FILTERED (¢, N)-MODULES AND SEMI-STABLE REPRESENTATIONS

by

Olivier Brinon

Abstract. — The aim of these notes is to give a short introduction on the theory of semi-stable
representations and filtered (¢, N)-modules, assuming some knowledge of crystalline and de Rham
theories. It corresponds to a course given at Rennes in May 2014.

Contents
1o Introduction. .« ..o e 1
2. Analogies with the f-adic/complex analytic case...............coiiiiiiia.. 3
3. The ring By and semi-stable representations.............. ... ... ..ol 4
4. The comparison theorem. ... ... ... 15
5. The p-adic monodromy theorem......... ... .. .. . i i 18
6. Appendix: Inputs from log-geometry.... ... 23
References. . ... 27

1. Introduction

We fix the notations that will be used throughout the text. Let K be a complete discrete
valuation field of characteristic 0, whose residue field k is perfect of characteristic p > 0. We
choose a uniformizer 7, an algebraic closure K of K and put Gx = Gal(K/K). The valuation
v:i K — RU{4+o0} (normalized by v(p) = 1) extends to a (non-discrete) valuation v: K —
R U{40o0} : we denote by C the completion of K for this valuation. The action of G extends to
C' by continuity. We will write Op, (resp. my,) for the ring of integers (resp. the maximal ideal) of
a subfield L ¢ C. Put W = W(k) and o the Witt vectors Frobenius. It extends to Ky = Frac(IV).
Following Bourbaki, 0 € N.

In what follows, we assume that the reader is familiar with the period rings formalism (¢f. |
§1&2] or [18, §1.3&1.4]), and the period rings Beis and Bar (cf. [35] or [18, §3]).

Let X be a proper and smooth K-variety. There exists a comparison isomorphism

Bar ®2,H* (X%, Zy) = Bar @k Hig (X/K)

3

(compatible with the Hodge filtrations on the de Rham cohomology") and Bgr) analogous to the
period isomorphism between Betti and de Rham cohomology in the complex analytic case (cf.
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()That comes from the Hodge to de Rham spectral sequence E}) = HI (X, QE(K/K) = HZ{EJ (X/K) (that degener-

ates at E1, cf. [29, §5] and [30]).
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[18, §4.1]). When X has good reduction, i.e. admits a proper and smooth model X over Ok, it
is refined by an isomorphism

Beris ®ZP H.(X}?a Zp) = Beris ®KHzrls(Xk/W)

where X} denotes the special fiber of X', compatible with the Frobenius operators on the crystalline
cohomology and B, and with the Hodge filtrations after extending the scalars to K (via the
Berthelot-Ogus isomorphism K @w HE, (Xk/W) ~ Hig (X/K), ¢f [13, Theorem 2.4]).

Assume now that X has semi-stable reduction, i.e. admits a proper and flat model X with
semi-stable reduction (which means that X is regular, generically smooth, and the special fiber
Y = X} is a reduced divisor with normal crossings(®)). Logarithmic geometry (briefly reviewed in
appendix 6) is the right context to study this case: in the log-geometric context, X — Spec(Ok)
is smooth. Here again, the de Rham comparison isomorphism can be refined (c¢f. §4). Of course,
crystalline cohomology does not provide the right object on the de Rham side. It is replaced by its
logarithmic analogue: one attaches to X' its log-crystalline cohomology groups H{t, ;< (Y/W) (cf.

§6.4) that are finitely generated W-modules, endowed with a Frobenius map ¢: Hf, .. (Y/W) —
Hiog- cris(Y/W) (which is o-semi-linear and an isomorphism after inverting p), and with a new
structure: a monodromy operator(®) N: H" (Y/W) = H» (Y/W) such that Ny = ppN.

log - cris log - cris

It is related to de Rham cohomology by the Hyodo-Kato isomorphism(®
P - Hfog—cris(Y/W) Qw Kl} HziR(X/K)

(that depends on the choice of 7). As Hqr(X/K) comes equipped with its Hodge filtration, the
space
D := Hfog-cris(Y/W> ®@w Ko

is an object of the following category, which thus plays a central role in what follows.

