Documents are not allowed. The quality of writing will be an important assessment factor. Everywhere in the text, p denotes a prime number.

Exercise 1

(1) Let (K, |.|) be a non archimedean valued field. Is the map $|.|: K \to \mathbf{R}_{\geq 0}$ continuous when $\mathbf{R}_{\geq 0}$ is endowed with its "usual" topology? What if $\mathbf{R}_{\geq 0}$ is endowed with the discrete topology? (2) What is the cardinality of \mathbf{Z}_p ?

(3) Show that the unique unramified extension of degree n of \mathbf{Q}_p (in a fixed algebraic closure $\overline{\mathbf{Q}}_p$ of \mathbf{Q}_p) is the decomposition field of $X^{p^n} - X$.

(4) Show that if $p \neq 2$, then 1 is the only *p*-th root of unity in \mathbf{Q}_p .

(5) Let $x = \sum_{k=0}^{\infty} 2^{k!} \in \mathbf{Q}_2$. Show that x is transcendental over \mathbf{Q} .

Exercise 2

Let K be a complete discretely valued field of characteristic 0, whose residue field κ_K has characteristic p > 0. We denote by $v_K \colon K \to \mathbf{Z} \cup \{\infty\}$ its normalized valuation.

(1) Let L/K be a totally ramified finite extension and $E(X) = X^e + a_{e-1}X^{e-1} + \cdots + a_0 \in \mathcal{O}_K[X]$ the minimal polynomial over K of a uniformizer π_L of L. Put $c(L) = v_L(\mathfrak{D}_{L/K}) - e + 1$ (where $v_L : L \to \mathbb{Z} \cup \{\infty\}$ is the normalized valuation and $\mathfrak{D}_{L/K}$ the different of L/K). Show that $c(L) \in \mathbb{Z}_{\geq 0}$ and that c(L) = 0 if and only if L/K is tamely ramified [hint: use the equality $\mathfrak{D}_{L/K} = E'(\pi_L)\mathcal{O}_L$].

(2) Show that if L/K is not tamely ramified, then $c(L) = \min\{ev_K(e), ev_K(a_i) - e + i\}_{1 \le i < e}$.

Let \overline{K} be a fixed separable closure of K and π a uniformizer of K. We denote by $U_K = 1 + \pi \mathcal{O}_K$ the group of principal units of K. Henceforth, we assume that κ_K is *finite*: let q be its order. (3) Show that an element $u \in \mathcal{O}_K^{\times}$ can be written uniquely $u = [\alpha] \widetilde{u}$ where $\alpha \in \kappa_K^{\times}$, $[\alpha] \in \mathcal{O}_K^{\times}$ is the unique

(3) Show that an element $u \in \mathcal{O}_K^{\sim}$ can be written uniquely $u = [\alpha]u$ where $\alpha \in \kappa_K^{\sim}$, $[\alpha] \in \mathcal{O}_K^{\sim}$ is the unique (q-1)-th root of unity lifting α and $\tilde{u} \in U_K$.

We denote by Σ_e the set of subextensions L/K of \overline{K} that are totally ramified of degree $e \in \mathbb{Z}_{>0}$.

(4) Assume that $p \nmid e$. Recall that, being tamely ramified over K, elements in Σ_e are of the form $K_{\theta} := K(\theta)$ where $\theta \in \overline{K}$ is a root of the polynomial $X^e - u\pi$ for some $u \in \mathcal{O}_K^{\times}$.

- (a) Let $\tilde{u} \in U_K$. Show that there exists $\lambda \in U_K$ such that $\lambda^e = \tilde{u}$. Deduce that we may restrict to elements u of the form $[\alpha]$ with $\alpha \in \kappa_K^{\times}$.
- (b) Let α, α' ∈ κ_K[×] and θ, θ' ∈ K̄ such that θ^e = [α]π and θ'^e = [α']π. Show that K_θ = K_{θ'} if and only if there exists β ∈ κ_K[×] such that α' = β^eα and an e-th root of unity ζ ∈ K such that θ' = [β]ζθ. Deduce that it is equivalent to the existence of γ ∈ κ_K[×] such that θ' = [γ]θ.
 (c) Show that μ'/Σ
- (c) Show that $\#\Sigma_e = e$.

