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Abstract. — The aim of these notes is to give a short introduction on the theory of semi-stable
representations and filtered (ϕ,N)-modules, assuming some knowledge of crystalline and de Rham
theories. It corresponds to a course given at Rennes in May 2014.
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1. Introduction

We fix the notations that will be used throughout the text. Let K be a complete discrete

valuation field of characteristic 0, whose residue field k is perfect of characteristic p > 0. We

choose a uniformizer π, an algebraic closure K of K and put GK = Gal(K/K). The valuation

v : K → R∪{+∞} (normalized by v(p) = 1) extends to a (non-discrete) valuation v : K →

R∪{+∞} : we denote by C the completion of K for this valuation. The action of GK extends to

C by continuity. We will write OL (resp. mL) for the ring of integers (resp. the maximal ideal) of

a subfield L ⊂ C. Put W = W(k) and σ the Witt vectors Frobenius. It extends to K0 = Frac(W ).

Following Bourbaki, 0 ∈ N.

In what follows, we assume that the reader is familiar with the period rings formalism (cf. [36,

§1&2] or [18, §1.3&1.4]), and the period rings Bcris and BdR (cf. [35] or [18, §3]).

Let X be a proper and smooth K-variety. There exists a comparison isomorphism

BdR⊗Zp
H•(XK ,Zp)

∼
→BdR⊗KH•

dR(X/K)

(compatible with the Hodge filtrations on the de Rham cohomology(1) and BdR) analogous to the

period isomorphism between Betti and de Rham cohomology in the complex analytic case (cf.

2000 Mathematics Subject Classification. — 11G25,(14F20,14F30,14F40).
Key words and phrases. — p-adic representations, semi-stable representations, p-adic cohomologies, comparison
theorems.
(1)That comes from the Hodge to de Rham spectral sequence Eij

1 = Hj(X,Ωi
XK/K

) ⇒ H
i+j
dR (X/K) (that degener-

ates at E1, cf. [29, §5] and [30]).
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[18, §4.1]). When X has good reduction, i.e. admits a proper and smooth model X over OK , it

is refined by an isomorphism

Bcris⊗Zp
H•(XK ,Zp)

∼
→Bcris⊗KH•

cris(Xk/W )

where Xk denotes the special fiber of X , compatible with the Frobenius operators on the crystalline

cohomology and Bcris, and with the Hodge filtrations after extending the scalars to K (via the

Berthelot-Ogus isomorphism K ⊗W H•
cris(Xk/W ) ≃ H•

dR(X/K), cf. [13, Theorem 2.4]).

Assume now that X has semi-stable reduction, i.e. admits a proper and flat model X with

semi-stable reduction (which means that X is regular, generically smooth, and the special fiber

Y = Xk is a reduced divisor with normal crossings(2)). Logarithmic geometry (briefly reviewed in

appendix 6) is the right context to study this case: in the log-geometric context, X → Spec(OK)

is smooth. Here again, the de Rham comparison isomorphism can be refined (cf. §4). Of course,

crystalline cohomology does not provide the right object on the de Rham side. It is replaced by its

logarithmic analogue: one attaches to X its log-crystalline cohomology groups Hm
log - cris(Y/W ) (cf.

§6.4) that are finitely generated W -modules, endowed with a Frobenius map ϕ : Hm
log - cris(Y/W )→

Hm
log - cris(Y/W ) (which is σ-semi-linear and an isomorphism after inverting p), and with a new

structure: a monodromy operator(3) N : Hm
log - cris(Y/W )→ Hm

log - cris(Y/W ) such that Nϕ = pϕN .

It is related to de Rham cohomology by the Hyodo-Kato isomorphism(4)

ρπ : Hi
log - cris(Y/W )⊗W K

∼
→Hi

dR(X/K)

(that depends on the choice of π). As HdR(X/K) comes equipped with its Hodge filtration, the

space

D := Hi
log - cris(Y/W )⊗W K0

is an object of the following category, which thus plays a central role in what follows.

Definition 1.1. — A filtered (ϕ,N)-module is a quadruple (D,ϕ,N,Fil• DK) where D is a finite

dimensional K0-vector space, ϕ : D → D a σ-semi-linear automorphism, i.e. such that (∀λ ∈

K0) (∀d ∈ D) ϕ(λd) = σ(λ)ϕ(d) (the Frobenius map), N : D → D a K0-linear endomorphism

(the monodromy operator) such that Nϕ = pϕN and Fil• DK a decreasing filtration of DK :=

K ⊗K0 D by sub-K-vector spaces, which is separated (i.e. ∩i∈Z Fili DK = {0}) and exhaustive

(i.e. ∪i∈Z FiliDK = DK). A morphism of filtered (ϕ,N)-modules is a K0-linear map compatible

with Frobenius maps, monodromy operators and filtrations after extending the scalars to K.

The category of filtered (ϕ,N)-modules is denoted by MFK(ϕ,N). This is an additive (but not

abelian) category.

The comparison isomorphism in this context requires to enlarge the period ring Bcris into a

Bcris-algebra Bst (cf. §3.1). Of course, it is perfectly possible to use other period rings, that are

handier in some situations when one has to look under the hood (cf. [22, p.512] and [23, 0.3.4]).

As in the de Rham or crystalline case, the period ring Bst defines a full subcategory of the

category of p-adic representations: that of semi-stable representations. The associated functor

has values in MFK(ϕ,N). A nice feature of this construction is the fundamental fact that this

functor provides an equivalence between the category of semi-stable representations and an explicit

subcategory MFad
K (ϕ,N) of MFK(ϕ,N) (theorem 3.28). This classification result has now various

proofs. Section 3.6 provides an overview of one of these proofs, due to Kisin.

The relevance of the “semi-stable case” also comes from its relationship with the “general

case”. It is not known if a semi-stable reduction theorem(5) holds, but it turns out to be true at

(2)That is X is étale locally isomorphic to Spec
(

OK [T1, . . . , Tn]/(T1 · · ·Tr − π)
)

.
(3)Analogous to the monodromy of a family of complex analytic varieties parametrized by the unit disc, cf. §2
(4)Which is a generalization of Berthelot-Ogus isomorphism.
(5)I.e. X acquires semi-stable reduction after base change to a suitable finite extension of K.



SEMI-STABLE REPRESENTATIONS 3

the cohomological level. More generally, any de Rham representation is potentially semi-stable,

i.e. becomes semi-stable when restricted to GL for an suitable finite extension L/K (this deep

result, the p-adic monodromy theorem, has several proofs as well, cf. theorem 5.3). As a result,

one can slightly generalize the classification of semi-stable representations mentioned before, to

get a complete classification of de Rham representations (which is not possible using the functor

DdR alone). In particular, this allows to recover the étale cohomology of a proper and smooth

K-variety in terms of a hidden structure of its de Rham cohomology, cf. §5.3.

Acknowledgement. The author is grateful to the referee for his careful reading, and to Xavier

Caruso for noticing a dubious shortcut in a preliminary version of this article.

2. Analogies with the ℓ-adic/complex analytic case

We assume in this section that K is a finite extension of Qp. Recall the exact sequences

{1} → IK → GK → Gal(k̄/k)→ {1}

{1} → PK → IK
(tℓ)ℓ
−−−→

∏

ℓ 6=p

Zℓ(1)→ {0}

where IK = Gal(K/Knr) is the inertia subgroup (one has Knr = ∪p∤nK(µn)) and PK =

Gal
(
K/ ∪p∤n Knr(p1/n)

)
the wild inertia subgroup (i.e. the pro-p-Sylow subgroup of IK). Here

tℓ : IK → Zℓ(1) = lim
←−n

µℓn(K ) is the cocycle defined by
g(πℓ,n)
πℓ,n

= tℓ(g) mod ℓn for all g ∈ IK

(where (πℓ,n)n≥0 is a sequence in K such that πℓ,0 = π and πℓ
ℓ,n+1 = πℓ,n for all n ∈ N).

Theorem 2.1 (Grothendieck’s monodromy theorem). — Let ℓ 6= p be a prime integer, and

V an ℓ-adic representation of GK . Then V is quasi-unipotent, i.e. there exists a unique nilpotent

endomorphism N : V (1)→ V and an open subgroup I ⊆ IK such that

(∀g ∈ I)(∀v ∈ V ) g(v) = exp(tℓ(g)N)(v).

The étale cohomology groups H•(XK ,Qℓ) of a proper and smooth K-variety X provide such

ℓ-adic representations of GK . Grothendieck’s theorem implies that H•(XK ,Qℓ) is quasi-unipotent.

When X has good reduction, then H•(XK ,Qℓ) is unramified (i.e. the action of IK is trivial). As

mentioned above, the p-adic étale cohomology of X is potentially semi-stable (crystalline in the

good reduction case).

Similarly there is an analogy with the complex analytic case. Let ∆ be the open unit disc,

and ∆∗ = ∆ \ {0}. Recall that from the point of view of the étale topology, ∆ (resp. ∆∗) is the

analogue of the spectrum of a strictly henselian DVR (resp. its generic fiber). Let f : X → ∆

be a proper morphism of complex analytic spaces, which is smooth above ∆∗. Let t ∈ ∆∗: as f

induces a fiber bundle of ∆∗, the positive generator of π1(∆∗, t) provides an automorphism

T : H•(Xt,Z)→ H•(Xt,Z)

(the monodromy operator) which is of course trivial when f is smooth. In general it is quasi-

unipotent: there exists a ∈ Z>0 such that T a− 1 is nilpotent (local monodromy theorem). When

the special fiber X0 is a reduced normal crossing divisor, then it is even unipotent, i.e. N = T − 1

is nilpotent (cf. [44, §2] for more details).

Hence there are the following analogies:

complex analytic ℓ-adic p-adic

good reduction trivial unramified crystalline

semi-stable unipotent unipotent semi-stable

general case quasi-unipotent quasi-unipotent potentially semi-stable

local monodromy ℓ-adic monodromy theorem p-adic monodromy theorem
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Remark 2.2. — A notable difference is that in the p-adic case, unlike the complex analytic case,

the monodromy operator lives on the differential side (log-crystalline cohomology), and not the

topological side (étale cohomology). This had been predicted by Jannsen.

The preceding analogies are reinforced by partial converses of comparison theorems in the case

of abelian varieties. More precisely, if A is an abelian variety over K and Vℓ(A) its ℓ-adic Tate

module, we have the following results:

Theorem 2.3 (Néron-Ogg-Shafarevich criterion, cf. Serre-Tate [57, Theorem 1],

Grothendieck [41, Exposé IX, Proposition 3.5])

A has good (resp. semi-stable) reduction if and only if for some (all) ℓ 6= p, the ℓ-adic repre-

sentation Vℓ(A) is unramified (resp. unipotent of level 2).

The p-adic analogue is:

Theorem 2.4 (Coleman-Iovita, cf. [21, Theorem 4.7], Breuil [16, Corollaire 1.6])

A has good (resp. semi-stable) reduction if and only if the p-adic representation Vp(A) is

crystalline (resp. semi-stable).

Remark 2.5. — There are ℓ-adic and p-adic anabelian good reduction criteria for proper, smooth

and geometrically irreducible K-curves with semi-stable reduction (cf. [5]).

3. The ring Bst and semi-stable representations

We use the standard notations: R = lim
←−

x 7→xp

OC , and ε = (ε(n))n≥0 (resp. p̃ = (p(n))n≥0 and

π̃ = (π(n))n≥0) is an element of R such that ε(1) is a primitive p-th root of the unity (resp. p(0) = p

and π(0) = π). These elements are denoted ε, p♭ and π♭ respectively in [18]. We denote by χ

the p-adic cyclotomic character. Most of what follows is contained in [35] & [36] (cf. also the

exhaustive book [40]).

