Corrigé du Devoir maison n°1

Exercice 1

Soient A un anneau unitaire, M un A-module noethérien et $f \colon M \to M$ une application A-linéaire.

- (1) On suppose f surjective. Montrer que c'est un isomorphisme (indication : considérer la suite de sous-modules $K_n = \text{Ker}(f^n)$).
- (2) Si f est supposée injective, est-ce automatiquement un isomorphisme ?

On suppose désormais que $M=A^n$ et on note $X=(x_{i,j})_{1\leq i,j\leq n}\in \mathsf{M}_n(A)$ la matrice de f dans la base canonique.

- (3) Montrer que f est surjective si et seulement si $det(X) \in A^{\times}$ (indication : penser à la comatrice).
- (4) Montrer que si det(X) n'est pas diviseur de zéro dans A, alors f est injective.
- (5) Montrer que réciproquement, si $\det(X)$ est diviseur de zéro dans A, alors f n'est pas injective (indication : soient $a \in A \setminus \{0\}$ tel que $a \det(X) = 0$ et r < n le plus grand entier tel qu'il existe une matrice $N \in \mathsf{M}_r(A)$ extraite de M telle que $a \det(N) \neq 0$, construire $V \in A^n \setminus \{0\}$ tel que XV = 0 à partir d'une telle matrice N).

On suppose désormais que f est injective.

- (6) Lorsque $A = \mathbf{Z}$, montrer que $\# \operatorname{Coker}(f) = |\det(X)|$.
- (7) Montrer qu'on a $\dim_K(\mathsf{Coker}(f)) = \deg(\det(X))$ lorsque A = K[X] (où K est un corps commutatif).

Solution: (1) La suite de sous-modules $(K_n)_{n\in\mathbb{N}}$ est croissante : comme M est noethérien, elle est stationnaire. Soit $n\in\mathbb{N}$ tel que $K_n=K_{n+1}$. Si $m\in\mathsf{Ker}(f)$, il existe $m'\in M$ tel que $m=f^n(m')$ (parce que f donc f^n est surjective). On a

$$f^{n+1}(m') = f(m) = 0 \Rightarrow m' \in K_{n+1} = K_n \Rightarrow m = f^n(m') = 0,$$

ce qui prouve l'injectivité de f.

- (2) C'est faux en général, comme le montre l'exemple de la multiplication par 2 sur **Z**.
- (3) Notons $(e_i)_{1 \leq i \leq n}$ la base canonique de A^n . Si f est sujective, il existe $m_i \in A^n$ tel que $f(m_i) = e_i$ pour tout $i \in \{1, \ldots, n\}$: notons $g \colon A^n \to A^n$ l'unique application A-linéaire telle que $g(e_i) = m_i$. On a $f \circ g = \operatorname{Id}_{A^n}$, donc $\det(f) \det(g) = 1$, donc $\det(f) = \det(X) \in A^{\times}$. Réciproquement, supposons $\det(X) \in A^{\times}$. On a $X^t \operatorname{com}(X) = \det(X) \operatorname{I}_n$ (où $\operatorname{com}(X)$ est la transposée de la comatrice de X): si $g \colon A^n \to A^n$ désigne l'application A-linéaire dont la matrice dans la base canonique est $(\det(X))^{-1t} \operatorname{com}(X)$, on a $f \circ g = \operatorname{Id}_{A^n}$, ce qui implique que f est surjective.
- (4) Soit $m \in \text{Ker}(f)$. Notons V le vecteur colonne dont les composantes sont les coordonnées de m dans la base canonique. On a XV = 0, donc $\det(X)V = {}^t\text{com}(X)XV = 0$: comme $\det(X)$ n'est pas diviseur de zéro, cela implique V = 0 i.e. m = 0, montrant l'injectivité de f.
- (5) Lorsque r = 0, on a aX = 0: si $V = ae_1$, on a $V \in A^n \setminus \{0\}$ (car $a \neq 0$) et XV = 0, ce qui montre que f n'est pas injective dans ce cas. On suppose désormais r > 0. On a bien sûr r < n vu que $a \det(X) = 0$. Écrivons $X = (x_{i,j})_{1 \le i,j \le n}$. Quitte à multiplier X à gauche

et à droite par des matrices de permutation (cela ne change pas le caractère injectif ou non de f), on peut supposer la matrice $Y = (x_{i,j})_{1 \le i,j \le r}$ extraite de X vérifie $a \det(Y) \ne 0$. Si $i \in \{1, \ldots, n\}$, posons

$$Y_i = \begin{pmatrix} x_{1,1} & \cdots & x_{1,r} & x_{1,r+1} \\ \vdots & & \vdots & \vdots \\ x_{r,1} & \cdots & x_{r,r} & x_{r,r+1} \\ x_{i,1} & \cdots & x_{i,r} & x_{i,r+1} \end{pmatrix}$$

