exer
ise 4.4.22. Unless otherwise stated, rami�
ation subgroups of a �nite Galois extension L{K will be


onsidered with the lower numbering. A jump of the extension L{K is an integer i su
h that GalpL{Kqi �

GalpL{Kqi�1.

Let L{K and K{F be nontrivial �nite extensions of lo
al �elds.

(1) Assume that L{F and K{F are Galois. Let i1   � � �   in be the jumps of the rami�
ation �ltration of

L{K. Assume that the rami�
ation �ltration of K{F has a unique jump i0, and that i0   i1. Show that

GalpL{F qi �

#

GalpL{F q if i ¤ i0

GalpL{Kqi if i ¡ i0

and dedu
e that the jumps of the rami�
ation �ltration of L{F are i0, i1, . . . , in [hint: Herbrand's theorem℄.

Assume from now on that F has mixed 
hara
teristi
s p0, pq, that K � F pζq where ζ is a primitive p-th

root of unity, and that L � Kpαq, where a :� αp P K and α R K.

(2) Show that the extension K{F is 
y
li
 of degree dividing p� 1, and that vKpζ � 1q � eK
p�1

P Z
¡0 (where

eK is the absolute rami�
ation index of K).

(3) Explain why K{F has at most two jumps, and exa
tly one when it is totally rami�ed.

We hen
eforth assume that K{F is totally rami�ed. Denote by vK (resp. vL) the normalized valuation on

K (resp. on L).

(4) Show that L{K is a 
y
li
 extension of degree p. When a P F , show that L{F is Galois and des
ribe

the stru
ture of GalpL{F q.
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(5) Assume that p ∤ vKpaq. Show that L{K is totally rami�ed, and that vLpDL{Kq � peK � p � 1 [hint:

�rst redu
e to the 
ase where vKpaq � 1℄. Dedu
e the jumps of L{K. If a P F , what are the jumps of L{F?

Under whi
h 
ondition on eF are the jumps in the upper numbering integers?

Assume from now on that p | vKpaq and put E �

 

i P Z
¡0 ; pDx P K

�

q ax�p P U
piq

K

(

.

(6) (i) Show that 1 P E.

(ii) Assume that a P U
piq

K with i ¡ peK
p�1

. Show that the polynomial QpXq �
p1�pζ�1qXqp�a

pζ�1qp
belongs to

OKrXs, and use Newton's lemma to show that it has a root in OK , 
ontradi
ting the hypothesis.

The set E is thus non empty, and in
luded in

 

1, . . . , peK
p�1

(

. Put c � maxE: repla
ing a by ax�p for some

appropriate x P K�

, we may assume that a P U
pcq
K .

(7) Show that there exists ApXq P ZrXs su
h that pX � 1qp � Xp
� 1� ppX � 1qApXq and Ap1q � �1.

(8) Assume that c � peK
p�1

and put z � α�1
ζ�1

P L.

(i) Show that vLpzq � 0 [hint: use question (7)℄.

(ii) Compute the minimal polynomial P of z over K, and show that its image P in κKrXs is of the

form P pXq � Xp
�X � λ. Explain why P is irredu
ible, and dedu
e that K{F is unrami�ed.

(iii) If a P F , what are the jumps of L{F in that 
ase?

(9) Assume that c ¤ peK
p�1

� 1.

(i) Show that p ∤ c [hint: assume the 
ontrary and dedu
e a 
ontradi
tion with the de�nition of c.℄

(ii) Compute vLpα� 1q [hint: use question (7)℄, and dedu
e that L{K is totally rami�ed.

(iii) Constu
t a uniformizer πL of L, and determine the jump of L{K [hint: 
onsider the a
tion of a

generator of GalpL{Kq on πL.℄

(iv) Dedu
e that vLpDL{Kq � pp � 1q
�

peK
p�1

� c � 1
�

. When a P F , what are the jumps of L{F in this


ase?

Exer
ise 4.4.23. Let pK, |.|q be a 
omplete dis
retely valued �eld of 
hara
teristi
 0, with perfe
t residue

�eld κK of 
hara
teristi
 p. We denote by v the normalized valuation on K and by eK � vppq its absolute

rami�
ation index. Let n P Z
¡0 be su
h that Fpn � κK and α P K su
h that vpαq ¡ �

pneK
pn�1

. Put

P pXq � Xpn
�X � α P KrXs, let λ P K be a root of P and L � Kpλq. We still denote by v its extension

to L.

(1) Re
all why there is a unique multipli
ative map r.s : Fpn Ñ OK su
h that π � r.s � IdFpn
, where

π : OK Ñ κK is the proje
tion.

Put QpXq � P pX � λq P LrXs.

(2) Assume vpαq   0. Show that vpλq �
vpαq

pn
. Dedu
e that QpXq P OLrXs and 
ompute the image QpXq

of QpXq in κLrXs.

(3) For x P Fpn , 
ompute the images of Qprxsq and Q1

prxsq in κL. Dedu
e that P is split in L.

What pre
edes shows that L{K is Galois: put G � GalpL{Kq.

(4) Show that if σ P GztIdLu, we have |σpλq � λ| � 1.

(5) Assume now that p ∤ vpαq and vpαq   0.

(a) Show that L{K is totally rami�ed, and give a uniformizer πL in terms of a uniformizer πK of K

and λ [hint: use the fa
t that gcdppn, vpαqq � 1℄.

(b) Show that the rami�
ation �ltration with lower numbering is given by

Gi �

#

G if i ¤ �vpαq

tIdLu if i ¡ �vpαq
.

(
) Compute the di�erent DL{K and the dis
riminant dL{K .

(6) Show that if α1 P K satis�es |α� α1|   1 and λ1 is a root of P1pXq � Xpn
�X�α1, thenKpλq � Kpλ1q.

(7) Assume now that α1, α2 P K are su
h that vpα1q, vpα2q ¡ �eK and |α� α1 � α2|   1. Show that

L � Kpλq lies in the 
ompositum of Kpλ1qKpλ2q.

Exer
ise 4.4.24. Let p be a prime number and n P Z
¡0. Write n � prm with r P Z

¥0 and m P Z
¡0 su
h

that p ∤ m. Fix an algebrai
 
losure Qp of Qp. In what follows, ζn will denote a (any) primitive n-th root

of unity, and Kn � Qppζnq. Let ΦnpXq P ZrXs be the n-th 
y
lotomi
 polynomial.

(1) Explain why Kn{Qp is Galois and show that GalpKn{Qpq inje
ts 
anoni
ally in pZ {nZq�.

(2) Show that the extension of Fp generated by the primitive m-th roots of unity is Fpf where f is the order

of p in pZ {mZq�. Explain why the irredu
ible fa
tors of the image of Φm in FprXs all are of degree f .
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(3) Show that Km is the unrami�ed extension of degree f of Qp [hint: use Newton's lemma to show that

its residue �eld is Fpf ℄.

(4) Show that Φpr p1�Xq is an Eisenstein polynomial inKmrXs. Dedu
e thatKm is the maximal unrami�ed

subextension of Kn{Qp [hint: show that Kn � Kmpζpr q℄. What is the degree of the extension rKn : Qps?

(5) Dedu
e that the ring of integers of Kn is Zprζns. Show that ζpr � 1 is a uniformizer of Kn. Is ζn � 1 a

uniformizer?

(6) Compute the di�erent and the dis
riminant of Kn{Qp.

(7) Determine the rami�
ation �ltration of GalpKn{Qpq with lower and upper numbering.

(8) Retrieve the result of question (6) using the rami�
ation �ltration.

(9) Show that there exists π0 P Kp su
h that π
p�1
0 � �p.

(10) Is there ne
essarily an element π1 P Kp su
h that π
p�1
1 � p?



116 Number theory

5. Infinite extensions

5.1. In�nite Galois theory. Let K be a �eld. If L{K is a �nite Galois extension, Galois theory provides a

di
tionary between subextensions of L{K and subgroups of GalpL{Kq � AutK-alg

pLq. More pre
isely, there

is a de
reasing bije
tion

tsubextensions of L{Ku Ñ tsubgroups of GalpL{Kqu

F ÞÑ GalpL{F q

(the inverse bije
tion is H ÞÑ LH). We extend this to (possibly) in�nite Galois extensions: let L{K be an

algebrai
, separable and normal extension, and put

GalpL{Kq � AutK-alg

pLq

Remark 5.1.1. An important example, is when L � K is a separable 
losure of K. The group GalpK{Kq

is 
alled �the� absolute Galois group of K.

Denote by IL{K the set of �nite and normal subextensions of L{K. Endowed with the in
lusion rela-

tion, this is a dire
ted set (an upper bound of two extensions being their 
ompositum). For F1 � F2 P

IL{K , the restri
tion provides group homomorphisms GalpL{Kq Ñ GalpF2{Kq Ñ GalpF1{Kq: the family

pGalpF {KqqFPIL{K
(endowed with the restri
tion maps) is an inverse system, and there is a group homo-

morphism

ψ : GalpL{Kq Ñ lim
�Ý

FPIL{K

GalpF {Kq

Lemma 5.1.2. The previous morphism is an isomorphism.

Proof. If g P Kerpψq, then g
|F � IdF for every F P IL{K . As L �

�

FPIL{K

F (be
ause L{K is algebrai
), this

implies that g � IdL, so that ψ is inje
tive. Let pgF qFPIL{K
P lim

�Ý

FPIL{K

GalpF {Kq. If x P L and F1, F2 P IL{K

are su
h that x P F1 X F2, let F be the 
ompositum of F1 and F2. As pgF q
|F1

� gF1
and pgF q

|F2
� gF2

,

we have gF1
pxq � gF pxq � gF2

pxq, so gF pxq does not depend on the 
hoi
e of F P IL{K su
h that x P F .

So we 
an de�ne g : L Ñ L by gpxq � gF pxq for any F P IL{K su
h that x P F . We have g
|F � gF for all

F P IL{K , so g P GalpL{Kq, and ψpgq � pgF qFPIL{K
, whi
h proves the surje
tivity of ψ. �

De�nition 5.1.3. Via the previous isomorphism, the group GalpL{Kq is endowed with a topology (
alled

the Krull topology) for whi
h it is pro�nite (in parti
ular it is 
ompa
t). If g P GalpL{Kq, a basis of

neighborhoods of g is tg GalpL{F quFPIL{K
(i.e. g1, g2 P GalpL{Kq are 
lose if they agree on a big �nite

subextension of L{K).

Theorem 5.1.4. The map F ÞÑ GalpL{F q is a bije
tion between the set of subextensions of L{K and that of


losed subgroups of GalpL{Kq. The open subgroups 
orrespond to �nite subextensions of L{K. The inverse

bije
tion is H ÞÑ LH .

Proof. 
 If F is a �nite subextension of L{K, the subgroup GalpL{F q ¤ GalpL{Kq is open(41), hen
e 
losed.

Now if F {K is any (i.e. not ne
essarily �nite) subextension of L{K, then GalpL{F q �
�

M�F
rM :Ks 8

GalpL{Mq

(be
ause F �

�

M�F
rM :Ks 8

M), so GalpL{F q is a 
losed subgroup as the interse
tion of 
losed subgroups. This

shows that the map is well de�ned.


 Let F be a subextension of L{K. If x P L, there exists a �nite and normal subextension N{F of L{F

su
h that x P N . If x �xed by GalpL{F q, it is �xed by GalpN{F q, hen
e x P F (by 
lassi
al Galois theory).

This implies that LGalpL{F q
� F , so the map F ÞÑ GalpL{F q is inje
tive.


 It remains to show that if H ¤ GalpL{Kq is a 
losed subgroup, then H � GalpL{F q with F :� LH . One

has H ¤ GalpL{F q. To show the equality, is is enough to show that H is dense in GalpL{F q (be
ause H is


losed). Let g P GalpL{F q andM P IL{F , so that g GalpL{Mq is an open neighborhood of g in GalpL{F q. As

F � LH , one hasMH
� F as well, where H is the image of H in GalpM{F q. By 
lassi
al Galois theory, this

implies that H � GalpM{F q, so that H Ñ GalpM{F q is surje
tive: there exists σ P H su
h that σ
|M � g

|M ,

so that g�1σ P GalpL{Mq, i.e. σ P gGalpL{Mq: we have σ P H X g GalpL{Mq i.e. H X g GalpL{Mq � ∅,
whi
h proves the density.

(41)

Take N � L the normal 
losure of F , then N P IL{K , so GalpL{Nq is open in GalpL{Kq (by de�nition of Krull topology):

so is GalpL{F q �
�

gPGalpN{F q

gGalpL{Nq.
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 We have seen that if F {K is �nite, then GalpL{F q is open in GalpL{Kq. Conversely, if H � GalpL{F q is

open in GalpL{Kq, one has rGalpL{Kq : Hs   �8 (be
ause GalpL{Kq is 
ompa
t). If x P LH , then x has at

most rGalpL{Kq : Hs 
onjugates, so rF : Ks ¤ rGalpL{Kq : Hs is �nite. �

Proposition 5.1.5. A subextension F {K of L{K is Galois if and only if GalpL{F qEGalpL{Kq. In this 
ase

GalpL{Kq{GalpL{F q
�

ÑGalpF {Kq.

Proof. Let H � GalpL{F q ¤ GalpL{Kq. If g P GalpL{Kq, one has GalpL{gpF qq � gHg�1
. By Galois


orresponden
e, one has gpF q � F � gHg�1
� H , so F {K is Galois if and only if H E GalpL{Kq. In

this 
ase, the restri
tion indu
es a surje
tive group homomorphism GalpL{Kq Ñ GalpF {Kq, whose kernel is

H . �

Example 5.1.6. Let K be a �nite �eld: K � Fq with q � pn (where p � charpKq). Fix K an algebrai



losure of K. Let ϕ : K Ñ K ; x ÞÑ xq be the Frobenius map. For m P Z
¡0, let Km � Fqm be the

unique subextension of K{K of degree m. The extension Km{K is Galois, and GalpKm{Kq � Z {mZ is


y
li
, generated by ϕ
|Km

. Passing to the limit, the map

pZ
�

ÑGalpK{Kq; 1 ÞÑ ϕ is an isomorphism and a

homeomorphism.

Remark 5.1.7. (Ramifi
ation groups) Assume K is a lo
al �eld, and L{K a (non ne
essarily �nite)

Galois extension. If y P r�1,�8r, we 
an put

GalpL{Kqy � lim
�Ý

FPIL{K

GalpF {Kqy

(whi
h makes sense sin
e upper numbering is 
ompatible with quotients, 
f theorem 4.3.31).

5.2. Dévissage of GK . In this se
tion, pK, |.|q denotes a lo
al �eld of mixed 
hara
teristi
s p0, pq (so thatK

is an extension of Qp). Let v : K Ñ QYt�8u be the valuation normalized by vppq � 1. Fix K an algebrai



losure of K and let GK � GalpK{Kq be �the� absolute Galois group. Re
all that |.| extends uniquely to

a (non-dis
rete) absolute value |.| : K Ñ R
¥0 (so that v extends uniquely into a non-dis
rete valuation

v : K Ñ QYt8u), whi
h is GK-equivariant, i.e. p�x P Kq p�g P GKq vpgpxqq � vpxq (
f 
orollaries 3.5.7

and 3.5.8). Put W �Wpkq and F � FracpW q �W
�

1
p

�

. One has F ãÑ K, and the extension K{F is totally

rami�ed of degree eK � r|K�

| : Zs (we have vpKq � 1
eK

ZYt8u).

For every �nite and Galois subextension L of K{K, we have (
f �4.1) n exa
t sequen
e

tIdLu Ñ IL{K Ñ GalpL{Kq Ñ GalpκL{κKq Ñ t1u

where IL{K � GalpL{T q is the inertia subgroup (here T is the maximal unrami�ed subextension of L{K).

As L ranges among the �nite and Galois subextension of K{K, this provides an inverse system of exa
t

sequen
es. Passing to inverse limit gives an exa
t sequen
e:

tIdK u Ñ IK Ñ GK Ñ GalpκK{κKq Ñ t1u

(note that κK � κK by 
orollary 3.8.16). Under Galois 
orrespondan
e, the group IK 
orresponds to the


omposite Kur
of all unrami�ed subextensions of K{K: we 
all Kur

the maximal unrami�ed subextension

of K. Then IK � GalpK{Kur
q and GalpKur

{Kq
�

ÑGalpκK{κKq.

Remark 5.2.1. When K in a �nite extension of Qp, the group Galpκ̄K{κKq � pZ is quite expli
it (
f example

5.1.6). Write κK � Fq (where q � prκK :Fps
). Then κK is an algebrai
 
losure of κK : it is obtained by

adjoining to κK the n-roots of unity for all n P Z
¡0 prime to p. Using Newton's lemma, this implies that

Kur
�

�

p∤n

Kpµnq (where µn denotes the group of n-th roots of unity in K).

De�nition 5.2.2. We denote by PK the pro-p-Sylow subgroup of IK , i.e. the maximal pro-p-subgroup of

IK . This is the 
losed subgroup of GK (
alled the wild inertia subgroup). By de�nition, it 
orresponds,

under Galois 
orrespondan
e, to the 
omposite Ktame
of all tamely rami�ed subextensions of K{K.

De�nition 5.2.3. Let G be a pro�nite group.

(1) Let B a topologi
al ring endowed with a 
ontinuous a
tion of G. A B-representation of G is a free

B-module of �nite rank endowed with a 
ontinuous and semi-linear a
tion of G, i.e.

p�g P Gq p�b P Bq p�m1,m2 PMq gpbm1 �m2q � gpbqgpm1q � gpm2q

With B-linear G-equivariant maps, they form a 
ategory denoted by RepBpGq.

(2) Let ℓ be a prime number. A ℓ-adi
 representation of G is a Qℓ-representation (where the a
tion of G

on Qℓ is trivial). An integral ℓ-adi
 representation of GK is a Zℓ-representation of G.
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Proposition 5.2.4. Let G be a pro�nite group and V P RepQℓ
pGq. There exists an integral ℓ-adi
 repre-

sentation L � V whi
h is a latti
e, i.e. su
h that V � LbZℓ
Qℓ.

Proof. Let L0 � V be any latti
e (take the Zℓ-span of a basis). This is an open neighborhood of 0 P V : as

the a
tion of G is 
ontinuous, there exists an open subgroup H ¤ G su
h that p�h P HqhpL0q � L0. Put

L �

°

τPG{H

τL0. As L0 is 
ompa
t (homeomorphi
 to Znℓ with n � dimQℓ
pV q), so is L. As L0 � L, this

implies that L is a latti
e, whi
h is stable by G by 
onstru
tion. �

If ℓ is a prime number, let

�

ζℓn
�

nPN
be a 
ompatible sequen
e of primitive ℓn-th roots of unity, whi
h means

that ζ0 � 1, ζℓ � 1 and p�n P Z
¥0q ζ

ℓ
ℓn�1 � ζℓn .

De�nition 5.2.5. (1) For n P Z
¥0, the extension Kn :� Kpζℓnq{K is Galois, and if g P GalpKn{Kq, then

gpζℓnq � ζ
χℓ,npgq

ℓn where χℓ,npgq P pZ {ℓ
nZq�: the map χℓ,n : GalpKn{Kq Ñ pZ {ℓnZq� is an inje
tive group

homomorphism. Put K
8

�

8

�

n�0

Kn: the subextension K
8

{K of K{K is 
alled the (ℓ-adi
) 
y
lotomi


extension. It is Galois, and as n varies, the morphisms χℓ,n are 
ompatible: passing to the inverse limit,

one gets an inje
tive group homomorphism

χℓ : GalpK
8

{Kq Ñ Z�ℓ


alled the (ℓ-adi
) 
y
lotomi
 
hara
ter. Note that the image of χℓ has �nite index in Z�ℓ .

The 
omposite GK Ñ GalpK
8

{Kq
χℓ
ÝÑ Z�ℓ is also denoted by χℓ and 
alled the 
y
lotomi
 
hara
ter as well.

(2) The 
hara
ter χp provides a 
ontinuous a
tion of GK on Zp (given by the multipli
ation by χp), in

parti
ular a p-adi
 representation of GK . We denote by Zpp1q this GK-module: one has Zpp1q � lim
�Ý

n

µpnpK q

(taken additively). If i P Z, we put Zppiq � Zpp1q
bi
: this is nothing but Zp endowed with the a
tion of GK

given by the multipli
ation by χip. If M is any (topologi
al) Zp-module with a 
ontinuous a
tion of GK ,

and i P Z, we put Mpiq �M bZp
Zppiq (as GK-modules). This is 
alled a Tate twist.

Let π be a uniformizer of K. It is a uniformizer of Kur
. For n P Z

¡0 prime to p, let πn �
n
?

π P K be a n-th

root of π. We may assume that the family pπnqp∤n is 
ompatible, i.e. p�m,n P N
¡0q p ∤ nm ñ πmnm � πn.

As Xn
� π P Kur

rXs is an Eisenstein polynomial, the extensions Kpπnq{K and Kur
pπnq{K

ur
have degree

n. They are totally tamely rami�ed. In parti
ular,

�

p∤n

Kur
pπnq � Ktame

.

Proposition 5.2.6. We have Ktame
�

�

p∤n

Kur
pπnq.

Proof. We have to show that if L is a �nite tamely rami�ed subextension of K{K, there exists a �nite

unrami�ed subextension T of K{K and n P Z
¡0 prime to p su
h that L � T pπnq. Let T be the maximal

unrami�ed extension of L{K. As L{T is totally tamely rami�ed, one has L � T p̟q, where̟ is a uniformizer

of L su
h that ̟e
is a uniformizer of T (where e � rL : T s is prime to p, 
f theorem 3.8.28): there exists

α P O�

T su
h that ̟ is a root of the Eisenstein polynomial EpXq � Xe
�πα P OT rXs. Let u P κK be a root

of the redu
tion of Xe
� α P κT rXs (where α denotes the image of α in κT ). As it is separable (be
ause

eα P O�

T sin
e p ∤ e), one 
an lift u to a root u P OKur
of Xe

�α P OT rXs (by Newton's lemma). Repla
ing

L by Lpuq (whi
h is li
it sin
e T puq{T is unrami�ed), we may assume that u P T . We have ̟e
� puπeq

e
, so

that ̟ � ζuπe for some e-th root of unity ζ. Repla
ing L by Lpζq (whi
h is li
it sin
e T pζq{T is unrami�ed),

we may assume that ζ P T , so that πe �
̟
ζu

P L, hen
e T pπeq � L. As rT pπeq : T s � e � rL : T s, this

implies that L � T pπeq. �

If ℓ � p is a prime number and n P Z
¡0, the 
onjugates of πℓn are ζkℓnπℓn with k P Z {ℓnZ: if g P GK , one

has gpπℓnq � ζ
tℓpgq

ℓn πℓn , where tℓ : IK Ñ Z {ℓnZ is a surje
tive group homomorphism. These are 
ompatible

as n varies, giving rise to a surje
tive group homomorphism

tℓ : IK Ñ Zℓp1q

Remark 5.2.7. The Tate twist (whi
h is relative to the ℓ-adi
 
y
lotomi
 
hara
ter) denotes the fa
t that tℓ
is a 
o
y
le. This means the following. Let g P IK and γ P GK . As IK is normal in GK , we have γgγ

�1
P IK ,

and pγgγ�1
qpπℓnq � ζ

χpγqptℓpγ
�1
q�tℓpgqq�tℓpγq

ℓn πℓn so that tℓpγgγ
�1
q � χpγqtℓpgq � χpγqtℓpγ

�1
q � tℓpγq. With

g � IdK (in whi
h 
ase tℓpgq � 0), this shows that χpγqtℓpγ
�1
q � tℓpγq � 0 for all γ P GK , so that the

previous equality gives

tℓpγgγ
�1
q � χpγqtℓpgq.
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Proposition 5.2.8. The sequen
e

tIdK u Ñ PK Ñ IK
ptℓqℓ
ÝÝÝÑ

¹

ℓ�p

Zℓp1q Ñ t0u

is exa
t.

Proof. By de�nition, one has IK{PK
�

ÑGalpKtame
{Kur

q, and the fa
t that GalpKtame
{Kur

q

�

Ñ

±

ℓ�p

Zℓp1q

through ptℓqℓ follows from proposition 5.2.6. �

Theorem 5.2.9. (Grothendie
k's monodromy theorem), 
f [23, Appendix℄) Let ℓ � p be a prime

integer, and V an ℓ-adi
 representation of GK . Assume that Kpµℓ8q{K is in�nite. Then V is quasi-

unipotent, i.e. there exists a unique nilpotent endomorphism N : V p1q Ñ V and an open subgroup I � IK
su
h that

p�g P Iqp�v P V q gpvq � expptℓpgqNqpvq

Proof. By proposition 5.2.4, V 
ontains a GK-stable latti
e L: the representation is thus given by a


ontinuous group homomorphism ρ : GK Ñ GLpLq � GLnpZℓq where n � dimQℓ
pV q. The subgroup

IdL�ℓ
2 EndpLq � GLpLq is open and normal: let I � ρ�1

�

IdL�ℓ
2 EndpLq

�

X IK . This is an open sub-

group of IK and a normal subgroup of GK . Let ρ
|I : I Ñ IdL�ℓ

2 EndpLq be the group homomorphism

indu
ed by ρ. As IdL�ℓ
2 EndpLq is a pro-ℓ-group and Kerptℓq is an inverse limit of groups of order prime to

p, the morphism ρ is trivial on I X Kerptℓq, i.e. ρ
|I fa
tors through I{pI X Kerptℓqq.

If g P I, then ρpgq P IdL�ℓ
2 EndpLq, so the series logpρpgqq � �

8

°

i�1

1
i
pIdL�ρpgq

�i

onverges in ℓ2 EndpLq

(for the ℓ-adi
 topology). Also, sin
e logpρpgqq P ℓ2 EndpLq, one has ρpgq � expplogpρpgqqq. This provides

a 
ontinuous group homomorphism logpρq : I Ñ ℓ2 EndpLq that fa
tors through I{pI X Kerptℓqq, i.e. by tℓ:

there exists a unique N : V p1q Ñ V su
h that p�g P Iq logpρpgqq � tℓpgqN . It remains to see that N is

nilpotent.

Denote by χℓ : GK Ñ Z�ℓ be the ℓ-adi
 
y
lotomi
 
hara
ter. As Kpµℓ8q{K is in�nite, the image of χℓ is

in�nite. If γ P GK and g P I, one has γ�1gγ P I (be
ause I is normal in GK), and
(42) tℓpγ

�1gγq � χℓpγqtℓpgq.

We have ρpγ�1gγq � ρpγq�1ρpgqρpγq, taking the logarithm we get tℓpγ
�1gγqN � tℓpgqρpγq

�1Nρpγq hen
e

ρpγq�1Nρpγq � χℓpγqN

This implies that the spe
trum of N is stable by multipli
ation by Impχℓq. As Impχℓq in�nite and the

spe
trum of N is �nite, the latter has to be redu
ed to t0u, and N is nilpotent. �

Remark 5.2.10. As ℓ � p, one has µℓ8pK q � µℓ8pkKq, so the 
ondition in the theorem is automati
ally

ful�lled when k is �nite.

5.3. The 
ompletion of a separable 
losure of a lo
al �eld. Let pF, |.|q be a 
omplete non ar
himedean

valued �eld. Fix F an algebrai
 
losure of F . The absolute value |.| extends uniquely into an absolute value

|.| on F (
f 
orollary 3.5.7).

Lemma 5.3.1. (Krasner

(43)

). Let α, β P F be su
h that α is separable over F and:

|α� β|   min
α1PCpαqztαu

�

�α� α1
�

�

where Cpαq is the set of 
onjugates of α over F . Then F pαq � F pβq.

Proof. Put γ � β�α and F 1

� F pβq: we have F 1

pγq � F 1

pαq so F 1

pγq{F 1

is separable. Let γ1 be a 
onjugate

of γ over F 1

. If γ1 � γ, we 
an write γ1 � β �α1 with α1 P Cpαqztαu. As γ1 and γ are 
onjugate over F 1

, we

have |γ1| � |γ|, so that

�

�α� α1
�

�

�

�

�γ1 � γ
�

�

¤ |γ| � |β � α|

whi
h 
ontradi
ts the hypothesis. This implies that γ has only one 
onjugate over F 1

, i.e. γ P F 1

, when
e

α P F 1

� F pβq. �

Lemma 5.3.2. If |.| is not trivial, then an in�nite and separable subextension of F {F is never 
omplete.

(42)

This is the pre
ise meaning of remark 5.2.7.

(43)

This result is in fa
t due to Ostrowski.
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Proof. Let K be an in�nite subextension of F {F . Assume that pK, |.|q is 
omplete, and that K{F is

separable. Choose a sequen
e pxnqnPZ
¥0

of elements in K that are all linearly independent over F . As |.|

is not trivial, there exists a sequen
e panqnPZ
¥0

of elements in F su
h that the sequen
e p|anxn|qnPZ
¥0

is

stri
tly de
reasing and 
onverges to 0. As K is 
omplete, the series s �
8

°

n�0

anxn 
onverges in K. For

n P Z
¡0, put sn �

n�1
°

i�0

aixi: the elements tsnunPZ
¡0

are all linearly independent over F . For n P Z
¡0, let dn

be the smallest distan
e between sn and its 
onjugates. a0 being 
hosen arbitrarily, we 
an 
onstru
t the

sequen
e panqnPZ
¥0

indu
tively so that |anxn|   dn for all n P Z
¡0. As p|anxn|qnPZ

¥0
is stri
tly de
reasing,

we have |s� sn| � |anxn|   dn. By Krasner's lemma, this implies that sn P F psq. As psnqnPZ
¡0

is linearly

independent, this implies that rF psq : F s � 8, whi
h 
ontradi
ts the fa
t that s P K is algebrai
 over F . �

Remark 5.3.3. In the lemma 5.3.2, the separability 
ondition is really ne
essary: let K � FppxiqiPZ
¥0

be

the �eld of rational fra
tions in the indeterminates pxiqiPZ
¥0

with 
oe�
ients in Fp, and F � KppT qq the �eld

of formal Laurent series with 
oe�
ients in K. Endowed with the T -adi
 absolute value |.|, the �eld F is


omplete. Then F 1{p
� K1{p

ppT 1{p
qq is a totally inseparable algebrai
 extension of F . The absolute value |.|

extends uniquely to F 1{p
(
f theorem 3.5.6), and the Frobenius map ϕ : F 1{p

Ñ F is a �eld isomorphism. As

|ϕpfq| � |f |
p
for all f P F 1{p

, the Frobenius map is also an homeomorphism, so that F 1{p
is also 
omplete.

On the other hand, the extension F 1{p
{F is in�nite, be
ause K1{p

{K is (this 
an be seen as follows: for all

i P Z
¥0, we have xi R Fppx0, . . . , xi�1, x

p
i , x

p
i�1, . . .q, so that

rFppx
1{p
0 , . . . , x

1{p
i , xi�1, . . .q : Fppx

1{p
0 , . . . , x

1{p
i�1, xi, xi�1, . . .qs � p,

when
e rFppx
1{p
0 , . . . , x

1{p
i , xi�1, . . .q : Ks � pi�1

by indu
tion).

From now on, pK, |.|q denote a 
omplete non ar
himedean valued �eld. We assume that |.| is not trivial.

Proposition 5.3.4. κK is an algebrai
 
losure of κK and

�

�K�

�

�

� tr P R
¡0 ; pDn P Z

¡0q r
n
P |K�

|u � ρQ

for any element ρ P |K�

| zt1u.

Proof. 
 Let x P κK : there exists px P OK su
h that px maps to x in κK � OK {mK . There exists a �nite

subextension L{K of K{K su
h that px P L, i.e. px P OL. Redu
ing modulo mL shows that x P κL is

algebrai
 over κK .


 Let P pXq P κKrXs be a moni
 irredu
ible polynomial, and

pP pXq P OKrXs a moni
 lift of P . Then

pP

has a root α P K , and α P OK (
f 
orollary 3.5.10): if α denotes the image of α in κK , we have P pαq � 0,

hen
e P has a root in κK , proving that κK is an algebrai
 
losure of κK .


 Let L{K be a �nite subextension of K{K. We have |L�| � |K�

|

1{e
where e is the rami�
ation index of

L{K. This implies that |L�| � tr P R
¡0 ; pDn P Z

¡0q r
n
P |K�

|u. As this holds for all subextension L{K of

K{K, we have

�

�K�

�

�

� tr P R
¡0 ; pDn P Z

¡0q r
n
P |K�

|u.


 Conversely, let r P R
¡0 and n P Z

¥0 be su
h that rn P |K�

|: there exists m P Z su
h that |πK |
m
� rn,

where πK is a uniformizer on K. Then P pXq � Xn
� πK P OK rXs is an Eisenstein polynomial: if α P K

is a root of P , then |α| � |πK |
1{n

, so that rn � |α|
nm

, hen
e r � |αm| P
�

�K�

�

�

. �

Corollary 5.3.5. The �eld κK is in�nite, and

�

�K�

�

�

is dense in R
¡0.

Notation. We denote by C the 
ompletion of K with respe
t to its absolute value |.|. The latter extends

to C: we still denote by |.| this extension.

Proposition 5.3.6. The �eld C is algebrai
ally 
losed.

Proof. Let L be a �nite extension of C. Repla
ing L by its normal 
losure overC, we may assume that L{C is

normal. Denote by |.| the unique extension of |.| to L. Let α P L and P pXq � Xn
�a1X

n�1
�� � ��an P CrXs

its minimal polynomial over C. Let ε P R
¡0: as K is dense in C, we 
an 
hoose b1, . . . , bn P K su
h that

|bi � ai| |α|
n�i

  εn for all i P t1, . . . , nu. Put QpXq � Xn
� b1X

n�1
� � � � � bn P K rXs: we have

Qpαq � Qpαq � P pαq �
n
°

i�1

pbi � aiqα
n�i

, so that |Qpαq| ¤ max
1¤i¤n

|bi � ai| |α|
n�i

  εn. On the other hand,

let β1, . . . , βn P K be the roots of QpXq. As Qpαq �
n
±

i�1

pα � βiq, we have
n
±

i�1

|α� βi|   εn, so there exists

i P t1, . . . , nu su
h that β :� βi P K satis�es |α� β|   ε. We 
an thus 
onstru
t a sequen
e pxkqkPZ
¡0

in K

su
h that |α� xk|   2�k for all k P Z
¡0. This implies that α � lim

kÑ8

xk P C. In parti
ular, we must have

L � C. �

De�nition 5.3.7. The 
ompletion of �the� algebrai
 
losure of Qp is denoted by Cp.
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5.3.8. The Galois a
tion on C. The 
ontent of this part is taken from [2℄. Re
all that pK, |.|q is a 
omplete

non ar
himedean valued �ed su
h that |.| is non trivial. Let K be a separable 
losure of K, and pC, |.|q the


ompletion of pK, |.|q. As the group GK :� GalpK{Kq a
ts by isometries on K , the a
tion of GK extends

to C by 
ontinuity. Let

?