3.1. Construction of Bst. — An easy example of curve with semi-stable reduction is given

by the Tate curve(6). There exist elements b2(q), b3(q) ∈ qZp[[q]] (hence rigid analytic functions

converging on the open unit disc), such that for any complete extension F of Qp, for any q ∈ F

such that 0 < |q| < 1, the cubic curve Eq ⊂ P2
F whose equation is y2 + xy = x3 − b2(q)x − b3(q)

is non-singular, and Eq(F ) ≃ F×/qZ (cf. [60, Theorem 1]). Let’s consider the case q ∈ K. If

n ∈ N>0, and x ∈ Eq(C) ≃ C×/qZ is killed by pn, let x̃ ∈ C× be a lift of x : there exists

f(x̃) ∈ Z such that x̃pn

= qf(x̃). The image of f(x̃) in Z /pn Z only depends on x. One gets a map

Eq[pn]→ Z /pn Z, which is a surjective morphism of groups, whose kernel is µpn(K ). Thus, there

is an exact sequence 0 → µpn(K ) → Eq[pn] → Z /pnZ → 0. Passing to the limit, it provides an

exact sequence 0→ Zp(1)→ Tp(Eq)→ Zp → 0, hence an exact sequence of p-adic representations

(∗) 0→ Qp(1)→ Vp(Eq)→ Qp → 0.

This extension corresponds to a class a ∈ H1(GK ,Qp(1)). Explicitly, let q̃ = (q(n))n∈N ∈ R

be an element such that q(0) = q. The action of GK on q̃ is given by g(q̃) = εcq̃(g)q̃ for

g ∈ GK , where cq̃ : GK → Zp(1) is a continuous cocycle, whose class is a. By Kummer’s the-

ory, one has K×/K×pn ∼
→H1(GK , µpn(K )), hence δ : lim←−

n

K×/K×pn ∼
→H1(GK ,Zp(1)) (because

{H0(GK , µpn(K))}n∈N has the Mittag-Leffler property, cf. [59, Proposition 2.2]). The class of cq̃
in H1(GK ,Zp(1)) is nothing but δ(q). The valuation induces a morphism of groups K×/K×pn

→

Z /pnZ, hence a morphism H1(GK ,Zp(1)) → Zp. As v(q) > 0, the class of cq̃ has infinite order

(6)That provides the uniformization of the elliptic curves with non-integral j-invariant over Qp.
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in H1(GK ,Zp(1)), in particular, its image a ∈ H1(GK ,Qp(1)) is not trivial, and the sequence (∗)

does not split.

In the basis (e, f) (where e = “ log(ε)” and f = “ log(q̃)”) of Vp(Eq), the matrix of the action

of GK is (
χ cq̃
0 1

)
.

A basis of DdR(Vp(Eq)) is thus (t−1 ⊗ e, 1⊗ f − t−1b ⊗ e) where b ∈ BdR is such that cq̃(g) =

(g − 1)(b) for all g ∈ GK , i.e. behaves like “ log(q̃)”: the construction of Bst requires that of a

logarithm map

log[.] : Frac(R)× → B+
dR .

Recall that R is a valuation ring: denote its maximal ideal by mR. First, if x ∈ 1 + mC (resp.

x ∈ 1 + mR), one has xpr

∈ 1 + pOC (resp. x(0) ∈ 1 + mC , so
(
x(0)

)pr

∈ 1 + pOC i.e.
[
xpr]

− 1 ∈

Ker(θ)+pW(R)) for large r. As 1+pOC (resp. Ker(θ)+pW(R)) has divided powers in OC (resp.

Acris), the series

log x =
log

(
xpr)

pr
=

1

pr

+∞∑

n=1

(−1)n−1(n− 1)!
(
xpr

− 1
)[n]

(
resp. log[x] =

log
[
xpr]

pr
=

1

pr

+∞∑

n=1

(−1)n−1(n− 1)!
([
xpr]

− 1
)[n])

converges in C (resp. B+
cris = Acris[p

−1]), defining a group homomorphism

log: 1 + mC → C (resp. log[.] : 1 + mR → B+
cris ).

It is injective because 1 + mC (resp. 1 + mR) does not contain pr-th roots of unity. As O×
C ≃

k̄× × (1 + mC) (resp. R× = k̄× × (1 + mR)), one extends it to O×
C (resp. R×) by putting

log[α]x = log x for α ∈ k̄× and x ∈ 1 + mC (resp. log[αx] = log[x] for α ∈ k̄× and x ∈ 1 + mR).

Now, if x ∈ C× (resp. x ∈ Frac(R)×) has valuation a
b (with a ∈ Z and b ∈ Z>0), then y = xb

pa ∈ O
×
C

(resp. y = xb

p̃a ∈ R×), and we put

log x =
log y

b

(
resp. log[x] =

log[y] + a log[p̃]

b

)

where we choose

log(p) = 0 and log[p̃] = log

(
[p̃]

p

)
=

+∞∑

n=1

(−1)n−1

n

(
[p̃]

p
− 1

)n

=

+∞∑

n=1

(−1)n−1

npn
ξn ∈ Fil1 B+

dR .

Of course, the maps log and log[.] are GK-equivariant group homomorphisms. Also, if x ∈

Frac(R)×, one has θ(log[x]) = log(x(0)). Indeed, if y, a and b are as above, one has θ(log[x]) =
1
b θ(log[y] + a log[p̃]) = 1

b log θ([y]) = log y(0)

b = log x(0).

Remark 3.1. — If moreover x(0) ∈ K×, one has [x]
x(0) − 1 ∈ Fil1 BdR, and

log[x]− log(x(0)) =

+∞∑

n=1

(−1)n−1

n

( [x]
x(0) − 1

)n
∈ Fil1 BdR .

Coming back to Vp(Eq), we can now write DdR(Vp(Eq)) = Kx ⊕ Ky with x = t−1 ⊗ e and

y = 1⊗ f − t−1 log[q̃]⊗ e. As θ(log[q̃]− log q) = 0, one has

Fili DdR(Vp(Eq)) =





DdR(Vp(Eq)) if i < 0;

K(y + log(q)x) if i = 0;

0 if i > 0.
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Definition 3.2. — We put Bst = Bcris

[
log[p̃]

]
⊂ BdR.

Put U := {log[x], x ∈ 1 + mR}. As the image of log[.] is U + Q log[p̃] ⊂ B+
cris +Q log[p̃], the

periods of Tate curves lie in Bst, so a Bcris-algebra which is a period ring for the semi-stable case

should contain Bst. It turns out that Bst is such a ring, cf. §4.

Remark 3.3. — (a) As p = πeKu with u ∈ O×
K , one has log[π̃] ∈ log[p̃]

eK
+ U (cf. above), one

has Bst = Bcris

[
log[π̃]

]
as well.

(b) The construction of the map log[.], i.e. that of log[p̃] depends on the choice of log(p) (here

we chose log(p) = 0), that is of an extension of the p-adic logarithm to C×. Thus the ring

Bst, seen as a subring of BdR, depends on this choice.

(c) More generally, any extension 0 → Qp(1) → V → Qp → 0 is semi-stable (i.e. Bst-

admissible, cf. definition 3.13). It is crystalline precisely when its class in H1(GK ,Qp(1)) ≃

Qp⊗Zp
lim
←−n

K×/K×pn

belongs to the image of Qp⊗Zp
lim
←−n

O×
K/O×pn

K (because U ⊂ Bcris).

(d) One can show that U = B
ϕ=1
cris ∩Fil

0 BdR (cf. [25, Proposition 1.3]).

3.2. Properties of Bst. — In what follows, we put uπ = log[π̃] (so that Bst = Bcris[uπ]), and

c = cπ̃ : GK → Zp for short. For g ∈ GK , one has g(π̃) = εc(g)π̃, so g([π̃]) = [ε]c(g)[π̃]: taking

logarithms, we have

g(uπ) = uπ + c(g)t.

The natural map K ⊗K0 Bcris → BdR is injective (cf. [17, Proposition 2.47]). It extends into a

map K ⊗K0 Bst → BdR.

Proposition 3.4 (cf. [35, Théorème 4.2.4]). — The natural map

ιπ : (K ⊗K0 Bcris)[X ]→ BdR

X 7→ uπ

is injective. In particular, Bst ≃ Bcris[X ], and K ⊗K0 Bst → BdR is injective.

Corollary 3.5 (cf. [36, Proposition 5.1.2]). — BGK

st = (Frac(Bst))
GK = K0.

Remark 3.6. — One has k̄ →֒ R, so W(k̄) →֒ W(R) ⊂ Acris, hence K̂nr
0 = W(k̄)[p−1] →֒ B+

cris.

The preceding proposition implies that the map K ⊗Knr
0

Bst → BdR induced by ιπ is injective.

We endow K ⊗K0 Bst with the filtration induced by that of BdR. Also, we can extend the

Frobenius map on Bcris to a map

ϕ : Bst → Bst

by putting ϕ(uπ) = puπ (since uπ = log[π̃] and ϕ([π̃]) = [π̃]p). This is licit because Bst =

Bcris[uπ] ≃ Bcris[X ]. Also, we endow Bst with the monodromy operator

N : Bst → Bst

which is the unique Bcris-derivation of Bst = Bcris[uπ] such that N(uπ) = −1. Of course, ϕ and N

commute with the action of GK . Also, one has BN=0
st = Bcris, so the fundamental exact sequence

(cf. [35, Théorème 5.3.7]) can be rewritten as follows:

Proposition 3.7. — The sequence

0→ Qp → B
ϕ=1
N=0
st → BdR /B+

dR → 0

is exact.

For i ∈ Z≥0, we have N(ϕ(ui
π)) = N((puπ)i) = ipiui−1

π = p(i(puπ)i−1) = pϕ(iui−1
π ) =

pϕ(N(ui
π)). By Bcris-(semi-)linearity, we get:

Proposition 3.8 (cf. [35, 3.2.2]). — Nϕ = pϕN in Bst.
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Remark 3.9. — As a Bcris-algebra, with GK-action and Frobenius map, the ring Bst does not

depend on the choice of log(p), whereas the monodromy operator and the embedding K⊗K0Bcris →

BdR do, cf. remark 3.3.

3.3. The tensor structure of MFK(ϕ,N). — The category MFK(ϕ,N) has a tensor product

and internal Hom.

• Let (D′, ϕ′, N ′,Fil• D′
K) and (D′′, ϕ′′, N ′′,Fil• D′′

K) be filtered (ϕ,N)-modules. The tensor prod-

uct D′ ⊗D′′ is the K0-vector space D′ ⊗K0 D
′′ endowed with the Frobenius map ϕ′ ⊗ ϕ′′, mon-

odromy operator N ′ ⊗ IdD′′ + IdD′ ⊗N ′′ and filtration Filr(D′ ⊗K0 D
′′)K =

∑
i∈Z Im

(
FiliD′

K ⊗K

Filr−iD′′
K → (D′ ⊗K0 D

′′)K
)

for r ∈ Z.

• There is a unit object 1 := (K0, σ,N = 0,Fil• K) where FiliK =

{
K if i ≤ 0;

0 if i > 0.

• The internal Hom, denoted by Hom(D′, D′′), is the K0-vector space HomK0(D′, D′′) equipped

with the Frobenius map (resp. monodromy operator) defined by ϕ(f) = ϕ′′ ◦ f ◦ ϕ′−1 (resp.

N(f) = N ′′ ◦ f − f ◦N ′) for f ∈ HomK0(D′, D′′) and filtration Filr Hom(D′, D′′)K =
{
f : D′

K →

D′′
K , (∀i ∈ Z) f(Fili D′

K) ⊂ Filr+iD′′
K

}
for r ∈ Z. In particular, every D ∈ MFK(ϕ,N) has a

dual D∨ = Hom(D,1).

Remark 3.10. — The category MFK(ϕ,N) is not abelian, yet it has a notion of exact sequence:

0 → D′ → D → D′′ → 0 is exact when it is in the category of K0-vector spaces endowed with

a Frobenius map and a monodromy operator, and when the filtrations on D′
K and D′′

K are those

induced by that DK .

3.4. Semi-stable representations. — As usual, we denote by RepQp
(GK) the category of

p-adic representations. There are full sub-categories

Repcris(GK) ⊂ RepdR(GK) ⊂ RepQp
(GK)

(cf. [36]). If V ∈ RepQp
(GK), we put:

Dst(V ) = (Bst⊗Qp
V )GK .