Definition 1.1. — A filtered (o, N)-module is a quadruple (D, ¢, N, Fil® Dk ) where D is a finite
dimensional Ky-vector space, ¢: D — D a o-semi-linear automorphism, i.e. such that (VA €
Ky) (Vd € D) o(Ad) = o(N)p(d) (the Frobenius map), N: D — D a Kp-linear endomorphism
(the monodromy operator) such that Ny = ppN and Fil®* Di a decreasing filtration of Dy :=
K ®p, D by sub-K-vector spaces, which is separated (i.e. Njez Fil' D = {0}) and exhaustive
(i.e. Ujez Fil' Dg = Dg). A morphism of filtered (o, N)-modules is a Ko-linear map compatible
with Frobenius maps, monodromy operators and filtrations after extending the scalars to K.
The category of filtered (¢, N)-modules is denoted by MF (¢, N). This is an additive (but not
abelian) category.

The comparison isomorphism in this context requires to enlarge the period ring B, into a
Beris-algebra By (cf. §3.1). Of course, it is perfectly possible to use other period rings, that are
handier in some situations when one has to look under the hood (¢f. [22, p.512] and [23, 0.3.4]).

As in the de Rham or crystalline case, the period ring By defines a full subcategory of the
category of p-adic representations: that of semi-stable representations. The associated functor
has values in MFg(p, N). A nice feature of this construction is the fundamental fact that this
functor provides an equivalence between the category of semi-stable representations and an explicit
subcategory MF3d(p, N) of MF x (¢, N) (theorem 3.28). This classification result has now various
proofs. Section 3.6 provides an overview of one of these proofs, due to Kisin.

The relevance of the “semi-stable case” also comes from its relationship with the “general
case”. It is not known if a semi-stable reduction theorem® holds, but it turns out to be true at

(2)That is X is étale locally isomorphic to Spec ((’)K [Th,...,Tn)/(Th - Tr — 7r))

(3)Analogous to the monodromy of a family of complex analytic varieties parametrized by the unit disc, cf. §2
(4)Which is a generalization of Berthelot-Ogus isomorphism.

(5)I.e. X acquires semi-stable reduction after base change to a suitable finite extension of K.
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the cohomological level. More generally, any de Rham representation is potentially semi-stable,
i.e. becomes semi-stable when restricted to G, for an suitable finite extension L/K (this deep
result, the p-adic monodromy theorem, has several proofs as well, ¢f. theorem 5.3). As a result,
one can slightly generalize the classification of semi-stable representations mentioned before, to
get a complete classification of de Rham representations (which is not possible using the functor
D4r alone). In particular, this allows to recover the étale cohomology of a proper and smooth
K-variety in terms of a hidden structure of its de Rham cohomology, cf. §5.3.

Acknowledgement. The author is grateful to the referee for his careful reading, and to Xavier
Caruso for noticing a dubious shortcut in a preliminary version of this article.

2. Analogies with the /-adic/complex analytic case

We assume in this section that K is a finite extension of Q,. Recall the exact sequences
{1} = Ix — Gg — Gal(k/k) — {1}

{1} = Px — Ik Loe, H Z(1) — {0}
L#p
where Ix = Gal(K/K"™) is the inertia subgroup (one has K™ = Uy, K(u,)) and Px =
Gal (I?/ Uptn Knr(pl/”)) the wild inertia subgroup (i.e. the pro-p-Sylow subgroup of Ix). Here
te: Ik — Zy(1) = @n pen (K) is the cocycle defined by g(;;—’f’n") = ty(g) mod ¢" for all g € I

(where (m¢,n)n>0 is a sequence in K such that me,0 = m and Wf ni1 = Ten for all n € N).