K denote the perfe
t 
losure of K, i.e.

?

K �

#

K if charpKq � 0

Kp�8
if charpKq � p ¡ 0

Theorem 5.3.9. We have CGK
�

?

K
y

, i.e. the �eld of elements in C that are invariant under GK is the


ompletion of the perfe
t 
losure of K.

We will need a few lemmas.

Lemma 5.3.10. Let p be a prime number and n P Z
¥1. If k P t0, . . . , vppnqu, then vp

��

n
pk

��

� vppnq � k.

Proof. Let spnq be the sum of the digits of the p-adi
 development of n. Then vppn!q �
n�spnq

p�1
. This

implies that vp
��

n
pk

��

�

n�spnq�ppk�1�n�pk�spn�pkqq

p�1
�

spn�pkq�1�spnq

p�1
. Put v � vppnq and write n � pvm

with p ∤ m: we have spnq � spmq and n � pk � pkppv�km � 1q so that spn � pkq � sppv�km � 1q. Let

m � a0 � pa1 � � � � � prar with ai P t0, . . . , p � 1u for i P t0, . . . , ru be the p-adi
 development of m. We

have a0 � 0, and

pv�km� 1 � pv�k � 1� pv�kpa0 � 1q � pv�k�1a1 � � � � � pv�k�rar

� p1� p� p2 � � � � � pv�k�1
qpp� 1q � pv�kpa0 � 1q � pv�k�1a1 � � � � � pv�k�rar

so that sppv�km� 1q � pv � kqpp� 1q � spmq � 1, whi
h implies that spn� pvq � 1� spnq � pv � kqpp� 1q

when
e vp
��

n
pk

��

� v � k. �

Lemma 5.3.11. Let P pXq �
d
±

i�1

pX � αiq �
d
°

j�0

ajX
j
P CrXs. Assume that |α1| ¤ � � � ¤ |αd|. If

j P t0, . . . , d� 1u, we have |aj | ¤ |αj�1 � � �αn|. If |αj |   |αj�1|, we have equality, more pre
isely

�

�

�

1� p�1qd�j
aj

αj�1���αn

�

�

�

  1.

Proof. We have aj � p�1qn�j
°

i1 ��� id�j

αi1 � � �αid�j
: the ordering of the roots implies the inequalities

�

�αi1 � � �αid�j

�

�

¤ |αj�1 � � �αn| proving the �rst inequality by the triangle inequality. When |αj |   |αj�1|, we

have

�

�αi1 � � �αid�j

�

�

  |αj�1 � � �αn| unless ik � j � k for all k P t1, . . . , d� ju, proving the se
ond part of the

lemma in that 
ase. �

Lemma 5.3.12. Let P pXq P CrXs be of degree d � pδd1 � qd1 where p � maxt1, charpκCqu, δ P Z
¥0 and

gcdpp, d1q � 1. Assume q   d and that a disk D � C 
ontains all the roots of P . Then P rqs
has a zero in D.

Proof. We may assume that P is moni
 and that 0 P D: this implies that D � Dp0, rq for some r P R
¥0.

Write P pXq �
d
±

i�1

pX � αiq �
d
°

j�0

ajX
j
with |α1| ¤ � � � ¤ |αd| ¤ r. By lemma 5.3.11, we have |aj | ¤ rd�j

for all j P t0, . . . , d� 1u. We have

P rqs
pXq �

d
°

j�q

�

j
q

�

ajX
j�q

�

d�q
°

k�0

bkX
k

where bk �
�

k�q
q

�

ak�q for k P t0, . . . d� qu. As P is moni
, we have bd�q �
�

d
q

�

, so we 
an write

P rqs
pXq �

�

d
q

�

d�q
±

k�1

pX � βkq

so that b0 �
�

d
q

�

d�q
±

k�1

p�βkq. We have

�

�

�

�

d
q

�

�

�

�

� 1, be
ause the image of

�

d
q

�

is invertible in κC (this is trivial

if charpκCq � 0, and follows from lemma 5.3.10 if charpκCq � p ¡ 0). This implies that

d�q
±

k�1

|βk| ¤ rd�q, so

that there exists k0 P t1, . . . , d� qu su
h that |βk| ¤ r i.e. βk P D. �

Lemma 5.3.13. Assume that charpCq � 0 and charpκCq � p ¡ 0. Let P pXq P CrXs be of degree d � pδ ¡ 1

having all its zeros in a disk D � Dpa, rq. If q � pδ�1
, then P rqs

has a zero in D
�

a, r |p|
�

1
d�q

�

.
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Proof. Again, we may assume that P is moni
 and that D � Dp0, rq. Write P pXq �
d
±

i�1

pX�αiq �
d
°

j�0

ajX
j
:

as before, we have

P rqs
pXq �

d
°

j�q

�

j
q

�

ajX
j�q

�

�

d
q

�

d�q
±

k�1

pX � βkq

so that aq �
�

d
q

�

d�q
±

k�1

p�βkq. As vp
��

d
q

��

� 1 by lemma 5.3.10, we have |p|
d�q
±

k�1

|βk| ¤ rd�q, so that there exists

k P t1, . . . , d� qu su
h that |p| |βk|
d�q

¤ rd�q i.e. |βk| ¤ r |p|
�

1
d�q

. �

De�nition 5.3.14. If α P K , let

∆Kpαq � ∆pαq � sup
α1PCpαqztαu

|α1 � α|

with the 
onvention that ∆pαq � 0 if α P
?

K.

Remark 5.3.15. If α P K and x P K, we have |α1 � α| ¤ maxt|α1 � x| , |α� x|u � |α� x| for all 
onjugate

α1 of α (sin
e elements of GK a
t by isometries on K ). This implies that ∆pαq ¤ |α� x|. As this holds

for all x P K, this means that ∆pαq ¤ dpα,Kq. The aim of the next few lemmas is to show that ∆pαq is

"
lose" to dpα,Kq.

Lemma 5.3.16. Assume that charpKq � 0 and charpκKq � p ¡ 0. If α P K has degree n over K, then there

exists x P K su
h that

|α� x| ¤ ∆pαq |p|
�cpnq

where cpnq �
λpnq
°

i�1

1
pi�pi�1 and λpnq � maxte P Z

¥0 ; p
e
¤ nu.

Proof. We pro
eed by indu
tion on n P Z
¡0, the 
ase n � 1 being trivial. Let P pXq P KrXs be the minimal

polynomial of α over K. Write n � pδn1 � qn1 with p ∤ n1. Let D be the dis
 
entered at α with radius

∆pαq.


 If n1 ¡ 1, lemma 5.3.12 implies that P rds
has a root β P D, i.e. su
h that |α� β| ¤ ∆pαq. If β1 ia a


onjugate of β over K, then there exists σ P GK su
h that σpβq � β1. This implies that

|β1 � β| � |σpβq � β| � |σpβ � αq � pσpαq � αq � pα� βq| ¤ maxt|α� β| , |σpαq � α|u ¤ ∆pαq

sin
e |σpα � βq| � |α� β|. As this holds for every 
onjugate β1 of β over K, this implies that ∆pβq ¤ ∆pαq.

As rKpβq : Ks ¤ degpP rqs
q � n� q   n, the indu
tion hypothesis implies that there exists x P K su
h that

|β � x| ¤ ∆pβq |p|
�cpn�qq

. We have λpnq ¥ λpn � qq, hen
e cpnq ¥ cpn � qq, thus |p|
�cpn�qq

¤ |p|
�cpnq

(as

1   |p|
�1
), so |β � x| ¤ ∆pαq |p|

�cpnq
. As |α� x| ¤ maxt|α� β| , |β � x|u, we get |α� x| ¤ ∆pαq |p|

�cpnq

(sin
e |α� β| ¤ ∆pαq and 1 ¤ |p|
�cpnq

).


 If n1 � 1, put q � pδ�1
, lemma 5.3.13 shows that P rqs

has a root β su
h that |β � α| ¤ ∆pαq |p|
�

1
d�q

. As

before, we have |β1 � β| ¤ maxt|α� β| , |σpαq � α|u ¤ ∆pαq |p|
�

1
d�q

for all 
onjugate β1 of β over K, so that

∆pβq ¤ ∆pαq |p|
�

1
d�q

. By the indu
tion hypothesis, there exists x P K su
h that |β � x| ¤ ∆pβq |p|
�cpn�qq

,

i.e. |β � x| ¤ ∆pαq |p|
�cpn�qq� 1

n�q
. As n � pδ, we have n � q � pδ�1

pp � 1q, so λpn � qq � δ � 1,

hen
e cpn � qq �
δ�1
°

i�1

1
pi�pi�1 � cpnq � 1

n�q
: this implies that |β � x| ¤ ∆pαq |p|

�cpnq
. As before, we

have |α� x| ¤ maxt|α� β| , |β � x|u, so that |α� x| ¤ ∆pαq |p|
�cpnq

(be
ause |α� β| ¤ ∆pαq |p|
�

1
d�q

and

|p|
�

1
d�q

¤ |p|
�cpnq

). �

Proposition 5.3.17. Assume that charpKq � 0 and charpκKq � p ¡ 0. If α P K , there exists x P K su
h

that |α� x| ¤ ∆pαq |p|
�

p

pp�1q2
.

Proof. This follows from lemma 5.3.16, sin
e cpnq ¤
8

°

i�1

1
pi�pi�1 �

1
p�1

8

°

k�0

1
pk
�

p
pp�1q2

for all n P Z
¡0. �

Lemma 5.3.18. Assume that charpKq � p ¡ 0. If α P K has degree p over K, there exists β P K1{p
su
h

that |α� β| ¤ |α|
p�1
p ∆pαq

1
p
.
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Proof. This is trivial if α is not separable over K: assume that α is separable over K. Let α1, . . . , αp be

the 
onjugates of α over K. For i P t1, . . . , pu, put ηi � αi � α. We have

NKpαq{Kpαq �
p
±

i�1

αi �
p
±

i�1

pα� ηiq � αp � b1α
p�1

� � � � � bp.

where bi is the i-th symmetri
 fun
tion of η1, . . . , ηp. As |ηk| ¤ ∆pαq for all k P t1, . . . , pu, we have

|bi| ¤ ∆pαqi for all i P t1, . . . , pu. Let β P K1{p
be su
h that βp � NKpαq{Kpαq: we have

pβ � αqp � b1α
p�1

� � � � � bp

so that |α� β| ¤ max
1¤i¤p

|bi| |α|
p�i

� ∆pαq |α|
p�1

sin
e ∆pαq ¤ |α| (be
ause |α1 � α| ¤ maxt|α1| , |α|u � |α|

for every 
onjugate α1 of α over K). �

Lemma 5.3.19. Assume that charpKq � p ¡ 0. If α P K has degree p over K and j P Z
¡0, there exists

βj P
?

K su
h that

|α� βj | ¤ |α|
p

p�1
p
q

j

∆pαq
1
p
�

p�1

p2
�����

pp�1qj�1

pj .

Proof. We pro
eed by indu
tion on j P Z
¡0, the 
ase j � 1 being lemma 5.3.18. Assume βj has been


onstru
ted. Applying lemma 5.3.18 to α� βj P
?

K, there exists βj�1 P

?

K
1{p

�

?

K su
h that

|α� βj�1| ¤ |α� βj |
p�1
p ∆pα� βjq

1
p .

As βj P
?

K, the element βj has only one 
onjugate, so that ∆pα � βjq � ∆pαq: we have

|α� βj�1| ¤

�

|α|
p

p�1
p
q

j

∆pαq
1
p
�

p�1

p2
�����

pp�1qj�1

pj

	

p�1
p

∆pαq
1
p
� |α|

p

p�1
p
q

j�1

∆pαq
1
p
�

p�1

p2
�����

pp�1qj

pj�1 .

�

Lemma 5.3.20. Assume that charpKq � p ¡ 0. If α P K has degree p over K is su
h that |α| ¤ 1, and

ℓ P Z
¡0, there exists β P

?

K su
h that |α� β| ¤ ∆pαq1�
1
ℓ
.

Proof. This follows from lemma 5.3.19 and the fa
t that

1
p
�

8

°

j�2

pp�1qj�1

pj
�

1
p
�

p�1
p2

8

°

k�0

�

p�1
p

�k
� 1. �

Proposition 5.3.21. Assume that charpKq � p. If α P K is su
h that |α| ¤ 1 and ℓ P Z
¡0, there exists

β P
?

K su
h that |α� β| ¤ ∆pαq1�
1
ℓ
.

Proof. 
 Case where K is perfe
t and every �nite extension of K has degree a power of p. Fix a tower of

extensions K � K0 � K1 � � � � � Kn su
h that α P Kn and rKi : Ki�1s � p for all i P t1, . . . , nu (take for

Kn any �nite Galois extension of K 
ontaining α, and use the fa
t that p-groups are solvable). By lemma

5.3.20, there exists γ P
a

Kn�1 � Kn�1 su
h that |α� γ| ¤ ∆Kn�1
pαq1�

1
2ℓ
¤ ∆pαq1�

1
2ℓ
. If γ1 is a 
onjugate

of γ over K, there exists σ P GK su
h that γ1 � σpγq, so that

|γ1 � γ| ¤ maxt|σpγ � αq| , |σpαq � α| , |α� γ|u � maxt∆pαq, |α� γ|u ¤ ∆pαq1�
1
2ℓ

sin
e ∆pαq ¤ ∆pαq1�
1
2ℓ

sin
e ∆pαq ¤ 1 be
ause ∆pαq ¤ |α| ¤ 1. As this holds for every 
onjugate γ1 of γ

over K, this implies that ∆pγq ¤ ∆pαq1�
1
2ℓ
. By indu
tion on n we 
an �nd an element β P

?

K su
h that

|γ � β| ¤ ∆pβq1�
1
2ℓ
¤ ∆pαqp1�

1
2ℓ
q

2

, thus |α� β| ¤ ∆pαqp1�
1
2ℓ
q

2

¤ ∆pαq1�
1
ℓ
(sin
e

�

1 � 1
2ℓ

�2
¥ 1 � 1

ℓ
and

∆pαq ¤ 1).


 Case where K is perfe
t. Let L be the sub�eld of K �xed by the pro-p-Sylow of GK : this is the 
omposite

of all subextensions of K{K that are of degree prime to p. By 
onstru
tion, �nite extensions of L have

degree a power of p. By the previous 
ase, there exists γ P
?

L � L su
h that |α� γ| ¤ ∆Lpαq
1� 1

ℓ
. As

before, this implies that ∆Kpγq ¤ ∆Kpαq
1� 1

ℓ
.

As rKpγq : Ks is prime to p, we may de�ne β �

1
rKpγq:Ks

TrKpγq{Kpγq P K. Denote by J be the set of

K-embeddings of Kpγq into K : we have #J � rKpγq : Ks sin
e γ is separable over K (be
ause K is

perfe
t). This implies that β � γ � 1
rKpγq:Ks

°

σPJ

pσpγq � γq. As |rKpγq : Ks| � 1 (be
ause p ∤ rKpγq : Ks),

we have |β � γ| �

�

�

�

�

°

σPJ

pσpγq � γq

�

�

�

�

¤ max
σPJ

|σpγq � γ| � ∆Kpγq ¤ ∆Kpαq
1� 1

ℓ
, so that |α� β| ¤ ∆Kpαq

1� 1
ℓ
.


 General 
ase. What pre
edes (with K repla
ed by

?

K) implies that there exists β P

?

K su
h that

|α� β| ¤ ∆?

Kpαq
1� 1

ℓ
¤ ∆Kpαq

1� 1
ℓ
. �

Proposition 5.3.22. Assume that charpκKq � 0. If α P K , there exists β P K su
h that |α� β| ¤ ∆pαq.
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Proof. Put β � 1
rKpαq:Ks

TrKpαq{Kpαq P K and let J be the set of K-embeddings of Kpαq into K : we have

#J � rKpαq : Ks sin
e charpKq � 0 (be
ause charpκKq � 0). We have β � α � 1
rKpαq:Ks

°

σPJ

pσpαq � αq: as

|rKpαq : Ks| � 1 (be
ause charpκKq � 0 again), we have |β � α| ¤ max
σPJ

|σpαq � α| � ∆pαq. �

Proof of theorem 5.3.9. Let c P CGK
. Res
aling via an element of K, we may assume that |c| ¤ 1. If

λ P
�

�K�

�

�

and ℓ P Z
¡0, there exists α P K su
h that |c� α| ¤ wKpλ, ℓq where

wKpλ, ℓq �

$

'

&

'

%

λ if charpκKq � 0

λ |p|
p

pp�1q2
if charpKq � 0 if charpκKq � p ¡ 0

λp1�
1
ℓ
q

�1

if charpKq � p ¡ 0

(by density of K in C). If σ P GK , we have

|σpαq � α| � |σpα � cq � c� α| ¤ maxt|σpα � cq| , |α� c|u � |c� α| ¤ wKpλ, ℓq

so that ∆pαq ¤ wKpλ, ℓq. By propositions 5.3.17, 5.3.21 and 5.3.22, there exists β P

?

K su
h that

|α� β| ¤ λ. As λ was arbitrary, this implies that c P
?

K
y

. This implies that CGK
�

?

K
y

. The reverse

in
lusion is obvious. �

Theorem 5.3.23. The separable 
losure Ksep
of K in K is dense in C, i.e. C �

zKsep
.

Proof. This is obvious when charpKq � 0 (sin
e Ksep
� K ): we hen
eforth assume that charpKq � p ¡ 0.

Put L � Ksep
, so that K �

?

L. Let c P C: we have to show that c 
an be approximated by elements of L.

We may assume that |c| ¤ 1. As in the proof of theorem 5.3.9, if λ P
�

�K�

�

�

, there exists α P K su
h that

|c� α| ¤ λ. There exists a power q of p su
h that a � αq P L. Let b P K�

(to be 
hosen later), and β P L�

a root of smallest absolute value of P pXq � Xq
� bX � a. We have P 1

pXq � b � 0, so P is separable, hen
e

β P L. We have pβ � αqq � βq � a � bβ, so that

(�) |α� β| � |bβ|
1
q .

As |.| is not trivial, we 
an 
hoose b P L� su
h that

|b|   min
 

|a|
q�1
q , λq |a|

�

1
q
(

.

Let β � β1, . . . , βq be the 
onjugates of β overK, su
h that |β1| ¤ � � � ¤ |βq|: we have |a| � |β1 � � �βq| ¥ |β|
q

when
e |β| ¤ |a|
1
q
. If |β|   |a|

1
q
then |bβ|   |a|, so that |β|

q
� |bβ � a| � |a|, when
e |β|

q
� |a|, 
ontradi
ting

|β|   |a|
1
q
: we have |β| � |a|

1
q
(this 
an be seen dire
tly on Newton's polygon of P , regardless to the

minimality of |β|). Equation (�) thus implies that |α� β| � |b|
1
q
|a|

1

q2
  λ, so that |c� β| ¤ λ. As λ is

arbitrary, this shows that L is dense in C. �

5.4. Exer
ises.

Exer
ise 5.4.1. Let K be a �eld, with separable 
losure Ksep
, and Kab

be the maximal abelian extension of

K inside Ksep
. Put GK � GalpKsep

{Kq. Prove that Kab
is a Galois extension of K, and that GalpKab

{Kq

is isomorphi
 to GK{rGK , GKs, where rGK , GKs denotes the 
losure of the 
ommutator subgroup of GK .

Exer
ise 5.4.2. Let L be a �eld, and view AutpLq as a subset of LL �
±

xPL

L of all maps L Ñ L. Give L

the dis
rete topology, LL the produ
t topology, and AutpLq the relative topology.

(1) Prove that AutpLq is a topologi
al group; i.e. the 
omposition map AutpLq � AutpLq Ñ AutpLq and the

map AutpLq Ñ AutpLq sending ea
h automorphism of L to its inverse are 
ontinuous.

(2) Let K be a sub�eld of L. Prove that L is Galois over K if and only if there is a 
ompa
t subgroup

G of AutpLq su
h that K is the �eld of invariants of G. Prove also that su
h a subgroup G, if it exists, is

ne
essarily equal to GalpL{Kq, and that its topology 
oin
ides with the Krull topology on GalpL{Kq.

Exer
ise 5.4.3. (0) Let F be a �eld and x, y P F . Assume that charpF q � 2, and that

?

x,
?

y,
?

xy R F .

Show that rF p
?

x,
?

yq : F s � 4. Dedu
e that if F pSq is an extension of F generated by n square roots of

elements in F su
h that every nonempty subset of S has produ
t not in F , then rF pSq : F s � 2n.

Let pp1, p2, . . .q be the sequen
e of prime integers, and K � Qp
?

pkqkPZ
¡0
.

(1) Show that K{Q is a Galois extension and des
ribe its Galois group.

(2) Show that for all n P Z
¡0, the pro�nite GalpK{Qq 
ontains non-open subgroups of index 2n.

(3) Dedu
e that for all n P Z
¡0, the pro�nite GalpQ{Qq 
ontains non-open subgroups of index 2n.
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Exer
ise 5.4.4. Let G be a pro�nite group.

(1) Let L be a �eld. Assume that G � AutpLq, and that the stabilizer of ea
h element of L in G is an open

subgroup of G. Put K � LG. Show that L{K is Galois, and that G � GalpL{Kq (this is a generalization of

Artin's theorem).

(2) Show that G is the Galois group of some Galois �eld extension.

Exer
ise 5.4.5. Let Qp be an algebrai
 
losure of Qp. Assume that Qp is 
omplete for |.|p. For ea
h

m P Z
¡0, let ζm P Qp be a primitive m-th root of unity. Put α �

8

°

n�1

pnζfpnq (where fpnq � n if p ∤ n, and

fpnq � 1 if p | n), and K � Qppαq.

(1) Show that ζfpnq P K for all n P Z
¡0.

(2) Dedu
e that Qp is not 
omplete.

Exer
ise 5.4.6. Show that Q is dense in Cp (this implies that Cp is separable i.e. that it 
ontains a


ountable dense subset).

Exer
ise 5.4.7. (Appli
ations of Krasner's lemma). Let pK, |.|q be a lo
al �eld, and K an algebrai



losure of K.

(1) Let P,Q P KrXs be moni
 polynomials of degree n P Z
¡0. Assume that P is irredu
ible and separable.

Show that if |P �Q|Gauss is small enough, then Q is also irredu
ible, and that if α P K is a root of P , then

there exists a root β of Q su
h that Kpαq � Kpβq.

From now on, we assume that K is a �nite extension of Qp.

(2) Show that there are �nitely many subextensions L of K{K of given degree n.

(3) Show that there is a �nite subextension L of K{Q su
h that rL : Qs � rK : Qps and K � LQp.

Exer
ise 5.4.8. Let A be a 
losed sub-Qp-algebra of Cp. Show that A is a �eld.

Exer
ise 5.4.9. Let p be a prime integer. Show that Cp and C are isomorphi
 as �elds.
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6. Rudiments in p-adi
 analysis

6.1. Generalities. Let K be a 
losed sub�eld of Cp and fpXq �
8

°

n�0

anX
n
P KrrXss be a formal power

series. Let x P Cp. As pCp, |.|q is 
omplete and non ar
himedean, the series

8

°

n�0

anx
n

onverges in Cp if and

only if lim
nÑ8

anx
n
� 0: in that 
ase, we denote fpxq for the sum of this series. Just as in the ar
himedean 
ase

(i.e. in the 
ase of formal power series with 
oe�
ients in the �eld C of 
omplex numbers), the pre
eding


ondition only depends on |x|: this motivates the following de�nition.

De�nition 6.1.1. The radius of 
onvergen
e of f is

rpfq �
1

lim sup
nPZ

¡0

|an|
1{n

P R
¥0 .

Proposition 6.1.2. The series

8

°

n�0

anx
n

onverges if |x|   rpfq and diverges if |x| ¡ rpfq.

Proof. Put r � rpfq.


 Assume |x|   r: we 
an write |x|p � p1� εqr with ε Ps0, 1r, so |anx
n
| �

�

r |an|
1{n

p1 � εq
�n

for n P Z
¡0.

By de�nition of r, there exists N P Z
¡0 su
h that |an|

1{n
 

1
r�rε{2

, when
e |anx
n
| ¤

�

1�ε
1�ε{2

�n
for all n ¥ N ,

implying that lim
nÑ8

|anx
n
| � 0.


 Assume |x| ¡ r: we 
an write |x| � p1 � εqr with ε Ps0, 1r. We 
an �nd a stri
tly in
reasing map

ϕ : Z
¡0 Ñ Z

¡0 su
h that lim
nÑ8

�

�aϕpnq
�

�

1{ϕpnq
�

1
r
: there exists N P Z

¡0 su
h that

�

�aϕpnq
�

�

1{ϕpnq
¡

1
r�rε{2

,

when
e

�

�aϕpnqx
ϕpnq

�

�

¥

�

1�ε
1�ε{2

�n
for all n ¥ N , implying that lim

nÑ8

�

�aϕpnqx
ϕpnq

�

�

� �8, so that the series

8

°

n�0

anx
n
diverges. �

Notation. If a P Cp and r P R
¥0, we put Dpa, rq � tx P Cp ; |x� a|   ru (the �open dis
� with 
enter a

and radius r) and Dpa, rq � tx P Cp ; |x� a| ¤ ru (the �
losed dis
� with 
enter a and radius r).

Remark 6.1.3. In 
ontrast with dis
s in the 
omplex plane C, both Dpa, rq and Dpa, rq are open and 
losed

in the topologi
al spa
e pCp, |.|q.

Corollary 6.1.4. A formal power series fpXq P KrrXss de�nes a 
ontinuous map f : Dp0, rpfqq Ñ Cp.

Proof. We may assume rpfq ¡ 0. Let x0 P Dp0, rpfqqzt0u, α Ps0, |x0| r and x P Cp su
h that |x� x0|   α:

we have |x| � |x0|, and we may evaluate f at x0 and x. As fpxq � fpx0q �
8

°

n�0

anpx
n
� xn0 q, we have

|fpxq � fpx0q| ¤ sup
nPZ

¡0

|an| |x
n
� xn0 |. As x

n
�xn0 � px�x0qpx

n�1
�x0x

n�2
�� � ��xn�1

0 q, we have |xn � xn0 | ¤

|x� x0| max
1¤k¤n

|x|
n�k

|x0|
k�1

� α |x0|
n�1

for all n P Z
¡0. By de�nition of rpfq, the sequen
e p

�

�anx
n�1
0

�

�

qnPZ
¡0

is bounded (it 
onverges to 0): let cpx0q � 1 � sup
nPZ

¡0

�

�anx
n�1
0

�

�

P R
¥1. We have |fpxq � fpx0q| ¤

α
r
cpx0qα:

given ε P R
¡0, put α � min

 

ε
cpx0q

, |x0|
(

, so that |x� x0|   αñ |fpxq � fpx0q|   ε, showing the 
ontinuity

of f at x0.

Assume x0 � 0 and 
hoose r Ps0, rpfqr. As above, there exists Cr P R
¡0 su
h that |an| r

n
¤ Cr for all

n P Z
¡0. If x P Dp0, rq, we have |fpxq � fp0q| ¤ sup

nPZ
¡0

|anx
n
|: as |anx

n
| � |an| r

n
�

|x|

r

�n
¤ Cr

|x|

r
, we dedu
e

that |fpxq � fp0q| ¤ Cr

r
|x|, showing the 
ontinuity of f at 0. �

Example 6.1.5. A formal power series with 
oe�
ients in OK de�nes a 
ontinuous map Dp0, 1q Ñ OCp
.

Notation. Let r P R
¡0.

(1) We denote by HKpr0, rrq (resp. HKpr0, rsq) the set of formal power series fpXq P KrrXss that 
onverge

on Dp0, rq (resp. Dp0, rq).

(2) If r P R
¡0 and fpXq �

8

°

n�0

anX
n
P KrrXss, we put |f |r � sup

nPZ
¥0

|an| r
n
P R

¥0Yt�8u.

Lemma 6.1.6. Let r P R
¡0 and fpXq �

8

°

n�0

anX
n
P HKpr0, rsq. Then |f |r � max

nPZ
¥0

|an| r
n
.
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Proof. This is trivial if fpXq � 0; if fpXq � 0, we have lim
nÑ8

|an| r
n
� 0, so E �

!

n P Z
¥0 ; |an| r

n
¡

}f}ρ
2

)

is �nite, and |f |r � max
nPE

|an| r
n
. �

De�nition 6.1.7. With the notations of lemma 6.1.6, assume f � 0. Put

wrpfq � maxtn P Z
¥0 ; |an| r

n
� |f |ru

(whi
h makes sense sin
e lim
nÑ8

|an| r
n
� 0).

Proposition 6.1.8. (1) If r P R
¡0, HKpr0, rsq � HKpr0, rrq are subrings of CprrXss, in parti
ular they are

integral domains.

(2) If ρ P r0, rr (resp. ρ P r0, rs), the map |.|ρ de�nes an absolute value on HKpr0, rrq (resp. HKpr0, rsq).

(3) Elements in HKpr0, rsq de�ne bounded maps Dp0, rq Ñ Cp.

Proof. (2) We 
ertainly have |f |ρ � 0 ñ f � 0 and |f � g|ρ ¤ maxt|f |ρ , |g|ρu for all f, g P HKpr0, rrq.

Write fpXq �
8

°

n�0

anX
n
and gpXq �

8

°

n�0

bnX
n
. We have pfgqpXq �

8

°

n�0

cnX
n
with cn �

n
°

i�0

aibn�i for all

n P Z
¥0: we have |cn| ρ

n
¤ max

0¤i¤n
|ai| ρ

i
|bn�i|ρ

n�i
¤ |f |ρ |g|ρ. By lemma 6.1.6, the integers i0 � minti P

Z
¥0 ; |ai| ρ

i
� |f |ρu and j0 � mintj P Z

¥0 ; |bj| ρ
j
� |g|ρu are well de�ned. If i, j P Z

¥0 are su
h that

i � j � i0 � j0 and pi, jq � pi0, j0q, we have |ai| ρ
i
|bj | ρ

j
  |ai0 | ρ

i0
|bj0 | ρ

j0
, hen
e |aibj |   |ai0bj0 |, so that

|fg|ρ ¥ |ci0�j0 | ρ
i0�j0

� |ai0 | ρ
i0
|bj0 | ρ

j0
� |f |ρ |g|ρ.

(3) If fpXq �
8

°

n�0

anX
n
belongs to HKpr0, rsq and x P Dp0, rq, the series fpxq :�

8

°

n�0

anx
n

onverges

absolutely, and |fpxq| ¤ sup
nPZ

¥0

|an| |x|
n
¤ |f |

|x| ¤ }f}r. �

Remark 6.1.9. (1) The restri
tion of |.|1 to KrXs is nothing but the Gauss absolute value (
f de�nition

3.5.2). In what follows, we denote it by |.|Gauss or simply |.|.

(2) Assume r P |K�

|: let α P K be su
h that |α| � r. The map φα : KrrXss Ñ KrrXss; fpXq ÞÑ fpαXq

indu
es an isometry

pHKpr0, rsq, |.|rq
�

ÑpHKpr0, rsq, |.|Gaussq.

This allows to redu
e some questions on HKpr0, rsq to the 
ase r � 1.

Lemma 6.1.10. If r P R
¡0, the normed ve
tor spa
e pHKpr0, rsq, |.|rq is Bana
h.

Proof. Let pfkqkPZ
¥0

be a Cau
hy sequen
e in pHKpr0, rsq, |.|rq. For all k P Z
¥0, write fkpXq �

8

°

n�0

ak,nX
n
.

For all n, k1, k2 P Z
¥0, we have |ak2,n � ak1,n| r

n
¤ |fk2 � fk1 |r so that pak,nqkPZ

¥0
is a Cau
hy sequen
e

in pK, |.|q. As the latter is 
omplete (be
ause K is 
losed in Cp), it 
onverges to limit an P K. Let

fpXq �
8

°

n�0

anX
n
P KrrXss.

Let ε P R
¡0: there exists C P Z

¥0 su
h that k, k1 ¥ C ñ |fk1 � fk|r ¤ ε. For all n P Z
¥0, we have

thus |ak1,n � ak,n| r
n
¤ ε: passing to the limit, we have |an � ak,n| r

n
¤ ε for all n P Z

¥0, showing that

|f � fk| ¤ ε. This implies in parti
ular that |f |r ¤ ε� |fk|r   �8 for all k ¥ C, hen
e f P HKpr0, rsq, and

that pfkqkPZ
¥0


onverges to f for |.|r. �

6.2. The Weierstrass preparation theorem. The referen
e for this part is [4, �5.2℄. Again, K denotes

a 
losed sub�eld of Cp. Let r P R
¡0.

Theorem 6.2.1. (Weierstrass division theorem). Let f, g P HKpr0, rsq be su
h that g � 0. There

exist uniquely determined elements q P HKpr0, rsq and h P KrXs su
h that

(�)

#

degphq   wrpgq

f � qg � h

Moreover, we have |f |r � maxt|q|r |g|r , |h|ru.

Proof. 
 Assume r P |K�

|, the isometry φ : pHKpr0, rsq, |.|rq
�

ÑpHKpr0, rsq, |.|Gaussq allows to redu
e to the


ase where r � 1 (
f remark 6.1.9). Note that wrpgq � w1pφpgqq �: wpgq. There exists λ P K�

su
h that

|g| � |λ|: we may divide by λ to redu
e to the 
ase where |g| � 1, so that g P OKrrXss.

We �rst show that 
onditions (�) imply the estimate |f | � maxt|q| , |h|u. If q � 0 or h � 0, there exists

µ P K�

su
h that maxt|µq| , |µh|u � 1. This implies in parti
ular that µf � µqg�µh P OKrrXss, when
e
(44)

(44)

Here we denote with a bar the image of an element of OKrrXss in κKrrXss.
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µf � µqg � µh in κKrXs: this is the eu
lidean division of µf by g. As µq � 0 or µh � 0, we have µf � 0,

hen
e |µf | � 1, so that |µf | � maxt|µq| , |µh|u i.e. |f | � maxt|q| , |h|u. This holds obviously true when

q � 0 and h � 0.