As BGK

st = K0, this is a K0-vector space, endowed with a σ-semi-linear Frobenius map

ϕ : Dst(V ) → Dst(V ) and a K0-linear monodromy operator N : Dst(V ) → Dst(V ) (induced

by ϕ ⊗ IdV and N ⊗ IdV respectively, since they are GK-equivariant). The relation Nϕ = pϕN

on Dst(V ) follows from proposition 3.8. Also, the injective map K ⊗K0 Bst → BdR provides an

injective map

K ⊗K0 Dst(V )→ DdR(V ).

We endow Dst(V )K := K ⊗K0 Dst(V ) with the filtration Fil• Dst(V ) induced by that of DdR(V ).

Remark 3.11. — Of course, the monodromy operator and the embedding Dst(V )K → DdR(V )

depend on the choice of π and log (cf. remark 3.9). One can explicitly describe how they vary

when one changes π and log (cf. [36, §5.2]).

By Bst-linearity, the inclusion Dst(V ) ⊂ Bst⊗Qp
V induces a Bst-linear and GK-equivariant map

αst(V ) : Bst⊗K0 Dst(V )→ Bst⊗Qp
V.

Proposition 3.12. — The map αst(V ) is injective and Dst(V ) ∈MFK(ϕ,N).

Proof. — As Frac(Bst) is a field with invariants K0 (cf. corollary 3.5), the natural map

ast(V ) : Frac(Bst)⊗K0 (Frac(Bst)⊗Qp
V )GK → Frac(Bst)⊗Qp

V
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is injective by the standard argument (cf. [36, Proposition 1.6.1]). The injectivity of αst(V )

follows from the following diagram

Bst⊗K0 Dst(V )

��

αst(V ) // Bst⊗Qp
V

��
Frac(Bst)⊗K0 Dst(V )

��

1⊗αst(V ) // Frac(Bst)⊗Qp
V

��
Frac(Bst)⊗K0 (Frac(Bst)⊗Qp

V )GK
ast(V ) // Frac(Bst)⊗Qp

V

and the injectivity of Bst⊗K0 Dst(V ) → Frac(Bst) ⊗K0 (Frac(Bst) ⊗Qp
V )GK (deduced from the

inclusions Bst ⊂ Frac(Bst) and Dst(V ) ⊂ (Frac(Bst)⊗Qp
V )GK ). This implies that dimK0(Dst(V )) <

+∞, so that Dst(V ) ∈MFK(ϕ,N).

Furthermore, the map αst(V ) is compatible to Frobenius maps (ϕ ⊗ ϕ on the LHS, and

ϕ ⊗ IdV on the RHS), monodromy operators (N ⊗ IdDst(V ) + IdBst
⊗N on the LHS, and

N ⊗ IdV on the RHS) and filtrations after extending the scalars to K (where Filr(K ⊗K0

Bst⊗K0 Dst(V )) =
∑

i∈Z Im
(
Fili(K ⊗K0 Bst) ⊗K Filr−i(Dst(V )K) → K ⊗K0 Bst⊗K0 Dst(V )

)
and

Filr(K ⊗K0 Bst⊗Qp
V ) = Filr(K ⊗K0 Bst)⊗Qp

V ).

Definition 3.13. — V ∈ RepQp
(GK) is called semi-stable if αst(V ) is an isomorphism. The full

subcategory of RepQp
(GK) of semi-stable representations is denoted by Repst(GK).

The good properties of Repst(GK) follow from:

Proposition 3.14 (cf. [18, §1.4.1] & [36, Proposition 5.1.2]). — Bst is GK -regular.

Knowing proposition 3.12, this follows from:

Lemma 3.15. — Let b ∈ Bst \{0} such that the line Qp b ⊂ Bst is stable by GK . Then b ∈

tZK̂nr
0

×
⊂ B×

cris.

Proof. — We only use the stability under the inertia IK = Gal(K/Knr): we may assume GK =

IK , i.e. k = k̄ hence K0 = K̂nr
0 . Multiplying b by the appropriate power of t, we may also

assume b ∈ B+
dR \tB

+
dR: the map θ induces a GK-equivariant morphism Qp b

∼
→K0θ(b) ⊂ C. This

implies that the representation Qp b is C-admissible. By [55, Corollary 1] (cf. also [18, Theorem

2.2.1]), the action of GK on the line Qp b is finite: there exists a finite extension L/K0 such that

b ∈ BGL

st = L0 = K0 (recall K0 = K̂nr
0 by assumption).

Proposition 3.14 and lemma 3.15 imply (cf. [36, Proposition 1.5.2]):

Corollary 3.16. — (i) V ∈ Repst(GK)⇔ dimK0(Dst(V )) = dimQp
(V );

(ii) if V1, V2 ∈ Repst(GK), then V1⊗V2 ∈ Repst(GK) and the natural map Dst(V1)⊗K0Dst(V2)→

Dst(V1 ⊗ V2) is an isomorphism compatible with Frobenius maps, monodromy operators and

filtrations after extending the scalars to K; similarly, if V ∈ Repst(GK), then V ∨,∧•V ∈

Repst(GK) and Dst(V
∨) → Dst(V )∨, ∧• Dst(V ) → Dst(∧•V ) are isomorphisms compatible

with extra structures;

(iii) if V ∈ Repst(GK) and 0 → V ′ → V → V ′′ → 0 is an exact sequence in RepQp
(GK) then

V ′, V ′′ ∈ Repst(GK) and the sequence 0 → Dst(V
′) → Dst(V ) → Dst(V

′′) → 0 is exact in

MFK(ϕ,N);

(iv) Let η ∈ Homcont(GK ,Q×
p ). Then η is semi-stable (i.e. Qp(η) ∈ Repst(GK)) if and only if

η = ηnrχ
i with ηnr ∈ Homcont(GK ,Q×

p ) unramified and i ∈ Z.

Remark 3.17. — (a) Properties (i)-(iii) in the preceding corollary can be summarized by say-

ing that Repst(GK) is a sub-tannakian category of RepQp
(GK), with fiber functor Dst.
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(b) Of course, if V is semi-stable, it is de Rham and Dst(V )K
∼
→DdR(V ) (by a dimension argu-

ment).

(c) If V ∈ RepQp
(GK) then Dcris(V ) = Dst(V )N=0. In particular, if V is crystalline, then V is

semi-stable, Dcris(V )
∼
→Dst(V ) and N = 0.

(d) V ∈ RepQp
(GK) is semi-stable if and only if V|IK is semi-stable (in RepQp

(G
K̂nr)). This

follows from H1(Gal(k̄/k),GLn(W(k̄))) = {1} (Hilbert 90), which implies that K̂nr
0 ⊗K0

Dst(V )
∼
→Dst(V|IK ).

Definition 3.18 (cf. [36, §5.3]). — If (D,ϕ,N,Fil• DK) ∈MFK(ϕ,N), one puts

Vst(D) = (Bst⊗K0D)
ϕ=1
N=0 ∩ Fil0(BdR⊗KDK)

where the intersection is taken in BdR⊗KDK = BdR⊗K0D and BdR⊗KDK is endowed with

the usual tensor product filtration. This provides a functor on MFK(ϕ,N) with values in the

category of topological Qp-vector spaces endowed with a continuous linear action of GK (since

GK commutes to the Frobenius maps, the monodromy operators and filtrations).

Proposition 3.19 (cf. [36, Théorème 5.3.5]). — If V ∈ Repst(GK), then V
∼
→Vst(Dst(V )).

The functor

Dst : Repst(GK)→MFK(ϕ,N)

induced by Dst is fully faithful.

Proof. — Let V ∈ Repst(GK): one has Bst⊗K0 Dst(V )
∼
→Bst⊗Qp

V . Extending the scalars to

BdR yields an isomorphism BdR⊗K Dst(V )K
∼
→BdR⊗Qp

V , so that

V =
(
B

ϕ=1
N=0
st ∩Fil0 BdR

)
⊗Qp

V
∼
→(Bst⊗Qp

V )
ϕ=1
N=0 ∩ Fil0(BdR⊗Qp

V ) = Vst(Dst(V ))

(the first equality follows from the fundamental exact sequence, cf. proposition 3.7).

This implies that if V1, V2 ∈ Repst(GK), the composite

Hom(V1, V2)→ Hom(Dst(V1),Dst(V2))→ Hom(Vst(Dst(V1)),Vst(Dst(V2))) ≃ Hom(V1, V2)

is the identity. Also, one has f = Dst(Vst(f)) for all f ∈ Hom(Dst(V1),Dst(V2)) (because

Dst(Vi)
∼
→Dst(Vst(Dst(Vi)))): the second map is injective, and Dst is fully faithful.

Remark 3.20. — Of course, the category Repst(GK) is not stable by extension. For instance,

assuming k finite, a non trivial extension

0→ Qp(i)→ V → Qp → 0

is semi-stable if i ≥ 1 (even crystalline when i ≥ 2), but it is not de Rham (hence not semi-stable)

when i < 0. For i = 0, there are extensions that are not de Rham (cf. [15, Example 3.9]).

3.5. Admissible filtered (ϕ,N)-modules. — Recall (Dieudonné-Manin theory, cf. [31, Chap-

ter 4]) that when k = k̄, the category of ϕ-modules over K0 (i.e. the category of F -isocrystals

over k) is semi-simple, with simple objects {D[α]}α∈Q where, if α = r
h with r ∈ Z, h ∈ Z>0 and

gcd(r, h) = 1,

D[α] = K0[T ]/(T h − pr)

is endowed with the σ-semi-linear Frobenius given by the multiplication by T . This means that if

D is a ϕ-module over K0, there exists a unique sequence α1 < · · · < αr of rationals (the slopes of

D) and a unique decomposition D = ⊕r
i=1D(αi) where D(αi) is isomorphic to a finite sum of copies

of D[αi]. The multiplicity of the slope αi is the integer dimK0(D(αi)) ∈ Z. The slope sequence

of D is the non-decreasing sequence λ1 ≤ · · · ≤ λn of slopes of D, each one repeated according

to its multiplicity (hence n = dimK0(D)). The Newton polygon PN (D) of D is the piecewise

linear curve of the plane starting at the origin whose vertices have coordinates (j, λ1 + · · · + λj)



10 OLIVIER BRINON

for 0 ≤ j ≤ n. The slopes of its segments are precisely α1 < · · · < αr, and its break-points

have integral coordinates (because αi dimK0(D[αi]) ∈ Z). In the general case (i.e. when k is not

algebraically closed), the slopes and Newton polygon of D are those of K̂nr
0 ⊗K0 D. The Newton

polygon of D is nothing but the Newton polygon of the characteristic polynomial of the matrix of

ϕ in any K0-base of D.

Similarly, one attaches the Hodge polygon to the filtration Fil• DK . Its slopes are the integers

i ∈ Z such that griDK 6= 0 (the Hodge-Tate weights), with multiplicity dimK(gri(DK)): let

i1 ≤ · · · ≤ in be the sequence of slopes, each one repeated according to its multiplicity. The Hodge

polygon PH(D) of D is the piecewise linear curve of the plane starting at the origin whose vertices

have coordinates (j, i1 + · · · + ij) for 0 ≤ j ≤ n. The slopes of its segments are precisely the

Hodge-Tate weights, and its break-points have integral coordinates.

b

b

slope αi

dimK0
(D)

tN (D)

dimK0
(D(αi))

b

Figure 1. The Newton polygon

b

b

slope i

dimK (DK)

tH(D)

dimK(gri(DK))

b

Figure 2. The Hodge polygon

Definition 3.21 (cf. [36, §4.4.1]). — Let D ∈ MFK(ϕ,N). If dimK0(D) = 1, one can write

D = K0e and ϕ(e) = λe with λ ∈ K0: we put tN (D) = v(λ) ∈ Z. Also, there exists tH(D) ∈ Z

such that FiliDK =

{
DK if i ≤ tH(D)

0 if i > tH(D)
. For general D, we put tH(D) = tH(det(D)) and

tN (D) = tN (det(D)). One easily that tN (D) =
∑

α∈Q α dimK0(D(α)) is the valuation of the

determinant of the matrix of the Frobenius map (in any base), and is the ordinate of the endpoint

of PN (D). Also tH(D) =
∑

i∈Z i dimK(griDK) is the ordinate of the endpoint of PH(D).

