université ${ }^{\text {de } B O R D E A U X ~}$	ANNÉE UNIVERSITAIRE 2019 / 2020 Session 1 D'automne PARCOURS / ÉTAPE: 4TMA903U Code UE : 4TTN901S, 4TTN901S Épreuve : Algebraic number theory Date : 24/01/2020 Heure : 13h Durée : 4h Documents : autorisés (notes de cours) Épreuve de Mr Brinon	Collège Sciences et technologies

Apart from lecture notes, documents are not allowed.
The quality of writing will be an very important assessment factor.

Exercise 1

Let p be a prime number.
(1) Assume p is odd. What is the p-adic development of $\frac{1}{2}$ (i.e. write $\frac{1}{2}=\sum_{i=0}^{\infty} a_{i} p^{i}$ with $a_{i} \in\{0,1, \ldots, p-1\}$ for all $i \in \mathbf{Z}_{\geqslant 0}$).
(2) Is $\mathbf{Q}_{p}^{\mathrm{ur}}$ (the maximal unramified extension of \mathbf{Q}_{p} in $\overline{\mathbf{Q}}_{p}$) complete for the p-adic absolute value?
(3) For which primes p is -1 a square in \mathbf{Q}_{p} ?
(4) For $i \in \mathbf{Z}_{>0}$, put $U_{i}=1+p^{i} \mathbf{Z}_{p}$. Let $n \in \mathbf{Z}_{>0}$. Show that if $y \in U_{2 v_{p}(n)+1}$, there exists $x \in U_{1}$ such that $x^{n}=y$. Deduce that $\mathbf{Q}_{p}^{\times} / \mathbf{Q}_{p}^{\times n}$ is a finite group, and give its order when p does not divide n.

Exercise 2

(1) Let R be a noetherian local ring with maximal ideal \mathfrak{m} and residue field κ. Show that $\mathfrak{m} / \mathfrak{m}^{2}$ is a κ-vector space of finite dimension, and that $d=\operatorname{dim}_{\kappa}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)$ is the minimal number of generators of the ideal \mathfrak{m}.
(2) Let A be a noetherian integral domain which is not a field. Show that A is a Dedekind ring if and only if for every maximal ideal \mathfrak{p} of A, there are no ideals $I \subset R$ such that $\mathfrak{p}^{2} \subsetneq I \subsetneq \mathfrak{p}$.

Exercise 3

Let $(K,|\cdot|)$ be a complete discretely valued field and \bar{K} an algebraic closure of K. We assume that the residue field κ_{K} of K contains the finite field \mathbf{F}_{q} (where $q=p^{f}$ with $f \in \mathbf{Z}_{>0}$). Fix a uniformizer π of K and let $P(X)=X^{q}+\pi X \in K[X]$. Choose a sequence $\left(\pi_{n}\right)_{n \in \mathbf{Z}_{\geqslant 0}}$ in \bar{K} such that $\pi_{0}=0, \pi_{1} \neq 0$ and $P\left(\pi_{n}\right)=\pi_{n-1}$ for all $n \in \mathbf{Z}_{>0}$. For $n \in \mathbf{Z}_{\geqslant 0}$, we put $K_{n}=K\left(\pi_{n}\right)$.
(1) Explain why the group $\mu_{q-1}(K)$ of $(q-1)$-th roots of unity is cyclic of order $q-1$.
(2) Show that K_{1} / K is totally ramified and that π_{1} is a uniformizer of K_{1}.
(3) Show that K_{1} / K is Galois and describe its Galois group.
(4) Show that for all $n \in \mathbf{Z}_{>0}$, the extension K_{n+1} / K_{n} is separable, totally ramified of degree q, and that π_{n+1} is a uniformizer of K_{n+1} [hint: use induction].
(5) Show that $\mathcal{O}_{K_{n}}=\mathcal{O}_{K}\left[\pi_{n}\right]$ for all $n \in \mathbf{Z}_{\geqslant 0}$.
(6) Compute the different $\mathfrak{D}_{K_{n+1} / K_{n}}$ [do the case $n=0$ separately], and deduce $\mathfrak{D}_{K_{n} / K}$ and the discriminant $\mathfrak{d}_{K_{n} / K}$ for all $n \in \mathbf{Z}_{\geqslant 0}$.

Exercise 4

Let $(K,||$.$) be a complete discretely valued field of characteristic 0$, with perfect residue field κ_{K} of characteristic p. We denote by v the normalized valuation on K and by $e_{K}=v(p)$ its absolute ramification index. Let $n \in \mathbf{Z}_{>0}$ be such that $\mathbf{F}_{p^{n}} \subset \kappa_{K}$ and $\alpha \in K$ such that $v(\alpha)>-\frac{p^{n} e_{K}}{p^{n}-1}$. Put $P(X)=X^{p^{n}}-X-\alpha \in K[X]$, let $\lambda \in \bar{K}$ be a root of P and $L=K(\lambda)$. We still denote by v its extension to L.
(1) Recall why there is a unique multiplicative map [.]: $\mathbf{F}_{p^{n}} \rightarrow \mathcal{O}_{K}$ such that $\pi \circ[]=.\operatorname{ld}_{\mathbf{F}_{p^{n}}}$, where $\pi: \mathcal{O}_{K} \rightarrow \kappa_{K}$ is the projection.
Put $Q(X)=P(X+\lambda) \in L[X]$.
(2) Assume $v(\alpha)<0$. Show that $v(\lambda)=\frac{v(\alpha)}{p^{n}}$. Deduce that $Q(X) \in \mathcal{O}_{L}[X]$ and compute the image $\bar{Q}(X)$ of $Q(X)$ in $\kappa_{L}[X]$.
(3) For $x \in \mathbf{F}_{p^{n}}$, compute the images of $Q([x])$ and $Q^{\prime}([x])$ in κ_{L}. Deduce that P is split in L. What precedes shows that L / K is Galois: put $G=\operatorname{Gal}(L / K)$.
(4) Show that if $\sigma \in G \backslash\left\{\operatorname{ld}_{L}\right\}$, we have $|\sigma(\lambda)-\lambda|=1$.
(5) Assume now that $p \nmid v(\alpha)$ and $v(\alpha)<0$.
(a) Show that L / K is totally ramified, and give a uniformizer π_{L} in terms of a uniformizer π_{K} of K and λ [hint: use the fact that $\operatorname{gcd}\left(p^{n}, v(\alpha)\right)=1$].
(b) Show that the ramification filtration with lower numbering is given by

$$
G_{i}=\left\{\begin{array}{ll}
G & \text { if } i \leqslant-v(\alpha) \\
\left\{\operatorname{ld}_{L}\right\} & \text { if } i>-v(\alpha)
\end{array} .\right.
$$

(c) Compute the different $\mathfrak{D}_{L / K}$ and the discriminant $\mathfrak{d}_{L / K}$.
(6) Show that if $\alpha_{1} \in K$ satisfies $\left|\alpha-\alpha_{1}\right|<1$ and λ_{1} is a root of $P_{1}(X)=X^{p^{n}}-X-\alpha_{1}$, then $K(\lambda)=K\left(\lambda_{1}\right)$.
(7) Assume now that $\alpha_{1}, \alpha_{2} \in K$ are such that $v\left(\alpha_{1}\right), v\left(\alpha_{2}\right)>-e_{K}$ and $\left|\alpha-\alpha_{1}-\alpha_{2}\right|<1$. Show that $L=K(\lambda)$ lies in the compositum of $K\left(\lambda_{1}\right) K\left(\lambda_{2}\right)$.