In parti
ular, if qg� h � 0 with q P HKpr0, 1sq and h P KrXs of degree   wpgq, this implies that q � 0 and

h � 0, so that the map

ψ : HKpr0, 1sq �KrXs
 wpgq Ñ HKpr0, 1sq

pq, hq ÞÑ qg � h

is inje
tive, and an isometry (where the LHS is equipped with the max of the absolutes values). The estimate

proved above and the fa
t that HKpr0, 1sq and KrXs
 wpgq are Bana
h spa
es (
f lemma 6.1.10) imply that

the image of ψ is 
losed in HKpr0, 1sq: as we want to prove that ψ is surje
tive, it is enough to 
he
k that

this image is dense in HKpr0, 1sq.

Write gpXq �
8

°

n�0

bnX
n
. As lim

nÑ8

|bn| � 0 and |bn|   1 for all n ¡ wpgq, there exists ε P r0, 1r su
h that

|bn|   ε for all n ¡ wpgq. Put mK,ε � tx P K ; |x| ¤ εu, OK,ε � OK{mK,ε and πε : OKrrXss Ñ OK,εrrXss

the 
anoni
al map. Then πεpgq is a polynomial of degree wpgq, whose dominant 
oe�
ient is invertible, so

we 
an perform Eu
lidean divisions by πεpgq in OK,εrXs. Let f P HKpr0, 1sqzt0u: there exists µ P K
�

su
h

that |µf | � 1. There exist q0, h0 P OKrXs su
h that degph0q   wpgq and πεpµfq � πεpq0qπεpgq � πεph0q is

the Eu
lidean division of πεpµfq by πεpgq. Then we have |µf � q0g � h0| ¤ ε, i.e. |f � ψpq, hq| ¤ ε
|µ|
� ε |f |,

where q � q0
µ
and h � h0

µ
. This implies the density of the image of ψ, hen
e the result.


 The general 
ase. By uni
ity of pg, hq, we may use theorem 5.3.9 to redu
e to the 
ase where K � Cp.

Then |K�

| is dense in R
¡0. We 
an thus �nd a sequen
e priqiPZ

¥0
is R

¡0 that 
onverges to r from

below. Then we have |f |r � lim
iÑ8

|f |ri . Moreover, there are sequen
es pqiqiPZ
¥0

and phiqiPZ
¥0

su
h that

qi P HKpr0, risq, hi P KrXs
 wpgq and f � qig � hi for all i P Z

¥0. By uni
ity, we have qi � qj and hi � hj
in KrrXss whenever i   j, so that q :� qi and h :� hi does not depend of i P Z

¥0. Moreover, we have

|f |ri � maxt|q|ri |g|ri , |h|riu: passing to the limit on i gives |f |r � maxt|q|r |g|r , |h|ru, whi
h implies in

parti
ular that q P HKpr0, rsq (be
ause |q|r   �8). �

Theorem 6.2.2. (Weierstrass preparation theorem). Let f P HKpr0, rsqzt0u. There exist uniquely

determined P P KrXs and u P HKpr0, rsq
�

su
h that

#

P is moni
 of degree wpfq

f � Pu.

Moreover, we have |P |r � rwrpfq
.

Proof. 
 Again, assume �rst that r P |K�

|: the isometry φ : pHKpr0, rsq, |.|rq
�

ÑpHKpr0, rsq, |.|Gaussq allows

to redu
e to the 
ase where r � 1 (
f remark 6.1.9). Indeed, if the 
ase r � 1 is known, let α P K�

be

su
h that |α| � r: we have fpαXq P HKpr0, 1sq, so we have fpαXq � P0pXqu0pXq with P0 P KrXs moni


of degree d :� wpfpαXqq � wpfq and u0 P HKpr0, 1sq
�

uniquely determined; then fpXq � P pXqupxq with

P pXq � αdP0pα
�1Xq P KrXs moni
 of degree d and upXq � α�du0pα

�1Xq P HKpr0, rsq
�

. Also, |P0| � 1

implies that |P |r � rd.

We prove the existen
e �rst. Res
aling by an element in K�

, we may assume that |f | � 1. Put d � wpfq:

by the Weierstrass division theorem, there exist uniquely determined q P HKpr0, 1sq and h P KrXs su
h

that degphq   d and Xd
� qf � h. Put P � Xd

� h P KrXs: as degphq   d, this is a moni
 polynomial

of degree d � wpfq, and P � qf . We also have 1 � |f | � maxt|q| |f | , |h|u, hen
e |h| ¤ 1: as degphq   d,

we have |P | � maxt
�

�Xd
�

� , |h|u � 1, and wpP q � d. As P � qf , this implies that |q| � 1. We have to 
he
k

that q is a unit in HKpr0, 1sq. Redu
ing modulo mK gives P � qf in κKrrXss. As wpfq � wpP q � d, the

elements P and f are both polynomials of degree d. This implies that q P κ�K , so that |q � qp0q|   1 i.e.

�

�

�

q
qp0q

� 1
�

�

�

  1: the series s �
8

°

n�0

�

1� q
qp0q

�n

onverges in the Bana
h spa
e pHKpr0, 1sq, |.|q (lemma 6.1.10),

and

q
qp0q

s � 1. This shows that u :� qp0qs P HKpr0, 1sq
�

, and that uq � 1. In parti
ular, we have f � Pu:

this proves the existen
e.

The uni
ity follows from the uni
ity in Weierstrass division theorem, sin
e Xd
� u�1f � pXd

� P q has to

be Weierstrass division of Xd
by f , whi
h we know to be unique.


 The general 
ase follows as in the end of the proof of theorem 6.2.1 �

Corollary 6.2.3. A element in HKpr0, rsq has only �nitely many zeros, and these are algebrai
 over K.

Corollary 6.2.4. HKpr0, rsq is a PID.
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6.3. Newton polygon and appli
ations. A referen
e for this part is [8, Chapter I ��6-7, Chapter II

��2-3℄. Endow Cp with the p-adi
 valuation v : Cp Ñ QYt�8u normalized by vppq � 1. Let K be a 
losed

sub�eld of Cp.

De�nition 6.3.1. Let fpXq �
8

°

n�0

anX
n
P KrrXss.


 The Newton polygon NPpfq of f is the 
onvex hull of the set of points tpn, vpanqqunPN Y tp0,�8qu in the

plane. It is thus a union of segments of in
reasing slopes and possibly one or two half-lines.


 The length of a segment is the length of its proje
tion onto the x-axis (this is an integer), that of a half-line

is that of the longest pie
e between to points of the form pn, vpanqq.


 The breaks are those i P Z
¥0 su
h that the point pi, vpaiqq is a vertex of the polygon.


 f is said pure of slope λ if is has only one �nite slope, equal to λ.




















 











Remark 6.3.2. In general, there might be in�nitely many slopes, but of 
ourse there are �nitely many when

f P KrXs.

De�nition 6.3.3. Let λ P R. The line support of slope λ for NPpfq is the line of equation y � λx� cλ with

cλ P R maximal su
h that NPpfq lies above it.

Remark 6.3.4. (1) Let λ P R be su
h that NPpfq has a line support of slope λ. If z P Cp is su
h that

vpzq ¥ �λ (i.e. |z| ¤ pλ), we have vpanz
n
q ¥ npvpzq � λq � cλ i.e. |anz

n
| ¤

�

|z|

pλ

�n
p�cλ : this implies that f


onverges on Dp0, pλq, and that if f 
onverges at z, then |fpzq| ¤ p�cλ .

(2) Let λ
8

be the supremum of the slopes of NPpfq. The line support of slope λ exists if and only if λ ¤ λ
8

,

and what pre
edes imply that rpfq � pλ8 .

(3) Assume NPpfq has a line support of slope λ. There are two 
ases: if λ is a slope of NPpfq, then the

line support 
ontains the segment of slope λ of NPpfq. If not, there exists exa
tly one n P Z
¥0 su
h that

vpanq � λn� cλ.




















 






























 











Theorem 6.3.5. Let P P KrXs and λ P R.

(1) PλpXq :�
±

αPK
vpαq��λ
P pαq�0

pX � αq P KrXs.
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(2) The number (
ounting multipli
ities) of roots x of P (in K ) su
h that vpxq � �λ is equal to the length

of the side of NPpP q of slope λ (so it is 0 if there is no su
h side).

(3) If NPpP q has more than one �nite slope, then P is redu
ible in KrXs.

(4) Assume that v is dis
rete on K, that P is moni
 and that NPpP q has only one side of �nite slope �

m
n

where gcdpm,nq � 1. Then P is irredu
ible in Krxs.

Proof. (1) Let α1, . . . , αn P K be the roots of P (
ounted with multipli
ities). Put L � Kpα1, . . . , αnq. If

L{K is separable (whi
h is automati
 if charpKq � 0), it is Galois. The set tα P K ; P pαq � 0, vpαq � �λu

is stable under the a
tion of GalpL{Kq (be
ause v � σ � v for all σ P GalpL{Kq sin
e K is 
omplete), whi
h

proves that Pλ P KrXs. Assume that charpKq � p ¡ 0. If P is irredu
ible, we 
an write P pXq � QpXpe
q

where e P Z
¥0 and Q P KrXs is irredu
ible and separable. All roots of Q have the same valuation: all

roots of P have the same valuation. In general, write P �

r
±

i�1

Pi with P1, . . . , Pr irredu
ible: for ea
h

i P t1, . . . , ru, the roots of Pi all have the same valuation vi, and Pλ �
±

1¤i¤r
vi��λ

Pi P KrXs.

(2) As multiplying P by a non zero 
onstant (resp. by X) translates NPpP q verti
ally (resp. horizontally),

we may divide P by its monomial of lower degree and assume that a0 � 1. The roots α1, . . . , αn P K

of P are nonzero: put βi � �α�1
i for i P t1, . . . , nu. We have P pXq �

n
±

i�1

p1 � βiXq. Renumbering

if ne
essary, we may assume that vpβ1q ¤ � � � ¤ vpβnq. Write tvpβ1q, . . . , vpβnqu � tν1, . . . , νru with

ν1   � � �   νr, and for j P t1, . . . , ru, let nj be the number of indi
es i P t1, . . . , nu su
h that vpβiq � νj

(so we have

r
°

j�1

nj � n). We have to prove that NPpP q has r non verti
al sides, rM0M1s, . . . , rMr�1Mrs

with M0 � p0, 0q, M1 � pn1, n1ν1q, M2 � pn1 � n2, n1ν1 � n2ν2q, . . . ,Mj �

� j
°

k�1

nk,
j
°

k�1

nkνk

	

, . . .. This is

equivalent to

(�)

$

'

'

&

'

'

%

vpan1�����nj
q �

j
°

k�1

nkνk for j P t1, . . . , ru

vpaiq ¥
j
°

k�1

nkνk � pi� n1 � � � � � njqνj�1 if n1 � � � � � nj   i   n1 � � � � � nj�1

(the last 
ondition means that the points pi, vpaiqq lie above the segment rMjMj�1s). We have

ai �
¸

1¤k1¤���¤ki¤n

βk1 � � �βki

so that vpaiq ¥ min
1¤k1¤���¤ki¤n

vpβk1 q � � � � � vpβki q ¥ vpβ1q � � � � � vpβiq whi
h implies the se
ond 
ondition

in (�). For the �rst 
ondition, just observe that if i �
j
°

k�1

nk for some j P t1, . . . , ru, then we have

vpβk1 q � � � � � vpβkiq ¡ vpβ1q � � � � � vpβiq whenever the sequen
e pk1, . . . , kiq is di�erent from p1, 2, . . . , iq,

so that vpaiq � vpβ1q � � � � � vpβiq �
j
°

k�1

nk in that 
ase.

(3) The number of �nite slopes in NPpP q is equal to the number of non trivial fa
tors in P �

±

λPR

Pλ.

(4) There are n roots of valuation m
n
, let α be any one of these. As gcdpm,nq � 1, we have vpKpαqq � 1

n
vpKq,

so that the rami�
ation index e of the extension Kpαq{K satis�es n | e. As rKpαq : Ks ¤ n, we have

rKpαq : Ks � n � degpP q, so that P is irredu
ible.






















�
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Remark 6.3.6. One re
overs Eisenstein's irredu
ibility 
riterion as the spe
ial 
ase m � 1 in (4).

Theorem 6.3.7. Assume f P HKpr0, rsq (resp. f P HKpr0, rrq) where r P R
¡0, and let λ P r�8, 0, lnpprqs

(resp. λ P r�8, lnpprqr).

(1) The number of zeros of f in Dp0, rq (resp. in Dp0, rq) with valuation �λ is equal to the length of the

segment of NPpfq of slope λ.

(2) If λ R t�8u is su
h a slope, there exists a unique moni
 polynomial Pλ P KrXs and su
h that fpXq �

PλpXqgpXq where g P HKpr0, rsq (resp. g P HKpr0, rrq) is su
h that NPpgq is NPpfq without its pie
e of

slope λ.

Proof. Write fpXq �
8

°

n�0

anX
n
. We may of 
ourse assume that f � 0.

(1) This is obvious if r � �8 (the length of the 
orresponding half-line is pre
isely the multipli
ity of 0 as

a root of f : assume hen
eforth that λ P R.


 Assume �rst that λ is not a slope of NPpfq: by remark 6.3.4 (3), there exists exa
tly one N P Z
¥0 su
h

that vpanq � λn� cλ. If α P Cp is su
h that vpαq � �λ, we thus have |anα
n
| ¤ p�cλ , with equality if and

only if n � N . the strong triangle inequality thus implies that |fpαq| � p�cλ so that fpαq � 0, and f has

no zero of valuation �λ.


 Assume that λ is a slope of NPpfq: put ρ � pλ ¤ r (resp.   r) and d � wρpfq. By Weierstrass

preparation theorem (
f theorem 6.2.2), there exists a unique moni
 polynomial Pλ P KrXs su
h that

degpPλq � wρpPλq � d and uλ P HKpr0, ρsq
�

su
h that f � Pλuλ. Dividing f and uλ by a
wλpfq, we may

assume that a
wλpfq � 1, so that |f |ρ � ρd � |Pλ|ρ. This implies that |uλ|ρ � 1. If we write uλ �

8

°

n�0

uλ,nX
n
,

this implies that |uλ,n| ¤ ρ�n, for all n P Z
¥0.

Write PλpXq �
d
°

i�0

αiX
i
(so that αd � 1 sin
e Pλ is moni
). As |Pλ|ρ � ρd (
f theorem 6.2.2), we have

|αi| ρ
i
¤ ρd, i.e. vpαiq ¥ λpi � dq, whi
h means that NPpPλq lies above the line of equation y � λpx � dq.

In fa
t, this line is the support line of NPpPλq of slope λ be
ause the point pd, 0q belongs to NPpPλq, sin
e

Pλ is moni
 of degree d.

Let δ   d be the integer su
h that pδ, vpaδqq and pd, 0q are the endpoints of the segment of slope λ in NPpfq.

The length of the slope λ in NPpfq is thus d� δ, and vpaδq � λpδ � dq, i.e. |aδ| � ρd�δ. Now the equality

f � Pλuλ implies that

aδ �

δ̧

i�0

αiuλ,δ�i

so the strong triangle inequality implies that there exists i P t0, . . . , δu su
h that |aδ| ¤ |αiuλ,d�i|, i.e.

ρd�δ ¤ |αi| ρ
i�δ

, hen
e ρd�i ¤ |αi|, i.e. vpαiq ¤ λpi � dq. As vpαiq ¥ λpi � dq by what pre
edes, we have

vpαiq � λpi � dq, whi
h means that the point pi, vpαiqq belongs to the support line of NPpPλq of slope λ.

This implies in parti
ular that the length of the slope λ in NPpPλq is ¥ d � i ¥ d � δ. In parti
ular, Pλ
hen
e f has at least d� δ roots of valuation �λ (
f theorem 6.3.5).

As uλ P HKpr0, λsq
�

, the series uλ has no zero in Dp0, ρq: the zeros of f in Dp0, ρq are pre
isely those of Pλ, in

parti
ular there are exa
tly wρpfq su
h zeros (
ounting multipli
ities). Let λ1   � � �   λr be the slopes ¤ λ in

NPpfq, and for i P t1, . . . , ru, let ℓi be the length of the slope λi. Then f has degpPλq � wρpfq � ℓ1�� � ��ℓr
zeros in Dp0, ρq. Repla
ing λ by λi in what pre
edes, we know that Pλ has at least hen
e exa
tly ℓi zeros

of valuation �λi.


 This proves (1), and also that NPpPλq is NPpfq with the slopes ¡ λ removed. For (2), the existen
e was

already proved, and the uni
ity follows from that in Weierstrass preparation theorem (
f theorem 6.2.2).

The statement on NPpgq follows from the fa
t that its slopes are exa
tly those of NPpfq that are ¡ λ (sin
e

its zeros are those of f of valuation ¡ �λ). �

Remark 6.3.8. One 
an re
over 
orollary 6.2.3 from theorem 6.3.7.

6.4. Exponential and logarithm.

Notation. If n � a0 � a1p � � � � � arp
r
(with ai P t0, . . . , p � 1u for all i P t0, . . . , ru and ar � 0) is the

writing of n P Z
¥0 is base p, put spnq � a0 � � � � � ar (sum of the digits of the p-adi
 writing of n).

Lemma 6.4.1. If n P Z
¥0, we have vppn!q �

n�spnq

p�1
(where vp denotes the valuation on Cp normalized by

vpppq � 1).

Proof. Let k P Z
¡0. The number of integers less than n and that are divisible by pk is equal to Nk �

X

n
pk

\

i.e. Nk � ak � ak�1p� � � � � arp
r�k

if k ¤ r and 0 if k ¡ r. The number of integers less than n and whose
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p-adi
 valuation is equal to k is Nk �Nk�1. This implies that

vppn!q �
8

°

k�1

kpNk �Nk�1q �

8

°

k�1

kNk �
8

°

k�2

pk � 1qNk �
r
°

k�1

Nk �
r
°

k�1

�

ak � ak�1p� � � � � arp
r�k

�

�

r
°

i�0

aip1� p� � � � � pi�1
q

�

r
°

i�0

ai
pi�1
p�1

�

n�spnq

p�1
.

�

De�nition 6.4.2. The logarithm and exponential series are

lnp1�Xq �
8

°

n�0

p�1qn�1

n
Xn

and exppXq �
8

°

n�0

Xn

n!

respe
tively.

Lemma 6.4.3. We have equalities of formal power series lnpexppXqq � X , expplnp1�Xqq � 1�X in QrrXss,

and lnpp1�Xqp1� Y qq � lnp1�Xq � lnp1� Y q, exppX � Y q � exppXq exppY q in QrrX,Y ss.

Proof. 
 Note that the derivative of lnp1�Xq and exppXq are
8

°

m�0

p�Xqm �

1
1�X

and exppXq respe
tively.

Put fpXq � lnpexppXqq and gpXq � expplnpXqq: di�erentiating we get f 1pXq � 1 and g1pXq �
gpXq

1�X
. This

implies that fpXq � X (hen
e the �rst equality), and g2pXq � 0, when
e gpXq � 1�X by identi�
ation.

Remark 6.4.4. We have lnpexppXqq � lim
NÑ8

N
°

n�1

p�1qn�1

n
pexppXq � 1qn. As exppXq

k
� exppkXq (
f below), we have

N
°

n�1

p�1qn�1

n
pexppXq � 1qn �

N
°

n�1

p�1qn�1

n

n
°

k�0

�

n
k

	

p�1qn�k exppkXq

�

N
°

n�1

n
°

k�0

8

°

m�0

p�1qk�1

n

�

n
k

	

pkXq

m

m!

�

8

°

m�0

ampNq

m!
Xm

with ampNq � �

N
°

n�1

αn,m
n

where αn,m :�
n
°

k�0

p�1qk
�

n
k

	

km
.

If n,m P Z
¥0 and PnpXq � p1�Xq

n
�

n
°

k�0

p�1qk
�

n
k

	

Xk
, we have P

pmq

n pXq �

n
°

k�m

p�1qk
�

n
k

	

DmpkqXk�m
with DmpT q � T pT�1q � � � pT�m�1q.

If m   n, we have
n
°

k�m

p�1qk
�

n
k

	

Dmpkq � P
pmq

m p1q � 0. With m � 0, this shows that αn,0 �
n
°

k�0

p�1qk
�

n
k

	

� 0, and a straightforward indu
tion

implies that αn,m (when m   n). This implies that ampNq � am :� �

m
°

n�1

1
n

n
°

k�0

p�1qk
�

n
k

	

km
whenever N ¥ m, in parti
ular a0 � 0. Passing

to the limit as N Ñ �8, we get lnpexppxqq �
8

°

m�1

am
m!

xm
.

Assume m ¡ 0: we have �am �

m
°

k�1

p�1qkkm
m
°

n�k

1
n

�

n
k

	

. As

k
n

�

n
k

	

�

�

n�1
k�1

	

and

m
°

n�k

�

n�1
k�1

	

is the 
oe�
ient of Xk�1
in the polynomial

m
°

n�k

p1�Xq

n�1
�

p1�Xq

m
�p1�Xq

k�1

X
, i.e. that of Xk

in p1�Xq

m
�p1�Xq

k�1
, that is

�

m
k

	

, we have �am �

m
°

k�1

p�1qk
�

m
k

	

km�1
� αm,m�1

if m ¡ 1. As we have seen above, we have αm,m�1 � 0, so am � 0 when m ¡ 1. On the other hand, we have a1 � 1, showing lnpexppXqq � X.


 If N P Z
¡0, put uNpxq �

N
°

n�0

Xn

n!
. We have

u2N pX � Y q �
2N
°

n�0

pX�Y qn

n!
�

2N
°

n�0

n
°

k�0

XkY n�k

k!pn�kq!
�

°

j,kPZ
¥0

j�k¤2N

XjY k

j!k!

and uN pXquNpY q �
°

0¤j,k¤N

XjY k

j!k!
: this implies that u2NpX � Y q � uN pXquNpY q �

°

j,kPZ
¥0

j�k¤2N
maxpj,kq¡N

XjY k

j!k!
.

Passing to the limit as N Ñ8 gives exppX � Y q � exppXq exppY q in QrrX,Y ss. This implies in parti
ular

that exppXqk � exppkXq in QrrXss for all k P Z.


 By what pre
edes, we have expplnp1�Xq� lnp1�Y qq � expplnp1�Xqq expplnp1�Y qq � p1�Xqp1�Y q:

applying ln gives lnpp1�Xqp1� Y qq � lnp1�Xq � lnp1� Y q in QrrX,Y ss.

Remark 6.4.5. These equalities also follow from the 
orresponding equality of power series over the 
omplex numbers.

�

Proposition 6.4.6. (1) The radius of 
onvergen
e of ln (resp. exp) is 1 (resp. p�
1

p�1
). Moreover, we have

|lnp1� xq|p � |x|p and |exppxq � 1|p � |x|p for all x P D
�

0, p�
1

p�1

�

.
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(2) We have lnpp1�xqp1�yqq � lnp1�xq� lnp1�yq (resp. exppx�yq � exppxq exppyq) for all x, y P Dp0, 1q

(resp. x, y P D
�

1, p�
1

p�1

�

).

(3) log and exp provide inverse group isomorphisms

�

D
�

1, p�
1

p�1

�

, .
� ln // �

D
�

0, p�
1

p�1

�

,�
�

exp
oo

.

Proof. 
 Let x P Cp be su
h that |x|p   1. If n P Z
¡0, we have

1
|n|p

� pvppnq | n: this implies that

�

�

xn

n

�

�

p
¤ n |x|

n
p , when
e lim

nÑ8

�

�

xn

n

�

�

p
� 0, so that the series

8

°

n�0

p�1qn�1

n
xn 
onverges. As it obviously diverges

at x � 1 (be
ause |n|p takes arbitrary small values), the radius of 
onvergen
e of ln is 1.

Assume that |x|p   p�
1

p�1
. If n P t2, . . . , n � 1u, we have |n|p � 1 when
e

�

�

xn

n

�

�

p
� |x|

n
p   |x|p. If n ¥ p,

then

n�1
lnpnq

¥

p�1
lnppq

(be
ause the map f : t ÞÑ t�1
lnptq

extended by 
ontinuity at t � 1 by fp1q � 1, is stri
tly

in
reasing on r1,�8r as a trivial 
omputation shows). This implies that

vp
�

xn

n

�

� vppxq � pn� 1qvppxq � vppnq ¡ vppxq �
n�1
p�1

�

lnpnq

lnppq
¥ vppxq

(sin
e vppxq ¡
1
p�1

) so that vp
�

xn

n

�

¡ vppxq as well. This implies that vpplnp1 � xqq � vppxq, i.e.

|lnp1� xq|p � |x|p.


 The series de�ning exppxq 
onverges if and only if lim
nÑ8

vp
�

xn

n!

�

� �8. As

vp
�

xn

n!

�

� nvppxq � vppn!q � n
�

vppxq �
1
p�1

�

�

spnq

p�1

(
f lemma 6.4.1), this is equivalent to vppxq �
1
p�1

¡ 0, i.e. |x|p   p�
1

p�1
(observe that sppkq � 1 for all

k P Z
¥0).

Assume that |x|p   p�
1

p�1
, i.e. vppxq ¡

1
p�1

: if n P Z
¥2, we have

pn� 1qvppxq ¡
n�1
p�1

¥

n�spnq

p�1
� vppn!q,

i.e. vp
�

xn

n!

�

� nvppxq � vppn!q ¡ vppxq: we have vp

�

8

°

n�2

xn

n!

	

¡ vppxq, so that vppexppxq � 1q � vppxq, i.e.

|exppxq � 1|p � |x|p.

(2) & (3) follow from lemma 6.4.3, noting that we have absolute 
onvergen
e of the series involved. �

Remark 6.4.7. (1) In 
ontrast with the 
omplex analyti
 
ase, the radius of 
onvergen
e of ln is stri
tly

larger that that of exp.

(2) Being 
ontinuous (
f 
orollary 6.1.4) the inverse isomorphisms of proposition 6.4.6 are also homeomor-

phisms.

Proposition 6.4.8. There exists a unique 
ontinuous map

ln : C�

p Ñ Cp

having the following properties:

(i) p�x, y P C�

p q lnpxyq � lnpxq � lnpyq;

(ii) p�x P Dp1, 1qq lnpxq �
8

°

n�1

p�1qn�1

n
px� 1qn;

(iii) lnppq � 0.

Proof. We have the exa
t sequen
e of abelian groups:

t1u Ñ O�

Cp
Ñ C�

p

vp
ÝÑ QÑ 0

The 
hoi
e of a 
ompatible system

�

ppvq
�

vPQ
in C�

p (i.e. su
h that pp1q � p and ppv1�v2q � ppv1qppv2q for

all v1, v2 P Q) provides a se
tion Q Ñ O
�

Cp
of vp. To 
onstru
t su
h a system, one 
an pro
eed as follows.

Let ppnqnPZ
¡0
P CZ

¡0

p be su
h that p1 � p and pn�1 is a root of Xn�1
� pn in Cp for all n P Z

¡0. Then

vpppnq �
1
n!
, and if v P Q, the element ppvq :� pn!vn does not depend on the 
hoi
e of n P Z

¡0 su
h that

n!v P Z.

This implies in parti
ular that there is a (non 
anoni
al) isomorphism:

O�

Cp
�Q

�

ÑC�

p

given by pu, vq ÞÑ uppvq. Similarly, we have the exa
t sequen
e of abelian groups:

t1u Ñ 1�mCp
Ñ O�

Cp
Ñ F

�

p Ñ t1u
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(the last map being the 
anoni
al proje
tion). The Tei
hmüller map (
f de�nition 3.8.20) provides a se
tion

of the latter: there is a 
anoni
al isomorphism

p1�mCp
q �F

�

p
�

ÑO�

Cp

given by p1� x, ζq ÞÑ p1� xqrζs. Put together, this provides an isomorphism

p1�mCp
q �F

�

p �Q
�

ÑC�

p

given by p1� x, ζ, vq ÞÑ p1� xqrζsppvq.


 Assume the map ln : C�

p Ñ Cp exists. Let x P mCp
, ζ P F

�

p and v P Q. There exists f P Z
¡0 su
h that

ζ
pf�1

� 1: as the map r.s is multipli
ative, we have rζsp
f
�1

� 1, so that ppf � 1q ln
�

rζs
�

� lnp1q � 0 (by

property (i)), so ln
�

rζs
�

� 0. If n P Z
¡0 is su
h that n!v P Z, we have n!v ln

�

ppvq
�

� ln
�

ppvqn!v
�

� 0 by

properties (i) and (iii): properties (i) and (ii) imply that ln
�

p1�xqrζsppvq
�

� lnp1�xq �
8

°

n�1

p�1qn�1

n
px�1qn.

This shows the uni
ity of the map ln.


 The 
omposite of the isomorphism C�

p
�

Ñp1 � mCp
q � F

�

p � Q with the �rst proje
tion, followed with

the group homomorphism ln : Dp1, 1q Ñ Cp (
f proposition 6.4.6 (3)) provides a group homomorphism

C�

p Ñ Cp having properties (i), (ii) and (iii).

Let z P C�

p . If z
1

P D
�

z, p�
1

p�1
|z|p

�

, we have

z1

z
� 1 P D

�

0, p�
1

p�1

�

, so that

�

�

�

ln
�

1� z1

z
� 1

�

�

�

�

p
�

�

�

�

z1

z
� 1

�

�

�

p
by

proposition 6.4.6 (1), i.e. |lnpz1q � lnpzq|p �
|

z1�z
|

p

|z|p
: this shows the 
ontinuity of ln. �

De�nition 6.4.9. If n P Z
¥0, we put

�

a
n

�

�

apa�1q���pa�n�1q

n!
P Qras. Evaluated at an integer, this 
oin
ides

with the usual binomial 
oe�
ient. We also de�ne

Bpa,Xq �
8

°

n�0

�

a
n

�

Xn
P Qrra,Xss.

Lemma 6.4.10. Let x P mCp
. The map Z

¥0 Ñ O�

Cp
;m ÞÑ p1�xqm is 
ontinuous (for the topology de�ned

by |.|p on both sides). In parti
ular, it extends by 
ontinuity into a map Zp Ñ O�

Cp
; a ÞÑ p1� xqa.

Proof. As p1 � xqm P 1 � mCp
for all m P Z

¥0, it is enough to 
he
k that lim
kÑ8

p1 � xqp
k

� 1 in Cp: this

follows from p1� xqp
k

� expppk lnp1� xqq and
�

�expppk lnp1� xqq � 1
�

�

p
�

�

�pk lnp1� xq
�

�

p
�

1
pk

for k ¥ 1 (
f

proposition 6.4.6 (1) & (2)). �

Proposition 6.4.11. (1) Assume a P Cp. The radius of 
onvergen
e of the series Bpa,Xq is
p
�

1
p�1

|a|p
if |a|p ¡ 1

and at least p�
1

p�1
if |a|p ¤ 1.

(2) If a P Zp, then Bpa,Xq P ZprrXss so the radius of 
onvergen
e of Bpa,Xq is at least 1, and we have

Bpa, xq � p1� xqa for all x P mCp
.

(3) Assume that |x|p   p�
1

p�1 min
 

1, 1
|a|p

(

. Then Bpa, xq � exppa lnp1� xqq. In parti
ular, if m P Z
¥0 and

x P D
�

0, p�m�
1

p�1

�

, we have B
�

1
pm
, x
�pm

� 1� x, i.e. B
�

1
pm
, x
�

is a pm-th root of 1� x.

(4) We have Bpa,Xq � exppa lnp1�Xqq in Qrra,Xss. In parti
ular, Bpa1, XqBpa2, Xq � Bpa1 � a2, Xq in

Qrra1, a2, Xss, and Bpa,Xqp � Bppa,Xq in Qrra,Xss.

Proof. (1) 
 Assume |a|p ¡ 1: we have |a� k|p � |a|p for all k P Z, so that

�

�

�

a
n

�

�

�

p
�

|a|np
|n!|p

: the 
omputation

of proposition 6.4.6 (1) implies that the radius of 
onvergen
e of Bpa,Xq is p
�

1
p�1

|a|p
in this 
ase.


 Assume |a|p ¤ 1: we have |a� k|p ¤ |a|p for all k P Z, so that
�

�

�

a
n

�

�

�

p
¤

1
|n!|p

, and the radius of 
onvergen
e

of Bpa,Xq is equal to that of exppXq, i.e. p�
1

p�1
.

(2) 
 Let n P Z
¥0. The map a ÞÑ

�

a
n

�

is polynomial, hen
e 
ontinuous on Zp. It has values in Z � Zp on Z
¥0:

as Z
¥0 is dense in Zp and Zp is 
losed, we have

�

a
n

�

P Zp for all a P Zp. This shows that Bpa,Xq P ZprrXss,

implying that the radius of 
onvergen
e of Bpa,Xq is at least 1 (note that it might be larger: it is in�nite

when a P Z
¥0 for instan
e).


 Fix x P mCp
. The maps a ÞÑ

�

a
n

�

being 
ontinuous and bounded by 1 on Zp, the series of fun
tions

a ÞÑ
�

a
n

�

xn 
onverges normally on Zp: its sum a ÞÑ Bpa, xq is 
ontinuous on Zp. As a ÞÑ p1 � xqa is


ontinuous as well (
f (1)), the equality p1� xqa � Bpa, xq holds for all a P Zp sin
e it holds when a P Z
¥0

(binomial expansion), and Z
¥0 is dense in Zp.
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(3) 
 If |x|p   p�
1

p�1 min
 

1, 1
|a|p

(

, both series Bpa, xq and exppa lnp1� xqq 
onverge absolutely in Cp: it is

enough to 
he
k the equality in Qrra,Xss. This follows from the equality when a P Zp and x P mCp
.


 By proposition 6.4.6, and (2), we have B
�

1
pm
, x
�pm

� exp
�

1
pm

lnp1�xq
�pm

� expplnp1�xqq � 1�x when

x P D
�

0, p�m�
1

p�1

�

.

(4) This follows from (3) and lemma 6.4.3. �

6.4.12. The Artin-Hasse exponential. In 
ontrast with the 
omplex analyti
 
ase, the p-adi
 exponential

formal series has a small radius of 
onvergen
e. The Artin-Hasse exponential map is a modi�ed exponential

map whose radius of 
onvergen
e is 1.

De�nition 6.4.13. The Artin-Hasse exponential map is

AHpXq � exp
�

X �

Xp

p
�

Xp2

p2
� � � �

�

P QrrXss.

Lemma 6.4.14. AHpXq �
±

nPZ
¡0

p∤n

p1�Xn
q

�

µpnq

n
in QrrXss (where µ : Z

¡0 Ñ t�1, 0, 1u is Möbius map).