Proposition 3.22. — The functions tN and tH are additive on MFK(ϕ,N), i.e. for any exact

sequence

0→ D′ → D → D′′ → 0,

one has tN (D) = tN (D′) + tN (D′′) and tH(D) = tH(D′) + tH(D′′). Also, they are invariant by

base change to K̂nr
0 .

Definition 3.23 (cf. [36, Définition 4.4.3]). — A filtered (ϕ,N)-module D is called admissi-

ble(7) if for every sub-object D′ ⊂ D (in the category MFK(ϕ,N)), one has

tH(D′) ≤ tN (D′)

with equality when D′ = D. The full sub-category of MFK(ϕ,N) made of admissible objects is

denoted by MFad
K(ϕ,N).

Remark 3.24. — (1) One can show (cf. [32, Proposition 4.3.3]) that D is admissible if and

only for every sub-object D′ of D, the polygon PN (D′) lies above PH(D′), with same end-

points when D′ = D.

(7)Historically, these objects were called weakly admissible, admissible objects being those in the essential image of

Dst. As they are a posteriori the same (cf. theorem 3.28), we call them admissible from the start.
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(2) An object D ∈ MFK(ϕ,N) is admissible if and only if K̂nr
0 ⊗K0 D ∈ MFad

K⊗K0 K̂
nr
0

(ϕ,N)

(cf. [52, Proposition 1.7]).

Proposition 3.25 (cf. [25, Proposition 4.4]). — Assume D ∈ MFK(ϕ,N) has dimension 1.

Then

dimQp
(Vst(D)) =





0 if tH(D) < tN (D);

1 if tH(D) = tN (D);

+∞ if tH(D) > tN (D).

In particular, D lies in the essential image of Dst : Repst(GK)→MFK(ϕ,N) if and only if D is

admissible.

Proof. — One has N = 0 since it is nilpotent. Write D = K0e and ϕ(e) = ptN (D)λe with λ ∈W×.

By successive approximations, one can construct β ∈W(k̄)× such that σ(β) = λβ, i.e.

ϕ(β−1 ⊗ e) = σ(β)−1ptN (D)λ⊗ e = ptN (D)β−1 ⊗ e.

One has Vst(D) = (Bcris⊗e)ϕ=1 ∩ Fil0(BdR⊗e), and Fili(BdR⊗e) = ti−tH (D) B+
dR⊗e hence

Vst(D) =
{
t−tH(D)bβ−1 ⊗ e

∣∣ b ∈ Bcris, ϕ(b) = ptH(D)−tN (D)b, b ∈ B+
dR

}
.

Put i = tH(D)− tN (D): one has Vst(D) = t−tH(D)β−1
(
B
ϕ=pi

cris ∩Fil
0 BdR

)
⊗ e, which is {0} when

i < 0, has dimension 1 if i = 0, and has infinite dimension when i > 0 (cf. [25, Proposition 1.3]).

In the case i = 0, the character η : GK → Q×
p corresponding to Vst(D) = Qp t

−tH(D)β−1 ⊗

e is η = χ−tH(D)η0 with η0 unramified (since β ∈ W(k̄)×), hence Vst(D) is semi-stable (and

even crystalline). Moreover, one has Bst⊗Qp
Vst(D) = Bst(t

−tH(D)β−1 ⊗ e)
∼
→Bst⊗K0D, thus

Dst(Vst(D))
∼
→D lies in the essential image of Dst : Repst(GK)→MFK(ϕ,N). Conversely if D ≃

Dst(V ) with V ∈ Repst(GK) of dimension 1, then dimK0(D) = 1 and V ≃ Vst(Dst(V )) ≃ Vst(D)

has dimension 1, hence tH(D) = tN (D) by what precedes.

Proposition 3.26. — If V ∈ RepQp
(GK) is semi-stable, then Dst(V ) is admissible, hence the

functor Dst induces a fully faithful functor Repst(GK)→MFad
K(ϕ,N).

Proof. — Let D′ be a sub-object of D := Dst(V ). If r = dimK0(D′), one has det(D′) ⊂ ∧rD ≃

Dst(∧rV ) (cf. corollary 3.16 (ii)), with equality if D′ = D. Applying the functor Vst gives the

inclusion (equality when D′ = D)

Vst(det(D′)) ⊂ Vst(Dst(∧
rV )) ≃ ∧rV

so that dimQp

(
Vst(det(D′))

)
< +∞ (and dimQp

(
Vst(det(D′))

)
= 1 when D′ = D). As

dimK0(det(D′)) = 1, proposition 3.25 implies that tH(det(D′)) ≤ tN (det(D′)), i.e. tH(D′) ≤

tN (D′), with equality when D′ = D.

A rather elementary consequence of proposition 3.25 is the following useful fact.

Lemma 3.27 (cf. [25, Proposition 4.5]). — Let D ∈ MFK(ϕ,N) and V := Vst(D). Assume

that for all sub-object D′ of D (in MFK(ϕ,N)), one has tH(D′) ≤ tN (D′). Then dimQp
(V ) ≤

dimK0(D), the p-adic representation V is semi-stable and Dst(V ) is a sub-object of D. In partic-

ular, D lies in the essential image of Dst : Repst(GK)→MFK(ϕ,N) if and only if dimQp
(V ) =

dimK0(D).

In fact, Colmez and Fontaine proved (cf. [25, Théorème A]) that MFad
K (ϕ,N) is precisely the

essential image of Dst on Repst(GK) (cf. §5), hence:
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Theorem 3.28. — The functor

Dst : Repst(GK)→MFad
K (ϕ,N)

is an equivalence of categories, with quasi-inverse Vst.

3.6. A proof of theorem 3.28. — The first proofs of theorem 3.28 are of analytic nature (cf.

[25], [24], [10] and [51]). Here we review that of Kisin’s article [51], which is based on ideas of

Berger (cf. [10]). Filtered (ϕ,N)-modules are seen as fibers of vector bundles over the open unit

analytic disc ∆ over K0 (whose K -points are GK0 -conjugacy classes of {x ∈ K, |x| < 1}, where

|.| is the absolute value associated with the valuation v). Denote by u the coordinate of ∆, and

by O the ring of K0-analytic functions on ∆:

O =
{
f =

∑

n≥0

anu
n ∈ K0[[u]]

∣∣∣ (∀r ∈ [0, 1[) lim
n→+∞

|an|r
n = 0

}
.

Let S = W [[u]] be the sub-ring of functions whose coefficients have absolute values bounded by 1.

Finally, let

R =
{
f =

∑

n∈Z

anu
n ∈ K0[[u, u

−1]]
∣∣∣ (∃rf ∈ [0, 1[) (∀r ∈ [rf , 1[) lim

n→±∞
|an|r

n = 0
}

be the Robba ring: the ring of functions defined on some annulus (depending on the function) of

outer radius 1. Of course one has the inclusions S ⊂ O ⊂ R. All these rings are endowed with

the σ-semi-linear Frobenius endomorphism ϕ defined by

ϕ(u) = up.

Recall we fixed an element π̃ ∈ R, i.e. a sequence (π(n))n∈N such that π(0) = π and (π(n+1))p =

π(n) for all n ∈ N. Let E(u) ∈W [u] be the minimal polynomial of π over K0 (this is an Eisenstein

polynomial). One has E(u)
E(0) ∈ 1 + S[p−1], so the infinite product

λ =

∞∏

n=0

ϕn
(E(u)
E(0)

)

converges in O, providing a function whose divisor is the set of (conjugacy classes of) the π(n).

One has λ = E(u)
E(0)ϕ(λ), so ϕ(λ−1) = λ−1E(u)

E(0) ∈ O[λ−1], and ϕ extends to O[λ−1].

b

0
b

π(0)

b

π(1)

b

π(2)
b

π(3)

b

π(4)

b

π(5)

b π(6)

∆

Let N∇ : O → O be the derivation given by N∇ = λu d
du . It extends to O[λ−1], and

N∇ϕ = pE(u)
E(0)ϕN∇.

Definition 3.29. — (1) D ∈ MFK(ϕ,N) is said effective if Fil0 DK = DK . We denote by

MFeff
K (ϕ,N) (resp. MFeff,ad

K (ϕ,N)) the sub-category of effective (admissible) filtered (ϕ,N)-

modules.

(2) A ϕ-module over O is a finite and free O-module M endowed with an injective ϕ-semi-

linear Frobenius endomorphism ϕ : M → M. It is of finite E-height if the cokernel of the

linearization ϕ∗M→M is killed by some power of E.
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(3) A (ϕ,N∇)-module over O is a ϕ-module (M, ϕ) endowed with derivation N∇ : M → M

(i.e. such that (∀f ∈ O) (∀m ∈ M) N∇(fm) = N∇(f)m + fN∇(m)) and such that

N∇ϕ = pE(u)
E(0)ϕN∇. We denote by ModO(ϕ,N∇) the category of (ϕ,N∇)-modules over O

that are of finite E-height.

(4) A (ϕ,N)-module over O is a ϕ-module (M, ϕ) over O endowed with a K0-linear endomor-

phism N : M/uM→M/uM such that Nϕ = pϕN modulo u. We denote by ModO(ϕ,N)

the category of (ϕ,N)-modules over O that are of finite E-height.

(5) A (ϕ,N)-module over S is a finite and free S-module M endowed with an injec-

tive and ϕ-semi-linear endomorphism ϕ : M → M and a K0-linear endomorphism

N : K0 ⊗W (M/uM) → K0 ⊗W (M/uM) such that Nϕ = pϕN modulo u. We de-

note by ModS(ϕ,N) the category of (ϕ,N)-modules over S that are of finite E-height

(i.e. whose cokernel of the linearization ϕ∗
M → M is killed by some power of E), and by

ModS(ϕ,N)Q its isogeny category (i.e. ModS(ϕ,N) with Hom groups tensored by Q).

3.6.1. Kedlaya’s slope filtration. — To translate the admissibility of a filtered (ϕ,N)-module in

terms of the associated bundle over ∆ (cf. below), one needs Kedlaya’s results on the slope

filtration of ϕ-modules on the Robba ring.

Definition 3.30. — A ϕ-module over R is a finite and free R-module M endowed with a ϕ-

semi-linear endomorphism ϕ : M → M whose linearization is an isomorphism. We denote by

ModR(ϕ) the corresponding category.

In [49], Kedlaya constructs a R-algebra Ralg such that for all M ∈ ModR(ϕ), there exists a

finite extension L/K̂nr
0 such that

M ⊗R R
alg ⊗

K̂nr
0
L

admits a basis (m1, . . . ,mn) such that there exist α1, . . . , αn ∈ L with ϕ(mi) = αimi for all

i ∈ {1, . . . , n}. The valuations of α1, . . . , αn only depend on M and are called the slopes of M

(when they are all equal to s ∈ Q, M is said pure of slope s). Moreover, there is a Dieudonné-Manin

type filtration in this context:

Theorem 3.31 (cf. [49, Theorem 6.10]). — Let M ∈ ModR(ϕ). There exists a sequence of

rationals s1 < s2 < · · · < sr (the slopes of M) and a canonical filtration (the slope filtration)

{0} = M0 ( M1 ( · · · ( Mr = M

by sub-ϕ-modules such that Mi/Mi−1 is pure of slope si for all i ∈ {1, . . . , r}.

Remark 3.32. — This theorem is similar to Harder-Narasimhan filtration on vector bundles over

smooth projective curves. These are special cases of a very general formalism of slope filtrations

and semi-stability, developed by André (cf. [2]).

