Devoir maison n°1

À rendre le 20 octobre

Soient A un anneau commutatif unitaire et X un ensemble. On note A^X le A-module des fonctions de X dans A, $A^{(X)}$ son sous-module des fonctions à support fini. Si Y est un sous-ensemble de X, on identifie $A^{(Y)}$ avec le sous-module des fonctions à support dans Y. Le but de l'exercice est de montrer que $\mathbf{Z}^{\mathbf{N}}$ n'est pas un \mathbf{Z} -module libre.

- (1) Rappeler pourquoi $\mathbf{Q}^{\mathbf{N}}$ est un \mathbf{Q} -module libre.
- (2) Prouver que $\mathbf{Z}^{(\mathbf{N})}$ est dénombrable et que $\mathbf{Z}^{\mathbf{N}}$ ne l'est pas.
- (3) Soit I un ensemble et soit J un sous-ensemble de I. Montrer que $\mathbf{Z}^{(J)} / \mathbf{Z}^{(I)}$ est un \mathbf{Z} -module libre.
- (4) Montrer qu'un **Z**-module libre ne contient pas d'éléments non nuls qui sont divisibles 1 par une infinité de $n \in \mathbb{N}_{>0}$.

On suppose désormais que $\mathbf{Z}^{\mathbf{N}}$ est isomorphe à $\mathbf{Z}^{(I)}$ avec I un ensemble.

- (5) Prouver que I est infini.
- (6) Montrer qu'il existe un sous-ensemble dénombrable J de I tel que $\mathbf{Z}^{(\mathbf{N})}$ soit contenu dans $\mathbf{Z}^{(J)}$ (via l'isomorphisme entre $\mathbf{Z}^{\mathbf{N}}$ et $\mathbf{Z}^{(I)}$).
- (7) Montrer qu'il existe au moins un élément de $\mathbf{Z}^{\mathbf{N}} \setminus \mathbf{Z}^{(J)}$ de la forme $(n_i)_{i \in \mathbf{N}}$ avec n_i qui divise strictement n_{i+1} pour tout $i \in I$ (suggestion : utiliser un argument qui concerne les cardinaux).
- (8) Montrer que $\mathbf{Z}^{\mathbf{N}} / \mathbf{Z}^{(J)}$ contient un élément non nul qui est divisible par une infinité d'entiers positifs.
- (9) Conclure.

^{1.} Un élément y d'un **Z**-module M est dit divisible par n s'il existe $x \in M$ tel que y = nx.