Proof. By lemma 6.4.3, we have

log
�

±

nPZ
¡0

p∤n

p1�Xn
q

�

µpnq

n

	

�

°

nPZ
¡0

p∤n

�

µpnq

n
logp1�Xn

q �

°

nPZ
¡0

p∤n

µpnq

n

8

°

m�1

Xnm

m

�

8

°

k�1

Xk

k

°

n|k
p∤n

µpnq �
8

°

i�0

Xpi

pi

sin
e

°

n|k
p∤n

µpnq �
°

n|k{pvppkq
µpnq �

#

1 if k � pvppkq

0 otherwise

. �

Lemma 6.4.15. Assume p ∤ n and fpXq � 1 �
8

°

i�1

aiX
i
P QrrXss satis�es fpXqn P 1 � X Z

ppqrrXss, then

fpXq P 1�X Z
ppqrrXss.

Proof. Write fpXqn � 1�
8

°

i�1

biX
i
: we show that ai P Z

ppq by indu
tion on i P Z
¡0. Assume aj P Z

ppq for

all j   i. We have bi � nai �
°

j1�����jn�i
pDk¤nq jk n

aj1 � � �ajn P nai � Z
ppq, hen
e nai P Z

ppq so that ai P Z
ppq sin
e

p ∤ n. �

Proposition 6.4.16. AHpXq P Z
ppqrrXss, so the radius of 
onvergen
e of AHpXq is at least 1.

Proof. Follows from lemmas 6.4.14 & 6.4.15. �

6.4.17. An extra useful series. If N P Z
¡0, we have

BpX,Y q
N
±

i�1

B
�

Xpi
�Xpi�1

pi
, Y p

i�

�

�

8

°

j�0

XpX � 1q � � � pX � j � 1qY
j

j!

	 N
±

i�1

�

8

°

j�0

Xpi
�Xpi�1

pi

�

Xpi
�Xpi�1

pi
� 1q � � �

�

Xpi
�Xpi�1

pi
� j � 1

�

Y jpi

j!

	

.

This is an element of QrrX,Y ss. The fa
tors 
ontributing to the 
oe�
ient of the monomial XnY m are

BpX,Y q and those B
�

Xpi
�Xpi�1

pi
, Y p

i�

for whi
h pi ¤ m (re
all that the 
onstant term in Bpa, T q is 1): this


oe�
ient does not depend on N ¥ m. This implies that the following de�nition makes sense:

De�nition 6.4.18. We de�ne Dwork's series by

F pX,Y q � BpX,Y q
8

±

i�1

B
�

Xpi
�Xpi�1

pi
, Y p

i�

P QrrX,Y ss.

Remark 6.4.19. (1) We thus 
an think of F pX,Y q as p1� Y qXp1� Y pq
Xp

�X
p

p1� Y p
2

q

Xp2
�Xp

p2
� � � .

(2) The monomials XnY m that appear in the fa
tors BpX,Y q and B
�

Xpn
�Xpn�1

pn
, Y p

n�

satisfy n ¤ m: the

same holds for F , so we 
an write F pX,Y q �
°

0¤n¤m

an,mX
nY m P QrrX,Y ss.
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Proposition 6.4.20. We have F pX,Y q P ZprrX,Y ss.

Lemma 6.4.21. (Dwork) Let fpXq P 1 �XQprrXss. Then we have fpXq P 1 �X ZprrXss if and only if

fpXp
q

fpXqp
P 1� pX ZprrXss.

Proof. 
 Assume fpXq P 1 � X ZprrXss: we 
an write fpXq � 1 � XgpXq with gpXq P ZprrXss. We have

fpXqp � p1 �XgpXqqp � 1 � XpgpXp
q mod pX ZprrXss: as fpXq P ZprrXss

�

, we dedu
e that

fpXp
q

fpXqp
� 1

mod pX ZprrXss.


 Conversely, assume that

fpXp
q

fpXqp
� 1 mod pX ZprrXss. Write fpXq �

8

°

n�0

anX
n
and

fpXp
q

fpXqp
�

8

°

n�0

bnX
n
,

with panqnPZ
¡0
P QZ

¡0

p and pbnqnPZ
¡0
P pZZ

¡0

p (and a0 � b0 � 1). We show that an P Zp by indu
tion on

n, starting with a0 � 1. Assume that ak P Zp for all k   n, so that hpXq :�
n�1
°

k�0

akX
k
P ZprXs. We have

fpXq � hpXq � anX
n mod Xn�1 QprrXss, hen
e

fpXqp � phpXq � anX
n
q

p mod Xn�1 QprrXss � hpXqp � phpXqanX
n mod Xn�1QprrXss

� hpXqp � panX
n mod Xn�1QprrXss

hen
e fpXqp
�

8

°

m�0

bmX
m
	

� hpXqp
� n

°

m�0

bmX
m
	

�panX
n mod Xn�1QprrXss (sin
e b0 � 1). On the other

hand, we have hpXqp �
n�1
°

k�0

akX
pk mod pZprXs (be
ause hpXq P ZprXs) and bm P pZp for m P Z

¡0: this

implies that the 
oe�
ient of Xn
in the produ
t belongs to pan � an{p � pZp if p | n and to pan � pZp

otherwise. As this 
oe�
ient is an{p if p | n and 0 otherwise, we have an P Zp in all 
ases. �

Similarly, we have:

Lemma 6.4.22. If fpX,Y q P 1�XQprrX,Y ss�Y QprrX,Y ss, then fpX,Y q P 1�X ZprrX,Y ss�Y ZprrX,Y ss

if and only if

fpXp,Y p
q

fpX,Y qp
P 1� pX ZprrX,Y ss � pY ZprrX,Y ss.

Proof of proposition 6.4.20. It is enough to apply lemma 6.4.22 to F pX,Y q. We have

F pXp, Y pq � BpXp, Y pq
8

±

i�1

B
�

Xpi�1
�Xpi

pi
, Y p

i�1�

� BpXp, Y pq
8

±

i�2

B
�

Xpi
�Xpi�1

pi
, Y p

i�p

so that

F pXp,Y p
q

F pX,Y qp
�

BpXp,Y p
q

BpX,Y qpB

�

Xp
�X
p

,Y p

�p �
BpXp,Y p

q

BpX,Y qpBpXp
�X,Y p

q

�

BpX,Y p
q

BpX,Y qp

by proposition 6.4.11 (4). By proposition 6.4.11 (4) again, we have

BpX,Y p
q

BpX,Y qp
�

exppX lnp1�Y p
qq

expppX lnp1�Y qq
� exp

�

X ln
�

1�Y p

p1�Y qp

��

By lemma 6.4.21, we have

1�Y p

p1�Y qp
P 1� pY ZprrY ss, hen
e ln

�

1�Y p

p1�Y qp

�

P pY ZprrY ss, so that

exp
�

X ln
�

1�Y p

p1�Y qp

��

P 1� pX ZprrX,Y ss � pY ZprrX,Y ss.

�

6.5. Rationality 
riteria. A referen
e for this part is [1, Chapitre 5℄.

6.5.1. The algebrai
 
riterion. Let K be a �eld, a � panqnPZ
¥0
P KZ

¥0
and fpXq �

8

°

n�0

anX
n
P KrrXss.

If k, n P Z
¥0, the Hankel matrix (resp. the Hankel determinant) of rank n and order k is the matrix

M
pkq
n paq � pan�i�jq0¤i,j¤k P Mk�1pKq (resp. D

pkq
n paq � det

�

M
pkq
n paq

�

).

Lemma 6.5.2. If k P Z
¡0 and n P Z

¥0, we have

Dpkq
n paqD

pk�2q
n�2 paq � D

pk�1q
n�2 paqDpk�1q

n paq �D
pk�1q
n�1 paq2

(with the 
onvention D
p�1q
n paq � 1).

Proof. This is a dire
t 
onsequen
e of lemma 6.5.3 below. �

Lemma 6.5.3. (Sylvester relations). Let R be a 
ommutative ring and n P Z
¡0. If A P Mn�1pRq,

let

rA P Mn�1pRq denote the matrix obtained from A by removing the extremal rows and 
olumns. Write

compAq � pAi,jq0¤i,j¤n. Then detpAq det
�

rA
�

� A0,0An,n �A0,nAn,0.
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Proof. We may assume R � ZrXi,js0¤i,j¤n and A � pXi,jq0¤i,j¤n. Let B � pbi,jq0¤i,j¤n P Mn�1pAq su
h

that bi,j �Mi,j if i P t0, nu and j P t0, . . . , nu, and bi,j � δi,j if i P t1, . . . , n� 1u and j P t0, . . . , nu:

B �

�

�

A0,0 A0,1 ��� A0,n�1 A0,n

0 1 0 ��� 0
...

. . .
. . .

. . .
...

0 ��� 0 1 0
An,0 An,1 ��� An,n�1 An,n

�




By de�nition of 
oe�
ients Ai,j , we have:

BA �

�

�

detpAq 0 ��� ��� 0
� �

... rA
...

� �

0 ��� ��� 0 detpAq

�




whi
h implies detpAq2 det
�

rA
�

� detpAq detpBq � detpAq
�

A0,0An,n � A0,nAn,0
�

: we dedu
e the equality

detpAq det
�

rA
�

� A0,0An,n �A0,nAn,0 by dividing by detpAq (whi
h is li
it in the integral domain R). �

Theorem 6.5.4. We have fpXq P KpXq if and only if there exist n0, k P Z
¥0 su
h that D

pkq
n paq � 0 for all

n P Z
¥n0

.

Proof. 
 Assume fpXq P KpXq: there exist P pXq, QpXq P KrXs with QpXq � 0 su
h that fpXq �
P pXq

QpXq
.

Write QpXq � Xk
� b1X

k�1
� � � � � bk �

k
°

ℓ�0

bk�ℓX
ℓ
(with b0 � 1). If m ¥ m0 :� maxtdegpP q, degpQqu,

the 
oe�
ient of Xm
in QpXqfpXq � P pXq is

k
°

ℓ�0

am�ℓbk�ℓ � 0, i.e.
k
°

i�0

am�k�ibi � 0 (take i � k � ℓ). If

n ¥ n0 � m0 � k and j P t0, . . . , ku, we have m :� n� k � j ¥ m0, so that

k
°

i�0

an�i�jbi � 0, showing that

M
pkq
n paqX � 0 with X �

t
pb0, . . . , bkq P K

k�1
zt0u: we have D

pkq
n paq � 0 for all n ¥ n0.


 Conversely, assume there exist n0, k P Z
¥0 su
h that D

pkq
n paq � 0 for all n P Z

¥n0
. If a is stationary,

then fpXq in rational: assume hen
eforth that a is not stationary. Let h be the smallest integer su
h

that D
phq
n paq � 0 for n " 0. We have k ¡ 0 sin
e a is not stationary. Let n0 P Z

¥0 be the smallest

integer su
h that D
phq
n paq � 0 for n ¥ n0. Lemma 6.5.2 implies that D

ph�1q
n�2 paqD

ph�1q
n paq � D

ph�1q
n�1 paq2

for all n ¥ n0. In parti
ular, if m P Z is su
h that m ¥ n0 and D
ph�1q
m paq � 0, then D

ph�1q
n paq � 0

for all n ¥ m, 
ontradi
ting the minimality of h. This implies that D
ph�1q
n paq � 0 for all n ¥ n0. This

means that for n ¥ n0, the rank of M
phq
n paq is h: the K-ve
tor spa
e Ker

�

M
phq
n paq

�

has dimension 1.

Also, it 
oin
ides with the kernel of the matrix obtained from M
phq
n paq by removing its �rst or last row.

This implies that Ker
�

M
phq
n�1paq

�

� Ker
�

M
phq
n paq

�

, i.e. that Ker
�

M
phq
n paq

�

does not depend of n ¥ n0. If

X �

t
pbh, . . . , b0q P Ker

�

M
phq
n paq

�

and QpXq �
k
°

ℓ�0

bh�ℓX
ℓ
then QpXq � 0 and QpXqfpXq P KrXs, so

that

(45) fpXq P KpXq. �

Corollary 6.5.5. We have fpXq P KpXq if and only if there exist n0 P Z
¥0 su
h that D

pkq
0 paq � 0 for all

k P Z
¥n0

.

Proof. 
 Assume fpXq P KpXq. Let A
pkq
n � pan, an�1, . . . , an�kq; then D

pkq
0 � detpA

pkq
0 , . . . , A

pkq

k q. If

QpXq � Xh
� b1X

h�1
� � � � � bh �

h
°

ℓ�0

bh�ℓX
ℓ
(with b0 � 1) is su
h that QpXqfpXq P KrXs, we have

h
°

ℓ�0

bℓA
pkq

k�ℓ � 0 for k " 0, implying that the lines A
pkq

k�h, . . . , A
pkq
K of M

pkq
0 paq are linearly dependent, hen
e

D
pkq
0 paq � 0.


 Conversely, assume that D
pkq
0 paq � 0 for k " 0. By lemma 6.5.2, we have

Dpk�1q
n paqD

pk�2q
n�2 paq � D

pkq
n�2paqD

pkq
n paq �D

pkq
n�1paq

2

IfD
pkq
n paq � 0 for all k ¥ n0, thenD

pk�1q
n paq � D

pkq
n paq � 0 soD

pkq
n�1paq � 0 for all k ¥ n0. A straightforward

indu
tion thus implies that D
pkq
n paq � 0 for all k ¥ n0 and all n P Z

¥0: by theorem 6.5.4, we have

fpXq P KpXq. �

(45)

In fa
t bh � 0, otherwise we would have M
ph�1q

n�2 paqY � 0 with X �

t
pbh�1, . . . , b0q P Kh

zt0u, 
ontradi
ting D
ph�1q

n�1 paq � 0.

This shows that degpQq � h.
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6.5.6. The analyti
 
riterion. As usual, let p be a prime number.

Lemma 6.5.7. Let x P Z. If |x| |x|p   1, we have x � 0.

Proof. Assume x � 0, we 
an write x � pvppxqy with y P Z zt0u prime to p: we have |x| |x|p � |y| ¥ 1. �

Theorem 6.5.8. Let fpXq �
8

°

n�0

anX
n
P ZrrXss. Assume that f de�nes an holomorphi
 fun
tion on the dis


tz P C ; |z|   Ru and that f de�nes a meromorphi
 fun
tion (i.e. quotient of two holomorphi
 fun
tions)

on the dis
 tx P Cp ; |x|p   ru. If Rr ¡ 1, then f is rational.

Proof. We apply theorem 6.5.4 with K � Q.


 Making R a little smaller, we may assume that lim
nÑ8

|an|R
n
� 0 (this follows from Cau
hy inequalities):

there exists N P Z
¥0 su
h that |an| ¤ R�n

for all n ¥ N . If n ¥ N and 0 ¤ i, j ¤ k, we have

|an�i�j | ¤ R�pn�i�jq
: Hadamard's inequality implies that

�

�

�

Dpkq
n paq

�

�

�

2

¤

k
¹

j�0

�

ķ

i�0

|an�i�j |
2
	

¤

k
¹

j�0

�

ķ

i�0

1�R�2
�����R�2k

R2pn�jq

	

¤

C2
k

R2pk�1qn

hen
e

�

�

�

D
pkq
n paq

�

�

�

¤

Ck

Rpk�1qn , where Ck �

b

p1�R�2
�����R�2k

q

k�1

Rkpk�1q P R
¡0.


 Making r a little smaller, there exist g, h P HQp
pr0, rsq su
h that g � hf . The order of vanishing of h is

less that that of g: dividing g and h by the appropriate power of X , we may assume that hp0q � 0. By

Weierstrass preparation theorem (
f theorem 6.2.2), there exist P P QprXs and u P HQp
pr0, rsq� su
h that

h � Pu. Repla
ing h by P and g by gu�1
, we may assume that h is a polynomial. Dividing g and h by

hp0q, we 
an further assume that hp0q � 1: write hpXq �
d
°

i�0

αiX
i
(so α0 � 1). Write gpXq �

8

°

n�0

bnX
n
. As

g P HQp
pr0, rsq, we have lim

nÑ8

|bn|p r
n
� 0: making N larger if ne
essary, we may assume that |bn|p ¤ r�n

for all n ¥ N . On the other hand, the equality g � hf implies that bm�d � am�d�α1am�d�1� � � � �αdam

for all m P Z
¥0. Assume k ¥ d: in the determinant D

pkq
n paq, we may repla
e an�i�j by bn�i�j whenever

j ¥ d. If n ¥ N , i P t0, . . . , ku and j P td, . . . , ku, we have

|bn�i�j |p ¤

#

r�pn�dq if r ¥ 1

r�pn�2kq
if r   1

.

As |am|p ¤ 1 sin
e am P Z for all m P Z
¥0, the strong triangle inequality implies that

�

�

�

Dpkq
n paq

�

�

�

p
¤

#

r�pk�1�dqpn�dq
if r ¥ 1

r�pk�1�dqpn�2kq
if r   1

.

In any 
ase, we have

�

�

�

D
pkq
n paq

�

�

�

p
¤

ck
rpk�1�dqn , with ck � max

 

r�pk�1�dqd, r�2pk�1�dqk
(

P R
¡0.


 Assuming that k ¥ d, we have thus
�

�

�

Dpkq
n paq

�

�

�

�

�

�

Dpkq
n paq

�

�

�

p
¤

Ckck

Rpk�1qnrpk�1�dqn
.

Now 
hoose k ¥ d large enough so that Rk�1rk�1�d
¡ 1 (this is possible be
ause Rr ¡ 1): then we have

lim
nÑ8

Ckck
Rpk�1qnrpk�1�dqn � 0. Making N larger if ne
essary, we have

�

�

�

D
pkq
n paq

�

�

�

�

�

�

D
pkq
n paq

�

�

�

p
  1 for all n ¥ N . As

D
pkq
n paq P Z, lemma 6.5.8 implies that D

pkq
n paq � 0 for all n ¥ N . �

6.6. Exer
ises.

Exer
ise 6.6.1. (Hensel Lemma). Let pK, |.|q a 
omplete non ar
himedean valued �eld, P P OKrXs, and

P P κKrXs its redu
tion modulo mK . Assume that there exist f, g P κKrXs su
h that

(i) P � fg;

(ii) g is moni
;

(iii) gcdpf, gq � 1.

Show that there exist F,G P OKrXs su
h that:

(i) P � FG;

(ii) G is moni
;

(iii) F � f and G � g.
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Exer
ise 6.6.2. Show that the dis
 of 
onvergen
e of a power series fpXq �
8

°

n�0

anX
n
is 
ontained in that

of its derivative f 1pXq �
8

°

n�1

nanX
n�1

. Give an example where the regions of 
onvergen
e are not the same.

Exer
ise 6.6.3. Find an example of an in�nite sum of nonzero rationals whi
h 
onverges with respe
t to

|.|p for every prime p and with respe
t to |.|
8

.

Exer
ise 6.6.4. Let K be a 
losed sub�eld of Cp and fpXq �
8

°

n�0

anX
n
P HKpr0, 1rq.

(1) Let ρ P r0, 1rXQ. Show that sup
|z|�ρ

|fpzq| � }f}ρ :� sup
nPZ

¥0

|an|ρ
n
(in parti
ular the maximum modulus

prin
iple holds: we have sup
|z|¤ρ

|fpzq| � }f}ρ).

(2) Show that the map f is bounded (resp. bounded by 1) if and only if fpXq P QpbZp
OK rrXss (resp.

fpXq P OKrrXss).

(3) Show that the in
lusions HKpr0, 1sq � QpbZp
OKrrXss � HKpr0, 1rq are stri
t.

Exer
ise 6.6.5. Let K be a 
losed sub�eld of Cp and 0   r1 ¤ r2. Is the in
lusion

ι : HKpr0, r2sq Ñ HKpr0, r1sq


ontinuous for the norms |.|r2 and |.|r1?

Exer
ise 6.6.6. LetK be a 
losed sub�eld of Cp and r P R
¡0. Show that KrXs is dense in pHKpr0, rsq, |.|rq.

Exer
ise 6.6.7. Find a lo
ally analyti
 map that is not globally a power series on Cp.

Exer
ise 6.6.8. Let K be a 
losed sub�eld of Cp, r P R
¡0 and f P KrrXss.

(1) Show that if r1 ¤ r2, then wr1pfq ¤ wr2pfq.

(2) Assume f P HKpr0, rsq and let r1 ¤ r2 ¤ r. For i P t1, 2u, let f � Piui with Pi P KrXs moni
 of degree

wripfq and ui P HKpr0, risq
�

be Weierstrass de
omposition of f . Show that P1 divides P2 in KrXs.

Exer
ise 6.6.9. Let fpXq � 1� a1X � a2X
2
� � � � P CprrXss de�ning an entire fun
tion on Cp. Show that

the re
ipro
als of the zeros of f form a sequen
e pαiqiPZ
¡0

that 
onverges to 0, and that

fpXq �

8

¹

i�1

p1� αiXq

(for the metri
 de�ned by |.|r for any r P R
¡0).

Exer
ise 6.6.10. (1) Draw the Newton polygon of fpXq � lnp1�Xq �
8

°

n�1

p�1qn�1

n
Xn

. What is its radius

of 
onvergen
e?

(2) Show that lim
nÑ8

1
pn

�

pn

k

�

�

p�1qk�1

k
, and that fpXq � lim

nÑ8

p1�Xqp
n
�1

pn
.

(3) For n P Z
¥0, put QnpXq � Φpn�1

p1 � Xq �
p1�Xqp

n�1
�1

p1�Xqp
n
�1

P ZrXs. Show that fpXq � X
8

±

n�0

QnpXq

p
.

What are the roots of f in the open dis
 of 
onvergen
e?

Exer
ise 6.6.11. (Weierstrass preparation theorem). Let pK, |.|q be a 
omplete dis
rete valued �eld.

Fix a uniformizer π. If fpXq �
8

°

n�0

anX
n
P OKrrXss, let wpfq � inftn P Z

¥0 ; an P O�

Ku P Z
¥0Yt�8u, so

that f P πOKrrXss � wpfq � �8.

(1) Che
k that wpfq � 0� f P OKrrXss
�

, and that wpfgq � wpfq � wpgq.

(2) Let f, g P OKrrXss be su
h that d :� wpgq   �8. Show that there exist unique q P OK rrXss and

r P OKrXs su
h that:

#

degprq   d

f � qf � r

(Weierstrass division theorem).
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A polynomial P P OKrXs is 
alled distinguished if P pXq � Xd
� ad�1X

d�1
� � � � � a0 with ai P mK for

all i P t0, . . . , d� 1u. By the theory of Newton polygons, a distinguished polynomial P has exa
tly degpP q

roots in mK .

(3) Let f P OKrrXss be su
h that d :� wpfq   �8. There exists a unique distinguished polynomial P of

degree d and a unique u P OK rrXss
�

su
h that f � Pu.

(4) Show that if f P K bOK
OK rrXsszt0u, there exist a unique µ P Z, a unique distinguished polynomial P

and u P OKrrXss
�

su
h that f � πµPu. In parti
ular, f has exa
tly wpπ�µfq zeros in mK .

(5) Show that K bOK
OKrrXss is a PID.

(6) Assume K � Cp. Show that f P HKpr0, 1rqzt0u is bounded if and only if f has �nitely many zeros in

Dp0, 1q.

(7) Constru
t a bounded element in HCp
pr0, 1sq having in�nitely many zeros in Dp0, 1q.

Exer
ise 6.6.12. Let pK, |.|q be a 
omplete dis
rete valued �eld. Fix a uniformizer π. Show that OKrrXss

is a noetherian lo
al ring, with maximal ideal m � xπ,Xy, and whose other prime ideals are t0u, xπy and

xP y with P P OKrXs an irredu
ible and distinguished polynomial.

Exer
ise 6.6.13. Let p be a prime number. Constru
t a 
ontinuous surje
tive map Zp Ñ r0, 1s. Des
ribe


ontinuous maps r0, 1s Ñ Zp.

Exer
ise 6.6.14. Let p be a prime number and A � C
0
pZp,Qpq. If f P A , put }f}

8

� sup
xPZp

|fpxq|p. If

n P Z
¥0, the binomial polynomial of index n is

��

X
n

��

�

XpX�1q���pX�n�1q

n!
.

(1) Show that pA , }.}
8

q is a Bana
h spa
e.

(2) Show that

�

�

�

�

X
n

�

�

�

�

8

� 1 for all n P Z
¥0.

If k P Z
¥0 and f P A , we de�ne f rks indu
tively by f r0s � f and f rk�1s

pxq � f rkspx � 1q � f rkspxq. The

k-th Mahler 
oe�
ient of f is akpfq � f rksp0q.

(3) Show that if f P A , there exists m P Z
¥0 su
h that

�

�f rp
m
s

�

�

8

¤

}f}
8

p
.

(4) Show that lim
nÑ8

anpfq � 0.

(5) Show that f �
8

°

n�0

anpfq
�

X
n

�

in pA , }.}
8

q.

(6) Show that }f}
8

� sup
nPZ

¥0

|anpfq|p.

Exer
ise 6.6.15. Show that

8

°

n�0

�

1{2
n

��

7
9

�n
� �

4
3
in Q7. Compute

8

°

n�0

�

1{2
n

��

7
9

�n
in R.

Exer
ise 6.6.16. Prove that AHpXq 
onverges in Dp0, 1q but not in Dp0, 1q (hint: 
ompute

AH1pXq

AHpXq
).

Exer
ise 6.6.17. Find the 
oe�
ients in AHpXq through the Xp�1
term.

Exer
ise 6.6.18. Use Dwork's lemma to show that AHpXq P ZprrXss.

Exer
ise 6.6.19. A slight generalization of previous exer
ise. Let gpXq �
8

°

i�0

biX
pi
P QprrXss. Show that

exppgpXqq P 1�X ZprrXss if and only if bi�1 � pbi P pZp for all i P Z
¥0 (with b

�1 :� 0).
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7. Rational points

7.1. Equations over a �nite �eld. Let p be a prime number, r P Z
¡0 and q � pr. If I � FqrX1, . . . , Xns

is an ideal, we denote by

VpIq � tx P Fnq ; p�P P IqP pxq � 0u � An
pFqq.

its set of zeros in Fnq . A quite important problem is to determine if VpIq � ∅, or better understand #VpIq.

In what follows we provide partial (and 
lassi
al) results in spe
ial 
ases.

Lemma 7.1.1. If n P Z
¥0, we put spnq �

°

xPFq

xn. We have spnq �

#

�1 if n ¡ 0 and q � 1 | n

0 otherwise

.

Proof. 
 Assume n ¡ 0 and q � 1 | n: we have xn � 1 for all x P F�

q (sin
e the latter has order q � 1), and

xn � 0 if x � 0, so that spnq �
°

xPF�q

1 � q � 1 � �1.


 If n � 0, we have xn � 1 for all x P Fq, so that sp0q �
°

xPFq

1 � q � 0.


 Assume n ¡ 0 and q�1 ∤ n. The group F�

q is 
y
li
: let ω be a generator. Then spnq �
°

xPF
�

q

xn �
q�2
°

k�0

ωnk,

hen
e ωnspnq � spnq, i.e. p1� ωnqspnq � 0. As q � 1 ∤ n, we have ωn � 1, when
e spnq � 0. �

Theorem 7.1.2. (Chevalley-Warning). Let pPiq1¤i¤r P FqrX1, . . . , ns
r
and

V � VpxP1, . . . , Pryq � tx P Fnq ; p�i P t1, . . . , ruqPipxq � 0u � An
pFqq.

Assume that

r
°

i�1

degpPiq   n. Then p | #V .

Proof. Put P �

r
±

i�1

p1� P
q�1
i q P FqrX1, . . . , Xns. If x P Fnq , we have

P pxq �

#

1 if x P V

0 otherwise

.

(if Pipxq � 0, we have Pipxq
q�1

� 1, when
e P pxq � 0). This means that P , seen as a map on Fnq with

values in t0, 1u is the 
hara
teristi
 map of V . This implies that

°

xPFn
q

P pxq is the image of #V in Fq: we

have to 
he
k that

°

xPFn
q

P pxq � 0. The hypothesis implies that degpP q   pq � 1qn, whi
h implies that P is

an Fq-linear 
ombination of monomials Xd1
1 � � �Xdn

n with d1�� � ��dn   pq�1qn, in parti
ular so that there

exists i P t1, . . . , nu su
h that di   q�1. By lemma 7.1.1, we have then

°

xPFn
q

xd11 � � �xdnn � spd1q � � � spdnq � 0,

implying the theorem. �

Corollary 7.1.3. Under the hypothesis of the previous theorem, if the polynomials P1, . . . , Pn have no


onstant term, they have a non trivial 
ommon zero.

Example 7.1.4. A non degenerate quadrati
 form over Fq in more than 3 variables has a nonzero isotropi


ve
tor.

Remark 7.1.5. The bound

r
°

i�1

degpPiq   n is optimal: if N : Fqn Ñ Fq is the norm map, then N is a

polynomial map in n variables whi
h is homogeneous of degree n, and V � t0u has 
ardinality prime to p.

7.1.6. Counting solutions using trigonometri
 sums. Here we assume that r � 1, i.e. q � p. Choose ζ P C

a primitive p-th root of unity.

Lemma 7.1.7. If x P Fp, we have

¸

yPFp

ζxy �

#

p if x � 0

0 otherwise

.

Proof. We have ζx � 1 if x � 0 and ζx is a primitive p-th root of unity if x � 0: the lemma follows from

°

yPFp

ζy �
p�1
°

k�0

ζk � 0. �
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Proposition 7.1.8. Let P P FprX1, . . . , Xns. Then

#VpxP yq �
1

p

¸

xPFp

xPFn
p

ζxP pxq � pn�1
�

1

p

¸

xPF�p
xPFn

p

ζxP pxq

Proof. Follows from lemma 7.1.7. �

In general, 
ontrolling the "error term"

1
p

°

xPF�p
xPFn

p

ζxP pxq is quite hard and the general statement for this is

Weil 
onje
tures (
f remark 7.2.9). Following [3, I �2 (2)℄, we will treat the 
ase of diagonal hypersurfa
es,

i.e. that where

P pX1, . . . , Xnq � a1X
d1
1 � � � � � anX

dn
n

where pa1, . . . , anq P Fnp zt0u.

De�nition 7.1.9. (1) A 
hara
ter of a �nite abelian group G is a group homomorphism χ : GÑ C�

. Su
h

a 
hara
ter has values in the group of #G-th roots of unity.

(2) Let χ : F�

p Ñ C�

be a 
hara
ter. We extend it into a map χ : Fp Ñ C by putting

χp0q �

#

1 if χ is trivial

0 otherwise

.

Note that χpxyq � χpxqχpyq for all x, y P Fp. If a P Fp, we put

τapχq �
°

xPFp

χpxqζax P C

(Gauss sum).

Proposition 7.1.10. We have |τapχq| �

#

?

p if χ � 1 and a P F�

p

0 otherwise

.

Proof. 
 Assume χ � 1 and a P F�

p . We have |τapχq|
2
�

°

x,yPF�p

χpxqχpyqζapx�yq. As |χpyq| � 1, we have

χpyq � χpyq�1
� χpy�1

q for all y P F�

p . This implies that

|τapχq|
2
�

°

x,yPF�p

χpxy�1
qζapx�yq �

°

zPF�p

°

yPF�p

χpzqζapz�1qy

By lemma 7.1.7, we have

°

yPF�p

ζapz�1qy
� �1 unless z � 1, in whi
h 
ase it is equal to p � 1. This implies

that

|τapχq|
2
� p� 1�

°

zPF
�

p zt1u

χpzq � p�
°

zPF
�

p

χpzq

As χ is non trivial, we have

°

zPF�p

χpzq � 0, when
e |τapχq|
2
� p, i.e. |τapχq| �

?

p.


 We have τap1q � 0 by lemma 7.1.7. We have τ0pχq �
°

xPFp

χpxq � 0 if χ � 1. �

Theorem 7.1.11. We have

�

�#VpxP yq � pn�1
�

�

¤ Cpp�1qp
n
2
�1

with C �

n
±

i�1

pδi�1q where δi � gcdpdi, p�1q

for i P t1, . . . , nu.

Proof. By proposition 7.1.8, we have

(�) p
�

#VpxP yq � pn�1
�

�

¸

xPF�p
xPFn

p

ζxpa1x
d1
1 �����anx

dn
n q

�

¸

xPF�p

n
¹

i�1

Σζpxai, diq

where Σζpa, dq �
°

yPFp

ζay
d

�

°

zPFp

mdpzqζ
az

with mdpzq � #ty P Fp ; y
d
� zu.

We have mdp0q � 1. Let z P F�

p . If ω is a generator of the 
y
li
 group F�

p , we 
an write z � ωk for a

unique k P t0, . . . , p� 2u. Writing y � ωu, we have yd � z � du � k mod pp� 1qZ. If δ � gcdpd, p� 1q,

a ne
essary 
ondition for the existen
e of su
h u is that δ | k, in whi
h 
ase the 
ongruen
e is equivalent
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to

d
δ
u � k

δ
mod p�1

δ
Z: as d

δ
is prime to

p�1
δ

hen
e invertible mod

p�1
δ
, this last 
ongruen
e has a unique

solution modulo

p�1
δ
, hen
e δ solutions mod p� 1. This shows that

mdpzq �

#

δ if δ | k

0 otherwise

.

Let ε P C be a primitive δ-th root of unity. If s P t0, . . . , δ � 1u and x P F�

p , let

χs : F�

p Ñ C�

be the 
hara
ter de�ned by χspωq � εs (this makes sense sin
e εs is a p�1-th root of unity, be
ause δ | p�1).

Let z � ωk P F�

p with δ | k, we have χspzq � εsk � 1 for all s P t0, . . . , δ� 1u, so that
δ�1
°

s�0

χspzq � δ. If δ ∤ k,

we have pεk � 1q
δ�1
°

s�0

χspzq � εδk � 1 � 0, hen
e
δ�1
°

s�0

χspzq � 0 sin
e εk � 1. In any 
ase we have

mdpzq �
δ�1
°

s�0

χspzq

What pre
edes thus imply Σζpa, dq �
°

zPFp

δ�1
°

s�0

χspzqζ
az
�

δ�1
°

s�0

τapχsq �
δ�1
°

s�1

τapχsq (sin
e τapδ0q � τap1q � 0

by proposition 7.1.10). In parti
ular, we have |Σζpa, dq| ¤
δ�1
°

s�1

|τapχsq| � pδ � 1q
?

p. Thus equation (�)

implies that

p
�

�#VpxP yq � pn�1
�

�

�

°

xPF�p

n
±

i�1

�

pδi � 1q
?

p
�

� pp� 1q
� n
±

i�1

pδi � 1q
	

p
n
2

hen
e the result. �

7.2. Rationality of Zeta fun
tions of s
hemes of �nite type over �nite �elds. What follows is

taken almost verbatim from [19℄. Other referen
es are [13, Chapter V℄ and [8, Chapter II℄. Let q be a power

of a prime p, and V a Fq-s
heme of �nite type. Denote by |V | the set of 
losed points of V .