Definition 3.33. — We denote by Mod0
O(ϕ,N∇) (resp. Mod0

O(ϕ,N)) the subcategory of

ModO(ϕ,N∇) (resp. ModO(ϕ,N)) of M such that the ϕ-module R defined by R ⊗O M is

pure of slope 0.
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In [51], Kisin constructs functors between the preceding categories:

MFeff
K (ϕ,N)

M // ModO(ϕ,N∇)
D

oo

MFeff,ad
K (ϕ,N)

?�

OO

// Mod0
O(ϕ,N∇)
?�

OO

oo
� _

Ψ

��
ModS(ϕ,N)Q

≈

Θ
// Mod0

O(ϕ,N).

3.6.2. Indications on how the functors are defined. — To construct M, one considers the poly-

nomial ring O[λ−1, ℓu], where ℓu is a variable that corresponds to “log(u)”. The maps ϕ and N∇

extend to O[λ−1, ℓu] putting

ϕ(ℓu) = pℓu and N∇(ℓu) = −λ.

We denote by N the derivation with respect to ℓu: one has NN∇ = N∇N and Nϕ = pϕN on

O[λ−1, ℓu].

For n ∈ N, let Ŝn be the completion of the localization of K0(πn)⊗W S at the ideal generated

by u− π(n): it is a complete discrete valuation ring, whose fraction field is Ŝn

[
(u− π(n))−1

]
. We

endow it with the (u − π(n))-adic filtration. This ring corresponds to germs of functions at π(n).

There are natural inclusions

S[p−1] ⊂ O ⊂ O[ℓu] ⊂ Ŝn

where the last inclusion maps ℓu to

log

(
1 +

u− π(n)

π(n)

)
=

∞∑

m=1

(−1)m−1

m

(
u− π(n)

π(n)

)m

∈ Ŝn.

If D ∈MFeff
K (ϕ,N), the O-module M(D) is defined as a sub-O-module of

(
O[ℓu, λ

−1]⊗K0 D
)N=0

defined by conditions (related to the filtration) on the fibers at the points of ∆ corresponding to

the π(n) (for n ∈ N) as follows.

The Frobenius map on O[ℓu] factorizes as ϕ = ϕW ◦ϕO/W where ϕW : O[ℓu]→ O[ℓu] is ZpJuK-

linear and acts by ϕ on coefficients, whereas ϕO/W is W -linear and maps u to up. We consider

the composite

O[ℓu]⊗K0 D

ιn

11

ϕ−n
W ⊗ϕ−n

// O[ℓu]⊗K0 D // Ŝn ⊗K0 D = Ŝn ⊗K DK .

As the image of ϕ−n
W (λ) =

∏
m∈N

ϕm−n
W

(
E(upm)
E(0)

)
in Ŝn belongs to

E(upn)
E(0) Ŝ

×
n = (u − π(n))Ŝ×

n , it

extends into a localization map:

ιn : O[λ−1, ℓu]⊗K0 D → Ŝn

[
(u− π(n))−1

]
⊗K DK .

TheO-moduleO[λ−1, ℓu]⊗K0D is endowed with the operator N defined by N⊗IdD + IdO[λ−1,ℓu]⊗N .

Furthermore, the Ŝn-module Ŝn

[
(u− π(n)

)−1
] ⊗K DK is equipped with the tensor product fil-

tration, given by:

Fili
(
Ŝn

[
(u− π(n))−1

]
⊗K DK

)
=

∑

j∈Z

Im
(

(u − π(n))−j
Ŝn ⊗K Fili+j(DK)

)

for all i ∈ Z. Then

M(D) =
{
x ∈

(
O[ℓu, λ

−1]⊗K0 D
)N=0

∣∣∣ (∀n ∈ N) ιn(x) ∈ Fil0
(
Ŝn

[
(u − πn)−1

]
⊗K DK

)}
.
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Basically, D(M) is just M/uM endowed with the induced Frobenius and the monodromy

operator N given by the reduction of N∇ modulo u. The filtration on D(M)K is more difficult

to define (it is related to the fibers at {π(n)}n∈N, cf. [51, §1.2.7]).

The functor Ψ consists in replacing N∇ by its reduction N modulo u. As for Θ, it is merely

the scalar extension from S to O.

The functors M and D are quasi-inverse equivalences of categories (cf. [51, Theorem 1.2.15]),

and induce quasi-inverse equivalences of categories between MFeff,ad
K (ϕ,N) and Mod0

O(ϕ,N∇)

(cf. [51, Theorem 1.3.8]). This provides a fully faithful functor

MFeff,ad
K (ϕ,N)→ModS(ϕ,N)Q,

hence an “integral” p-adic Hodge theory (p is not invertible in S), without restriction on the

absolute ramification index of K or the length of the filtration. The interest of such a theory is

that it is convenient to deal with deformation problems, finite flat group-schemes over OK , etc.

Remark 3.34. — The p-adic completion OE of S[u−1] is a discrete valuation ring, whose residue

field is k((u)). The S-algebra structure of W(R) given by u 7→ [π̃] extends to a OE -algebra structure

of W(Frac(R)). Put S
nr = Onr

E ∩W(R) ⊂ W(Frac(R)). It is an extension of S endowed with an

action of GK(π(n)|n∈N) ≃ Gal
(
k((u))sep/k((u))

)
.

As every (ϕ,N)-module becomes effective after an appropriate Tate twist, Theorem 3.28 then

follows from:

Proposition 3.35 (cf. [51, Proposition 2.1.5]). — Let D ∈MFeff,ad
K (ϕ,N) and M ∈ModS(ϕ,N)Q

such that Θ(M) ≃ D. Then there is a canonical (GK(π(n)|n∈N)-equivariant) isomorphism

HomS,ϕ(M,Snr)
∼
→HomMFK(ϕ,N)(D,B+

st)

and dimQp

(
HomMFK(ϕ,N)(D,B+

st)
)

= dimK0(D) so D is admissible.

The map is constructed as the composite of injective maps

HomS,ϕ(M,Snr)→ HomO,ϕ(M,B+
cris)→ HomO,Fil,ϕ(D0,B

+
cris)→ HomFil,ϕ,N(D,B+

st)

where M = Θ(M) =M(D) and D0 = (O[ℓu]⊗K0 D)N=0. The first map comes form the injection

S →֒ B+
cris (in which u is mapped to the Teichmüller element [π̃] ∈ B+

cris), that extends into

injections Snr →֒ B+
cris and O →֒ B+

cris. The last one is deduced from the inclusion D ⊂ O[ℓu]⊗K0D

and the isomorphism O[ℓu]⊗O B+
cris → B+

st; ℓu 7→ log[π̃] (cf. proposition 3.4). Classical arguments

(cf. [34, A.1.2 & B.1.8.4]) imply that dimQp
(HomS,ϕ(M,Snr)) = dimK0(D). As D is admissible,

lemma 3.27 implies that dimQp
(HomFil,ϕ,N (D,B+

st)) ≤ dimK0(D), so the injectivity of the map

shows that this inequality is an equality, and that the map is an isomorphism.

4. The comparison theorem

Theorem 4.1 (cf. [61, Theorem 0.2]). — Let X be a proper scheme over OK with semi-stable

reduction, XK its geometric generic fiber and Y = Xk its special fiber (endowed with the log-

structure induced by that it defines on X , cf. §6.4). Then there exists a canonical and functorial

Bst-linear isomorphism

Bst⊗Qp
Hm

ét(XK ,Qp)
∼
→Bst⊗WHm

log - cris(Y/W )

compatible with Frobenius maps, monodromy operators and filtrations after extending the scalars

to BdR. In other words, the p-adic representation Hm
ét(XK ,Qp) is semi-stable, and

Dst

(
Hm

ét(XK ,Qp)
)
≃ K0 ⊗W Hm

log - cris(Y/W ).
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This was proved by Kato when dim(X) < p−1
2 (cf. [48, Theorem 1.2]), by Tsuji in general, by

Nizio l and extended by Faltings to the case of non constant coefficients (see the introduction of [62]

for more details). Tsuji’s proof uses a generalization of Fontaine-Messing’s syntomic cohomology

(cf. [39]), symbols (defined by Bloch and Kato (cf. [14]) and relative versions of period rings

(introduced by Faltings). Recently, it has been reproved and generalized by various authors:

• by Andreatta-Iovita (cf. [3] & [4]), using Faltings’ ideas, based on the sheafification of period

rings (in some appropriate topos);

• by Beilinson (cf. [6] & [7]), using “derived de Rham complexes” and “h-topology”;

• by Yamashita and (cf. [64]) Yamashita-Yasuda in the case of open varieties;

• by Tan-Tong (cf. [58]) for the crystalline comparison theorem, based on ideas of Scholze (cf.

[54]);

• by Colmez-Niziol (cf. [26]), using syntomic cohomology and the cohomology of (ϕ,Γ)-

modules.

4.1. (Log-)crystalline interpretation of Bcris and Bst. — If n ∈ N>0, put

H
q
cris

(
OK/pnOK |Wn

)
= lim
−→
L/K

Hq
(
(OL/p

nOL|Wn)cris,OL,n

)

where the limit runs over finite extensions L/K in K , and where OL,n is the structure sheaf of

(OL/p
nOL|Wn)cris.

Theorem 4.2 (cf. [33, Théorème 1]). —

lim
←−
n

H
q
cris

(
OK/pnOK |Wn

)
∼=

{
Acris if q = 0;

0 if q > 0.

Proof. — The first isomorphism follows from the fact that both H0
cris

(
OK/pnOK |Wn

)
and

Acris /p
n Acris are universal divided powers thickenings of OK/pnOK in the category of Wn-

algebras, and that Acris is p-adically separated and complete.

To compute Hq
(
(OL/p

nOL|Wn)cris,OL,n

)
, one embeds Spec(OL/p

nOL) into a smooth Wn-

scheme: as OL = W [x] is monogenic, we can write OL/p
nOL ≃ Wn[X ]/(f(X)) with f ∈ Wn[X ],

so that the crystalline cohomology of OL/p
nOL is that of the de Rham complex with divided

powers

0→ DL,n → DL,n ⊗Wn[X] Ω1
Wn[X]/Wn

→ DL,n ⊗Wn[X] Ω2
Wn[X]/Wn

= 0→ · · ·

where DL,n is the divided powers envelope of Wn[X ] with respect to the ideal generated by f .

This implies that Hq
(
(OL/p

nOL|Wn)cris,OL,n

)
= 0 if q ≥ 2. Also, if y ∈ K is such that yp

n

= x,

and take the presentation OL(y)/p
nOL(y) ≃Wn[Y ]/(f(Y pn

)), we have the commutative diagram

X❴

��

DL,n
//

��

DL,n ⊗Wn[X] Ω1
Wn[X]/Wn

��

dX❴

��
Y pn

DL(y),n
// DL(y),n ⊗Wn[Y ] Ω1

Wn[Y ]/Wn
dY pn

0

which implies that the image of H1
(
(OL/p

nOL|Wn)cris,OL,n

)
in H1

(
(OL(y)/p

nOL(y)|Wn)cris,OL,n

)

is zero, hence H1
cris

(
OK/pnOK |Wn

)
= 0, proving the case q > 0.

Similarly, the ring Bst has a strong connection with log-crystalline cohomology. Endow S =

Spec(OK) and S = Spec(OK ) with the canonical log-structures N and N respectively(8), and

(8)Note that the log-structure on S is not fine but only “integral” (cf. [48, 2.4]), which causes no trouble.



SEMI-STABLE REPRESENTATIONS 17

Sn = Spec(OK/pnOK) and Sn = Spec(OK/pnOK ) with the inverse image log-structures Nn and

N n for n ∈ N>0. Following Kato (cf. [48, §3]), let

h : (Sn, N n)→ (Sn, Nn)

and hcris :
(
(Sn, N n)/Wn

)
cris
→

(
(Sn, Nn)/Wn

)
cris

the map induced on the associated log-

crystalline topoi.