Theorem 2.1 (Grothendieck’s monodromy theorem). — Let £ # p be a prime integer, and
V' an l-adic representation of Gix. Then V is quasi-unipotent, i.e. there exists a unique nilpotent
endomorphism N: V(1) =V and an open subgroup I C I such that

(Vg € I)(Vv € V) g(v) = exp(te(9)N)(v).

The étale cohomology groups H*(X 5, Q,) of a proper and smooth K-variety X provide such
(-adic representations of G . Grothendieck’s theorem implies that H*(X 5, Q,) is quasi-unipotent.
When X has good reduction, then H*(X 5, Q,) is unramified (i.e. the action of I is trivial). As
mentioned above, the p-adic étale cohomology of X is potentially semi-stable (crystalline in the
good reduction case).

Similarly there is an analogy with the complex analytic case. Let A be the open unit disc,
and A* = A\ {0}. Recall that from the point of view of the étale topology, A (resp. A*) is the
analogue of the spectrum of a strictly henselian DVR (resp. its generic fiber). Let f: X — A
be a proper morphism of complex analytic spaces, which is smooth above A*. Let t € A*: as f
induces a fiber bundle of A*, the positive generator of 71 (A*,t) provides an automorphism

T:H*(X:,Z) - H* (X, Z)

(the monodromy operator) which is of course trivial when f is smooth. In general it is quasi-
unipotent: there exists a € Z~¢ such that 7% — 1 is nilpotent (local monodromy theorem). When
the special fiber X is a reduced normal crossing divisor, then it is even unipotent, i.e. N =T —1
is nilpotent (cf. [44, §2] for more details).

Hence there are the following analogies:

complex analytic l-adic p-adic
good reduction trivial unramified crystalline
semi-stable unipotent unipotent semi-stable
general case quasi-unipotent quasi-unipotent potentially semi-stable
local monodromy | ¢-adic monodromy theorem | p-adic monodromy theorem
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Remark 2.2. — A notable difference is that in the p-adic case, unlike the complex analytic case,
the monodromy operator lives on the differential side (log-crystalline cohomology), and not the
topological side (étale cohomology). This had been predicted by Jannsen.

The preceding analogies are reinforced by partial converses of comparison theorems in the case
of abelian varieties. More precisely, if A is an abelian variety over K and V,(A) its ¢-adic Tate
module, we have the following results:

Theorem 2.3 (Néron-Ogg-Shafarevich criterion, ¢f. Serre-Tate [57, Theorem 1],
Grothendieck [41, Exposé IX, Proposition 3.5])

A has good (resp. semi-stable) reduction if and only if for some (all) £ # p, the £-adic repre-
sentation Vo(A) is unramified (resp. unipotent of level 2).

The p-adic analogue is:

Theorem 2.4 (Coleman-Iovita, cf. [21, Theorem 4.7], Breuil [16, Corollaire 1.6])
A has good (resp. semi-stable) reduction if and only if the p-adic representation V,(A) is
crystalline (resp. semi-stable).

Remark 2.5. — There are f-adic and p-adic anabelian good reduction criteria for proper, smooth
and geometrically irreducible K-curves with semi-stable reduction (cf. [5]).

3. The ring By; and semi-stable representations

We use the standard notations: R = lim Oc, and ¢ = (e™),>0 (resp. p = (p™)n>0 and
TP
7 = (7™),,>0) is an element of R such that (1) is a primitive p-th root of the unity (resp. p(®) =p

and 70 = 7). These elements are denoted g, p” and 7 respectively in [18]. We denote by x

the p-adic cyclotomic character. Most of what follows is contained in [35] & [36] (¢f. also the
exhaustive book [40]).
3.1. Construction of Bg. — An easy example of curve with semi-stable reduction is given

by the Tate curve(®). There exist elements ba(q),bs3(q) € g Z,[q] (hence rigid analytic functions
converging on the open unit disc), such that for any complete extension F' of Q,,, for any ¢ € F'
such that 0 < |g| < 1, the cubic curve E, C P% whose equation is y? + zy = 2 — ba(q)x — b3(q)
is non-singular, and E,(F) ~ F*/q% (c¢f. [60, Theorem 1]). Let’s consider the case ¢ € K. If
n € Nsg, and z € E,(C) ~ C*/q¢% is killed by p", let T € C* be a lift of x : there exists
f(Z) € Z such that z*" = ¢/(®. The image of () in Z /p™ Z only depends on 2. One gets a map