De�nition 7.2.1. If x P |V |, the 
orresponding residue �eld κpxq is a �nite extension of Fq. The degree of

x is then degpxq � rκpxq : Fqs.

Remark 7.2.2. A point of V with values in Fqd is a morphism of Fq-s
hemes SpecpFqdq Ñ X . The data

of su
h a point is equivalent to its image in the topologi
al spa
e V , whi
h is a 
losed point x P |V |, and

a lo
al morphism of Fq-algebras OV,x Ñ Fqd , i.e. a Fq-linear morphism κpxq Ñ Fqd . The 
losed point x

being �xed, there are degpxq su
h morphisms, i.e. degpxq points. The set of points with values in Fqd is

denoted V pFqdq.

Lemma 7.2.3. For all k P Z
¥1, the set V pFqkq is �nite.

Proof. Being of �nite type over Fq, the s
heme V 
an be 
overed by �nitely many a�ne Fq-s
hemes:

write V �

r
�

i�1

SpecpAiq where Ai is a Fq-algebra of �nite type for i P t1, . . . , ru. If x P |V |, there exists

i P t1, . . . , ru su
h that x P SpecpAiq. If x is the image of an element of VpFqkq, it 
orresponds to the kernel

of a morphism of Fq-algebras Ai Ñ Fqk (
f remark 7.2.2). As Ai is a quotient of FqrX1, . . . , Xnr
s for some

nr P Z
¥0, there are �nitely many su
h morphisms, a fortiori �nitely many su
h 
losed points. Ea
h of these


orresponding to at most k morphisms OV,x Ñ Fqk , this shows the �niteness of V pFqkq. �

De�nition 7.2.4. The zeta fun
tion of V is

ZV pT q �
¹

xP|V |

1

1� T degpxq
P ZrrT ss.

Observe that the produ
t 
onverges in ZrrT ss thanks to the previous lemma.

Lemma 7.2.5. We have ZV pT q � exp
�

8

°

k�1

#V pFqkq
Tk

k

	

.

Proof. Taking the logarithm in QrrT ss, we have

lnpZV pT qq �
°

xP|V |

� ln
�

1� T degpxq
�

�

°

xP|V |

8

°

n�1

Tn degpxq

n
�

8

°

k�1

NkpV q
Tk

k
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where NkpV q �
°

xP|V |
degpxq|k

degpxq � #V pFqkq by remark 7.2.2. �

Example 7.2.6. (1) If V � An
Fq
, we have #V pFqkq � qnk for k P Z

¡0, so

8

°

k�1

#V pFqkq
Tk

k
� � lnp1� qnT q,

hen
e ZAn
Fq
pT q � 1

1�qnT
.

(2) As we have Pn
Fq
� An

Fq
\Pn�1

Fq
, a straightforward indu
tion gives ZPn

Fq
pT q � 1

p1�T qp1�qT q���p1�qnT q
.

Lemma 7.2.7. If V is the union of two subs
hemes V 1

and V 2

, then ZV pT q �
ZV 1 pT qZV 2 pT q

ZV 1XV 2 pT q
.

Proof. Obvious. �

Theorem 7.2.8. (Dwork) ZV pT q P QpT q.

Remark 7.2.9. (1) In fa
t, one has ZV pT q �
P pT q

QpT q
where P pT q, QpT q P ZrT s have 
onstant term equal

to 1. Indeed, theorem 7.2.8 shows that We 
an write ZV pT q �
P pT q

QpT q
where P pT q, QpT q P QrT s. We

may assume that gcdpP,Qq � 1. As ZV p0q � 1, we may divide P and Q by their 
onstant terms, and

assume that P p0q � Qp0q � 1. Let p be a prime number. We have ZV pT q P ZrrT ss � ZprrT ss. Assume

P pT q R ZprT s: one 
oe�
ient of P has negative valuation, so its Newton polygon has a negative slope. This

implies that P has a root λ P Dp0, 1q. As QpT q � P pT qZV pT q and ZV pT q 
onverges on Dp0, 1q (be
ause it

has integral 
oe�
ients), we have Qpλq � 0 as well, 
ontradi
ting the fa
t that gcdpP,Qq � 1. This shows

that P pT q P ZprT s, so that QpT q � P pT qZV pT q P ZprT s. This means that the 
oe�
ients of P and Q have

non-negative p-adi
 valuations for all primes p: they are integers.

(2) This result is the �rst of Weil 
onje
tures. There are the following. Assume that V is a proje
tive and

geometri
ally irredu
ible

(46)

and smooth over Fq. Then the following hold:


 (Fun
tional equation) we have

ZV pq
�dT�1

q � �q
de
2 T e ZV pT q

where d � dimpV q and e is the �Euler 
hara
teristi
� of V ;


 (Riemann hypothesis) we 
an write

ZV pT q �
P1pT qP3pT q � � �P2d�1pT q

P0pT qP2pT q � � �P2dpT q

where PjpT q P ZrT s are su
h that P0pT q � 1�T and P2dpT q � 1� qdT and PjpT q �
bj
±

i�1

p1�αi,jT q

where

(47)

|αi,j | � qj{2 for all i P t1, . . . , bju.

For instan
e, if V is a 
urve of genus g, we have ZV pT q �
P pT q

p1�T qp1�qT q
where P P 1�T ZrT s is a polynomial

of degree 2g, whose roots have absolute value
?

q.

7.2.10. First redu
tions.

Lemma 7.2.11. If d P Z
¡0, we have QpT q X ZrrT dss � QpT dq.

Proof. Let P,Q P QrXszt0u be 
oprime and su
h that

P pT q

QpT q
P ZrrT dss. We may assume that Qp0q � 1.

Let ζ P C be a primitive d-th root of unity: the hypothesis implies that

P pT q

QpT q
�

P pζT q

QpζT q
in CpT q, when
e

P pT qQpζT q � P pζT qQpT q in CrT s. As gcdpP,Qq � 1, Gauss lemma implies that QpT q | QpζT q, when
e

QpT q � QpζT q (sin
e QpT q and QpζT q have same degree and same 
onstant term). This shows that

QpT q � QpζkT q for all k P Z, so that QpT q � 1
d

d�1
°

k�0

P pζkT q P CrT ds XQrT s � QrT ds (be
ause
d�1
°

k�0

ζki � 0

unless d | i). Similarly P pT q P QrT ds, and we are done. �

Lemma 7.2.12. Theorem 7.2.8 follows from the spe
ial 
ase where V � Vpfq � An
Fp

for some polynomial

fpXq P FprX1, . . . , Xns.

(46)

i.e. su
h that V �Fq
Fq is irredu
ible.

(47)

Moreover, if V is the redu
tion mod p of a non singular proje
tive variety

rV over a number �eld K, the integers bj are

pre
isely the �Betti numbers� of

rV , i.e. the dimensions of the Betti 
ohomology groups of the topologi
al manifold

rV pCq.
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Proof. 
 Put d � rFq : Fps. As V is of �nite type over Fq, it is of �nite type over Fp as well. If x P |V |,

we have rκpxq : Fps � rκpxq : Fqsd, so that ZV {Fp
pT q � ZV {Fq

pT dq. If the theorem is known for varieties

over Fp, this shows that ZV {Fq
pT dq P QpT q XZrrT dss � QpT dq by lemma 7.2.11, so that ZV {Fq

pT q P QpT q.

This implies that to prove theorem 7.2.8, we may restri
t to the 
ase where q � p is prime.


 As V is of �nite type over Fp, we have X �

r
�

i�1

Vi where V1, . . . , Vr are a�ne open subs
hemes. By lemma

7.2.7, we have

ZV pT q �
±

I�t1,...,ru
I�∅

ZVI
pT qp�1q#I

where VI �
�

iPI

Vi for all I � t1, . . . , ru. It is enough to show that ZVI
pT q P QpT q when I � ∅. As VI is a

subs
heme of an a�ne hen
e separated s
heme when I � ∅, we 
an redu
e to the 
ase redu
e to the 
ase

where V is separated. In that 
ase, the interse
tions VI are a�ne (
f [15, Chap. 3.3, Prop. 3.6℄): we are

redu
ed to the 
ase when V is a�ne, i.e. V � VpIq � An
Fp

where I � xf1, . . . , fmy � FprX1, . . . , Xns is an

ideal. Assume m ¡ 1: let V 1

� Vpxf1, . . . , fm�1yq and V
2

� Vpfmq. Then V � V 1

X V 2

: by lemma 7.2.7,

we have ZV pT q �
ZV 1 pT qZV 2 pT q

ZV 1YV 2 pT q
. As V 1

Y V 2

� Vpxf1, . . . , fm�1yfmq, a straightforward indu
tion redu
es to

the 
ase where m � 1, i.e. where V � Vpfq � An
Fp

for some polynomial fpXq P FprX1, . . . , Xns. �

If fpXq P FprX1, . . . , Xns, put

rVpfq � Vpfq XDpX1 � � �Xnq � An
Fp
.

A point of fpXq with values in Fq thus 
orresponds to the data of an element x � px1, . . . , xnq P Fnq su
h

that fpx1, . . . , xnq � 0 and x1 � � �xn � 0.

Lemma 7.2.13. Theorem 7.2.8 follows from the spe
ial 
ase where V �

rVpfq � An
Fp

for some polynomial

fpXq P FprX1, . . . , Xns.

Proof. By lemma 7.2.12, we already redu
ed the proof to the 
ase where V � Vpfq for some polynomial

fpXq P FprX1, . . . , Xns. Now we have

Vpfq � rVpfq \ pVpfq X VpX1 � � �Xnqq.

By lemma 7.2.7, the rationality of ZVpfq follows from that of Z
rVpfq

and that of ZVpF qXVpX1���Xnq
. As we

have Vpfq X VpX1 � � �Xnq �

n
�

i�1

Vpfq XVpXiq, this redu
es to that of Z
rVpfq

and of the zeta fun
tions of the

various interse
tions of the VpfqXVpXiq. As those identify with subs
hemes of An�1
Fp

, we 
an use indu
tion

on n to redu
e to the rationality of Z
rVpfq

. �

7.2.14. Fa
torization of additive 
hara
ters on �nite �elds. Re
all that in se
tion 6.4.17, we de�ned the

series BpX,Y q �
8

°

n�0

�

X
n

�

Y n � p1� Y qX P QrrX,Y ss and Dwork's series

F pX,Y q � BpX,Y q
8

±

i�1

B
�

Xpi
�Xpi�1

pi
, Y p

i
	

P ZprrX,Y ss

(
f proposition 6.4.20). Formally, we have

F pX,Y q �
8

±

i�0

p1� Y p
i

q

Xpi
�Xpi�1

pi

Write

F pX,Y q �
8

°

m�0

BmpXqY
m.

In ea
h monomial of fa
tor B
�

Xpi
�Xpi�1

pi
, Y p

i
	

, the degree in X is less or equal to that of Y : this thus

holds also for F pX,Y q. This implies that degpBmq ¤ m for all m P Z
¥0. This shows in parti
ular that we

have

F pX,Y q �
8

°

m�0

XmαmpY q

where αmpY q P Y
m ZprrY ss.
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Fix ε P Cp be a primitive p-th root of unity and let λ � ε� 1: we have λ � 0, so that 0 � εp�1
ε�1

�

p1�λqp�1

λ
,

so that λp�1
�

p�2
°

k�1

�

p
k

�

λk�1
�p � 0. This shows that vppλq ¡ 0, hen
e vp

��

p
k

�

λk�1
�

¡ 1 for k P t1, . . . , p�2u,

so that vppλ
p�1

q � 1, i.e. vppλq �
1
p�1

. Put

ΘpXq � F pX,λq �
8

°

m�0

βmX
m

where βm � αmpλq P Zprλs � Zprεs. Note that vppβmq ¥
m
p�1

sin
e αmpY q P Y
m ZprrY ss. This implies that

the radius of 
onvergen
e of Θ is larger that p
1

p�1
¡ 1, i.e. that Θ 
onverges on D

�

0, p
1

p�1

�

.

If k P Z
¡0 and t P Fpk , we have TrF

pk
{Fp

ptq �
k�1
°

j�0

tp
j

P Fp, so that ε
TrF

pk
{Fp ptq

makes sense, and de�nes a


hara
ter

ε
TrF

pk
{Fp : Fpk Ñ C�

p

t ÞÑ ε
TrF

pk
{Fp ptq

Re
all that the Tei
hmüller lift of t is the unique element rts P OQp
that lifts t P Fp and su
h that rtsp

k

� rts

(
f de�nition 3.8.20). The following statement provides an analyti
 expression of this 
hara
ter (more

pre
isely its expression as the value at rts P OCp
of an analyti
 map de�ned on D

�

0, p
1

p�1

�

).

Proposition 7.2.15. For all t P Fpk , we have

ε
TrF

pk
{Fp ptq

� ΘprtsqΘprtpsq � � �Θprtp
k�1

sq.

Proof. The equality TrF
pk

{Fp
ptq �

k�1
°

j�0

tp
j

P Fp is the redu
tion modulo mQp
of

Trkprtsq :�
k�1
°

j�0

rtsp
j

P Zp

so that ε
TrF

pk
{Fp ptq

� εTrkprtsq � BpTrkprtsq, λq.

On the other hand, BpTrkprtsq, Y q � p1� Y qTrkprtsq �
k�1
±

j�0

Bprtsp
j

, Y q in CprrY ss. Moreover, we have

F prtsp
j

, Y q � Bprtsp
j

, Y q
8

±

i�1

B
�

rtsp
i�j

�rtsp
i�j�1

pi
, Y

�

for all j P t0, . . . , k � 1u. Multiplying all those equalities in CprrY ss gives

k�1
±

j�0

F prtsp
j

, Y q �
� k�1
±

j�0

Bprtsp
j

, Y q
	

8

±

i�1

� k�1
±

j�0

B
�

rtsp
i�j

�rtsp
i�j�1

pi
, Y

�

	

�

� k�1
±

j�0

Bprtsp
j

, Y q
	

8

±

i�1

B
�

1
pi

k�1
°

j�0

�

rtsp
i�j

� rtsp
i�j�1�

, Y
	

�

k�1
±

j�0

Bprtsp
j

, Y q

in CprrY ss be
ause
k�1
°

j�0

�

rtsp
i�j

� rtsp
i�j�1�

� 0 sin
e rtsp
k

� rts and Bp0, yq � 1. We thus have

BpTrkprtsq, Y q �
k�1
±

j�0

F prtsp
j

, Y q

in CprrY ss. We may evaluate both sides at λ (the LHS be
ause Trkprtsq P Zp and the RHS be
ause the

radius of 
onvergen
e of Θ in greater that p
1

p�1
), and get

ε
TrF

pk
{Fp ptq

� ΘprtsqΘprtpsq � � �Θprtp
k�1

sq.

�
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7.2.16. Spe
tral theory of an operator in in�nite dimension. Put X � pX0, . . . , Xnq and let E � CprrXss be

the ring of formal power series in the variables X0, . . . , Xn with 
oe�
ients in Cp.

If w � pw0, . . . , wnq P Zn�1
¥0 , put |w| � w0 � � � � � wn P Z

¥0 and Xw � Xw0

0 � � �Xwn
n . If GpXq P E, the

multipli
ation by GpXq de�nes a Cp-linear endomorphism µGpXq P EndCp
pEq. If m P Z

¥0, we de�ne an

element ψm P EndCp
pEq by

ψm

�

°

wPZ
n�1
¥0

awX
w
	

�

°

wPZ
n�1
¥0

amwX
w.

Let

Ψm,G � ψm � µGpXq P EndCp
pEq

be the 
omposite. In the 
anoni
al basis

�

Xw
�

wPZn�1
¥0

, the (in�nite) matrix of Ψm,G is pgmw�uqu,wPZn�1
¥0

,

where GpXq �
°

wPZ
n�1
¥0

gwX
w
.

Remark 7.2.17. If m,m1

P Z
¥2, we have ψm � ψm1

� ψmm1

and µGpXq � ψm � ψm � µGpXm
q

. Indeed, if

u P Zn�1
¥0 , we have ψm

�

Xu
�

�

#

Xu{m if m | u

0 otherwise

. Also, we have µGpXm
q

�

Xu
�

�

°

wPZ
n�1
¥0

gwX
mw�u

: we get

pψm � µGpXm
q

q

�

Xu
�

�

°

wPZn�1
¥0

gwψm
�

Xmw�u
�

� Gψm
�

Xu
�

by linearity, so that µG � ψm � ψm � µGpXm
q

.

Lemma 7.2.18. Assume there exists a 
onstant C P R
¡0 su
h that vppgwq ¥ C |w| for all w P Zn�1

¥0 . Then

for all k P Z
¡0, the series giving the tra
e of Ψkm,G 
onverges, and we have

pmk
� 1qn�1TrpΨkm,Gq �

°

xPCn�1
p

xm�1
�1

GpxqGpxmq � � �Gpxm
k�1

q

(if x � px0, . . . , xnq P Cn�1
p , the 
ondition xm�1

� 1 means that xm�1
i � 1 for all i P t0, . . . , nu).

Proof. 
 An immediate indu
tion on k using remark 7.2.17, implies that

Ψkm,G � Ψk�1
m,G �Ψm,G � ψmk�1 � µ

GpXqGpXm
q���GpXmk�2

q

� ψm � µG

� ψmk � µ
GpXm

qGpXm2
q���GpXmk�1

q

� µG

� ψmk � µ
GpXqGpXm

qGpXm2
q���GpXmk�1

q

thus we may repla
e m by mk
and GpXq by GpXqGpXmqGpXm

2

q � � �GpXm
k�1

q, and assume that k � 1.


 The matrix of Ψm,G being pgmw�uqu,wPZn�1
¥0

, we have TrpΨm,Gq �
°

wPZn�1
¥0

g
pm�1qw (the series 
onverges

thanks to the hypothesis of the lemma. On the other hand, we have

°

xPCn�1
p

xm�1
�1

xw �

#

pm� 1qn�1
if m� 1 | w

0 otherwise

.

This implies that

°

xPCn�1
p

xm�1
�1

Gpxq � pm� 1qn�1
°

wPZn�1
¥0

g
pm�1qw. �

Assume again the existen
e of a 
onstant C P R
¡0 su
h that vppgwq ¥ C |w| for all w P Zn�1

¥0 . Put

detpIdE �TΨm,Gq :�
8

°

d�0

γdT
d

where

γd :� p�1qd
°

u1,...,udPZ
n�1
¥0

uj distin
t

σPSd

εpσq
d
±

j�1

�

ψm,G
�

uj ,uσpjq

� p�1qd
°

u1,...,udPZ
n�1
¥0

uj distin
t

σPSd

εpσq
d
±

j�1

gmuσpjq�uj
.

This sum does 
onverge in Cp be
ause we have

vp

�

εpσq
d
±

j�1

gmuσpjq�uj

	

�

d
°

j�1

vppgmuσpjq�uj
q ¥ Cpm� 1q

d
°

j�1

�

�uj
�

�

Lemma 7.2.19. Let F be a �eld, d P Z
¡0 and M P MdpF q. Then detpIn�TMq � exp

�

�

8

°

k�1

TrpMk
q

Tk

k

	

.



148 Number theory

Proof. Let F be an algebrai
 
losure of F , and λ1, . . . , λd P F are the eigenvalues ofM . For k P Z
¡0 we have

TrpMk
q �

d
°

j�1

λkj , so that �

8

°

k�1

TrpMk
q

Tk

k
� �

d
°

j�1

8

°

k�1

pλjT q
k

k
�

d
°

j�1

lnp1� λjT q � lnpdetpIn�TMqq. �

Lemma 7.2.20. Assume there exists a 
onstant C P R
¡0 su
h that vppgwq ¥ C |w| for all w P Zn�1

¥0 . Then

we have:

(i) detpIdE �TΨm,Gq � exp
�

�

8

°

k�1

Tr
�

Ψkm,G
�

Tk

k

	

;

(ii) the radius of 
onvergen
e of the series detpIdE �TΨm,Gq P CprrT ss is in�nite.

Proof. (i) If N P Z
¡0, let Ψm,G,¤N be the endomorphism of E whose matrix is that of Ψm,G with entries

for whi
h |u| ¡ N or |w| ¡ N are repla
ed by 0. Then detpIE �TΨm,G,¤Nq � exp
�

�

8

°

k�1

Tr
�

Ψkm,G,¤N
�

Tk

k

	

by lemma 7.2.19. Endowing CprrT ss with the topology 
oe�
ientwise 
onvergen
e, the equality follows by

passing to the limit as N Ñ8.

(ii) It is enough to 
he
k that lim
dÑ8

vppγdq

d
� �8. We already know that

vppγdq ¥ Cpm� 1q inf
u1,...,udPZ

n�1
¥0

uj distin
t

� d
°

j�1

�

�uj
�

�

	

.

Order the elements of Zn�1
¥0 into a sequen
e pwsqsPZ¡0

su
h that |ws| ¤
�

�ws�1

�

�

for all s P Z
¡0. Then we have

vppγdq ¥ Cpm�1q
d
°

s�1

|ws|. As lim
sÑ8

|ws| � �8, we have lim
dÑ8

1
d

d
°

s�1

|ws| (Cesàro), i.e. lim
dÑ8

vppγdq

d
� �8. �

7.2.21. Analyti
 expression of the Zeta fun
tion and end of the proof. Re
all (
f lemma 7.2.13) that we

redu
ed the proof of theorem 7.2.8 to the spe
ial 
ase where q � p is prime and V �

rVpfq � An
Fp

for some

polynomial fpXq P FprX1, . . . , Xns. If k P Z
¡0 we have:

rVpfqpFpkq �
 

px1, . . . , xnq P Fnpk ; fpx1, . . . , xnq � 0, p�i P t1, . . . , nuqx
pk�1
i � 1

(

Lemma 7.2.22. The series Z
rVpfq

pT q de�nes a holomorphi
 fun
tion on the dis


 

z P C ; |z|   1
pn

(

.

Proof. We have 0 ¤ #rVpfqpFpkq ¤ pkn for all k P Z
¡0: the radius of 
onvergen
e of

8

°

k�1

#rVpfqpFpkq
Tk

k
is

at least

1
pn
, so does that of the series Z

rVpfq
pT q. �

A

ording to theorem 6.5.8, theorem 7.2.8 follows if we 
an show that the series Z
rVpfq

pT q de�nes a mero-

morphi
 fun
tion on the dis


 

x P Cp ; |z|p   ru where r
pn
¡ 1. In fa
t, we have mu
h better:

Theorem 7.2.23. The series Z
rVpfq

pT q de�nes a meromorphi
 fun
tion on Cp.

Proof. Fix k P Z
¡0. If t P Fpk , we have

Θkptq :� ε
TrF

pk
{Fp ptq

� ΘprtsqΘprtpsq � � �Θprtp
k�1

sq.

where rts P Qp is the Tei
hmüller representative of t (
f proposition 7.2.15). As Θk is a non-trivial 
hara
ter

on Fpk , we have

°

x0PFpk

Θkpx0uq �

#

pk if u � 0

0 if u � 0

(the �rst equality is trivial, for the se
ond, pi
k u0 P Fpk su
h that Θkpu0q � 1, whi
h is possible sin
e

Θk is non trivial, then Θkpu0q
°

x0PFpk

Θkpx0uq �
°

x0PFpk

Θkpx0u � u0q �
°

x0PFpk

Θkpx0uq be
ause the map

y ÞÑ y � u0 is a permutation of Fpk). If we apply this to u � fpxq and sum over all values of x P F�n
pk

, we

get

pk#rVpfqpFpkq �
°

xPF
�n

pk

°

x0PFpk

Θkpx0fpxqq � ppk � 1qn �
°

x0PF
�

pk

°

xPF
�n

pk

Θkpx0fpxqq

Write X0fpX1, . . . , Xnq �

M
°

m�1

amX
wm

P FprX0, . . . , Xns with am P Fp and wm � pwm,0, . . . , wm,nq P Zn�1
¥0

for all m P t1, . . . ,Mu (here Xwm
� X

wm,0

0 � � �X
wm,n
n ). If x0 P F�

pk
and x � px1, . . . , xnq P F�n

pk
, we have

Θkpx0fpxqq �
M
±

m�1

Θk
�

amrx
wm

�
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where
rxwm

�

n
±

i�0

x
wm,i
m P Fpk . The previous equality be
omes

pk#rVpfqpFpkq � ppk � 1qn �
°

rxPF
�pn�1q

pk

M
±

m�1

Θk
�

amrx
wm

�

� ppk � 1qn �
°

rxPF
�pn�1q

pk

M
±

m�1

k�1
±

j�0

Θ
��

airx
pjwm

��

Put

GpXq �
M
±

m�1

Θ
�

ramsX
wm

�

P ZprεsrrXss.

The previous equality is then

pk#rVpfqpFpkq � ppk � 1qn �
°

rxPF
�pn�1q

pk

k�1
±

j�0

G
��

rxp
j ��

Re
all the the map Θ 
onverges on the dis
 D
�

0, p
1

p�1

�

� Cp: this implies that the series GpXq 
onverges

on the polydis
 D
�

0, p
1

p�1

�n�1
. This means that we 
an write GpXq �

°

wPZn�1
¥0

gwX
w
P CprrXss where

vpgwq � C |w|
�

ÝÑ 8 for all C P

�

0, 1
p�1

�

. This implies in parti
ular that the hypothesis of lemmas 7.2.18

and 7.2.20 are satis�ed by GpXq. By lemma 7.2.18, we thus have

pk#rVpfqpFpkq � ppk � 1qn � ppk � 1qn�1 TrpΨkGq

�

n
°

i�0

p�1qi
�

n
i

�

pkpn�iq �
n�1
°

i�0

p�1qi
�

n�1
i

�

pkpn�1�iq TrpΨkGq

Multiplying by

Tk

k
, summing over k P Z

¡0 gives

ln
�

Z
rVpfq

ppT q
�

�

n
°

i�0

p�1qi
�

n
i

�

8

°

k�1

ppn�iT qk

k
�

n�1
°

i�0

p�1qi
�

n�1
i

�

8

°

k�1

TrpΨkGq
ppn�1�iT qk

k

� �

n
°

i�0

p�1qi
�

n
i

�

lnp1� pn�iT q �
n�1
°

i�0

p�1qi
�

n�1
i

�

ln
�

∆ppn�1�iT q
�

where ∆pT q � detpId�TΨGq � exp
�

�

8

°

k�1

TrpΨk
Gq

k
T k

	

(
f lemma 7.2.20 (i)). Taking exponentials gives

thus:

Z
rVpfq

ppT q �
� n
±

i�0

p1� pn�iT qp�1qi�1
p

n
iq

	� n�1
±

i�0

∆ppn�1�iT qp�1qi�1
p

n�1
i q

	

As the series ∆ is holomorphi
 on Cp (
f lemma 7.2.20 (ii)), the series Z
rVpfq

ppT q is meromorphi
 on Cp:

so does Z
rVpfq

pT q. �

7.3. Lifting solutions from 
hara
teristi
 p to 
hara
teristi
 0. The following is a trivial generaliza-

tion of Newton's lemma (
f theorem 3.3.10):

Theorem 7.3.1. Let pK, |.|q be a 
omplete non ar
himedean valued �eld ,n P Z
¡0, P P OKrX1, . . . , Xns

and x � px1, . . . , xnq P On
K . Assume that there exist i P t1, . . . , nu and ε P r0, 1r su
h that

|P pxq| ¤ ε
�

�

�

BP
BXi

pxq

�

�

�

2

.

Then there exists x1 � x � ηei P On
K (where pe1, . . . , enq is the 
anoni
al basis of K

n
) su
h that P px1q � 0

and |η| ¤ ε
�

�

�

BP
BXi

pxq

�

�

�

.

Proof. Write x � px1, . . . , xnq and put QpXq � P px1, . . . , xi�1, X, xi�1, . . . , xnq P OKrXs: we have thus

Qpxiq � Qpxq and Q1

pxiq �
BP
BXi

pxq. The hypothesis thus imply that we may apply Newton's lemma to Q at

xi, and �nd x1i � xi�η su
h that Qpx1iq � 0 and |η| ¤ ε
�

�

�

BP
BXi

pxq

�

�

�

, so that x1 � px1, . . . , xi�1, x
1

i, xi�1, . . . , xnq

has the required property. �
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Corollary 7.3.2. Let A � pai,jq1¤i,j¤n P GLnpZpq be a symmetri
 matrix, qpXq �
°

1¤i,j¤n

ai,jXiXj the

asso
iated quadrati
 form on Qn
p , and a P Zp. Let x � px1, . . . , xnq P Z3

p zpZ
n
p be su
h that qpxq � a

mod 4pZp. Then there exists x1 P Z3
p su
h that qpx1q � a and x1 � x mod 2pZp.

Proof. We have

Bq
BXi

pxq � 2
n
°

j�1

ai,jxj for all i P t1, . . . , nu. As A P GLnpZpq and x R pZnp , there exists

i P t1 . . . , nu su
h that

n
°

j�1

ai,jxj P Z�p . If p � 2, this implies that vp
�

Bq
BXi

pxq
�

� 0, so the generalized

Newton's lemma (theorem 7.3.1) implies the existen
e of x1. If p � 2, this implies that v2
�

Bq
BXi

pxq
�

� 1: as

v2pqpxq � aq ¥ 3 the generalized Newton's lemma again implies the existen
e of x1. �

7.4. The Hasse prin
iple for quadrati
 forms. What follows is almost a mere translation

(48)

of [22,

Chap. III & IV℄.

7.4.1. Squares in Q�

p . If x P Zp, denote by x the image of x in Fp.

Proposition 7.4.2. Let x P Q�

p . Write x � pvppxqu with u P Z�p . Then x is a square in Qp if and only if

2 | vppxq and
�

u
p

�

� 1 (i.e. u is a square in Fp) and u � 1 mod 8Z2 if p � 2.

Proof. 
 Assume x is a square: write x � y2 with y P Q�

p . We have y � pvppyqv with v P Z�p . Then

pvppxqu � p2vppyqv, hen
e vppxq � 2vppyq is even, and u � v2 is a square, hen
e u � v2 is a square in Fp. If

p � 2, we have v � 1 mod 2Z2 hen
e u � 1 mod 8Z2.


 Conversely, assume vppxq � 2n with n P Z and u is a square in Fp. Put P pXq � X2
� u P ZrXs: there

exists v0 P Z�p su
h that P pv0q P pZp. We have P 1

pv0q � 2v. If p � 2, we have P 1

pv0q P Z�p , so Newton's

lemma implies that there exists v P Z�p su
h that P pvq � 0, so that x � y2 with y � pnv. If p � 2, we have

P pv0q P 8Z2 and P 1

pv0q P 2Z�2 . By Newton's lemma again, there exists v P Z�2 su
h that P pvq � 0, whi
h

shows that x is a square. �

Notation. If p � 2, and x P Z�2 , we have x � 1 mod 2Z2, so that x2 � 1 mod 8Z2. Let εpxq (resp. ωpxq)

be the image of

x�1
2

(resp.

x2
�1
8

) in F2. We have

εpxq �

#

0 if x � 1 mod 4Z2

1 if x � 3 mod 4Z2

and ωpxq �

#

0 if x � �1 mod 8Z2

1 if x � �3 mod 8Z2

.

Corollary 7.4.3. If p � 2, there are isomorphisms

Q�

p {Q
�2
p � pZ {2Zq � pF�

p {F
�2
p q

�

ÑpZ {2Zq2

if p � 2, there are isomorphisms

Q�

2 {Q
�2
2 � pZ {2Zq � pZ�2 {p1� 8Z2qq � pZ {2Zq2

in whi
h pε, ωq : Z�2 {p1 � 8Z2q Ñ pZ {2Zq2 is a group isomorphism. A system of representatives is

t1, u, p, puu (where u P Z�p is not a square) if p � 2 and t�1,�5,�2,�10u if p � 2.

In parti
ular, Q�2
p is an open subgroup of Q�

p .

Proof. The only thing that has to be 
he
ked is the fa
t that ε and ω are group homomorphisms. If

x � 1�2u and y � 1�2v are elements in Z�2 � 1�2Z2, we have xy � 1�2px�yq mod 4Z2 so that εpxyq

is the image of u�v mod 2Z2, i.e. εpxq�εpyq. Similarly, we have x2 � 1�4pu�u2q and y2 � 1�4pv�v2q,

so that pxyq2 � 1� 4pu�u2� v� v2q mod 16Z2, so that ωpxyq is the image of

u�u2

2
�

v�v2

2
mod 2Z2, i.e.

ωpxq � ωpyq. �

7.4.4. The Hilbert symbol. In what follows, K is either R or Qp for some prime p.

De�nition 7.4.5. Let a, b P K�

. The Hilbert symbol of a and b (relative to K) is

pa, bq �

#

1 if ax2 � by2 � z2 � 0 has a nonzero solution in K3

�1 otherwise

.

Obviously pa, bq only depends on the images of a and b in K�

{K�2
: we will often 
onsider p., .q as a map

pK�

{K�2
q � pK�

{K�2
q Ñ t�1u.

Lemma 7.4.6. Let a, b P K�

. Then pa, bq � 1 if and only if a P NKp
?

bq{K

�

K
�

?

b
�

�

�

.

(48)

It seems ex
luded to improve upon Serre's writing...
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Proof. If b � β2
with β P K�

, then p0, 1, βq P K3
is a nonzero solution of ax2 � by2 � z2 � 0, and

K�

� NKp
?

bq{K

�

K
�

?

b
�

�

�

: this gives the equivalen
e in this 
ase. Assume hen
eforth that b is not a

square in K, so that

�

K
�

?

b
�

: K
�

� 2. Elements is K
�

?

b
�

are thus of the form u� v
?

b with u, v P K, and

NKp
?

bq{Kpu � v
?

bq � u2 � bv2. If pa, bq � 1, let px, y, zq P K3
ztp0, 0, 0qu be su
h that ax2 � by2 � z2 � 0.

Assume x � 0: we have y � 0 (this would imply z � 0 whi
h is not), so b �
�

z
y

�2
, 
ontradi
ting the fa
t

that b is not a square. As x � 0, we have a �
�

z
x

�2
� b

�

y
x

�2
� NKp

?

bq{K

�

z�y
?

b
x

�

P NKp
?

bq{K

�

K
�

?

b
�

�

�

.