Proposition 4.3 (cf. [48, Proposition 3.1]). — hcris,∗OSn/Wn
is a quasi-coherent flat crystal of

OSn/Wn
-modules on

(
(Sn, Nn)/Wn

)
cris

, and for q > 0, one has Rq hcris,∗OSn/Wn
= 0.

To describe the crystal F := hcris,∗OSn/Wn
, we embed (Sn, Nn) in a smooth object: let Zn =

Spec(Wn[T ]) endowed with the log-structure N→Wn[T ]; 1 7→ T (which is smooth over Wn), and

in : Sn → Zn the closed immersion given by T 7→ π. Let En = Spec(Rn) be the PD-envelope of

Zn with respect to in. The crystal F is characterized by its evaluation Pn := F (En), which is an

Rn-module with a connection with log poles

∇ : Pn → Pn dlog(T )

(cf. theorem 6.6). Put Bn = H0
cris

(
OK/pnOK |Wn

)
.

Proposition 4.4 (cf. [48, Proposition 3.3]). — (1) For all pn-th root β of π in OK there ex-

ists a canonical element vβ ∈ Pn and an PD-isomorphism:

Bn〈V 〉
∼
→Pn

V 7→ vβ − 1.

(2) ∇ is the unique Bn-linear connection such that ∇((vβ − 1)[i]) = (vβ − 1)[i−1] dlogT for all

i ∈ Z>0.

(3) The Frobenius map on Zn given by T 7→ T p induces a Frobenius map ϕ : Pn → Pn that

extends the Frobenius on Bn and satisfies ϕ(vβ) = vpβ.

(4) The natural action of GK on Bn extends to Pn, and g(vβ) = vg(β) for all g ∈ GK .

There exists a unique map(9) N : Pn → Pn such that (∀x ∈ Pn) ∇(x) = N (x) dlog(T ). This is

a Bn-derivation. Also, as Ker(Pn → OK/pnOK ) has divided powers, one can put uβ = log(vβ)

for β as above. It is transcendental over Bn. Then

Theorem 4.5 (cf. [48, Theorem 3.7]). — For all i ∈ N>0, one has Ker(N i) =
⊕i−1

j=0 Bnu
[j]
β , so

PN -nilp
n :=

{
x ∈ Pn

∣∣ (∃i ∈ N) N i(x) = 0
}

= Bn〈uβ〉

and there is a B+
cris-linear isomorphism

B+
st := B+

cris

[
log[π̃]

] ∼
→Q⊗Z lim

←−
n

PN -nilp
n

which is compatible with the actions of GK , ϕ and N .

Remark 4.6. — The proofs are basically the same as that of theorem 4.2, though more technical

because of log-structures.

(9)Denoted by N instead of N to avoid confusion with log-structures.
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4.2. Reduction of the de Rham case to the semi-stable case. — (cf. [11] and [62,

Appendix]).

Definition 4.7. — (1) Let X be an integral noetherian scheme. An alteration of X is a proper

and surjective morphism a : X ′ → X with X ′ integral, such that there exists a non empty

open U ⊂ X above which a is finite. It is generically étale when one can choose U such that

f−1(U)→ U is étale.

(2) Let R be a complete discrete valuation ring and S = Spec(R). An S-variety is a flat, integral,

separated S-scheme of finite type.

(3) Let S as above, η (resp. s) its generic (resp. closed) point. An S-variety X is called strictly

semi-stable when Xη is smooth over η, Xs is reduced, schematic union of its irreducible

components (Xs,i)i∈I and for all ∅ 6= J ⊂ I, the s-scheme XJ := ∩j∈JXs,j is smooth, of

codimension #J in X .

(4) Let X as above, and Z ⊂ X a closed subset containing Xs. Let Zh be the schematic closure

of Zη, so that Z = Zh∪Xs. The pair (X,Z) is called strictly semi-stable if X is strictly semi-

stable over S, Z is a strict normal crossing divisor in X and, if (Zh,i)i∈I are the irreducible

components of Zh, then for all J ⊂ I, Zh,J := ∩j∈JZh,j is a union of strictly semi-stable

S-varieties.

Theorem 4.8 (cf. [46, Theorem 6.5]). — Let f : X → S an S-variety and f−1(s) ⊆ Z ( X

a closed subset. There exist a discrete valuation ring R′ which is finite over R, an alteration of

S-varieties a : X ′ → X and an open immersion of S′-varieties j : X ′ →֒ X ′ (where S′ = Spec(R′))

such that :

(i) X ′ is a projective S′-variety whose generic fiber is geometrically irreducible ;

(ii) the pair (X ′, a−1(Z) ∪ (X ′ \X ′)) is strictly semi-stable.

X ′

��

X ′? _
joo a // //

��

X

f
��

S′ S′ // S.

de Jong’s and Tsuji’s theorems imply CdR. Indeed, let X be a Spec(OK)-variety, whose generic

fiber XK is proper smooth over K, and V = H•
ét(XK ,Qp): let’s show that V is potentially

semi-stable (hence de Rham). We may make a base change replacing K by a finite extension and

assume X geometrically connected. By theorem 4.8, there exists a finite extension K ′/K, a strictly

semi-stable Spec(OK′)-variety X ′ and an alteration a : X ′ → X . The map aK′ : X ′
K′ → XK′ is

generically finite and flat, of some degree d. Being a proper morphism between smooth schemes of

the same dimension, there is an associated trace map TraK′ : R aK′∗ Qp → Qp, which composed

with the canonical morphism Qp → R aK′∗ Qp is the multiplication by d (cf. [42, VII, Theorem

4.1]). This provides a projector of H•
ét(X

′
K
,Qp)→ H•

ét(XK ,Qp), that makes V = H•
ét(XK ,Qp) a

direct factor of V ′ = H•
ét(X

′
K
,Qp), as GK′ -modules. As V ′ is a semi-stable representation of GK′

by theorem 4.1, so is V . Extra arguments using algebraic cycles imply that DdR(V ) ≃ H•
dR(XK/K)

(cf. [62, Appendix]).

5. The p-adic monodromy theorem

Definition 5.1. — V ∈ RepQp
(GK) is potentially semi-stable if there exists a finite extension

L/K such that the restriction V|GL
of V to GL lies in Repst(GL).

Remark 5.2. — If V ∈ RepQp
(GK) is potentially semi-stable, and L/K is as above, then

dimL DL
dR(V ) = dimQp

(V ) where DL
dR(V ) = (BdR⊗Qp

V )GL . One has L ⊗K DdR(V ) ∼= DL
dR(V )

(Hilbert 90), so V is de Rham.
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Conversely:

Theorem 5.3 (The p-adic monodromy theorem). — Every de Rham representation of GK

is potentially semi-stable.

5.1. Indications on the proof. — Using deep connections between p-adic Hodge theory and

the theory of p-adic differential equations, Berger proved (cf. [8]) that theorem 5.3 is equivalent

to a conjecture on p-adic differential equations. The latter was solved shortly after, independently

by André, Kedlaya and Mebkhout (cf. theorem 5.7). The interested reader is advised to consult

Colmez’ extensive Bourbaki survey (cf. [23]). To avoid technicalities, we assume that K = K0

for the rest of this section.

Interlude on p-adic differential equations. Recall the Robba ring (i.e. the ring of analytic

functions which converge on some open annulus of outer radius 1, denoted by R in §3.6) is:

RK =
{
f =

∑

i∈Z

aiT
i ∈ K[[T, T−1]]

∣∣∣ f(T ) converges on rf ≤ |T | < 1 for some rf ∈ [0, 1[
}

and its bounded elements subring is

E
†
K =

{
f(T ) =

∑

i∈Z

aiT
i ∈ K[[T, T−1]]

∣∣∣ f(T ) converges

and is bounded on rf ≤ |T | < 1 for some rf ∈ [0, 1[
}
.

Note that E
†
K is a (non complete) discrete valuation field with uniformizer p and residue field

k((T )). Its ring of integers O
E

†

K

is the subring of functions bounded by one. These rings are

endowed with the Frobenius map ϕ given by

ϕ(T ) = (1 + T )p − 1

and acting by σ on coefficients. They also carry an action of ΓK := Gal(K∞/K) (where K∞ =

∪n∈NK(ε(n)) is the cyclotomic extension), given by

γ(T ) = (1 + T )χ(γ) − 1

for all γ ∈ ΓK (where χ denotes the cyclotomic character).

Remark 5.4. — (1) In general (i.e. when K 6= K0), the coefficients should be taken in the

maximal unramified extension of K0 in K∞ and the actions of ϕ and ΓK are more compli-

cated.

(2) In this section, the variable is denoted by T whereas is was u in section 3.6. The reason is

that in the latter, the variable u was corresponding to [π̃], whereas here it corresponds to

the cyclotomic “variable” [ε]− 1 (here again, this is a bit more complicated when K 6= K0).

(3) In literature (especially [8]), the rings RK and E
†
K are often denoted B†

rig,K and B†
K respec-

tively. These notations, due to Colmez, are quite useful when has to deal with many period

rings.

Definition 5.5. — (1) A ∇-module over RK is a free R-module M of finite rank, which is

endowed with a connection ∇ : M → M ⊗RK
Ω1

RK/K′
0
, i.e. a map such that ∇(f(T )m) =

f(T )∇(m) + df
dT (T )m⊗ dT (where Ω1

RK/K = RK dT ).

(2) A (ϕ,∇)-module over RK is a ∇-module (M,∇) over RK endowed with a ϕ-semi-linear

operator Φ: M →M , which is compatible with the connection, i.e. such that the diagram

M
∇ //

Φ
��

M ⊗RK
Ω1

RK/K

Φ⊗dϕ
��

M
∇ // M ⊗RK

Ω1
RK/K
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commutes.

(3) A (ϕ,∇)-module over RK is quasi-unipotent when tensored by a finite étale extension RL

of RK (corresponding to a finite separable extension of k((T ))), it admits a filtration by

sub-(ϕ,∇)-modules whose graded pieces are trivial, i.e. admit a basis made of horizontal

elements.

Remark 5.6. — The definition of quasi-unipotency can be reformulated without filtrations by

saying that M ⊗RK
RL[log(T )] is trivial, i.e. admits a basis made of horizontal elements.

Theorem 5.7. — Every (ϕ,∇)-module over RK is quasi-unipotent.

This theorem was conjectured by Crew (cf. [27, 4.16.2] & [28, §10.1]), motivated by the study

of rigid cohomology with coefficients in an overconvergent F -isocrystal (in particular, the theorem

implies the finite dimensionality theorem, cf. [28] & [50]). It was proved by Tsuzuki in the unit-

root case (cf. [63]), and in full generality, independently by André (cf. [1]), Kedlaya (cf. [49]) and

Mebkhout (cf. [53]). Kedlaya’s proof relies on the study of ϕ-modules on Robba rings, especially

theorem 3.31.

From p-adic representations to p-adic differential equations. Let V ∈ RepQp
(GK). If V is

de Rham, Berger associates a (ϕ,∇)-module NdR(V ) over RK , and shows that V is (potentially)

semi-stable if and only if NdR(V ) is (quasi-)unipotent, so that the p-adic monodromy theorem

follows from theorem 5.7.

This construction uses (ϕ,Γ)-modules: there is an equivalence of categories

D† : RepQp
(GK)→Modét

E
†

K

(ϕ,Γ)

where Modét
E

†

K

(ϕ,Γ) is the category of étale (ϕ,Γ)-modules over E
†
K , whose objects are finite di-

mensional E
†
K-vector spaces D endowed with commuting semi-linear actions of ΓK and a Frobenius

endomorphism Φ: D → D, such that there exists a sub-O
E

†

K

-module D ⊂ D of finite type such

that Φ(D) ⊂ D and the linearization 1 ⊗ Φ: ϕ∗D := O
E

†

K,ϕ

⊗O
E
†
K

D → D is an isomorphism (this

is a refinement, due to Cherbonnier and Colmez, cf. [19] & [23, Proposition 5.3], of “classical”

(ϕ,Γ)-module theory of Fontaine, cf. [34] & [20, §1]). As in classical Sen’s theory (cf. [56] & [23,

§3.3]), one considers the infinitesimal action of ΓK on D†(V ), given by:

∂0 : d 7→
log(γ)

log(χ(γ))
(d) = lim

n→∞

γn − 1

χ(γn)− 1
(d)

for any non torsion element γ ∈ ΓK . This defines a differential operator on D†(V ). An easy

computation shows that ∂0(1+T )i = i(1+T )i log(1+T ) for all i ∈ Z, so that ∂0 = (1+T ) log(1+

T ) d
dT on E

†
K . As log(1 + T ) ∈ RK \ E

†
K , this infinitesimal action does not make sense on D†(V ),

so one has to extend the scalars to RK : put

D
†
rig(V ) = RK ⊗E

†

K

D†(V ).