E,[p"] — Z /p"™ Z, which is a surjective morphism of groups, whose kernel is i,» (K ). Thus, there

is an exact sequence 0 — ppn (K) — Ey4[p"] — Z /p" Z — 0. Passing to the limit, it provides an
exact sequence 0 — Zp(1) — T,(E,y) — Z, — 0, hence an exact sequence of p-adic representations

(%) 0— Qp(l) — Vp(Eq) — Q, — 0.

This extension corresponds to a class a € H'(Gk,Q,(1)). Explicitly, let ¢ = (@™)pen € R
be an element such that ¢(®) = ¢. The action of Gx on § is given by g(g) = £%9g for
g € Gk, where ¢z: Gk — Z,(1) is a continuous cocycle, whose class is a. By Kummer’s the-
ory, one has K*/K*?" S HY(G, pyn(K)), hence 4: ]'&nKX/KXpn S HY Gk, Zy(1)) (because

{HY(G K, pipn (K))}nen has the Mittag-Leffler property, cf. [59, Proposition 2.2]). The class of cz
in H'(Gx,Z,(1)) is nothing but §(¢). The valuation induces a morphism of groups K*/K*?" —
Z /p" Z, hence a morphism H' (G, Z,(1)) = Z,. As v(g) > 0, the class of ¢z has infinite order

(6) That provides the uniformization of the elliptic curves with non-integral j-invariant over Q,,.
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in H' (G, Zy(1)), in particular, its image a € H'(Gx, Q,(1)) is not trivial, and the sequence (x)
does not split.
In the basis (e, f) (where e = “log(e)” and f = “log(q)”) of V,(E,), the matrix of the action

of G is
X Cq
0 1/°

A basis of Dar(Vp(Ey)) is thus (7' ® e,1® f — t7'b® e) where b € Bgg is such that cz(g) =
(g —1)(b) for all g € Gk, i.e. behaves like “log(q)”: the construction of By, requires that of a
logarithm map

log[.]: Frac(R)* — Bjx -
Recall that R is a valuation ring: denote its maximal ideal by mg. First, if z € 1 + m¢e (resp.
z € 1+ mg), one has 27" € 1+ pOc (resp. (0 € 1+ mc, so (2(0)” € 14 pOc i.e. [2P"] - 1€
Ker(0)+pW(R)) for large r. As 1+pOc¢ (resp. Ker(0)+pW(R)) has divided powers in O¢ (resp.
Acris), the series

logz = M _ 1 f(—l)”‘l(n — Dl(a? — 1)[n]

pT pT n=1
log [2P" = - n
(resp. log[z] = % - ]%;_1:(1)"1(71 ([ ] - 1) ])

converges in C' (resp. B, = A.is[p™!]), defining a group homomorphism

log: 14+ mg — C  (resp.log[]: 1 + mr — B}

cris )

It is injective because 1 + mg (resp. 1+ mg) does not contain p”-th roots of unity. As OF =~
EX x (1 +mg) (resp. R* = kX x (1 + mg)), one extends it to OF (resp. R*) by putting
logla]z = logz for a € kX and x € 1+ m¢ (resp. log[ax] = log[z] for a € kX and = € 1+ mg).
Now, if z € C* (resp. x € Frac(R)*) has valuation § (witha € Z and b € Z), then y = Z—Z € O

(resp. y = %—2 € R*), and we put

lo

10gz:% (resp. loglz] = M)

b
where we choose

log(p) =0 and log[p] = 1og<[f’]> §$< >n i nlg”anB

Of course, the maps log and log[.] are G k-equivariant group homomorphisms. Also, if z €