Conversely, assume that a � NKp
?

bq{Kpu � v
?

bq � u2 � bv2: then p1, v, uq is a nonzero solution to ax2 �

by2 � z2 � 0 in K3
, hen
e pa, bq � 1, showing the equivalen
e in that 
ase. �

Lemma 7.4.7. If a, b, c P K�

, we have:

(i) pa, bq � pb, aq and pa, c2q � 1;

(ii) pa,�aq � 1 and pa, 1� aq � 1 if a � 1;

(iii) pa, bq � 1ñ pac, bq � pc, bq;

(iv) pa, bq � pa,�abq � pa, p1� aqbq (assuming a � 1 for the last equality).

Proof. (i) is obvious. For (ii), p1, 1, 0q (resp. p1, 1, 1q) is a nonzero solution of ax2 � ay2 � z2 � 0 (resp.

ax2 � p1� aqy2 � z2 � 0). If pa, bq � 1, then a P NKp
?

bq{KpKp
?

bq�q (
f lemma 7.4.6), so

pac, bq � 1� ac P NKp
?

bq{K

�

K
�

?

b
�

�

�

� c P NKp
?

bq{K

�

K
�

?

b
�

�

�

� pac, bq � 1

(sin
e NKp
?

bq{K

�

K
�

?

b
�

�

�

is a subgroup of K�

), proving (iii). Finally, (iv) follows from (i)-(iii). �

Notation. 
 If u P Z�p , we denote by u its image in F�

p , and we put

�

u
p

�

�

�

u
p

�

(the Legendre symbol of u,

whi
h is �1 following to u is a square in Fp or not).


 If p � 2 and u P Z�2 , re
all that we denote by εpuq (resp. ωpuq) the image of

u�1
2

(resp.

u2
�1
8

) in F2.

Theorem 7.4.8. Let a, b P K�

.


 If K � R, we have pa, bq � �1� a, b P R
 0.


 If K � Qp, write a � pαu and b � pβv with α, β P Z and u, v P Z�p . Then

pa, bq �

#

p�1qαβεppq
�

u
p

�β� v
p

�α
if p � 2

p�1qεpuqεpvq�αωpvq�βωpuq if p � 2
.

Theorem 7.4.9. The Hilbert symbol is a non degenerate pairing on the F2-ve
tor spa
e K
�

{K�2
.

Proof of theorem 7.4.8. The 
ase where K � R is trivial, sin
e K�

{K�2
� t�1u as K�2

� R
¡0. We

hen
eforth assume that K � Qp for some prime p.

First observe that if v P Z�p and z2 � px2 � vy2 � 0 has a nonzero solution in Q3
p, then it has a solution

su
h that x P Zp and y, z P Z�p (
learing the denominators, we may assume that px, y, zq P Z3
p zppZpq

3
; if

p | z, then p | vy2 hen
e p | y sin
e v P Z�p , so that p | x, 
ontradi
ting px, y, zq R pZ
3
, hen
e z P Z�p , when
e

vy2 � z2 � px2 P Z�p , i.e. y P Z�p ).

The Hilbert symbol is symmetri
, and it is a�e
ted by α and β only through their images in Z {2Z: we may

restri
t to the following three 
ases:

(1) α � β � 0;

(2) α � 1 and β � 0;

(3) α � β � 1.

Case where p � 2. In 
ase (1), we have to 
he
k that pa, bq � 1. By example 7.1.4, the quadrati
 form

ax2 � by2 � z2 has a nonzero isotropi
 ve
tor in F3
p: as its dis
riminant �ab belongs to Z�p , 
orollary 7.3.2

applies, showing that ax2 � by2 � z2 has a nonzero isotropi
 ve
tor in Z3
p, i.e. that pa, bq � 1.

In 
ase (2), we have to 
he
k that ppu, vq �
�

v
p

�

. By lemma 7.4.7 (iii), we have ppu, vq � pp, vq sin
e

pu, vq � 1 (
f 
ase (1)): we may assume u � 1. If pp, vq � 1, there exists px, y, zq P Z3
p su
h that y, z P Z�p

su
h that z2�px2�vy2 � 0 (
f above): redu
ing modulo p gives vy2 � z2, whi
h implies that v is a square

in Fp, i.e.
�

v
p

�

� 1. Conversely, assume that

�

v
p

�

� 1: this implies that v is a square in Fp, so that v is a

square in Zp, so that pp, vq � 1 (
f 7.4.7 (i)). This shows that pp, vq �
�

v
p

�

as required.

In 
ase (3), we have to 
he
k that ppu, pvq � p�1qεppq
�

u
p

��

v
p

�

. By 7.4.7 (iv), we have

ppu, pvq � ppu,�p2uvq � ppu,�uvq �
�

�uv
p

�
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(the last equality follows from 
ase (2)), hen
e ppu, pvq � p�1qεppq
�

u
p

��

v
p

�

by multipli
ativity of the Legendre

symbol, and the equality

�

�1
p

�

� p�1qεppq.

Case where p � 2. Here again, we may redu
e to the three 
ases (1)-(3) as above. Assume (1): we must show

that pu, vq � 1 if εpuqεpvq � 0 and pu, vq � �1 if εpuqεpvq � 1. If u � 1 mod 8Z2, then u is a square in Z2,

so pu, vq � 1. If u � 5 mod 8Z2, then u � 4v � 1 mod 8Z2: there exists w P Z2 su
h that w2
� u � 4v,

so that the for ux2 � vy2 � z2 vanishes at p1, 2, wq, and pu, vq � 1. This shows that εpuq � 0 ñ pu, vq � 1

(symmetri
ally, we have εpvq � 0 ñ pu, vq � 1). Assume u, v P �1 � 4Z2: if px, y, zq P Z2
is a primitive

solution of ux2 � vy2 � z2 � 0, we have x2 � y2 � z2 � 0 mod 4Z2. As squares in Z {4Z are 0 and 1, this

shows that x, y, z P 2Z2, 
ontradi
ting the fa
t that px, y, zq is primitive. Thus pu, vq � �1 in this 
ase.

In 
ase (2), we have to 
he
k that p2u, vq � p�1qεpuqεpvq�ωpvq. First observe that p2, vq � p�1qωpvq, i.e. that

2x2 � vy2 � z2 represents 0 if and only if v � �1 mod 8. Indeed, assume p2, vq � 1: there exist x, y, z P Z2

su
h that y, z P Z�2 and 2x2 � vy2 � z2 (from the observation above). We have y2, z2 P 1 � 8Z2, hen
e

2x2 � v � 1 mod 8Z2: as squares in Z {8Z are 0, 1 and 4, we have v � �1 mod 8Z8, hen
e ωpvq � 0 and

p2, vq � p�1qωpvq. Conversely, if v � 1 mod 8Z2, then v is a square in Z2, so p2, vq � 1, and if v � �1

mod 8Z2, then p1, 1, 1q is a solution of 2x2 � vy2 � z2 mod 8, so p2, vq � 1 by 
orollary 7.3.2.

It remains to 
he
k that p2u, vq � p2, vqpu, vq. By lemma 7.4.7 (iii), this holds if pu, vq � 1 or p2, vq � 1:

assume pu, vq � p2, vq � �1. Then u, v � 3 mod 4Z2 and v � �3 mod 8Z2 hen
e v � 3 mod 8Z2.

Multiplying u and v by squares, we may thus assume that pu, vq P tp�1, 3q, p3,�5qu: we 
on
lude sin
e

p1, 1, 1q is a solution of �2x2 � 3y2 � z2 and 6x2 � 5y2 � z2.

In 
ase (3), we have to show that p2u, 2vq � p�1qεpuqεpvq�ωpuq�ωpvq. As p2u, 2vq � p2u,�4uvq � p2u�uvq by

lemma 7.4.7 (iv), we get p2u, 2vq � p�1qεpuq�εp�uvq�ωp�uvq by the previous 
ase. As εp�1q � 1, ωp�1q � 0

and εpuqp1� εpuqq � 0, we have indeed εpuq � εp�uvq � ωp�uvq � εpuqεpvq � ωpuq � ωpvq as required. �

Proof of theorem 7.4.9. Here again, this is trivial when K � R: we hen
eforth assume K � Qp for some

prime p.

The formulas of theorem 7.4.8 show the bilinearity of p., .q (sin
e ε and ω are group homomorphisms). To

show it is non degenerate, we have to 
he
k that whenever a P K�

is not a square, there exists b P K�

su
h that pa, bq � �1. It is enough to 
he
k this on representatives of K�

{K�2
. If p � 2, and u P Zp

is not a square, we have pu, pq � ppu, uq � �1. If p � 2, we have p5, 2xq � �1 if x P t�1,�5u and

p�1,�1q � p�1,�5q � �1. �

Notation. From now on, we denote by V the set of pla
es of Q, i.e. the set of primes and 8. If v P V , we

denote by Qv the 
orresponding 
ompletion (so that Q
8

� R), and p., .qv the 
orresponding Hilbert symbol

on Qv �Qv.

Theorem 7.4.10. (Produ
t formula, Hilbert). If a, b P Q�

, then pa, bqv � 1 for all but �nitely many

v P V , and
±

vPV

pa, bqv � 1.

Proof. By bilinearity of the Hilbert symbol, it is enough to 
he
k both statements when a and b are either

�1 or a prime. When a � b � �1, we have pa, bq2 � pa, bq
8

� �1 and pa, bqv � 1 if v P V zt2,8u. If

a � �1 and b is a prime, then p�1, bqv � 1 for all v P V if b � 2, and p�1, bqv � 1 if v P V zt2, bu and

p�1, bq2 � p�1, bqb � p�1qεpbq.

It remains to deal with the 
ase where a and b are prime. If a � b, we have pa, bqv � p�1, bqv for all v P V ,

by lemma 7.4.7 (iv), so we are redu
ed to the pre
eding 
ase: assume hen
eforth that a � b. If b � 2,

we have pa, bqv � p�1qωpaq, pa, 2qa �
�

2
a

�

� p�1qωpaq. If a, b P V zt2, a, b,8u, we have pa, bqv � 1. Also

pa, bqv � p�1qεpaqεpbq, pa, bqa �
�

b
a

�

and pa, bqb �
�

a
b

�

, so that the produ
t formula redu
es to the equality

�

a
b

��

b
a

�

� p�1qεpaqεpbq, whi
h is nothing but the quadrati
 re
ipro
ity law. �

Theorem 7.4.11. Let paiqiPI be a �nite family of elements in Q�

, and pεi,vq iPI
vPV

a family of elements in

t�1u. Then there exists x P Q�

su
h that pai, xqv � εi,v for all i P I and v P V if and only if the following


onditions are satis�ed:

(1) all but �nitely many εi,v are equal to 1;

(2)

±

vPV

εi,v � 1 for all i P I;

(3) for all v P V , there exists xv P Q
�

v su
h that pai, xvqv � εi,v.

Proof. By theorem 7.4.10, the 
onditions are 
learly ne
essary. Conversely, assume they are satis�ed. After

multipli
ation of the ai by nonzero squares, we may assume that ai P Z zt0u for all i P I. Let S be the
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subset of V formed by 2, 8 and the primes that divide

±

iPI

ai: this is a �nite set. Let T be the set of those

v P V su
h that εi,v � �1 for some i P I: this is a �nite set as well.

Spe
ial 
ase: S X T � ∅. Put a �
±

ℓPT zt8u

ℓ and m � 8
±

ℓPSzt2,8u

ℓ: the hypothesis implies that a and m

are 
oprime. By Diri
hlet's theorem on arithmeti
 progressions, there exists a prime p su
h that p � a

mod mZ, and p R S Y T . Put x � ap.

Assume v P S: we have εi,v � 1 (sin
e S X T � ∅). As x ¡ 0, we have pai, xq8 � 1 for all i P I. If v is a

prime ℓ, we have x � ap � a2 mod mZ, so x � a2 mod 8Z and x � a2 mod ℓZ if ℓ � 2: this shows that

x is a square in Q�

v (
f proposition 7.4.2), so that pai, xqv � 1 for all i P I.

Assume v � ℓ P V zS: we have ai P Z�ℓ for all i P I. As ℓ � 2, we have pai, xqℓ �
�

ai
ℓ

�vℓpxq
. If ℓ R T Y tpu,

we have x P Z�ℓ , so that pai, xqℓ � 1 � εi,v sin
e v R T . If ℓ P T , we have vℓpxq � 1 and there exists

xℓ P Q�

ℓ su
h that pai, xℓqℓ � εi,ℓ for all i P I (by 
ondition (3)). As ℓ P T , at least one of the εi,ℓ is �1: as

pai, xℓqℓ �
�

ai
ℓ

�vℓpxℓq

by theorem 7.4.8 (sin
e vℓpaiq � 0 and ℓ � 2), we have vℓpxℓq � 1 mod 2Z, so that

pai, xqℓ �
�ai

ℓ

�

� pai, xℓqℓ � εi,ℓ

for all i P I (by theorem 7.4.8 again). If ℓ � p, we redu
e to the previous 
ases thanks to the produ
t

formula:

pai, xqp �
±

vPV ztpu

pai, xqv �
±

vPV ztpu

εi,v � εi,p,

whi
h �nishes the proof of the spe
ial 
ase.

General 
ase. By 
orollary 7.4.3, squares in Q�

v form an open subgroup of Q�

v : by the approximation

theorem (
f theorem 3.1.15), there exists x1 P Q�

su
h that x1{xv is a square in Q�

v for all v P S. This

implies in parti
ular that pai, x
1

qv � pai, xvqv � εi,v for all v P V and all i P I. For all v P V and i P I, put

ε1i,v � pai, x
1

qvεi,v P t�1u. Obviously the family pε1i,vq iPI
vPV

satis�es 
onditions (1)-(3) (with x1v � x1xv for all

v P V ), and ε1i,v � 1 for all i P I and v P S. We 
an thus apply the spe
ial 
ase to pε1i,vq iPI
vPV

: there exists

y P Q�

su
h that pai, yqv � ε1i,v for all i P I and v P V , and we may take x � x1y. �

7.4.12. Complements on quadrati
 forms. In this part, K is a �eld of 
hara
teristi
 � 2, E a �nite dimen-

sional K-ve
tor spa
e, q a quadrati
 form on E, and ϕ the asso
iated symmetri
 bilinear form. Re
all that

pE, qq admits an orthogonal basis, i.e. a K-basis of E in whi
h (the matrix of) q is diagonal.

Notation. We denote by discpqq th dis
riminant of q. This is an element in K{K�2
but it will frequently

denote a representative in K.

De�nition 7.4.13. Two bases e and e1 are 
ontiguous if they share at least one ve
tor.

Theorem 7.4.14. Assume n � dimKpEq ¥ 3 and q is non-degenerate. Let e and e1 be two orthogonal

bases. then there exists a 
hain e0 � e, . . . , er � e1 of orthogonal bases su
h that ei is 
ontiguous to ei�1

for all i P t1, . . . , ru (we say that the 
hain links e to e1).

Proof. Write e � pe1, . . . , enq and e1 � pe11, . . . , e
1

nq.


 Case where qpe1qqpe
1

1q � ϕpe1, e
1

1q
2
. This means that te1, e

1

1u is linearly independent and that the re-

stri
tion of q to the plane P � Vectpe1, e
1

1q is non-degenerate. As qpe1qqpe
1

1q � 0 (be
ause e and e1 are

orthogonal and q non-degenerate), there exist ẽ2 and ẽ12 su
h that pe1, ẽ2q and pe
1

1, ẽ
1

2q are orthogonal bases

of P . Let H � PK

: as P is non-degenerate, we have P
K

`H � E and H is non-degenerate. Let pẽ3, . . . , ẽnq

be an orthogonal basis of H . Then

eÑ pe1, ẽ2, ẽ3, . . . , ẽnq Ñ pe11, ẽ
1

2, ẽ3, . . . , ẽnq Ñ e1

is a 
hain of 
ontiguous bases.


 The 
ase qpe1qqpe
1

2q � ϕpe1, e
1

2q
2
is similar, repla
ing e11 by e12.


 Case where qpe1qqpe
1

iq � ϕpe1, e
1

iq
2
for i P t1, 2u. Then there exists λ P K�

su
h that ẽ :� e11 � λe12 is

non-isotropi
, and P � Vectpe1, ẽq is non-degenerate. Indeed, we have qpẽq � qpe11q � λ
2qpe12q, so we have to


hoose λ � �

qpe11q

qpe12q
. This is possible if #K ¡ 3. If K � F3, we 
an take λ � 1 (sin
e squares are 0 and 1).

Re
all that K � F2 sin
e charpKq � 2. This 
hoi
e of λ made, we have

qpe11qqpẽq � ϕpe1, ẽq
2
� qpe1q

�

qpe11q � λ2qpe12q
�

�

�

ϕpe1, e
1

1q � λϕpe1, e
1

2q

�2

� qpe1qqpe
1

1q � λ2qpe1qqpe
1

2q � ϕpe1, e
1

1q
2
� λ2ϕpe1, e

1

2q
2
� 2λϕpe1, e

1

1qϕpe1, e
1

2q

� �2λϕpe1, e
1

1qϕpe1, e
1

2q � 0
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sin
e λ � 0 and ϕpe1, e
1

1qϕpe1, e
1

2q � 0 (be
ause qpe1qqpe
1

1qqpe
1

2q � 0 as e and eprime are orthogonal and q

non-degenerate) so that P is non-degenerate.

As ẽ is non-isotropi
 and Vectpe11, e
1

2q non-degenerate, there exists ẽ
1

su
h that pẽ, ẽ1q is an orthogonal basis

of Vectpe11, e
1

2q. Put e2 � pẽ, ẽ1, e13, . . . , e
1

nq: this is an orthogonal basis of E whi
h is 
ontiguous to e1. As

Vectpe1, ẽq is non-degenerate, the �rst 
ase seen above shows that there exists a 
hain of 
ontigous bases

that links e to e2. �

De�nition 7.4.15. Re
all that one says that q represents a P K when there exists x P Ezt0u su
h that

qpxq � a (in parti
ular, q represents 0 when q has nonzero isotropi
 ve
tors).

Lemma 7.4.16. Let f � fpX1, . . . , Xn�1q be a non-degenerate quadrati
 form and a P K�

. The following

are equivalent:

(i) f represents a;

(ii) f � g ` aX2
for some quadrati
 form g in n� 2 variables;

(iii) f a aX2
n represents 0.

Proof. Write E � Kn�1
. Assume (i): there exists e P Ezt0u su
h that qpeq � a. As f is non-degenerate, we

have Ke
K

` eK � E, and f � g` aX2
where g is the restri
tion of f to eK" this shows (ii). The impli
ation

(ii)ñ(iii) is obvious. Assume (iii): there exists px1, . . . , xnq P K
n
zt0u su
h that fpx1, . . . , xn�1q � ax2n. If

xn � 0, then f
�

x1

xn
, . . . ,

xn�1

xn

�

� a. If xn � 0 then f represents 0: it 
ontains an hyperboli
 plane, so it is

surje
tive and represents a. This shows (i). �

Lemma 7.4.17. Let g, h be two non-degenerate quadrati
 forms of rank ¥ 1 and f � g a h. The following

are equivalent:

(i) f represents 0;

(ii) there exists a P K�

whi
h is represented by g and h;

(iii) there exists a P K�

su
h tha g a aX2
and ha aX2

represent 0.

Proof. The equivalen
e (ii)�(iii) follows from lemma 7.4.16 and (ii)ñ(i) is obvious. Assume (i): there exist

x, y su
h that gpxq � hpyq. If a � gpxq � 0, this gives (ii). If gpxq � 0, then g and f are surje
tive: they

both represent a � 1. �

Re
all that two quadrati
 forms on a �nite �eld of odd 
hara
teristi
 (resp. on R) are equivalent if and

only if they have same rank and same dis
rimininant (resp. if they have the same signature).

7.4.18. Classi�
ation of quadrati
 forms over Qp. In this se
tion p is a prime and pE, qq is a non-degenerate

quadrati
 spa
e over Qp.

Notation. Let e � pe1, . . . , enq be a orthogonal basis of E. For ea
h i P t1, . . . , nu, put ai � qpeiq, so that

q
� n
°

i�1

xiei

	

�

n
°

i�1

aix
2
i . We have discpqq �

n
±

i�1

ai in Q�

p {Q
�2
p . Put

εpq, eq �
±

1¤i j¤n

pai, ajqp P t�1u.

Theorem 7.4.19. The number εpq, eq does not depend of the 
hoi
e of e.

Proof. This is obvious if n � 1 sin
e εpq, eq � 1. If n � 2, then εpq, eq � 1 if and only if the form

a1X
2
� a2Y

2
� Z2

represents 0, i.e. if and only if q represents 1 (
f lemma 7.4.16), whi
h is independent

of the 
hoi
e of e. We pro
eed by indu
tion on n: assume hen
eforth that n ¥ 3. By theorem 7.4.14, it is

enough to show that εpq, eq � εpq, e1q when e and e1 are 
ontiguous: we may assume that e1 � pe1, e
1

2, . . . , e
1

nq

(by the bilinearity of Hilbert symbol, 
f theorem 7.4.9, εpq, eq does not 
hange when the ve
tors of e are

permuted). Then we have

εpq, eq � pa1, a2 � � � anqp
±

2¤i j¤n

pai, ajqp � pa1, discpqqa1qp
±

2¤i j¤n

pai, ajqp

and similarly

εpq, e1q � pa1, discpqqa1qp
±

2¤i j¤n

pa1i, a
1

jqp

(where a1i � qpe1iq for i P t2, . . . , nu). The indi
tion hypothesis applied to the restri
tion of q to eK1 implies

that

±

2¤i j¤n

pai, ajqp �
±

2¤i j¤n

pa1i, a
1

jqp, so that εpq, eq � εpq, e1q. �

Theorem 7.4.19 implies that εpqq :� εpq, eq is an invariant of q, as do the rank and the dis
riminant.

Theorem 7.4.20. Let f be a quadrati
 form of rank n over Qp. The f represents 0 if and only if
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(i) n � 2 and discpfq � �1 (in Q�

p {Q
�2
p );

(ii) n � 3 and εpfq � p�1,� discpfqqp;

(iii) n � 4 and discpfq � 1 or discpfq � 1 and εpfq � p�1,�1qp;

(iv) n ¥ 5.

Corollary 7.4.21. Let f be a quadrati
 form of rank n over Qp. The f represents a P Q�

p if and only if

(i) n � 1 and discpfq � a (in Q�

p {Q
�2
p );

(ii) n � 2 and εpfq � pa,� discpfqqp;

(iii) n � 3 and discpfq � �1 or discpfq � �a and εpfq � p�1,� discpfqqp;

(iv) n ¥ 4.

Proof. By lemma 7.4.16, the quadrati
 form represents a if and only if g :� f a aX2
represents 0. As

discpgq � �a discpfq and εpgq � p�a, discpfqqpεpfq, this follows from theorem 7.4.20. �

Proof of theorem 7.4.20. Write f � a1X
2
1 � � � � � anX

2
n.

(i) Assume n � 2: the quadrati
 form f represents 0 if and only if �

a2
a1

is a square. As �

a2
a1
� � discpfq in

Q�

p {Q
�2
p , this is equivalent to discpfq � �1 in Q�

p {Q
�2
p .

(ii) Assume n � 3: the quadrati
 form f represents 0 if and only if �a3f � �a1a3X
2
1 � a2a2X

2
2 � X2

3

represents 0. By the very de�nition of the Hilbert symbol, this is equivalent to

1 � p�a1a3,�a2a3qp � p�1,�1qpp�1, a1qpp�1, a2qppa3, a3qp pa1, a2qppa1, a3qppa2, a3qp
looooooooooooooomooooooooooooooon

εpfq

.

As pa3, a3qp � p�1, a3qp by lemma 7.4.7 (ii), this is equivalent to 1 � p�1,�1qpp�1, discpfqqpεpfq hen
e to

the equality εpfq � p�1,� discpfqqp.

(iii) Assume n � 4: the quadrati
 form f represents 0 if and only if the forms a1X
2
1�a2X

2
2 and�a3X

2
3�a4X

2
4

both represent some element a P Q�

p {Q
�2
p (
f lemma 7.4.17). By the 
ase (ii) of 
orollary 7.4.21 (whi
h

follows from the 
ase (ii) of theorem 7.4.20 proved above), su
h an a is 
hara
terized by the following


onditions :

pa,�a1a2qp � pa1, a2qp and pa,�a3a4qp � p�a3,�a4qp.

The subset A (resp. B) of Q�

p {Q
�2
p de�ned by the �rst (resp. the se
ond) 
ondition is an a�ne hyperplane

in the F2-ve
tor spa
e Q�

p {Q
�2
p . Thus f does not represent 0 if and only if A X B � ∅. This pre
isely

means that the orthogonal ve
tors to A and B (for the non-degenerate pairing p., .qp) are equal, i.e. that

�a1a2 � �a3a4 and that pa1, a2qp � �p�a3,�a4qp. The is equivalent to discpfq � 1. On the other hand,

we have εpfq � pa1, a2qppa1a2, a3a4qppa3, a4qp: if the �rst 
ondition holds, we have

εpfq � pa1, a2qpp�1, a3a4qppa3, a4qp � pa1, a2qpp�a3,�a4qpp�1,�1qp

(sin
e px, xq � p�1, xq by lemma 7.4.7 (ii)), so that the se
ond 
ondition is equivalent to εpfq � �p�1,�1qp.

(iv) Assume n ¥ 5. By 
orollary 7.4.21 (ii), a form in two variables represents half of the elements in

Q�

p {Q
�2
p (be
ause the equation εpfq � pa,� discpfqqp de�nes an a�ne hyperplane in the F2-ve
tor spa
e

Q�

p {Q
�2
p ). As #pQ�

p {Q
�2
p q ¥ 4 (
f 
orollary 7.4.3), there exists at least one a P Q�

p {Q
�2
p whi
h is

distin
t from discpfq and represented by the form. This holds of 
ourse for quadrati
 forms of rank ¥ 3 as

well, hen
e for f . By lemma 7.4.16, we 
an write f � g`aX2
where g is a quadrati
 form of rank n�1 ¥ 4.

Then discpgq �
discpfq

a
� 1: by (iii), g represents 0, so f represents 0 as well. �

Theorem 7.4.22. Two quadrati
 forms over Qp are equivalent if and only if they have same rank, same

dis
riminant and same invariant ε.

Proof. We already know that two equivalent quadrati
 forms have same rank, same dis
riminant and same

invariant ε. Conversely, assume f and g are two quadrati
 forms having same rank n, same dis
riminant

and same invariant ε: we show by indu
tion on n that f � g. This is obvious if n � 0: assume n ¡ 0.

By 
orollary 7.4.21, f and g represent the same elements in Q�

p : we 
an �nd a P Q�

p whi
h is represented

by both f and g. Then we 
an write f � f 1 ` aX2
and g � g1 ` aXn

, where f 1 and g1 are of rank n� 1.

As discpf 1q � a discpfq � a discpgq � discpg1q and εpf 1q � pa, discpf 1qqpεpfq � pa, discpg1qqpεpgq � εpg1q, the

indu
tion hypothesis implies that f 1 � g1, hen
e f � g. �

Corollary 7.4.23. Up to equivalen
e, there exists exa
tly one anisotropi
 form of rank 4 over Qp, whi
h is

X2
1 � aX2

2 � bX2
3 � abX4X

2
4 for any a, b P Q�

p su
h that pa, bqp � �1.

Proposition 7.4.24. Let n P Z
¡0, d P Q�

p and ε P t�1u. There exists rank n a quadrati
 form f over Qp

su
h that discpfq � d and εpfq � ε if and only if n � 1 and ε � 1, or n � 2 and d � �1, or n � 2 and ε � 1

or n ¥ 3.
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Proof. This is obvious if n � 1. If n � 2, write f � aX2
1�bX

2
2 : if d � �1 we have ε � pa, bqp � pa,�dqp � 1,

so we 
annot have d � �1 and ε � �1 simultaneously. Conversely, if d � �1 and ε � 1, we 
an take

f � X2
1 �X2

2 , and if d � �1, there exists a P Q�

p su
h that pa,�dqp � ε, and we take f � aX2
1 � adX2

2 . If

n ¥ 3, let a P Q�

p whose image in Q�

p {Q
�2
p is distin
t from �d: by what pre
edes, there exists a rank 2

quadrati
 form g su
h that discpgq � ad and εpgq � εpa,�dqp, so that f � g � aX2
works. When n ¥ 3,

we redu
e to the 
ase n � 3 bytaking f � g � X2
4 � � � � � X2

n where g has rank 3, dis
riminant d and

εpgq � ε. �

Corollary 7.4.25. The number of equivalen
es of rank n quadrati
 forms over Qp is summarized in the

following table:

n 1 2 ¥ 3

p � 2 8 15 16

p � 2 4 7 8

7.4.26. Classi�
ation of quadrati
 forms over Q. Re
all that V is the set of pla
es of Q, i.e. the set of

prime numbers and a point 8, and that for ea
h v P V , we denote by Qv the 
orresponding 
ompletion of

Q (so Q
8

� R). If f is a quadrati
 form over Q and v P V , then if 
an be seen as a quadrati
 form fv over

Qv, so besides the global invariants given by the rank and the dis
riminant, we have the lo
al invariants

εvpfq :� εpfvq P t�1u for v P V zt8u, and the signature ps, tq. By the produ
t formula, we have

±

vPV

εvpfq � 1

Theorem 7.4.27. (Hasse-Minkowski). f represents 0 if and only if fv represents 0 for all v P V .

Proof. Write f � a1X
2
1 � � � � � anX

2
n with a1, . . . , an P Q�

. Repla
ing f by a�1
1 f , we may of 
ourse assume

a1 � 1. Assume fv represents 0 for all v P V : we have to prove that f represents 0 (the 
onverse is obvious).


 Assume n � 2. Write f � X2
1 � aX2

2 . As f8 represents 0, we have a ¡ 0: write a �
±

pPV zt8u

pvppa2q. As

fp represents 0, the element a is a square in Q�

p , so that vppaq is even. As this holds for all prime p, this

means that a is a square in Q�

, and f represents 0.


 Assume n � 3. Write f � X2
1 � aX2

2 � bX2
3 . Multiplying a and b by appropriate squares in Q�

, we may

assume that a and b are squarefree integers. We may also assume |a| ¤ |b|. We pro
eed by indu
tion on

m � |a| � |b| ¡ 1 (sin
e ab � 0). If m � 2, we have f � X2
1 � X2

2 � X2
3 . As f

8

represents 0, the 
ase

f � X2
1 �X2

2 �X2
3 is impossible; in all other 
ases f represents 0. Assume m ¡ 2, so that |b| ¥ 2. Write

b � �p1 � � � pr where p1, . . . , pr are paiwise distin
t primes. Let p P tp1, . . . , pru. If p ∤ a, then a P Z�p . By

hypothesis there exists px, y, zq P Z3
p zpZ

3
p su
h that x2 � ay2 � bz2, hen
e x2 � ay2 � 0 mod pZp. If p | y,

then p | x, so that p2 | �bz2, when
e p | z (be
ause vppbq � 1), 
ontradi
ting the fa
t that px, y, zq R pZ3
p.

This implies that y P Z�p , and a is a square modulo p. Of 
ourse, this also holds when p | a. As this is true

for ea
h p P tp1, . . . , pru, this shows that a is a square modulo b (by the Chinese remainder theorem): we


an �nd t, b1 P Z su
h that t2 � a�bb1. We may assume |t| ¤
|b|

2
. As bb1 � t2�a � NKp

?

aq{Kpt�
?

aq (where

K � Q or K � Qp), lemma 7.4.6 implies that f represents 0 in K if and only if f 1 :� X2
1 �aX

2
2�b

1X2
3 does.

In parti
ular, f 1v represents 0 for all v P V . As |b1| �
|

t2�a
|

|b|
¤

|b|

4
� 1   |b| (sin
e |b| ¥ 2), we have b1 � b2u2

with b2 a squarefree integers, u P Z and |b2|   |b|. The indu
tin hypothesis implies that f 1 represents 0: so

does f .


 Assume n � 4. Write f � paX2
1 � bX2

2 q � pcX2
3 � dX2

4 q. Let v P V . As fv represents 0, lemma 7.4.17

implies the existen
e of xv P Q�

v whi
h is represented by both aX2
1 � bX2

2 and cX2
3 � dX2

4 . By 
orollary

7.4.21 (whi
h also holds when v � 8), this means that pxv,�abqv � pa, bqv and pxv,�cdqv � pc, dqv. As

±

vPV

pa, bqv �
±

vPV

pc, dqv � 1, theorem 7.4.11 applied to p�ab,�cdq (hen
e #I � 2) implies the existen
e of

x P Q�

su
h that px,�abqv � pa, bqv and px,�cdqv � pc, dqv for all v P V . This means that the quadrati


forms aX2
1 � bX2

2 � xZ2
and cX2

3 � dX2
4 � xZ2

represent 0 in Qv for all v P V : by the 
ase n � 3 treated

above, this implies that they represent 0 in Q. In parti
ular, x P Q�

is represented by aX2
1 � bX2

2 and

cX2
3 � dX2

4 : by lemma 7.4.17 again, this implies that f represents 0.


 Assume n ¥ 5. We use indu
tion on n. Write f � hag with h � a1X
2
1�a2X

2
2 and g � �a3X

2
3�� � ��anX

2
n.

Let S be the subset of V made of 8, 2 and those primes p su
h that vppaiq � 0 for some i P t3, . . . , nu:

this is a �nite set. Let v P S. As fv represents 0, there exists av P Q�

v whi
h is represented by hv and gv
(
f lemma 7.4.17): there exists px1,v, . . . , xn,vq P Qn

v zt0u su
h that hpx1,v, x2,vq � av � gpx3,v, . . . , xn,vq.

As squares form an open subset of Q�

v (
f 
orollary 7.4.3) and Q�

is dense in Q�

v , there exist x1, x2 P Q
�

su
h that a � hpx1, x2q P Q�

satis�es a P avQ
�2
v for all v P S. Let f1 � aZ2

� g: this is a rank n � 1
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quadrati
 form over Q. As gv represents av hen
e a, the form f1,v represents 0 for all v P S. If v P V zS, we

have ai P Z�v for all i P t3, . . . , nu, so that discpgq P Z�v . As v � 2, we have εvpf1q � 1 (
f theorem 7.4.8).