Si $i \in \{1, ..., r\}$, la matrice Y_i a deux lignes égales, donc $\det(Y_i) = 0$. Si $i \in \{r+1, ..., n\}$, la matrice Y_i est extraite de X, de taille r+1: on a $a \det(Y_i) = 0$ par définition de r. Dans tous les cas on a $a \det(Y_i) = 0$. En développant $\det(Y_i)$ par rapport à la dernière ligne, on a donc

$$a\sum_{j=1}^{r+1} (-1)^j x_{i,j} \mu_j = 0$$

où μ_j est le déterminant du mineur de Y_i du coefficient d'indice (r+1,j) (remarquons que ce mineur ne dépend pas de i). Ces égalités signifient que XV=0 avec

$$V = a(-\mu_1, \mu_2, \dots, (-1)^{r+1} \mu_{r+1}, 0 \dots, 0) \in A^n \setminus \{0\}$$

(parce que $a\mu_{r+1} = a \det(Y) \neq 0$). Là encore, f n'est pas injective.

(6) La matrice X est équivalente à une matrice réduite : il existe $P, Q \in \mathsf{SL}_n(\mathbf{Z})$ telles que $P^{-1}XQ = \mathrm{diag}(a_1, \ldots, a_n)$ avec $a_1 \mid a_2 \mid \cdots \mid a_n$. On a bien alors $\det(X) = a_1 \cdots a_n$.

Comme P et Q sont inversibles, on a $\mathsf{Coker}(f) \simeq \bigoplus_{i=1}^n (\mathbf{Z}/a_i \mathbf{Z})$, ce qui implique qu'on a

 $\#\operatorname{Coker}(f) = |a_1 \cdots a_n| = |\det(X)|.$

(7) Il existe $P, Q \in \mathsf{SL}_n(K[X])$ telles que $P^{-1}XQ = \mathrm{diag}(a_1, \ldots, a_n)$ avec $a_1 \mid a_2 \mid \cdots \mid a_n$. On a bien alors $\det(X) = a_1 \cdots a_n$. Comme les matrices P et Q sont inversibles, on a $\mathsf{Coker}(f) \simeq \bigoplus_{i=1}^n (K[X]/\langle a_i \rangle)$, et donc

$$\dim_K(\mathsf{Coker}(f)) = \sum_{i=1}^n \dim_K(K[X]/\langle a_i \rangle) = \sum_{i=1}^n \deg(a_i) = \deg(a_1 \cdots a_n) = \deg(\det(X)).$$

Exercice 2

Soient $\lambda \in \mathbf{C}$ et $A := \mathbf{C}[X, Y]/\langle X^2 + Y^2 + \lambda \rangle$.

- (1) Montrer que A est intègre si et seulement si $\lambda \neq 0$.
- (2) Quand A est-il un corps?

Solution : (1) Si $\lambda \neq 0$, écrivons $\lambda = -\mu^2$ avec $\mu \in \mathbf{C}^{\times}$: on a $X^2 + Y^2 + \lambda = X^2 + (Y - \mu)(Y + \mu)$. Comme $\mu \neq -\mu$, on a $\operatorname{pgcd}(Y - \mu, Y + \mu) = 1$, et le critère d'Eisenstein appliqué avec l'élément premier $Y - \mu$ dans $\mathbf{C}[Y][X]$ implique que $X^2 + Y^2 + \lambda$ est irréductible dans $\mathbf{C}[X,Y]$. Comme $\mathbf{C}[X,Y]$ est factoriel, cela montre que $X^2 + Y^2 + \lambda$ est premier dans $\mathbf{C}[X,Y]$, et donc que A est intègre.

Si $\lambda=0$, on a $X^2+Y^2=(X+iY)(X-iY)$: comme $\operatorname{\mathsf{pgcd}}(X+iY,X-iY)=1$, le théorème des restes chinois implique que

$$A \simeq (\mathbf{C}[X,Y]/\langle X+iY\rangle) \times (\mathbf{C}[X,Y]/\langle X-iY\rangle) \simeq \mathbf{C}[X]^2$$

est réduit mais pas intègre.

(2) Soit $\mu \in \mathbf{C}$ tel que $\lambda = -\mu^2$: on a $X^2 + Y^2 + \lambda = X^2 + (Y - \mu)(Y + \mu) \in \mathfrak{m} := \langle X, Y - \mu \rangle$. L'idéal $\mathfrak{m} \subset \mathbf{C}[X,Y]$ est maximal, car $\mathbf{C}[X,Y]/\mathfrak{m} \overset{\sim}{\to} \mathbf{C}$ (via le morphisme qui envoie X sur 0 et Y sur μ). Pour des raisons de degré, on a $X \notin \mathfrak{p} := \langle X^2 + Y^2 + \lambda \rangle$: l'inclusion $\mathfrak{p} \subset \mathfrak{m}$ est stricte, donc \mathfrak{p} n'est pas maximal. En conclusion, l'anneau A n'est jamais un corps.