This is a free RK-module of rank dimQp
(V ) endowed with a Frobenius (because D†(V ) and RK

are equipped with Frobenius maps) and a differential operator. However, in general, this does

not provide a (ϕ,∇)-module over RK , because log(1 + T ) is not invertible in RK (it has zeros all

the ζ − 1 with ζ ∈ µp∞(K )): one would like to consider ∂V = 1
log(1+T )∂0 instead. Because of the

possible poles it might introduce, this is not always possible. Berger shows that it is when V is de

Rham.

To do so, one has to study (D†
rig(V ), ∂V ) around ε(n) − 1 (for n large enough), and show that

when V is de Rham, there are local solutions. To this end, one uses localization maps constructed

by Fontaine in [37] as follows. Assume V is positive, i.e. has no non positive Hodge-Tate weights

(so that DdR(V ) = (B+
dR⊗Qp

V )GK ). It is always possible to reduce to this case by an appropriate
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Tate twist. Applying Sen’s method to B+
dR-representations, Fontaine constructed a canonical free

K∞[[t]]-module D+
dif(V ) ⊂ (B+

dR⊗Qp
V )Hk of rank dimQp

(V ) (where HK = Ker(χ) ⊂ GK), stable

under the residual action of ΓK , such that

B+
dR⊗K∞[[t]]D

+
dif(V )

∼
→B+

dR⊗Qp
V

(cf. [37, Théorème 3.6]). More precisely, there exists n ∈ N (depending on V ) and a free Kn[[t]]-

module D+
dif,n(V ) carrying an action of ΓK , such that K∞[[t]] ⊗Kn[[t]] D

+
dif,n(V )

∼
→D+

dif(V ) (where

Kn = K(ε(n)) ⊂ K∞). Here again, the infinitesimal action of ΓK provides a connection(10) ∇V

on Kn((t)) ⊗Kn[[t]] Ddif,n(V ). This connection is trivial if and only if V is de Rham, and then

D+
dif,n(V ) = Kn[[t]]⊗K DdR(V ) (cf. [37, Théorème 3.12]). One cannot map the Robba ring to B+

dR

(cf. [9, IV.3.2] for enlightening heuristic analytic interpretations of period rings), but if

RK,n =
{
f =

∑

i∈Z

aiT
i ∈ K[[T, T−1]]

∣∣∣ f(T ) converges on p−n ≤ |T | < 1
}

there is a map

ιn = ”ϕ−n”: RK,n → Kn[[t]] ⊂ B+
dR

which corresponds to the localization at ε(n) − 1. For n large enough (depending on V ), the

overconvergent (ϕ,Γ)-module D†(V ) is defined over E
†
K,n = E † ∩ RK,n: there exist a sub-E †

K,n-

module D†
n(V ) of D†(V ), stable under ϕ and Γ, such that D†(V ) = E † ⊗

E
†

K,n

D†
n(V ). Now there is

an isomorphism

Kn[[t]]ιn⊗E
†

K,n

D†
n(V )

∼
→D+

dif,n(V )

compatible with connections on both sides (cf. [8, Proposition 5.7]), which provides the localiza-

tion of D†
rig,n(V ) = RK,n ⊗E

†

K,n

D†
n(V ) at ε(n) − 1, and Fontaine’s theorem [37, Théorème 3.12]

mentioned above implies the existence of local solutions when V is de Rham. In this case, one

puts

NdR(V ) = RK ⊗RK,n
NdR,n(V )

where

NdR,n(V ) =
{
x ∈ D

†
rig,n(V )

∣∣ (∀m ≥ n), ιm(x) ∈ Km[[t]]⊗K DdR(V )
}
.

This is a (ϕ,∇)-module of rank dimQp
(V ) over RK (cf. [8, Théorème 5.20]).

The quasi-unipotent case. Using an enlarged Robba ring, Berger proves that if V ∈

RepQp
(GK), one has

Dst(V ) =
(
RK [log(T )]⊗

E
†
K

D†(V )
)ΓK

where the action ΓK on log(T ) is given by γ(log(T )) = log(T ) + log
(γ(T )

T

)
(note that log

(γ(T )
T

)
∈

RK). The Frobenius ϕ extends semi-linearly to RK [log(T )] by ϕ(log(T )) = p log(T ) + log
(ϕ(T )

Tp

)

(note that log
(ϕ(T )

Tp

)
∈ RK), and one endows RK [log(T )] with the RK-linear derivation N given

by N(log(T )) = − p
p−1 .

Remark 5.8. — Recall that here the variable T corresponds to [ε] − 1 (cf. remark 5.4 (2)), so

that log(1 + T ) corresponds to t ∈ B+
dR, and log(T ) to log([ε] − 1). Now [ε]−1

[ε−1] is overconvergent

(i.e. corresponds to an element in E
†
K , cf. [19, Corollaire II.1.5]), as ε − 1 ∈ p̃

p
p−1R× (because

v
(
(ε(n) − 1)p

n)
= p

p−1 for all n ∈ N>0), the element log(T ) corresponds to p
p−1 log[p̃] (modulo an

element in Bcris), so that this definition matches with that of section 3.2.

(10)Coming from a logarithmic connection D+
dif,n(V ) → D+

dif,n(V )⊗ dt
t
, cf. [37, Proposition 3.7].
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The Frobenius ϕ and monodromy operator N on Dst(V ) are deduced from the corresponding

structures (cf. [8, Théorème 3.6]). When V is de Rham, this interprets Dst(V ) as the set of

horizontal sections of NdR(V )[log(T )] (and then one has NdR(V ) =
(
RK [log(T )]⊗KDst(V )

)N=0
).

In particular, V is semi-stable if and only if the (ϕ,∇)-module NdR(V ) is unipotent (cf. remark

5.6). By theorem 5.7, this always holds after a finite extension of K, i.e. V is potentially semi-

stable.

5.2. Other proofs. — Theorem 5.3 has been reproved by Colmez (cf. [24]) using Galois co-

homology of some period rings (instead of using p-adic differential equations or (ϕ,Γ)-modules)

to reduce to the case case of weight zero (that corresponds to the isoclinic case, i.e. Tsuzuki’s

theorem in the point of view of Kedlaya), which is the following:

Theorem 5.9. — (Sen, [55, Theorem 1]) C-admissible representations are potentially unramified

(hence potentially semi-stable) representations.

Fontaine also gave a proof starting from Sen’s result, by induction on the Hodge polygon of V

(cf. [38]).

5.3. Applications. — Using Hilbert 90, a straightforward consequence of the p-adic monodromy

theorem is:

Corollary 5.10 (cf. [8, Théorème 6.2]). — Let 0 → V ′ → V → V ′′ → 0 be an exact sequence

in RepQp
(GK). Assume V ′ and V ′′ are semi-stable, and that V is de Rham. Then V is in fact

semi-stable.

Definition 5.11. — A filtered (ϕ,N,GK)-module over K is a finite dimensional Knr
0 -vector space

D, endowed with

• a semi-linear action of GK which is continuous for the discrete topology ;

• a bijective GK-equivariant σ-semi-linear Frobenius operator ϕ : D → D ;

• a GK-equivariant linear monodromy operator N : D → D such that Nϕ = pϕN ;

• a decreasing, separated, exhaustive filtration on DK := (K ⊗Knr D)GK .

Let MFK(ϕ,N,GK) be the category of filtered (ϕ,N,GK)-modules over K. An object D ∈

MFK(ϕ,N,GK) is said admissible if DGL ∈ MFad
L (ϕ,N) for some (any) L large enough. This

defines a subcategory MFad
K (ϕ,N,GK) of MFK(ϕ,N,GK).

Let V ∈ RepdR(GK). If L/K is a finite Galois extension such that V|GL
is semi-stable then

DL
st(V ) = (Bst⊗Qp

V )GL ∈ MFad
L (ϕ,N) is endowed with an action of Gal(L/K) that commutes

with ϕ and N . Put

Dpst(V ) =
⋃

L/K

(Bst⊗Qp
V )GL .

For L as above, one has Dpst(V ) = Knr
0 ⊗L0 D

L
st(V ) (by Hilbert 90): this is a finite Knr

0 -vector

space endowed with a discrete action of GK , and equivariant operators ϕ and N as above. Fur-

thermore, one has K ⊗Knr
0

Dpst(V ) ∼= K ⊗L0 D
L
st(V ) ∼= K ⊗L (L ⊗L0 D

L
st(V )) ∼= K ⊗K DdR(V ),

so (K ⊗Knr
0

Dpst(V ))GK ∼= DdR(V ). Note that Dpst(V )GL = DL
st(V ) ∈ MFad

L (ϕ,N), so that

Dpst(V ) ∈MFad
K(ϕ,N,GK).

Theorem 5.12. — The functor Dpst induces an equivalence of tensor categories

Dpst : RepdR(GK)
≈
−→MFad

K (ϕ,N,GK).

A quasi-inverse is given by

D 7→ Vpst(D) := (Bst⊗Knr
0
D)

ϕ=1
N=0 ∩ Fil0(BdR⊗KDK)
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(where the action of GK on Bst⊗Knr
0
D is the diagonal one).

Proof. — This is the conjunction of theorems 3.28 and 5.3.

Let X be a proper and smooth variety on K: the étale cohomology V = H•
ét(XK ,Qp) is de

Rham hence potentially semi-stable. The preceding theorem shows that one can recover V from

DK = D•
dR(X/K) and the ”hidden structure” D = Dpst(V )”.

6. Appendix: Inputs from log-geometry

6.1. Basic definitions. — Developed by Kato and al. following ideas of Fontaine and Illusie,

log-geometry is an enlargement of algebraic geometry: one can see the category of schemes as a

full subcategory of log-schemes, which are schemes with an extra structure, namely a log-structure,

which basically consists in keeping track of (local) equations of divisors. This allows to deal with

normal crossing divisors or K-schemes with semi-stable reduction as smooth objects (hence it is

also related to desingularization). What follows is a very cursory survey of the basic ideas, and is

taken from [47] and [43, §2] (see also the nice survey [45] by Illusie, and [62, §3]).

All monoids will be assumed to be commutative, and morphisms of monoids preserve unit

elements. If M is a monoid, M gp denotes the associated group, and M is called integral when the

map M →M gp is injective.

Definition 6.1. — (i) Let X be a scheme. A pre-logarithmic structure on X is a sheaf of

monoids M on Xét and a homomorphism of monoids α : M → OX (for the multiplicative

law on OX). A pre-logarithmic structure is logarithmic structure (or log-structure for short)

if moreover the map α induces an isomorphism α−1(O×
X)

∼
→O×

X . The trivial log-structure is

O×
X →֒ OX .

(ii) A morphism between schemes X and Y with (pre-)log structures (M, α) and (N , β) respec-

tively is a morphism of schemes f : X → Y and a commutative square

f−1N
f−1β //

��

f−1OY

��
M

α // OX

of arrows in Xét.

(iii) A log-scheme X = (X,M) is a scheme X endowed with a log-structure(11) (M, α).

Given a pre-log structure (M, α) on a scheme X , the associated log-structure is the push-out

of

O×
X←α−1(O×

X)→M

in the category of sheaves of monoids, i.e.

Ma = (O×
X ⊕M)/ ∼

(incl.,α)
−−−−−→ OX

where (u, a) ∼ (v, b)⇔ there locally exists c, d ∈ α−1(O×
X) such that α(c)u = α(d)v and ad = bc.