(5) In this question, we assume that $p \mid e$: by question (1), we have $L \in \Sigma_e \Rightarrow c(L) \in \{1, \dots, ev_K(e)\}$.

- (a) For each $j \in \{1, \ldots, e-1\}$, construct an element $L \in \Sigma_e$ such that c(L) = j.
- (b) Deduce that $\#\Sigma_e \ge e$.
- (c) Assume $\#\Sigma_e = e$. Using (2), show that $v_K(e) = 1$, then that e = p is a uniformizer of K [hint: consider the extension generated by the roots of $X^e \pi$, then that generated by a root of $X^e u\pi$ for an appropriate root of unity $u \in \mathcal{O}_K^{\times}$].
- (d) Deduce $\#\Sigma_e > e$.

Exercise 3

Assume p > 2 and let K/\mathbb{Q}_p be a totally ramified Galois extension of degree p. Denote by π a uniformizer of K and v_K its normalized valuation. Let $E(X) = X^p + a_{p-1}X^{p-1} + \cdots + a_0 \in \mathbb{Z}_p$ be the minimal polynomial of π over \mathbb{Q}_p . Recall that $v_K(\mathfrak{D}_{K/\mathbb{Q}_p}) = \min\{2p-1, v_K(a_i)+i-1\}_{1 \leq i < p}$ (where $\mathfrak{D}_{K/\mathbb{Q}_p}$ denotes the different ideal of K/\mathbb{Q}_p).

- (1) Show that $p-1 \mid v_K(\mathfrak{D}_{K/\mathbf{Q}_p})$ [hint: use the ramification filtration].
- (2) Deduce that $v_K(\mathfrak{D}_{K/\mathbf{Q}_p}) = 2p 2$.
- (3) Compute $\operatorname{Gal}(K/\mathbf{Q}_p)_x$ for $x \in [-1, +\infty[$.
- (4) Deduce $\operatorname{Gal}(K/\mathbf{Q}_p)^{y}$ for $y \in [-1, +\infty[$.
- (5) Assume L/\mathbf{Q}_p is a totally ramified Galois extension such that $\operatorname{Gal}(L/\mathbf{Q}_p) \simeq (\mathbf{Z}/p\mathbf{Z})^2$.
 - (a) Show that $L = K_1 K_2$ where K_i / \mathbf{Q}_p is totally ramified Galois of degree p for $i \in \{1, 2\}$.
 - (b) Show that $\operatorname{Gal}(L/\mathbf{Q}_p)^y \hookrightarrow \operatorname{Gal}(K_1/\mathbf{Q}_p)^y \times \operatorname{Gal}(K_2/\mathbf{Q}_p)^y$ for all $y \in [-1, +\infty[$.
 - (c) Compute $\operatorname{Gal}(L/\mathbf{Q}_p)^y$ for all $y \in [-1, +\infty[$.
 - (d) Deduce $\operatorname{\mathsf{Gal}}(L/\mathbf{Q}_p)_1/\operatorname{\mathsf{Gal}}(L/\mathbf{Q}_p)_2$.
 - (e) Derive a contradiction and conclude that no such L exists.

Exercise 4

Let L/K be a totally ramified Galois extension of local fields of characteristic 0. Assume that its Galois group $G \simeq \{\pm 1, \pm i, \pm j, \pm k\}$ is the quaternion group¹ (so that $C := Z(G) \simeq \{\pm 1\}$), and that $G_4 = \{\mathsf{Id}_L\}$. Show that $G = G_0 = G_1$, and $G_2 = G_3 = C$. What is the different of L/K? Show that

$$G^{y} = \begin{cases} G & \text{if } y \leq 1 \\ C & \text{if } 1 < y \leq \frac{3}{2} \\ \{ \mathsf{Id}_{L} \} & \text{if } \frac{3}{2} < y \end{cases}$$

¹Recall that $i^2 = j^2 = k^2 = ijk = -1$.