As the rank of g is ¥ 3, theorem 7.4.20 implies that gv represents 0 (as v � 2, the Hilbert symbols is trivial

on pairs of units, 
f theorem 7.4.8 again). This show that f1,v represents 0 for all v P V : the indu
tion

hypothesis implies that f1 represents 0 hen
e g represents a over Q. By lemma 7.4.17, this shows that f

represents 0. �

Remark 7.4.28. The analogue of Hasse-Minkowski theorem fails for forms of higher degree. For instan
e

the form of degree 4

pX2
1 � � � � �X2

nq
2
� 2pX2

n�1 � � � � �X2nq
2

does not represent 0 in Q, but it does in R and Qp for all prime p when n ¥ 5 (by theorem 7.4.20).

Corollary 7.4.29. f represents a P Q�

if and only if it does in Qv for all v P V .

Proof. This follows from theorem 7.4.27 applied to the form aZ2
� f and lemma 7.4.16. �

Corollary 7.4.30. If f is of rank ¥ 5, then it represents 0 if and only if it does in R.

Proof. This follows from theorems 7.4.27 and 7.4.20. �

Theorem 7.4.31. Two quadrati
 forms f and g over Q are equivalent if and only if they are over Qv for

all v P V .

Proof. The ne
essity is trivial. For the 
onverse, we pro
eed by indu
tion on the rank n of f and g. There

is nothing to do if n � 0: assume n ¡ 0. There exists a P Q�

whi
h is represented by f , hen
e also by g (
f


orollary 7.4.29). This implies that f � aX2
` f 1 and g � aX2

` g1 where f 1 and g1 are of rank n� 1. By

Witt simpli�
ation theorem we have f 1v � g1v for all v P V : the indu
tion hypothesis implies that f 1 � g1, so

that f � g. �

Proposition 7.4.32. Let d P Q�

{Q�2
, pεvqvPV P t�1uV and ps, tq P Z2

¥0. Then there exists a quadrati


form f of rank n over Q whose invariants are d, pεvqvPV and ps, tq if and only if

(i) εv � 1 for all but �nitely many v P V and

±

vPV

εv � 1;

(ii) εv � 1 if n � 1 or n � 2 and dv � �1 in Q�

v {Q
�2
v ;

(iii) s� t � n;

(iv) d
8

� p�1qt;

(v) ε
8

� p�1q
tpt�1q

2
.

Proof. The ne
essity is obvious. For the 
onverse, the 
ase n � 1 is trivial.

Assume n � 2. If v P V , the non-degenera
y of the Hilbert symbol (
f theorem 7.4.9) and 
ondition (ii)

imply the existen
e of xv P Q�

v su
h that pxv,�dvqv � εv. Condition (i) and theorem 7.4.11 then implies

the existen
e of x P Q�

su
h that px,�dqv � εv for all v P V , so we 
an take f � xX2
1 � xdX2

2 .

Assume n � 3. Let S be the subset of V made of those v su
h that p�dv,�1qv � �εv: this is a �nite

set. If v P S, we 
an �nd cv P Q�

v whose image in Q�

v {Q
�2
v is distin
t from �dv. As Q

�2
v is open in Q�

v ,

the approximation theorem (
f theorem 3.1.15) implies the existen
e of c P Q�

whose image in Q�

v {Q
�2
v


oin
ides with that of cv for all v P S. By the 
ase n � 2 seen above, there exists a form g of rank 2 over Q

su
h that discpgq � cd, εvpgq � pc,�dqvεv for all v P V . Then we 
an take f � cX2
� g.

For n ¥ 4, we use indu
tion on n. If s ¥ 1, the indu
tion hypothesis implies the existen
e of a quadrati


form g of rank n� 1 over Q, with invariants d, pεvqvPV and ps� 1, tq, and we 
an take f � X2
` g. If s � 0,

the indu
tion hypothesis implies the existen
e of a quadrati
 form h of rank n� 1 over Q, with invariants

�d, pεvp�1,�dqvqvPV and ps, t� 1q, and we 
an take f � �X2
` h. �

7.4.33. Cubi
 forms. Let K be a �eld (of 
hara
teristi
 0 to simplify), n, d P Z
¡0 and Hn,d be the spa
e

of homogeneous polynomials of degree d in KrX1, . . . , Xns (this is a K-ve
tor spa
e of dimension

�

n�d�1
n�1

�

).

An element f P Hn,dzt0u de�nes a proje
tive hypersurfa
e Vpfq � Pn�1
pKq. A point P P Vpfq is a singular

point when

(49)

Bf
BXi

p

pP q � 0 for all i P t1, . . . , nu (where pP P An
pKqzt0u is a lift of P P Pn�1

pKq). The

hypersurfa
e VpF q is non-singular if it has no singular points.

The resultant polynomial of a 
olle
tion of elements in KrX1, . . . , Xns is a polynomial in the 
oe�
ients

of these polynomials whi
h vanishes if and only if they all have a 
ommon root (
f [9, Chapter 13 1.A℄).

The dis
riminant ∆pfq of f is then the resultant of the polynomials

Bf
BXi

for i P t1, . . . , nu: this is an

(49)

By Euler's formula, we have df �
n
°

i�1

Xi
Bf
BXi

: the vanishing of the partial derivatives at P P P
n�1

pKq implies P P Vpfq.
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homogeneous polynomial of degree npd� 1qn�1
in the

�

n�d�1
n�1

�


oe�
ients of f and is non-zero at f if and

only if Vpfq is a non-singular proje
tive hypersurfa
e.

Theorem 7.4.34. (Demyanov, Lewis, 
f [6℄, [14℄). Let p be a prime, K{Qp a �nite extension and

f �
°

1¤i¤j¤k¤n

ai,j,kXiXjXk P KrX1, . . . , Xns

be a 
ubi
 form. If n ¥ 10 then f represents 0.

Proof. 
 Assume �rst that Vpfq is non-singular, i.e. that ∆pfq P K�

: we have δpfq :� vKp∆pfqq P Z,

and δpfq P Z
¥0 when f P OKrX1, . . . , Xns. We say that a form g P Hn,3 is K-equivalent to f if there

exists M P GLnpKq su
h that g � f �M . Of 
ourse, g is non-singular as well, and f is equivalent to an

element in OKrX1, . . . , Xns, moreover, f represents 0 if and only if g does. We say that f is redu
ed if

f P OKrX1, . . . , Xns and δpfq ¤ δpgq for all the forms g that are K-equivalent to f . Of 
ourse, repla
ing f

by an appropriate F -equivalent form, we may assume that f is redu
ed.

Let r P Z
¥0 be minimal su
h that f � f1pL1, . . . , Lrq mod πOKrX1, . . . , Xns (where π denotes a uni-

formizer of K), where f1 P OKrY1, . . . , Yrs and L1, . . . , Lr P OKrX1, . . . , Xns are linearly independent

linear forms. We have of 
ourse r ¤ n. Also, L1, . . . , Lr are the �rst 
omponents of an unimodular

map M P GLnpOKq, so that g :� f �M�1
is redu
ed as well: repla
ing f by g, we may assume that

Li � Xi, i.e. that fpX1, . . . , Xnq � f1pX1, . . . , Xrq mod πOKrX1, . . . , Xns. This implies that the form

f 1 � π�1fpπX1, . . . , πXr, Xr�1, . . . , Xnq has 
oe�
ients in OK . Moreover, as ∆ is homogeneous of degree

n2n�1
in the variables of f , we have

∆pf 1q � π�n2
n�1

∆pfpπX1, . . . , πXr, Xr�1, . . . , Xnqq

and ∆pfpπX1, . . . , πXr, Xr�1, . . . , Xnqq � π3r2n�1

∆pfq.

The last equality follows from the fa
t that multiplying the variables X1, . . . , Xr by π has the e�e
t of

multiplying

�

r�2
3

�


oe�
ients by π3
(namely those XiXjXk su
h that 1 ¤ i ¤ j ¤ k ¤ r),

�

r�1
2

�

pn � rq


oe�
ients by π2
(those XiXjXk su
h that 1 ¤ i ¤ j ¤ r   k ¤ n) and r

�

n�r�1
2

�


oe�
ients by π (those

XiXjXk su
h that 1 ¤ i ¤ r   j ¤ k ¤ n), so that the mean s
aling on the

�

n�2
3

�


oe�
ients of f is

1

p

n�2

3 q

�

3
�

r�2
3

�

� 2
�

r�1
2

�

pn� rq � r
�

n�r�1
2

�

	

�

3r
n

so that the e�e
t on ∆pfq is multipli
ation by π
3r
n
n2n�1

� π3r2n�1

sin
e ∆ is homogeneous of degree n2n�1
.

Put together, this implies that ∆pf 1q � πp3r�nq2
n�1

∆pfq, so that

δpf 1q � δpfq � p3r � nq2n�1.

As f is redu
ed, we have δpfq ¤ δpf 1q, so that 3r ¥ n: if n ¥ 10, we have r ¥ 4. By Chevalley-Warning

theorem (
f theorem 7.1.2), the redu
tion of f1 modulo π represents 0 (be
ause it has 4 variables and degree

3 over the �nite �eld κK): there exists pb1, . . . , brq P Or
KzπO

r
K su
h that f1pb1, . . . , brq P πOK . We may of


ourse assume b1 � 1. Repla
ing f by the unimodularly equivalent

fpX1, X2 � b2X1, . . . , Xr � brXr, Xr�1, . . . , Xnq P OKrX1, . . . , Xns

(this is still redu
ed), we may assume that pb1, . . . , brq � p1, 0, . . . , 0q. Then

fp1, 0, . . . , 0q � f1pb1, . . . , brq mod πOK

so that fp1, 0, . . . , 0q P πOK . This shows that the 
oe�
ient of X3
1 in f belongs to πOK . We thus have

f � X2
1L�X1Q� C mod πOKrX1, . . . , Xns

where L,Q,C P OKrX2, . . . , Xrs are homogeneous of degres 1, 2 and 3 respe
tively. By minimality of r, we


annot have pL,Qq � p0, 0q mod πOKrX2, . . . , Xrs (otherwise we 
ould repla
e f1 by C).

First 
ase. If L R πOKrX2, . . . , Xrs, there exists i P t2, . . . , ru su
h that

BL
BXi

P O�

K . As Q and C are

homogeneous of degree ¥ 2, we have BQ
BXi

p1, 0, . . . , 0q � BC
BXi

p1, 0, . . . , 0q � 0, so that

Bf
BXi

p1, 0, . . . , 0q � BL
BXi

P O�

K .

Se
ond 
ase. If L P πOKrX2, . . . , Xrs, there exists d � pd2, . . . , drq P Or�1
K su
h that Qpdq R πOK ,

i.e. Qpdq P O�

K . Put x � p�Cpdq, d2Qpqq, . . . , drQpdq, 0, . . . , 0q P On
K . We have x R πOn

K sin
e

pd2Qpqq, . . . , drQpdq � Qpdqdq R πOr�1
K . We have

fpxq � Cpdq2 LpQpdqdq
loooomoooon

QpdqLpdq

�CpdqQpQpdqdq
loooomoooon

�Qpdq3

�CpQpdqdq
loooomoooon

�Qpdq3Cpdq

mod πOK
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sin
e L (resp. Q, resp. C) is homogeneous of degree 1 (resp. 2, resp. 3). As Lpdq P πOK , this shows that

fpxq P πOK . On the other hand, we have

Bf
BX1

� 2X1L�Q mod πOK rX1, . . . , Xns, so that

Bf
BX1

pxq � �2CpdqQpDqLpdq �Qpdq3 mod πOK

whi
h implies that

Bf
BX1

pxq P O�

K sin
e Lpdq P πOK and Qpdq P O�

K .

In any 
ase we 
an apply Newton's lemma to �nd a nonzero solution of f � 0, whi
h 
on
ludes the proof

when Vpfq is non-singular.


 Proof of the general 
ase. As ∆ is a nonzero homogeneous form of degree n2n�1
in the

�

n�2
2

�

variables of

f , it 
annot vanish on any neighborhood of a point in Hn,2: we 
an �nd a sequen
e of non-singular forms

pfkqkPZ
¥0

that 
onverges 
oe�
ientwise to f . By the non-singular 
ase proved above, for ea
h k P Z
¥0, we


an �nd xk P K
n
zt0u su
h that fkpxkq � 0. As fk is homogeneous, we 
an multiply xk by an appropriate

power of π and assume that

xk P K :�
n
�

i�1

tx P Or
K ; xi P O�

Ku.

As K is 
ompa
t as a �nite union of 
ompa
t sets, the sequen
e pxkqkPZ
¥0

has an a

umulation point: we

may assume it 
onverges to some a P K (so in parti
ular a � 0. By 
ontinuity of f , we have fpaq � 0 and

f represents 0. �

Remark 7.4.35. (1) The bound 10 is optimal. In fa
t, if p is a prime, K{Qp a �nite extension and n P Z
¡0,

it is easy to 
onstru
t a homogeneous polynomial in n2
variables and of degree n that does not represent 0,

as follows (
f [3, p.58℄). Let q � #κK . After the 
hoi
e of a Fq-basis of Fqn , the norm NFqn {Fq
: Fqn Ñ Fq

provides an homogeneous polynomial FqrX1, . . . , Xns of degree n whi
h does not represent 0 (we have

NFqn {Fq
pxq � 0 ñ x � 0). We may lift it 
oe�
ient-wise to get a degree n homogeneous polynomial

g P OKrX1, . . . , Xns su
h for all for all x P On
K , we have gpxq P πOK ñ x P πOK . Put

fpX1, . . . , Xn2
q �

n�1
°

i�0

πigpXin�1, . . . .Xin�n�1q P OKrX1, . . . , Xn2
s

If f represents 0, there exists a primitive ve
tor x � px1, . . . , xn2
q P On2

K zπO
n2

K su
h that fpxq � 0. This

implies that gpx1, . . . , xnq P πOK , so that x1, . . . , xn P πOK , hen
e gpx1, . . . , xnq P π
nOK . This implies

that πgpxn�1, . . . , x2nq P π
2OK , so that xn�1, . . . , x2n P πOK . A straightforward indu
tion thus shows that

xi P πOK for all i P t1, . . . , n2
u, whi
h is a 
ontradi
tion.

(2) Heath-Brown has shown (
f [11℄) that a non-singular 
ubi
 form in n ¥ 10 variables with rational


oe�
ients represents 0 in Q.

7.5. Exer
ises.

Exer
ise 7.5.1. Let V be a Fq-s
heme of �nite type. Show that Dwork's theorem is equivalent to the

existen
e of algebrai
 
omplex numbers α1, . . . , αr, β1, . . . , βs su
h that #V pFqkq �
r
°

i�1

αki �
s
°

j�1

βkj for all

k P Z
¡0.

Exer
ise 7.5.2. Assume V is su
h that ZV pT q �
1�aT�qT 2

p1�T qp1�qT q
(this holds when V is an ellipti
 
urve). Show

that #V pFqq determines #V pFqkq for all k P Z
¡0.

Exer
ise 7.5.3. Find the Zeta fun
tions of the following s
hemes V over Fq:

(1) the 3-dimensional hypersurfa
e de�ned by XY � ZT � 0;

(2) the proje
tive 
urve in P2
Fq

with inhomogeneous equation:

(i) XY � 0;

(ii) XY pX � Y � 1q � 0;

(iii) X2
� Y 2

� 1;

(iv) Y 2
� X3

;

(v) Y 2
� X3

�X2
;

(3) V � GLd and V � SLd over Fq for d P Z
¡0.

Exer
ise 7.5.4. Let V be a geometri
ally irredu
ible smooth proje
tive variety of dimension d over Fq.

Show that the Riemann hypothesis for ZV pT q implies that #V pFqnq � qdn � Opqpd�1{2qn
q. Conversely,

assuming that d � 1, ZV pT q �
P pT q

p1�T qp1�qT q
and the fun
tional equation, show that the Riemann hypothesis

for ZV pT q follows from this estimate.
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Exer
ise 7.5.5. Let P pX,Y, Zq � 3X3
� 4Y 3

� 5Z3
.

(1) Show that the equation P px, y, zq � 0 has a non zero solution in F3
p for all prime p.

(2) Dedu
e that the equation P px, y, zq � 0 has a non zero solution in Z3
p for all prime p.

Exer
ise 7.5.6. Let P pX,Y, Zq � X4
� 2Y 2

� 17Z4
.

(1) Show that the equation P px, y, zq � 0 has a non-zero solution in Z3
p for all prime p.

(2) Show that the equation P px, y, zq � 0 has no non-zero solution in Q3

Exer
ise 7.5.7. Let p be an odd prime andK{Qp a �nite extension. Assume f �
n
°

1�1

aiX
2
i P KrX1, . . . , Xns

is a quadrati
 form of rank n.

(1) Show that if ai P O
�

K for at least three indi
es i P t1, . . . , nu, then f represents 0.

(2) Show that if n ¥ 5, then f represents 0.

Exer
ise 7.5.8. Does the quadrati
 form x2 � y2 � z2 � 7t2 represent 0 over Q?

Exer
ise 7.5.9. Let p be a prime, f � a1x
2
1 � � � � � anx

2
n and g � b1x

2
1 � � � � � bmx

2
m be two diagonal

non-singular quadrati
 forms with 
oe�
ients in Qp. Show that εppf ` gq � εppfqεppgqpdiscpfq, discpgqqp.

Exer
ise 7.5.10. Determine all the elements of Q7 represented by the quadrati
 form 3x2 � 7y2.

Exer
ise 7.5.11. Let f � 5X2
� 7Y 2

.

(1) Does the form f represent 0 in Q?

(2) Show that the form f represents a nonzero rational integer a in Q if and only if pa, 35qp � p5,�7qp for

all odd prime p.

(3) Assuming a P Z zt0u is squarefree, 
hara
terize by 
onditions on Legendre symbols those a that 
an be

represented by f in Q, distinguishing the following four 
ases:

(i) gcdpa, 35q � 1;

(ii) 5 | a and 7 ∤ a;
(iii) 7 | a and 5 ∤ a;
(iv) 35 | a.
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8. The Krone
ker-Weber Theorem

8.1. The statements. What follows is taken from [25, Chapter 14℄. In what follows, if n P Z
¡0, ζn will

denote a (any) primitive n-th root of unity. If F ia a �eld whose 
hara
teristi
 does not divide n, the

extension F pζnq{F is Galois (�eld of de
omposition of Xn
� 1). If σ P GalpF pζnq{F q, there exists a unique

χpσq P pZ {nZq� su
h that σpζnq � ζ
χpσq
n , and σ is entirely determined by χpσq, so that the map

χ : GalpF pζnq{F q Ñ pZ {nZq�

σ ÞÑ χpσq

is an inje
tive group homomorphism. In parti
ular, the extension F pζnq{F is abelian.

Class �eld theory is devoted in 
lassifying abelian extensions of a given �eld. A 
lassi
al 
onsequen
e of

global 
lass �eld theory is the follow result:

Theorem 8.1.1. (Krone
ker-Weber). Let K{Q be a �nite abelian extension. Then there exists n P Z
¡0

su
h that K � Qpζnq.

Instead of using 
lass �eld theory, we will dedu
e it from its lo
al 
ounterpart:

Theorem 8.1.2. Let p be a prime number and K{Qp a �nite abelian extension. Then there exists n P Z
¡0

su
h that K � Qppζnq.

8.2. Preliminaries.

8.2.1. Abelian extensions.

Proposition 8.2.2. Any subextension of an abelian extension is abelian. Any 
omposite of �nitely many

abelian extensions is an abelian extension.

Proof. Let K be a �eld.


 Let L{K be an abelian extension. If M is a subextension of L{K, the group GalpL{Mq is a subgroup of

the abelian group GalpL{Kq: it is abelian as well, and normal in GalpL{Kq, so that M{K is Galois, with

group GalpM{Kq � GalpL{Kq{GalpL{Mq, whi
h is abelian. This shows that L{M and M{K are abelian.


 Let L{K be an algebrai
 extension and L1, L2 subextensions of L{K su
h that L1{K and L2{K are

abelian. Then L2 is the �eld of de
omposition of some separable polynomial P pXq P KrXs over K, so that

L1L2 is the �eld of de
omposition of P over L1. This implies that the extension L1L2{L1 is separable (even

Galois): as L1{K is separable, this shows that L1L2{K is separable. On the other hand, if σ : L1L2 Ñ L

is a morphism of K-algebras (where L is an algebrai
 
losure of L), we have σpL1q � L1 and σpL2q � L2

(sin
e L1 and L2 are Galois over K), hen
e σpL1L2q � L1L2, i.e. L1L2{K is normal, thus Galois. The

restri
tions to L1 and L2 indu
e a group homomorphism

GalpL1L2{Kq Ñ GalpL1{Kq � GalpL2{Kq

whi
h is inje
tive sin
e if σ P GalpL1L2{Kq indu
es the identity on L1 and L2, then σ � IdL1L2
. This implies

that GalpL1L2{Kq identi�es with a subgroup of the abelian group GalpL1{Kq � GalpL2{Kq: it is abelian as

well. By indu
tion, this extends to the 
omposite of �nitely many abelian extensions. �

Proposition 8.2.3. Let L{K be an abelian extension of number �elds, p � OK a nonzero prime ideal and

P � OL a prime ideal lying above p. Then

tσ P GalpL{Kq ; σpPq � Pu

tσ P GalpL{Kq ; p�x P OLqσpxq P x�Pu

are subgroup of GalpL{Kq that do not depend of P: we denote them DPpL{Kq and IppL{Kq respe
tively,

and 
all them the de
omposition and the inertia group of L{K at p respe
tively.

Proof. The set tσ P GalpL{Kq ; σpPq � Pu is the stabilizer of P for the a
tion of GalpL{Kq on the set of

prime ideals dividing p: this is a subgroup of GalpL{Kq. As the a
tion is transitive, those stabilizers are all


onjugate, hen
e equal sin
e GalpL{Kq is abelian. This shows the statements for DppL{Kq. The analogue

for IppL{Kq follow. �
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8.2.4. Cy
lotomi
 extensions of Q.

Proposition 8.2.5. The minimal polynomial of ζn over Q is the 
y
lotomi
 polynomial

ΦnpXq �
±

kPpZ {nZq�
pX � ζknq.

Proof. We have Xn
� 1 �

±

d|n

ΦdpXq: a straightforward indu
tion (starting with Φ1pXq � X � 1) implies

that ΦnpXq P ZrXs for all n P Z
¡0. We have to prove that ΦnpXq is irredu
ible over Q, i.e. over Z (its


ontent is 1). Assume we 
an write ΦnpXq � P pXqQpXq with P,Q P QrXs moni
 and P irredu
ible. Write

P �

1
a
rP and Q �

1
b
rQ with a, b P Z

¡0 and

rP, rQ P ZrXs with 
ontent 1: we have

rP rQ � abΦn. Taking


ontents we have ab � 1, i.e. a � b � 1, so that P,Q P ZrXs. Repla
ing ζn by another primitive n-th root

of unity, we may assume that P pζnq � 0, and P is the minimal polynomial of ζn over Q.

Let p be a prime not dividing n. As ζpn is a primitive n-th root of unity, we have Φnpζ
p
nq � 0. Assume that

P pζpnq � 0, so that Qpζpnq � 0. As P is the minimal polynomial of ζn over Q, we have P pXq | QpXp
q: write

QpXp
q � P pXqUpXq. We have UpXq P ZrXs sin
e P is moni
. Modulo p, this gives QpXqp � P pXqU pXq

in FprXs. If α P Fp is a root of P , we have Qpαq � 0. This implies that X � α | gcdpP pXq, QpXqq, so

that pX � αq2 | P pXqQpXq � ΦnpXq, when
e pX � αq2 | Xn
� 1 in FprXs. This 
ontradi
ts the fa
t that

the polynomial Xn
� 1 is separable in FprXs (sin
e p ∤ n). We thus have P pζpnq � 0. A straightforward

indu
tion implies that for any k P Z
¡0 prime to n, we have P pζknq � 0, so that ΦnpXq | P pXq, i.e. Φn � P

is irredu
ible over Q. �

Remark 8.2.6. If p is a prime integer and e P Z
¡0, we have

ΦpepXq � ΦppX
pe�1

q � Xpp�1qpe�1

�Xpp�2qpe�1

� � � � �Xpe�1

� 1 � Xpe
�1

Xpe�1
�1
,

and one 
an show dire
tly the irredu
ibility of Φpe over Z using the Eisenstein 
riterion.

Proposition 8.2.7. If p is a prime number and e P Z
¡0. The ring of integers of Qpζpeq is Zrζpes and

�

�dQpζpe q

�

�

� pp
e�1

ppe�e�1q
�

peϕpp
e
q

p
ϕppeq
p�1

.

Proof. Put ζ � ζpe and K � Qpζpeq for short.


 We 
ertainly have Zrζs � OK . We have Φpep1q � Φpp1q � p, so that

±

kPpZ {pe Zq�
p1 � ζkq � p. If

k P pZ {peZq�, we have 1�ζk

1�ζ
P Zrζs. As ζk is also a primitive pe-th root of unity, we also have

1�ζ
1�ζk

P Zrζs,

so that

1�ζk

1�ζ
P Zrζs�. What pre
edes thus imply that p � up1� ζqpp�1qpe�1

with u P Zrζs�. If π � 1� ζ

was invertible in A, so would be p � uπϕpp
r
q

, implying that p would be invertible in Z (sin
e Z is integrally


losed), whi
h is not: π is not invertible in OK .


We have NK{Qp1�ζq �
±

1¤k pr

gcdpk,pq�1

p1�ζq � Φpep1q � p. If m P t1, . . . , e�1u, the element ζp
m

is a primitive

pe�m-th root of unity, so that NQpζp
m
q{Q

�

1� ζp
m�

� p by what pre
edes. This implies

NK{Q
�

1� ζp
m�

� NK{Qpζp
m
q

�

NQpζp
m
q{Q

�

1� ζp
m�

	

� prK:Qpζp
m
qs

As rK : Qs � ϕppeq � pe�1
pp � 1q and

�

Q
�

ζp
m�

: Q
�

� pe�m�1
pp � 1q, we have

�

K : Q
�

ζp
m��

� pm, so

that

NK{Q
�

1� ζp
m�

� pp
m

We have Φ1

pepXq �
°

1¤k pe

gcdpk,pq�1

±

1¤j pe

gcdpj,pq�1
j�k

�

X � ζj
�

, so Φ1

pepζq �
±

1 k pe

gcdpk,pq�1

pζ � ζkq � ζϕpp
e
q�1

±

1 k pe

gcdpk,pq�1

p1� ζk�1
q

and

NK{Q
�

Φ1

pepζq
�

� NK{Qpζq
ϕppeq�1

¹

1 k pe

gcdpk,pq�1

NK{Q
�

1� ζk�1
�

As ζ P O�

K , we have NK{Qpζq P t�1u. As NK{Q
�

1 � ζk�1
�

� pp
vppk�1q

by what pre
edes, we have thus

NK{Q
�

Φ1

pepζq
�

� �pc, where c �
°

1 k pe

gcdpk,pq�1

pvppk�1q
. An integer k P t2, . . . , pe � 1u satis�es vppk � 1q ¥ r

if and only if k � 1 � prx with x P t1, . . . , pe�r � 1u if r P t1, . . . , e � 1u and x P t1, . . . , pe � 2u if

r � 0: there are pe�r � 1 (resp. pe � 2) su
h integers. This implies that there are pe � pe�1
� 1 (resp.

pe�r � pe�r�1
) integers k P t2, . . . , pe � 1u su
h that vppk � 1q � 0 (resp. su
h that vppk � 1q � r). Among
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those k su
h that vppk � 1q � 0, there are pe�1
� 1 that are divisible by p. This implies that we have

c � pe � pe�1
� 1� ppe�1

� 1q �
e�1
°

r�1

prppe�r � pe�r�1
q � eppe � pe�1

q � pe�1
i.e. c � pe�1

ppe� e� 1q.

We have

(50)

D
�

1, ζ, � � � , ζϕpp
e
q�1

�

� p�1q
ϕppeqpϕppeq�1q

2 NK{Q
�

Φ1

pepζq
�

� �pc

If px1, . . . , xϕpprqq is a Z-basis of OK , we have

D
�

1, ζ, � � � , ζϕpp
e
q�1

�

� rOK : Zrζss2 Dpx1, . . . , xϕppeqq

and rOK : Zrζss2|pc, so that #pOK{Zrζsq � rOK : Zrζss is a power of p (
f 
orollary 2.6.5).


 We have pOK � πϕpp
r
qOK , so pZ � ZXπOK . As pZ is maximal in Z and 1 R πOK (be
ause π is not

invertible in OK), we have in fa
t ZXπOK � pZ. As the extension Z � OK is integral and pZ is maximal

in Z, the ideal πOK is maximal in OK . As pOK � πϕpp
r
qOK , there is a �ltration

pOK � πϕpp
e
qOK � πϕpp

e
q�1OK � � � � � πOK � OK

where the OK{πOK-ve
tor spa
e π
mOK{π

m�1OK has dimension 1 for all m P t0, . . . , ϕpprq � 1u. We thus

have #pOK{pOKq �

�

#pOK{πOKq

�ϕpprq
. As #pOK{pOKq � pϕpp

e
q

(sin
e OK is a free Z-module of rank

ϕppeq), when
e #pOK{πOKq � p: the natural map Z {pZÑ OK{πOK is an isomorphism.


 This implies that OK � Z�πOK , i.e. OK � Zrζs � πOK . If k P Z
¡0 and OK � Zrζs � πkOK , we thus

have OK � Zrζs�πkpZrζs�πOK

�

� OK � Zrζs�πk�1OK : by indu
tion, we dedu
e OK � Zrζs�πkOK for

all k P Z
¡0. In parti
ular, we have OK � Zrζs � πϕpp

e
qcOK , i.e. OK � Zrζs � pcOK . As #pOK{Zrζsq | p

c
,

we have pcOK � Zrζs, so that OK Zrζs.


 As rOK : Zrζss � 1, we dedu
e that |dK | � pc � pp
e�1

ppe�e�1q
. �

Lemma 8.2.8. Let K and L be number �elds su
h that rKL : Qs � rK : QsrL : Qs and gcdpdK , dLq � 1.

Then OKL � OKOL and dLK � d
rL:Qs

K d
rK:Qs

L .

Proof. 
We have of 
ourse OKOL � OKL. Let px1, . . . , xnq (resp. py1, . . . , ymq) be a basis of OK (resp. OL)

over Z. Then K �

n
À

i�1

Qxi and L �
m
À

j�1

Q yj, so KL �
°

1¤i¤n
1¤j¤m

Q xiyj . As rKL : Qs � rK : QsrL : Qs � nm

by hypothesis, this implies that pxiyjq 1¤i¤n
1¤j¤m

is a basis of KL over Q. Now let α P OKL: we 
an write

α �
°

1¤i¤n
1¤j¤m

λi,jxiyj with pλi,jq 1¤i¤n
1¤j¤m

P Qnm
. Let δ P Z

¡0 be the l
m of the denominators of the λi,j : we

have δα �
°

1¤i¤n
1¤j¤m

ai,jxiyj where ai,j � δλi,j P Z and δ is prime to gcd 1¤i¤n
1¤j¤m

pai,jq. For i P t1, . . . , nu, put

αi �
m
°

j�1

ai,jyj P OL: we have δα �
n
°

i�1

αixi.

Let σ : K Ñ C be a �eld homomorphism. Let θ be a primitive element for L, so that L � Qpθq, and

KL � Kpθq. By hypothesis, we have rKpθq : Ks � rKL : Ks �
rKL:Qs

rK:Qs
� rL : Qs � rQpθq : Qs. This means

that the degree of θ over K is equal to that over Q, so that the minimal polynomial of θ over K is equal

to that over Q (without the degree assumption, we only know that the former divides the latter). By the

isomorphism extension theorem, there exists a unique �eld homomorphism pσ : KLÑ C that extends σ and

su
h that pσpθq � θ, implying pσ
|L � IdL. We thus have δpσpαq �

n
°

i�1

αiσpxiq. The 
olle
tion of those equalities

for all σ P I :� HomQ -algpK,Cq provides a Cramer linear system δY � XM where X � pα1, . . . , αnq P O
n
L,

Y � ppσpαqqσPI P On
KL and M � pσpxiqq1¤i¤n

σPI
P MnpOKq. Multiplying on the right by the transpose

�M P MnpOKq of the adjugate matrix of M , we get δY �M � detpMqX . As px1, . . . , xnq is a basis of OK over

Z, there exists a 
olumn ve
tor V P Zn su
h that XV � 1, so that δY �MV � detpMq. As dK � detpMq

2
(
f

proposition 1.10.22), this shows that δ detpMqY �MV � dK , hen
e δ | dK . Symmetri
ally, we have δ | dL: as

gcdpdK , dLq � 1, we have δ � 1, and α �
°

1¤i¤n
1¤j¤m

ai,jxiyj P OKOL, showing the equality OKL � OKOL.

(50)

This is the formula Dp1, x, x2, . . . , xn�1
q � p�1q

npn�1q

2 NF pxq{F pP
1

x,F
pxqq for x separable of degree n over F .
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 Keeping the pre
eding notation, pxiyjq 1¤i¤n
1¤j¤m

is a basis of OKL over Z. By proposition 1.10.24, we have

dKL � Dpxiyjq 1¤i¤n
1¤j¤m

� Dpx1, . . . , xnq
rL:Ks NK{QpDpy1, . . . , ymqq

� d
rKL:Ks
K NK{QpdLq � d

rL:Qs
K d

rK:Qs

L

sin
e rKL : Ks � rL : Qs by hypothesis, and NK{QpdLq � d
rK:Qs

L be
ause dL P Q. �

Remark 8.2.9. A reformulation of the se
ond statement is

lnpdKLq

rKL:Qs
�

lnpdKq

rK:Qs
�

lnpdLq

rL:Qs
.

Theorem 8.2.10. Let n P Z
¡0. The ring of integers of Qpζnq is Zrζns and

�

�dQpζnq

�

�

�

nϕpnq

±

p|n

p
ϕpnq
p�1

.