Definition 6.2. — A log-structure M on X is called fine if étale locally on X , it is isomorphic

to the log-structure associated to MX → OX (which is then called a chart ofM) for some finitely

generated integral monoid M (where MX denotes the constant sheaf defined by M). One defines

the chart of a morphism of fine log-schemes in the obvious way.

(11)As often, the map α does not appear in the notation.
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Example 6.2. — Assume X is regular. Let D be a reduced normal crossing divisor(12) on X,

and j : U := X \ D → X. Then the inclusion M := OX ∩ j∗O
×
U → OX is a fine log-structure,

locally associated to

Nr → OX

(ni)1≤i≤r 7→ tni

i

where ti = 0 are equations of the components of D. A special case is that of Spec(R) where R

is a discrete valuation ring. The log-structure corresponding to the special fiber (i.e. associated

to N → R; 1 7→ ̟, where ̟ is a uniformizer of R) is called the canonical log-structure on

Spec(R). More generally, if X → Spec(R) has semi-stable reduction, its special fiber defines a fine

log-structure on X.

Definition 6.3. — Given a morphism of log-schemes f : X = (X,M)→ Y = (Y,N ), the sheaf of

differentials with logarithmic poles relative to f is the OX -module ω1
X/Y = ω1

(X,M)/(Y,N ) quotient

of

Ω1
X/Y ⊕

(
OX ⊗ZM

gp
)

by the OX -submodule generated by sections of the form (dα(m), 0) − (0, α(m) ⊗m) for m ∈ M

and (0, 1 ⊗ m′) for m′ ∈ f−1(N ). For m ∈ M, the image of (0, 1 ⊗m) is denoted by dlog(m).

We get a logarithmic de Rham complex by putting ωn
X/Y = ∧nω1

X/Y and defining the derivation

d: ωn
X/Y → ωn+1

X/Y by

d
(
ω ∧ dlog(m1) ∧ · · · ∧ dlog(mr)

)
= dω ∧ dlog(m1) ∧ · · · ∧ dlog(mr)

for ω ∈ Ωn−r
X/Y and m1, . . . ,mr ∈ M.

Definition 6.4. — Let f : (X,M)→ (Y,N ) be a morphism of schemes with fine log-structures.

(i) f is a closed immersion (resp. exact closed immersion) if f : X → Y is a closed immersion

of schemes and f∗N → M is surjective (resp. bijective), where f∗N denotes the log-structure

associated to the pre-log structure f−1N → f−1OY → OX .

(ii) f is smooth (resp. étale) if f is locally of finite presentation (as morphism of schemes) and

formally smooth (resp. formally étale), i.e. for all commutative square

(T ′,L′) //

i ��

(X,M)

f��
(T,L) //

g 88

(Y,N )

where i is an exact closed immersion whose ideal is nilpotent, then étale locally on T , there exists

(resp. there exists a unique) morphism g : (T,L) → (X,M) making the two triangles commute.

In that case, the OX -module ω1
X/Y is locally free of finite type.

Example 6.3. — Let R be a discrete valuation ring, k its residue field and N the canonical

log-structure on Y = Spec(R). Assume X → Spec(R) has semi-stable reduction: let M be the

log-structure on X associated to its special fiber Xk (so that M is the subsheaf of OX made of

sections that are invertible on Xk). Then the morphisms of log-schemes (X,M)→ (Y,N ) and its

special fiber (Xk,M) → (Spec(k),N ) are smooth. For instance, assume that X = Spec(A) with

A = R[t0, . . . , tn]/(t0 · · · tr − π) where 0 ≤ r ≤ n are integers. The equality t0 · · · tr = π in Mgr

(12)I.e. for all closed point x of X, the divisor D has equation t1 · · · tr = 0 where t1, . . . , tr is part of a regular

sequence of parameters of X at x.
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translates into
∑r

j=0 dlog(tj) = dlog(π) = 0 in ω1
X/Y . Multiplied by π, one recovers the relation∑r

j=0 t0 · · · tj−1tj+1 · · · tr dtj = 0 in Ω1
X/Y : we have

ω1
X/Y =

(
⊕n

i=0 Adti ⊕⊕
r
i=0Adlog(ti)

)
/
(∑r

j=0 dlog(tj), dti − ti dlog(ti)
)
0≤i≤r

= ⊕r
i=1Adlog(ti)⊕⊕

n
i=r+1Adlog(ti)

6.4. Log-crystalline cohomology. — The crystalline theory (cf. [12]) can be extended to the

logarithmic case, cf. [47, §5 & 6]. Let f : X = (X,M)→ S = (S,N ) be a morphism of schemes

with fine log-structures. We assume that p is nilpotent on S. Let I ⊂ OS be a quasi-coherent

ideal and γ a PD-structure on I that extends to X .

Definition 6.5. — The crystalline site
(
X/S

)
cris

is the site whose objects are diagrams

(U,M|U )
� � i //

f ��

(T,MT )

��
(X,M) // (S,N )

where U is étale over X , MT a fine log-structure on T , and i an exact closed immersion; and the

data of a PD-structure δ on the ideal of i, compatible with γ. The morphisms are the obvious

ones, and covering families are
{
gλ : (Uλ, Tλ,MTλ

, iλ, δλ)→ (U, T,MT , i, δ)
}
λ

such that for all λ,

the map Tλ → T is étale, Uλ ≃ Tλ ⊗T U and {Tλ → T }λ is a covering for the étale topology. The

structure sheaf is defined by

OX/S (U, T,MT , i, δ) = Γ(T,OT )

A sheaf of OX/S -modules F on
(
X/S

)
cris

is a crystal if the transition maps(13)

g∗FT → FT ′

are isomorphisms for all g : T ′ → T in
(
X/S

)
cris

.

Let i : (X,M)→ (X ′,M′) be a closed immersion. The associated PD-envelope

(X,M)→ (D,MD)→ (X ′,M′)

is defined by the usual universal property. One just has to be careful about the exactness condition

on closed immersions. When i is exact, this is simply the usual PD-envelope D of X in X ′, endowed

with the inverse image of M′. A general i admits (étale locally on X) a factorization

(X,M)
i //

i′ &&◆◆
◆◆◆

◆
(X ′,M′)

(X ′′,M′′)
g

77♦♦♦♦♦♦

with i′ an exact closed immersion and g étale. Then D is the PD-envelope of X in X ′′ and MD

is the inverse image of M′.

Theorem 6.6 (cf. [47, Theorem 6.2])). — Assume there is a diagram of morphisms of schemes

with fine log-structures

X
� � i //

f ��✾
✾✾
✾

Y

g��✆✆
✆✆

S

(13)Where, as usual, FT is the sheaf on Tét induced by F .
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with g smooth and i a closed immersion. Let D = (D,MD) be the PD-envelope of i. Then the

category of crystals on
(
X/S

)
cris

is equivalent to the category of OD-modules E endowed with an

integrable connection(14)

∇ : E → E ⊗OY
ω1
Y/S

such that, for all x ∈ D with image y ∈ Y , if (ti)1≤i≤n ∈
(
N gp

ȳ

)r
are such that {dlog(ti)}1≤i≤r ∪

{dti}r<i≤n is a basis of ω1
Y/S,ȳ, for all x ∈ Ex̄, there exist c1, . . . , ck ∈ N, (ni,j)1≤i≤r

1≤j≤k
∈ Nrk and

nr+1, . . . , nn ∈ N such that

( r∏

i=1

k∏

j=1

(∇log
i − cj)

ni,j

)( n∏

i=r+1

∇ni

i

)
(x) = 0

(where ∇ =
r∑

i=1

∇log
i ⊗ dlog(ti) +

n∑
i=r+1

∇i ⊗ dti on Ex̄).

Remark 6.7. — (1) If E is a crystal on
(
X/S

)
cris

, the corresponding OD-module is ED.

(2) The pair (E ,∇) provides a de Rham complex E ⊗OY
ω•
Y /S .

As “usual”, log-crystalline cohomology can be computed by de Rham complexes with divided

powers (cf. [12, Proposition 5.18 & Theorem 7.1]): let

uX/S :
(
X/S

)
cris
→ Xét

be the map of topoi defined by

uX/S (F )(U) = Γ
(
(U/S)cris,F

)

where U is the scheme U endowed with the log-structure obtained by the pull-back of the log-

structure on X .

Theorem 6.8 (cf. [47, Theorem 6.4])). — Under the hypothesis of theorem 6.6, if E is a crystal

on
(
X/S

)
cris

and E = ED the corresponding OD-module with connection, there is a canonical

isomorphism

RuX/S ∗(F )
∼
→ED ⊗OD

ω•
Y /S

Recall k is a perfect field of characteristic p. For n ∈ Z>0, let Sn be the scheme Spec(Wn(k))

endowed with the log-structure associated to N→Wn(k) mapping 1 to 0 (then S1 is the standard

log point). Assume f : X→ S1 is smooth. We put

Hi
(
X/Wn(k)

)
:= Hi

(
(X/Sn)cris,OX/Sn

)
and Hi

(
X/W

)
:= lim
←−
n

Hi
(
X/Sn

)

which are a Wn(k)-module and a W -module respectively. When X is proper over k, the latter is

finitely generated (cf. [43, §3.2]).

By functoriality, the absolute Frobenius

F :
(
X/Sn

)
→

(
X/Sn

)

(the absolute Frobenius between the underlying schemes and the p-th power on the monoids)

induces a σ-semi-linear Frobenius map

ϕ : Hi(X/Wn(k))→ Hi(X/Wn(k)) and ϕ : Hi(X/W )→ Hi(X/W ).

(14)I.e. an additive map ∇ such that ∇(ax) = a∇(x) + x⊗ da for all a ∈ OD and x ∈ E, and ∇(1) ◦ ∇ = 0, where

∇(n) : M ⊗ ωn
Y/S → M ⊗ ωn+1

Y/S

x⊗ ω 7→ ∇(x) ∧ ω + x⊗ dω



SEMI-STABLE REPRESENTATIONS 27

When X is of Cartier type(15) (cf. [43, §2.12]), the map ϕ is an isogeny, i.e. ϕ ⊗ Q is an

isomorphism (cf. [43, Proposition 2.24]).

Another structure on these log-crystalline cohomology spaces is that of a monodromy operator.

Denote by S triv
n the scheme Spec(Wn(k)) endowed with the trivial log-structure. Then R f∗OX/S triv

n

is a crystal in the derived category of (S1/S
triv
n ): let Rn be its evaluation at S1 → S triv

n , then

Hi(X/Wn(k)) = Hi(Rn)

which can be computed by using the closed embedding in : S1 →֒ (A1
Wn(k)

,N ) (where N is the

log-structure given the divisor (t = 0)). Then Rn is described by a complex on the divided power

envelope of in, together with a connection with log poles at t = 0, the residue of which induces a

map

N : Hi(X/Wn(k))→ Hi(X/Wn(k)) and N : Hi(X/W )→ Hi(X/W )

on cohomology. One has Nϕ = pϕN (cf. [43, §3.6]).

An other relation with de Rham cohomology, on the generic fiber this time, is the generalization

of Berthelot-Ogus isomorphism (cf. [13, Corollary 2.5]). Let X a proper scheme with semi-stable

reduction, endowed with the log-structure defined by its special fiber Y = Xk, and X = XK its

generic fiber. We endow Y and X with the induced log-structures (here Spec(K) is endowed with

the trivial log-structure). We write Hi
log - cris(Y/W ) for Hi(Y /W ). The choice(16) of the uniformizer

π provides an isomorphism (for a construction in a more general context, see [43, Theorem 5.1])

ρπ : Hi
log - cris(Y/W )⊗W K

∼
→Hi

dR(X/K).
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[10] , “Équations différentielles p-adiques et (ϕ,N)-modules filtrés”, in Représentations p-adiques
de groupes p-adiques. I. Représentations galoisiennes et (φ,Γ)-modules, no. 319, Société Mathématique
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