Frac(R)*, one has 0(log[z]) = log(z(?)). Indeed, if y, a and b are as above, one has 0(log[z]) =
©)

$0(10gy] + alogp]) = § log H([y]) = *2f— =logz().
Remark 3.1. — If moreover 29 € K*, one has [(—] —1 € Fil' B4g, and
400 et
log[z] — log(z") = Z %(ﬁ%} —1)" € Fil' Bar .
n=1

Coming back to V,(E;), we can now write Dar(V,(E;)) = Kz @ Ky with z = 7! ® e and
y=1® f —t1log[qg] @ e. As 0(log[q] — logq) = 0, one has
Dar(Vp(E,))  ifi<0;
Fil' Dar (Vp(Eq)) = K (y + log(q)z)  if i = 0;
0 if ¢ > 0.
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Definition 3.2. — We put By = Beyis [10g[}3ﬂ C Bgr.
Put U := {log[z], € 1 +mg}. As the image of log[.] is U + Qlog[p] C BZ,, + Qlog[p], the

cris

periods of Tate curves lie in By, so a B.is-algebra which is a period ring for the semi-stable case
should contain Bg. It turns out that B is such a ring, c¢f. §4.

Remark 3.3. — (a) As p = 7°%u with u € O}, one has log[7] € % + U (¢f. above), one

has Byt = Beyis [log[%]] as well.

(b) The construction of the map log[.], i.e. that of log[p] depends on the choice of log(p) (here
we chose log(p) = 0), that is of an extension of the p-adic logarithm to C'*. Thus the ring
Bst, seen as a subring of Bqr, depends on this choice.

(c) More generally, any extension 0 — Q,(1) — V — Q, — 0 is semi-stable (i.e. By
admissible, cf. definition 3.13). It is crystalline precisely when its class in H} (G, Q,(1)) ~
Qp @z, mn KX/KXP" belongs to the image of Qp ®z, @n OIX(/OIX(’)” (because U C Beyis)-

(d) One can show that U = B®=.' NFil® B4r (¢f. [25, Proposition 1.3]).

cris

3.2. Properties of By;. — In what follows, we put u, = log[] (so that Bs; = Beris[ur]), and
¢ = cz: Gxg — Z, for short. For g € G, one has g(7) = 97, so g([7]) = [¢]°9[7]: taking
logarithms, we have

9(ur) = ur +c(g)t.
The natural map K ®p, Beis — Bar is injective (¢f. [17, Proposition 2.47]). It extends into a
map K ®k, Bst — Bar.

Proposition 3.4 (cf. [35, Théoreme 4.2.4]). — The natural map
21 (K ®K0 Bcris)[X] — BdR
X = uy

is injective. In particular, Bg ~ Beis[X], and K ®k, Bst — Bar is injective.
Corollary 3.5 (cf. [36, Proposition 5.1.2]). — BgK = (Frac(B4))¢* = Kj.
Remark 3.6. — One has k — R, so W(k) < W(R) C Acis, hence I/(O;r = W(k)[p~'] — B

cris*

The preceding proposition implies that the map K ® Kgr Bst = Bar induced by ¢ is injective.

We endow K ®g, Bst with the filtration induced by that of Bqr. Also, we can extend the
Frobenius map on B.s to a map
p: Bgt — Bgt
by putting ¢(ur) = pu, (since u, = log[w] and ¢([7]) = [7]?). This is licit because By =
Beris[tr] > Beris[X]. Also, we endow By with the monodromy operator

N: Bst — Bst

which is the unique Bcyis-derivation of Bgy = Beyis[ur] such that N(u,) = —1. Of course, p and N
commute with the action of Gg. Also, one has Bé\t] =0 — Byis, 50 the fundamental exact sequence
(¢f. [35, Théoreme 5.3.7]) can be rewritten as follows:

Proposition 3.7. — The sequence
e=1
OHQP%BQ]:O%BdR/BgR%O

15 exact.