Proof. Write n �

r
±

i�1

peii . We pro
eed by indu
tion on r P N, the 
ases r � 0 being trivial, and r � 1

being proposition 8.2.7. Assume r ¡ 1, and put m �

r�1
±

i�1

peii , so that n � mperr and gcdpm, per q. Put

K � Qpζmq and L � Qpζperr q. We have KL � Qpζnq (sin
e ζmζperr is a primitive n-th root of unity be
ause

gcdpm, per q � 1). This implies that

rKL : Qs � ϕpnq � ϕpmqϕpperr q � rK : QsrL : Qs

(again be
ause gcdpm, per q � 1). Moreover, the indu
tion hypothesis implies that the prime dividing dK
(resp. dL) are p1, . . . , pr�1 (resp. pr), so that gcdpdK , dLq � 1. This shows that one may apply lemma 8.2.8,

so that OQpζnq � OKOL � ZrζmsZrζperr s � Zrζns and

dQpζnq � d
rL:Qs
K d

rK:Qs

L � �

�

mϕpmq

±

p|m

p
ϕpmq

p�1

�ϕpperr q

p
erϕpp

er
r qϕpmq

r

p
ϕpp

er
r q

pr�1
ϕpmq

r

� �

nϕpnq

±

p|n

p
ϕpnq

p�1

sin
e ϕpmqϕpperr q � ϕpnq. �

Corollary 8.2.11. The prime that ramify in Qpζnq are pre
isely those dividing n.

Proof. This follows from 
orollary 2.6.6. �

8.2.12. Rami�
ation of 
y
lotomi
 extensions of Qp. Let p be a prime and n P Z
¡0. Write n � pen1 with

n1 P Z
¡0 prime to p. Let f P Z

¡0 be the order of p in pZ {n
1 Zq� (so that f is the least positive integer su
h

that n1 | pf � 1, and f | ϕpn1q).

Proposition 8.2.13. The absolute rami�
ation index of Qppζnq is ϕpp
e
q, and its residual degree is f . In

parti
ular, we have rQppζnq : Qps | ϕpnq, with equality if and only if p is a generator of pZ {n1 Zq�.

Proof. 
 As p ∤ n1, the polynomial Xn1
� 1 is separable over FprXs: so is the 
y
lotomi
 polynomial

Φn1pXq. If α P Fp is a root of Φn1 , the order of α in the multipli
ative group F
�

p is n1: if i P Z
¡0, we

have αp
i

� α � αp
i
�1

� 1 � n1 | pi � 1 � f | i. This implies that the �eld of de
omposition of Φn1 is

Fpf . The roots of Φn1 lift uniquely into roots of Φn1 in Qpf (whi
h is the unique unrami�ed subextension

of Qp{Qp lifting Fpf {Fp, 
f theorem 3.8.7). This implies that Qppζn1q � Qpf . As the image of ζn1 in

κQppζn1 q
generates Fpf , we also have

f � rFpf : Fps ¤ rκQppζn1 q
: Fps ¤ rQppζn1q : Qps ¤ rQpf : Qps � f

we have Qppζn1q � Qpf so rQppζn1q : Qps � f and Qppζn1q{Qp is unrami�ed.


 We have ΦpepXq � ΦppX
pe�1

q, so ΦpepX � 1q � ΦpppX � 1qp
e�1

q � ΦppX
pe�1

� 1q mod pZrXs. As

ΦppY � 1q �
pY�1qp�1

Y
� Y p�1 mod pZrY s, we have ΦpepX � 1q � Xpp�1qpe�1

mod pZrXs. Moreover,

we have Φpep1q � Φpp1q � p. This implies that the ΦpepX � 1q P Qpf rXs is an Eisenstein polynomial:

it is irredu
ible, and rQpf pζpeq : Qpf s � degpΦpepX � 1qq � ϕppeq. This also implies that the extension

Qpf pζpeq{Qpf is totally rami�ed, with uniformizer ζpe � 1 (so that vppζpe � 1q � 1
ϕppeq

�

1
pe�1

pp�1q
).


 We have Qppζn1 , ζpeq � Qppζnq (as gcdpp, n1q � 1, the element ζn1ζpe is a primitive n-th root of unity).

This implies that Qppζnq � Qpf pζpeq, showing that the rami�
ation index of Qppζnq{Qp is ϕpp
e
q and that

its residual degree is f . In parti
ular, we have rQppζnq : Qps � ϕppeqf . As f is the order of p in the group

pZ {n1Zq�, we have f | #pZ {n1 Zq� � ϕpn1q, hen
e rQppζnq : Qps | ϕpp
e
qϕpn1q � ϕpnq, with equality if and

only if p generates pZ {n1 Zq�. �
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Corollary 8.2.14. Under the assumptions of proposition 8.2.13, the inertia subgroup of Qppζnq{Qp is

isomorphi
 to pZ {peZq�.

Proof. This follows from the dis
ussion in paragraph 8.1 applied to F � Qpf , using the irredu
ibility of Φpe

over Qpf . �

Remark 8.2.15. As a spe
ial 
ase of last proposition, we have Qpf � Qppζpf�1q.

8.2.16. The �eld Qppζpq.

Lemma 8.2.17. Qppζpq � Qp

�

p�pq
1

p�1

�

.

Proof. We have ΦppX � 1q �
pX�1qp�1

X
� Xp�1

�

p�1
°

i�1

�

p
i

�

X i�1
, so pζp � 1qp�1

� �

p�1
°

i�1

�

p
i

�

pζp � 1qi�1
, hen
e

pζp � 1qp�1
� �p mod ppζp � 1qOQppζpq

, i.e. u :�
pζp�1qp�1

�p
� 1 mod pζp � 1qOQppζpq

. As pζp � 1qOQppζpq

is the maximal ideal of OQppζpq
, we have u P O�

Qppζpq
. Moreover, a straightforward indu
tion implies

that up
i

� 1 mod pipζp � 1qOQppζpq
. This shows that the sequen
e

�

u�1�p�p2�����pn
�

nPZ
¥0


onverges to

some element u1 P OQppζpq
, su
h that u

p�1
1 � u. We have u1 P O�

Qppζpq
, and pζp � 1qp�1

� �pu
p�1
1 ,

i.e. α �

ζp�1

u1
P OQppζpq

is a root of Xp�1
� p. As the latter is an Eisenstein polynomial, the in
lusion

Qppαq � Qppζpq is a equality. �

Remark 8.2.18. The extension Qppζpq{Qp is totally tamely rami�ed of degree p�1: we knew a priori that

there exists a uniformizer ̟ of Qp su
h that Qppζpq � Qp

�

̟
1

p�1

�

(
f theorem 3.8.28).

Let v : Qppζpq
�

Ñ Z be the normalized valuation, so that vpπq � 1 where π � ζp � 1, and

U � tx P OQppζpq
; x � 1 mod πOQppζpq

u

the group of prin
ipal units. As the residue �eld of Qppζpq is Fp, we have

Qppζpq
�

� πZ
� µp�1 � U.

Lemma 8.2.19. We have Up :� tup ; u P Uu �
 

x P OQppζpq
; x � 1 mod πp�1OQppζpq

(

.

Proof. 
 Let u P U . As the residue �eld of Qppζpq is Fp, we have OQppζpq
� Z�πOQppζpq

: we 
an write

u � 1 � nπ mod π2OQppζpq
with n P Z

¥0. As ζnp � p1 � πqn � 1 � nπ mod π2OQppζpq
, we have thus

ζnp u � 1 mod π2OQppζpq
: write ζnp u � 1� π2y with y P OQppζpq

. Raising to the p-th power, we get

up � 1�
p�1
°

i�1

�

p
i

�

π2iyi � π2pyp � 1 mod πp�1OQppζpq

sin
e

�

p
i

�

P pOQppζpq
� πp�1OQppζpq

for i P t1, . . . , p� 1u (be
ause vppq � p� 1 � v
�

πp�1
�

), and p� 1 ¤ 2p.


 Conversely, let x P 1 � πp�1OQppζpq
. Write x � 1 � πp�1z with z P OQppζpq

: we have to show that x is

the p-th power of some u P U . We have

�

8

°

n�0

�

1{p
n

�

Xn
	p

� 1�X

in QrrXss. If n P Z
¥0, we have

�

1{p
n

�

�

1
n!

1
p

�

1
p
� 1

��

1
p
� 2

�

� � �

�

1
p
� n� 1

�

�

p1�pqp1�2pq���p1�pn�1qpq

n!pn

This implies that vp
��

1{p
n

��

� �n � vppn!q � �n �
n�spnq

p�1
, where spnq denotes the sum of the digits of n

written in base p. In parti
ular, we have v
��

1{p
n

�

pπp�1zqn
�

¥ pp� 1qn�pp� 1q
�

n�
n�spnq

p�1
q � n� spnq ¥ n.

This implies that the series

u �
8

°

n�0

�

1{p
n

��

πp�1z
�n


onverges in OQppζpq
, and that up � 1� πp�1z � x, as required. �

8.3. Proof of Krone
ker-Weber Theorem.
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8.3.1. Redu
tion of theorem 8.1.1 to theorem 8.1.2 for all p. Assume that theorem 8.1.2 holds for every

prime p and let K{Q be an abelian extension. Let Σ be the set of primes p that ramify in K{Q (i.e. su
h

that p | dK , 
f 
orollary 2.6.6). If p P Σ and p � OK is a prime ideal lying over p, denote by

pKp the


ompletion of K with respe
t to p. The extension

pKp{Qp is abelian, and its Galois group identi�es the

de
omposition subgroup

DppK{Qq � tσ P GalpK{Qq ; σppq � pu ¤ GalpK{Qq

(
f propositions 3.5.15 and 8.2.3). By theorem 8.1.2, there exists np P Z
¡0 su
h that

pKp � Qppζnp
q. Put

ep � vppnpq and n �
±

pPΣ

pep : it is enough to prove that K � Qpζnq.

Put L � Kpζnq � QpζnqK: the extension L{Q is abelian sin
e K{Q and Qpζnq{Q are (
f proposition

8.2.2). Let P � OL be a prime ideal lying over p, and pLP the 
ompletion of L with respe
t to P. We have

the diagram of �elds:

pLP

④④
④

■■
■■

■

pKp

❉❉
❉

Qppζnq

tt
tt

Qp

As

pLP � Qppζnq
pKp, the extension

pLP{Qp is unrami�ed if and only if

pKp and Qppζnq are (
f 
orollaries

3.8.9 and 3.8.11). This implies that the primes p that ramify in L are pre
isely those in Σ (sin
e the prime

that ramify in Qpζnq are the elements of Σ by 
orollary 8.2.11).

For p P Σ, we have pKp � Qppζnp
q, so that

Qppζpep q �
pLP � Qppζnp

, ζnq � Qppζpepn1q

for some n1 P Z
¡0 prime to p. Let Ip � IppL{Qq be the inertia group of L{Q at p. By 
orollary 8.2.14, we

have

Ip � GalpQppζpep q{Qpq � pZ {pep Zpq
�

Let I ¤ GalpL{Qq be the subgroup generated by all the Ip for p P Σ. As GalpL{Qq hen
e I is abelian, the

natural map

±

pPΣ

Ip Ñ I is a surje
tive group homomorphism, so that

#I ¤
±

pPΣ

#Ip �
±

pPΣ

ϕppepq � ϕpnq � rQpζnq : Qs.

Let F � Qpζnq be the �eld �xed by I. The primes rami�ed in F are rami�ed in L: they belong to Σ. As

we killed the rami�
ation at p by taking invariants under Ip for all p P Σ, this implies that F {Q is nowhere

rami�ed, i.e. that |dF | � 1. Minkowski bound

a

|dF | ¥
�

π
4

�d dd

d!
(where d � rF : Qs) implies that F � Q,

so that

rL : Qs � rL : F s � #I ¤ rQpζnq : Qs.

As Qpζnq � L, this implies L � Qpζnq, hen
e K � Qpζnq.

8.3.2. Proof of theorem 8.1.2. Let K{Qp be an abelian extension. We 
an write GalpK{Qpq �

r
±

i�1

Gi where

Gi is 
y
li
 of prime power order. Then K � K1 � � �Kr where Ki is the �eld �xed by

±

1¤j¤r
j�i

Gi. As the


omposite of �nitely many 
y
lotomi
 extensions is again a 
y
lotomi
 extension, it is enough to show that

ea
hKi is in
luded in a 
y
lotomi
 extension ofQp: we are redu
ed to the 
ase where GalpK{Qpq � Z {qmZ

is 
y
li
 of prime power order.

Case where p � q. Let T be the maximal unrami�ed subextension of K{Qp. If f � rT : Qps, then

T is the unique unrami�ed subextension of Qp lifting Fpf {Fp, i.e. T � Qpf � Qppζpf�1q, 
f remark

8.2.15. As rK : Qps � qm and p � q, the degree of the totally rami�ed extension K{T is of the form

e � qr with r P t0, . . . ,mu, when
e prime to p: it is tamely rami�ed. By theorem 3.8.28, there exists

a uniformizer π of T � Qpf su
h that K � Qpf

�

π
1
e

�

. As π and p are uniformizers of Qpf , there exists

u P Z�
pf

su
h that π � �up. As u is a unit and p � q, the extension Qpf

�

u
1
e

�

{Qpf is unrami�ed: so is



Number theory 167

Qpf

�

u
1
e

�

{Qp. By remark 8.2.15 again, we have Qpf

�

u
1
e

�

� QppζM q for some M P Z
¡0 prime to p. Note

that in KpζM q � Qpf

�

π
1
e , u

1
e

�

, we have

�

π
1
e

u
1
e

	e

� �p, so that p�pq
1
e
P KpζM q.

KpζM q
❖❖

❖❖

tt
tt

K

❏❏
❏❏

❏ QppζM q

♦♦
♦♦
♦

Qp

Being the 
omposite of the abelian extensions K{Qp and QppζM q{Qp, the extension KpζM q{Qp is abelian:

so is its subextension Qp

�

p�pq
1
e

�

{Qp (
f proposition 8.2.2). In parti
ular, it is Galois, hen
e 
ontains the


onjugates of p�pq
1
e
over Qp: we have ζe P Qp

�

p�pq
1
e

�

. Moreover, the extension Qp

�

p�pq
1
e

�

{Qp is totally

rami�ed: so is its subextension Qppζeq{Qp. By proposition 8.2.13, this implies that e � qr | p � 1 (re
all

that p � q), so that p�pq
1
e
P Qp

�

p�pq
1

p�1

�

� Qppζpq (
f lemma 8.2.17), i.e.

π
1
e
� p�pq

1
eu

1
e
P QppζM , ζpq � QppζMpq.

Finally, we have K � QppζMpq, �nishing the proof in that 
ase.

Case where p � q � 2. The extension Ku :� Qppζppm�1q{Qp is unrami�ed and 
y
li
 of degree pm

(
f remark 8.2.15). On the other hand, the extension Qppζpm�1q{Qp is totally rami�ed, with Galois group

isomorphi
 to pZ {pm�1Zq�, hen
e 
y
li
 (sin
e p � 2). Let Kr be its sub�eld �xed by the subgroup of order

p � 1: the extension Kr{Qp is totally rami�ed and 
y
li
 of degree pm. This implies that rKuKrs � p2m

(sin
e the rami�
ation index of KuKr{Qp is at least rKr : Qps � pm and the residual degree at least

rKu : Qps � pm). By proposition 8.2.2, the extension KuKr{Qp is abelian. As the group homomorphism

GalpKuKr{Qpq Ñ GalpKu{Qpq � GalpKr{Qpq

(given by the restri
tions) is inje
tive, it is an isomorphism by 
ardinality, so that

GalpKuKr{Qpq � pZ {pm Zq2.

Assume K � KuKr. As above, the group homomorphism given by the restri
tions

GalpKKuKr{Qpq Ñ GalpKuKr{Qpq � GalpK{Qpq � pZ {pm Zq3

is inje
tive: let H be its image. By the invariant fa
tors de
omposition (
f theorem 1.4.13), we have

H � pZ {pm1 Zq � pZ {pm2 Zq � pZ {pm3 Zq

for unique integers m1 ¥ m2 ¥ m3. As H is killed by pm, we have mi ¤ m for all i P t1, 2, 3u. As the

restri
tion GalpKKuKr{Qpq Ñ GalpKuKr{Qpq � pZ {pmZq2 is surje
tive, we have dimFp
ppm�1Hq ¥ 2, so

thatm1 � m2 � m. We havem1 :� m3 ¡ 0, otherwise we would have rKKuKr : Qps � p2m � rKuKr : Qps,

implying that K � KuKr 
ontradi
ting the hypothesis. This implies in parti
ular that

GalpKKuKr{Qpq � pZ {pmZq2 � pZ {pm
1

Zq

has a quotient isomorphi
 to pZ {pZq3: there exists a Galois subextension N of KKuKr{Qp su
h that

GalpN{Qpq � pZ {pZq3.

This is impossible by lemma 8.3.4 below: we must haveK � KuKr � Qppζpm , ζppm�1q � Qppζpm�1
ppp

m
�1qq,

�nishing the proof in that 
ase.

Lemma 8.3.3. Let F be a �eld of 
hara
teristi
 di�erent from p, M � Qppζpq and L � M
�

a
1
p

�

with

a PM�

. Let χ : GalpM{F q Ñ Z {pZ be the 
y
lotomi
 
hara
ter. The following are equivalent:

(i) L{F is abelian;

(ii) p�σ P GalpM{F qqσpaq � aχpσq mod M�p
.

Note that Z {pZ a
ts on M�

{M�p
, so that aχpσq mod M�p

makes sense.

Proof. 
 Assume (i). Let σ P GalpM{F q, and �x pσ P GalpL{F q extending σ. If τ P GalpL{Mq, there exists

cτ P Z {pZ su
h that τ
�

a
1
p

�

� ζcτp a
1
p
. As GalpL{F q is abelian, we have

pτ � pσq
�

a
1
p

�

� ppσ � τq
�

a
1
p

�

� ζcτχpσqp pσ
�

a
1
p

�
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Let k P Z mapping to χpσq in Z {pZ: we have τ
�

a
k
p

�

� ζkcτp a
k
p
� ζ

cτχpσq
p ζkcτp a

k
p
. Put α �

pσ

�

a
1
p

�

a
k
p

P L�.

What pre
edes implies that τpαq � α. As this holds for all τ P GalpL{Mq, we have α PM�

: raising to the

p-th power gives σpaq � pσpaq � akαp, whi
h pre
isely means that σpaq � aχpσq mod M�p
.


 Assume (ii). As charpF q � p, the extensions L{M and M{F are separable: so is the extension L{F . If

γ P HomK-algpL, F q, we have γ
|M P GalpM{F q. Fix k P Z mapping to χpγ

|M q in Z {pZ. By hypothesis,

there exists α PM�

su
h that γ
�

a
1
p

�p
� γ

|M paq � akαp: there exists i P Z {pZ su
h that

γ
�

a
1
p

�

� ζipa
k
pα P L.

As L �M
�

a
1
p

�

, this implies that the extension L{F is normal, hen
e Galois. The result is obvious if L �M

(then GalpL{F q � GalpM{F q is abelian): assume hen
eforth that L � M . The group GalpL{Mq is then


y
li
 of order p, generated by σ su
h that σ
�

a
1
p

�

� ζpa
1
p
. Let γ P GalpL{F q: we have γ

�

a
1
p

�

� ζipa
k
pα with

i P Z {pZ, k P Z whose image in Z {pZ is χpγq and α PM . Then

pγ � σq
�

a
1
p

�

� γ
�

ζpa
1
p

�

� ζχpγq�ip a
k
pα � ζk�ip a

k
pα � ζip

�

ζpa
1
p

�k
α � σ

�

ζipa
k
pα

�

� pσ � γq
�

a
1
p

�

As γ�σ and σ�γ also 
oin
ide onM (be
auseM{F is abelian) and L �M
�

a
1
p

�

, this shows that γ�σ � σ�γ,

so that GalpL{Mq lies in the 
enter of GalpL{F q. This implies that the quotient of GalpL{F q by its 
enter

is a quotient of GalpM{F q, whi
h 
y
li
 (sin
e it identi�es with a subgroup of pZ {pZq�). The 
lassi
al

argument in group theory implies that GalpL{F q is abelian. �

Lemma 8.3.4. If p � 2, there is no Galois extension N{Qp su
h that GalpN{Qpq � pZ {pZq3.

Proof. Let N{Qp be Galois and su
h that GalpN{Qpq � pZ {pZq3. The 
omposite of the abelian extensions

N{Qp and Qppζpq{Qp is abelian: so is the extension Npζpq{Qppζpq. As rQppζpq : Qps � p � 1 is prime

to rN : Qps � p3, we have rNpζpq : Qps � pp � 1qp3, so that rNpζpq : Qppζpqs � p3: the restri
tion map

GalpNpζpq{Qppζpqq Ñ GalpN{Qpq, whi
h is an inje
tive group homomorphism, is thus an isomorphism, i.e.

GalpNpζpq{Qppζpqq � pZ {pZq3. This implies that the extension Npζpq{Qppζpq is a Kummer extension: it


orresponds to a subgroup ∆ ¤ Qppζpq
�

{Qppζpq
�p

su
h that ∆ � pZ {pZq3.

Let a P ∆, and L � Qp

�

ζp, a
1
p

�

� Npζpq. As the extension Npζpq{Qp is abelian, so is L{Qp: by lemma

8.3.3, we have σpaq � aχpσq mod Qppζpq
�p

for all σ P GalpQppζpq{Qpq. Using notations of se
tion 8.2.16,

we have vpaq � vpσpaqq and v
�

Qppζpq
�p
q � pZ, so the image of vpaq in Z {pZ is equal to χpσqvpaq for all

σ P GalpQppζpq{Qpq. As χpGalpQppζpq{Qpqq � pZ {pZq� � t1u (be
ause p � 2), this shows that vpaq P pZ,

so that

a P pζp � 1qpZ � µp�1 � U � pζp � 1qZ � µp�1 � U � Qppζpq
�.

As a is de�ned modulo Qppζpq
�p
, we may multiply a by a p-th power and assume that vpaq � 0. Similarly,

as elements of µp�1 are p-th powers of themselves, we may assume that a P U . This implies that we may

assume that

∆ ¤ U{Up.

Let a P ∆zt1u. As the residue �eld of Qppζpq is Fp, we have OQppζpq
� Z�πOQppζpq

: there exists n P Z
¥0

su
h that a � 1� nπ mod π2OQppζpq
. As ζnp � p1� πqn � 1� nπ mod π2OQppζpq

, we have

u :� ζnp a � 1 mod π2OQppζpq

(
f proof of lemma 8.2.19). Let σ P GalpQppζpq{Qpq and kσ P Z lifting χpσq P pZ {pZq�: as above, we

have σpaq � akσ mod Qppζpq
�p

(be
ause Qp

�

ζp, a
1
p

�

{Qp is abelian, 
f lemma 8.3.3). As σpaq, akσ P U ,

we have thus

σpaq

akσ
P U XQ�p

p � Up, when
e σpaq � akσ mod Up for all σ P GalpQppζpq{Qpq. As the same


ongruen
e holds for ζnp , we also have

(�) σpuq � ukσ mod Up

for all σ P GalpQppζpq{Qpq. On the other hand, we 
an write u � 1� cπq mod πdOQppζpq
with c P Z zpZ

and d � vpu� 1q P Z
¥2 (re
all that u � 1). We have

#

σpuq � 1� ckdσπ
d mod πd�1OQppζpq

ukσ � 1� ckσπ
d mod πd�1OQppζpq

so

σpuq

ukσ
� 1 � cpkdσ � kσqπ

d mod πd�1OQppζpq
. By equation (�), we also have

σpuq

ukσ
P Up. By lemma

8.2.19, we have Up �
 

x P OQppζpq
; x � 1 mod πp�1OQppζpq

(

: this implies that d ¥ p � 1 or d ¤ p and

cpkdσ � kσq P πOQppζpq
.
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In the �rst 
ase, we have u P Up, when
e a P ζZp . In the se
ond 
ase, we have cpkdσ � kσq P pZ, so that

kdσ � kσ P pZ (sin
e c R pZ), thus χpσqd � χpσq i.e. χpσqd�1
� 1 in pZ {pZq�. As χpσq 
an take any value

in pZ {pZq� and the latter is 
y
li
 of order p� 1, this implies that p� 1 | d� 1. As d ¤ p, this implies that

d � p, so that u belongs to tx P U ; x � 1 mod πpOQppζpq
u. As the latter is the subgroup of U generated

by 1� πp, we see that in any 
ase, we have

∆ � xζp, 1� πpy � U{Up

As xζp, 1 � πpy has dimension 2 seen as a sub-Fp-ve
tor spa
e of U{Up, we 
annot have ∆ � pZ {pZq3,

giving the 
ontradi
tion.

Case where p � q � 2. The extension Ku :� Q2pζ22m�1q{Q2 is unrami�ed and 
y
li
 of degree 2m (
f

remark 8.2.15). On the other hand, the extension Kr � Q2pζ2m�2
q{Q2 is totally rami�ed, with Galois

group isomorphi
 to pZ {2m�2Zq� � pZ {2Zq � pZ {2mZq. This implies that rKuKr : Q2s � 22m�1

(sin
e the rami�
ation index of KuKr{Q2 is at least rKr : Q2s � 2m�1
and the residual degree at least

rKu : Q2s � 2m). By proposition 8.2.2, the extension KuKr{Q2 is abelian. As the group homomorphism

GalpKuKr{Q2q Ñ GalpKu{Q2q � GalpKr{Q2q

(given by the restri
tions) is inje
tive, it is an isomorphism by 
ardinality, so that

GalpKuKr{Q2q � pZ {2Zq � pZ {2mZq2.

Assume K � KuKr. The extension KKuKr{Q2 is abelian (
f proposition 8.2.2). The group homomor-

phism

GalpKKuKr{KuKrq Ñ GalpK{Q2q � Z {2mZ

indu
ed by the restri
tion is inje
tive, so GalpKKuKr{KuKrq � Z {2m
1

Z for some m1

P t1, . . . ,mu. As

GalpKKuKr{Q2q is abelian, this implies that it has at most four generators, one of whi
h has order 2, and


ontains pZ {2Zq � pZ {2mZq2 as a stri
t subgroup. There are two possibilities:

GalpKKuKr{Q2q �

$

'

&

'

%

pZ {2Zq � pZ {2mZq2 � pZ {2m
1

Zq with m1

¥ 1

or

pZ {2mZq2 � pZ {2m
1

Zq with m ¥ m1

¥ 2

.

It thus has a quotient has a quotient isomorphi
 to either pZ {2Zq4 or pZ {4Zq3: there exists a Galois

subextension N of KKuKr{Q2 su
h that

GalpN{Q2q �

$

'

&

'

%

pZ {2Zq4

or

pZ {4Zq3
.

It remains to 
he
k that those two 
ases are impossible.


 The �rst 
ase 
orresponds, by Kummer theory, to four linearly independent elements in Q�

2 {Q
�2
2 (i.e. to

four independent quadrati
 extensions of Q2). As

Q�

2 � 2Z � t�1u � U1

where U1 � tu P Z2 ; u � 1 mod 4Z2u, and U
2
1 � tx P Z2 ; x � 1 mod 8Z2u, the F2-ve
tor spa
e

Q�

2 {Q
�2
2 � pZ {2Zq � t�1u � U1{U

2
1

has dimension 3,
ontradi
ting GalpN{Q2q � pZ {2Zq4.


 Assume from now on that GalpN{Q2q � pZ {4Zq3. Assume i :�
?

�1 R N : then Npiq{Q2 is abelian,

and the natural map GalpNpiq{Q2q Ñ GalpN{Q2q � GalpQ2piq{Q2q � pZ {4Zq3 � pZ {2Zq is a group iso-

morphism, implying the existen
e of a sub�eld N 1

of Npiq su
h that GalpN 1

{Q2q � pZ {2Zq4, whi
h is not

possible by what pre
edes. This shows that i P N . Let f : Z3
Ñ GalpN{Q2q be a surje
tive group homo-

morphism indu
ing an isomorphism

rf : pZ {4Zq3
�

ÑGalpN{Q2q. The 
omposite with the surje
tive group

homomorphism g : GalpN{Q2q Ñ GalpQ2piq{Q2q � Z {2Z provides a surje
tive group homomorphism

g � f : Z3
Ñ Z {2Z. By the adapted basis theorem (
f theorem 1.4.11), there exists a Z-basis pe1, e2, e3q of

Z3
su
h that Kerpg�fq � Z e1`Z e2`2Z e3. This implies that repla
ing f by its 
omposite with the 
hange

of basis map, we may assume that pe1, e2, e3q is the 
anoni
al basis, so that Kerpg� rfq � pZ {4Zq2`p2Z {4Zq.

Let L denote the sub�eld of N 
orresponding to the subgroup pZ {4Zq�t0u � pZ {4Zq2 ` p2Z {4Zq. By


onstru
tion, we have Q2piq � L and GalpL{Q2q � Z {4Z. Let σ be a generator of GalpL{Q2q, so that σ2

generates GalpQ2piq{Q2q and σpiq � �i. We 
an write L � Q2pi, αq with α
2
P Q2piq. As L{Q2 is Galois,

we also have L � Q2pi, σpαqq and σpαq
2
� σpα2

q P Q2piq. This implies that σ2
pαq2 � σ2

pα2
q � α2

, so that

σ2
pαq � �α. We 
annot have σ2

pαq � α, otherwise α P Q2piq whi
h is not: we have σ2
pαq � �α, when
e
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σ3
pαq � �σpαq. This implies that σ2

�σpαq

α

�

�

σpαq

α
, i.e.

σpαq

α
P Q2piq: write σpαq � pa� ibqα with a, b P Q2.

Applying σ gives �α � σ2
pαq � pa� ibqσpαq: multiplying these equalities and dividing by ασpαq gives

a2 � b2 � �1.

Su
h an equality is impossible in Q2 (multiplying by the square of a 
ommon denominator gives a non

trivial equality x2 � y2 � z2 � 0 is Z2, whi
h is already impossible modulo 8), giving a 
ontradi
tion.

What pre
edes shows that the assumption K � KuKr is absurd: we have K � KuKr � Q2pζ2m�2
p22

m
�1qq,

�nishing the proof. �
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9. Appendix

9.1. Zorn's lemma. The axiom of 
hoi
e (that we assume) is equivalent to the following:

Theorem 9.1.1. A partially ordered set in whi
h every 
hain

(51)

has an upper bound 
ontains at least one

maximal element.

Remark 9.1.2. Considering opposite orders, we also have the dual statement: a partially ordered set in

whi
h every 
hain has an lower bound 
ontains at least one minimal element.

9.2. Galois theory. Let Ω{K a �eld extension, and L1, L2 sub-extensions. We have the following situation:

Ω

L1L2

L1

sssss
L2

❑❑❑❑❑

L1 X L2

sssss

❑❑❑❑❑

K

Proposition 9.2.1. Assume L1{K is �nite and Galois. The extensions L1L2{L2 and L1{L1 X L2 are �nite

and Galois, and the restri
tion map

ρ : GalpL1L2{L2q Ñ GalpL1{L1 X L2q

is a group isomorphism. In parti
ular, we have rL1L2 : L2s � rL1 : L1XL2s. If moreover L2{K is �nite, we

have rL1L2 : Ks �
rL1:KsrL2:Ks

rL1XL2:Ks
.

Proof. As L1{K is �nite and Galois, it is the splitting �eld, in Ω of a separable polynomial P P KrXs:

the �eld L1L2 is the splitting �eld, in Ω, of P seen as an element of L2rXs. As P is separable, the

extension L1L2{L2 is Galois. Of 
ourse, L1{L1 X L2 is Galois be
ause L1{K is. We thus have the group

homomorphisme ρ.

If σ P Kerpρq, then σ indu
es the identity on L1 and L2, hen
e on L1L2: we have σ � IdL1L2
, whi
h shows

the inje
tivity of ρ. Put H � Impρq. If x P L1 is �xed H , it is �xed by GalpL1L2{L2q: it belongs to L2, hen
e

to L1XL2. This shows that L
H
1 � L1XL2: Galois 
orrespondan
e implies that H � GalpL1{L1XL2q, and

ρ is surje
tive.

We have thus #GalpL1L2{L2q � #GalpL1{L1 X L2q, hen
e rL1L2 : L2s � rL1 : L1 X L2s.

If L2{K is �nite, we have

rL1L2 : Ks � rL1L2 : L2srL2 : Ks � rL1 : L1 X L2srL2 : Ks �
rL1:KsrL2:Ks

rL1XL2:Ks
  �8.

�

Proposition 9.2.2. Assume L1{K and L2{K are �nite and Galois. Then L1L2{K and L1XL2{K are �nite

and Galois, and the natural map (given by restri
tions)

ψ : GalpL1L2{Kq Ñ GalpL1{Kq � GalpL2{Kq

is inje
tive, with image tpσ1, σ2q P GalpL1{Kq � GalpL2{Kq ; σ1|L1XL2
� σ2|L1XL2

u.

Proof. If x P L1 X L2, the 
onjuguates of x over K all belong to L1 (be
ause L1{K is normal). Similarly,

they all belong to L2: they lie in L1 X L2, and the extension L1 X L2{K is normal. Being a sub-extension

of the separable extension L1{K, it is separable, whi
h shows that L1 X L2{K is Galois.

The �elds L1 and L2 are splitting �elds, in Ω, od separable polynomials P1 and P2: the �eld L1L2 is thus

the splitting �elds, in Ω, of the separable polynomial lcmpP1, P2q, whi
h shows that L1L2{K is Galois.

If σ P Kerpψq, then σ indu
es the identity on L1 and L2, hen
e on L1L2, so that σ � IdL1L2
, whi
h shows

the inje
tivity of ψ. Of 
ourse we have

Impψq ¤ H :� tpσ1, σ2q P GalpL1{Kq � GalpL2{Kq ; σ1|L1XL2
� σ2|L1XL2

u.

We know that

GalpL2{Kq{GalpL2{L1 X L2q
�

ÑGalpL1 X L2{Kq.

(51)

I.e. a totally ordered subset.
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If σ1 P GalpL1{Kq, the restri
tion σ1|L1XL2
P GalpL1 X L2{Kq thus admits rL2 : L1 X L2s extensions to L2.

this implies that

#H ¤ #GalpL1{KqrL2 : L1 X L2s � rL1 : KsrL2 : L1 X L2s �
rL1 : KsrL2 : Ks

rL1 X L2 : Ks
.

By proposition 9.2.1, we dedu
e #H ¤ rL1L2 : Ks � #GalpL1L2{Kq. As ψ is inje
tive, this is an equality,

whi
h shows that Impψq � H . �

Corollary 9.2.3. If L1{K and L2{K are �nite and abelian, so is L1L2{K.

Proof. The group GalpL1{Kq � GalpL2{Kq is abelian: so is its sub-group

H :� tpσ1, σ2q P GalpL1{Kq � GalpL2{Kq ; σ1|L1XL2
� σ2|L1XL2

u.

As ψ indu
es an isomorphism GalpL1L2{Kq
�

ÑH , the extension L1L2{K is abelian. �
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