Corrigé du Devoir maison n°1

Exercice 1

Soient A un anneau commutatif unitaire et X un ensemble. On note A^X le A-module des fonctions de X dans A, $A^{(X)}$ son sous-module des fonctions à support fini. Si Y est un sous-ensemble de X, on identifie $A^{(Y)}$ avec le sous-module des fonctions à support dans Y. Le but de l'exercice est de montrer que $\mathbf{Z}^{\mathbf{N}}$ n'est pas un \mathbf{Z} -module libre.

- (1) Rappeler pourquoi $\mathbf{Q}^{\mathbf{N}}$ est un \mathbf{Q} -module libre.
- (2) Prouver que $\mathbf{Z}^{(\mathbf{N})}$ est dénombrable et que $\mathbf{Z}^{\mathbf{N}}$ ne l'est pas.
- (3) Soit I un ensemble et soit J un sous-ensemble de I. Montrer que $\mathbf{Z}^{(J)} / \mathbf{Z}^{(I)}$ est un \mathbf{Z} -module libre.
- (4) Montrer qu'un **Z**-module libre ne contient pas d'éléments non nuls qui sont divisibles 1 par une infinité de $n \in \mathbb{N}_{>0}$.

On suppose désormais que $\mathbf{Z}^{\mathbf{N}}$ soit isomorphe à $\mathbf{Z}^{(I)}$ avec I un ensemble.

- (5) Prouver que I est infini.
- (6) Montrer qu'il existe un sous-ensemble dénombrable J de I tel que $\mathbf{Z}^{(\mathbf{N})}$ soit contenu dans $\mathbf{Z}^{(J)}$ (via l'isomorphisme entre $\mathbf{Z}^{\mathbf{N}}$ et $\mathbf{Z}^{(I)}$).
- (7) Montrer qu'il existe au moins un élément de $\mathbf{Z}^{\mathbf{N}} \setminus \mathbf{Z}^{(J)}$ de la forme $(n_i)_{i \in \mathbf{N}}$ avec n_i qui divise strictement n_{i+1} pour tout $i \in I$ (suggestion : utiliser un argument qui concerne les cardinaux).
- (8) Montrer que $\mathbf{Z}^{\mathbf{N}} / \mathbf{Z}^{(J)}$ contient un élément non nul qui est divisible pour une infinité d'entiers positifs.
- (9) Conclure.

Solution: 1. (1) Ca vient du fait que tout espace vectoriel possède une base.

- (2) $\mathbf{Z}^{\mathbf{N}}$ n'est pas dénombrable car il contient $\{0,1\}^{\mathbf{N}}$ qu'il n'est pas. Par contre $\mathbf{Z}^{(\mathbf{N})} = \bigcup_{i=1}^{\infty} \mathbf{Z}^{i}$ est réunion dénombrable d'ensembles dénombrables.
- (3) La projection $\mathbf{Z}^{(J)} \to \mathbf{Z}^{(J \setminus I)}$ induit un isomorphisme en passant au quotient.
- (4) On peut supposer que le module est isomorphe à $M = \mathbf{Z}^{(I)}$ avec I un ensemble. Soit $x \in M$ divisible par une infinité d'entiers positifs. Pour tout $i \in I$ la i-ème composante x_i de x est alors divisible par une infinité d'entiers positifs. Ça implique que $x_i = 0$ pour tout $i \in I$ et donc x = 0.
- (5) Le **Z**-module $\mathbf{Z}^{\mathbf{N}}$ contient le module libre de rang infini $\mathbf{Z}^{(\mathbf{N})}$, son rang est forcement infini s'il est libre.
- (6) Chaque élément d'une base de $\mathbf{Z}^{(\mathbf{N})}$ est combinaison linéaire d'un nombre fini d'éléments de la base canonique $(e_i)_{i\in I}$. Il suffit de prendre pour J les indices de cette réunion dénombrable d'ensembles finis.

^{1.} Un élément y d'un **Z**-module M est dit divisible par n s'il existe $x \in M$ tel que y = nx.

- (7) Pour tout élément $(q_i)_{i\in\mathbb{N}}$ de $(\mathbb{N}_{\geq 2})^{\mathbb{N}}$ on construit un élément de la forme $(n_k)_{k\in\mathbb{N}}$ avec n_k qui divise strictement n_{k+1} pour tout $k\in\mathbb{N}$ en posant $n_k=\prod_{i=0}^k q_i$ pour tout $k\in\mathbb{N}$. L'ensemble de ces éléments n'est par dénombrable : il existe donc un, notons-le x, qui n'est pas dans $\mathbf{Z}^{(J)}$ (qui est dénombrable).
- (8) Pour tout $k \in \mathbb{N}$, on a $x = \sum_{\ell=0}^{k-1} x_{\ell} e_{\ell} + n_{k} y$ avec $y \in \mathbf{Z}^{\mathbb{N}}$: cela montre que \overline{x} est divisible par n_{k} pour tout $k \in \mathbb{N}$.
- (9) Supposons que $\mathbf{Z}^{\mathbf{N}}$ est libre. Alors grâce à (8) on trouve un élément non nul d'un module libre (voir (3)) qui est divisible par une infinité de nombres entiers positifs. Mais ça n'est pas possible par (4).