For i € Zsp, we have N(p(ul)) = N((pug)?) = ip'ui=t = p(i(pur)=t) = pp(iui=t) =
pp(N(ul)). By Beris-(semi-)linearity, we get:

Proposition 3.8 (cf. [35, 3.2.2]). — N¢ = ppN in Bg.
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Remark 3.9. — As a Bs-algebra, with G-action and Frobenius map, the ring By does not
depend on the choice of log(p), whereas the monodromy operator and the embedding K ® gk, Beris —
Bgr do, ¢f. remark 3.3.

3.3. The tensor structure of MF g (¢, N). — The category MF g (¢, N) has a tensor product
and internal Hom.

o Let (D', ¢/, N',Fil* D) and (D", ", N" Fil* DY) be filtered (¢, N)-modules. The tensor prod-
uct D' @ D" is the Ky-vector space D' @k, D" endowed with the Frobenius map ¢’ ® ¢’, mon-

odromy operator N’ ® ldp» +1ldps @ N" and filtration Fil"(D' @k, D")x = > ;.5 Im (Fili Dl @k
Fil'™* DY, — (D' ®, D")k) for r € Z.
. . . e i K ifi<0;
e There is a unit object 1 := (Ko, o, N =0, Fil* K) where FilI' K =
0 if 1 > 0.
e The internal Hom, denoted by Hom(D’, D”), is the Ky-vector space Homg, (D', D") equipped

with the Frobenius map (resp. monodromy operator) defined by o(f) = ¢” o f o ¢'~! (resp.
N(f)=N"o f— foN’)for f € Homg, (D', D”) and filtration Fil" Hom(D', D")x = {f: D} —
DY, (Vi € Z) f(Fil' Dy) C Fil'™" DY} for r € Z. In particular, every D € MFg(p, N) has a
dual DV = Hom(D, 1).

Remark 3.10. — The category MF g (¢, N) is not abelian, yet it has a notion of exact sequence:
0— D' — D — D” — 0 is exact when it is in the category of Ky-vector spaces endowed with
a Frobenius map and a monodromy operator, and when the filtrations on D% and D, are those
induced by that Dg.

3.4. Semi-stable representations. — As usual, we denote by Repr(GK) the category of
p-adic representations. There are full sub-categories

Repcris(GK) C Rede(GK) C Repr (GK)
(¢f. [36]). TV e RepQP(GK), we put:
Dst(V) = (Bst ®QPV)GK .

As BgK = Ky, this is a Ky-vector space, endowed with a o-semi-linear Frobenius map
v: Dgt(V) — Dg(V) and a Kp-linear monodromy operator N: Dg (V) — Dg (V) (induced
by ¢ ® Idy and N ® Idy respectively, since they are G x-equivariant). The relation Ny = ppN
on Dy (V) follows from proposition 3.8. Also, the injective map K ®p, Bsy — Bqr provides an
injective map
K QKo Dst(V) — DdR(V).

We endow Dgt (V)i := K ®, Dst (V) with the filtration Fil® Dg (V') induced by that of Dar (V).
Remark 3.11. — Of course, the monodromy operator and the embedding Dg; (V) — Dar (V)

depend on the choice of 7 and log (¢f. remark 3.9). One can explicitly describe how they vary
when one changes 7 and log (cf. [36, §5.2]).

By Bgt-linearity, the inclusion Dg; (V') C Bgt ®q,V induces a By-linear and G k-equivariant map
ast(V): Byt @k, Dst(V) — Byt ®q, V-
Proposition 3.12. — The map as (V) is injective and Dgt (V) € MFg (p, N).
Proof. — As Frac(Bsgt) is a field with invariants Ky (¢f. corollary 3.5), the natural map
as(V): Frac(By) ®k, (Frac(By) ®q, V)" — Frac(By) ®q, V
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is injective by the standard argument (¢f. [36, Proposition 1.6.1]). The injectivity of ag (V)
follows from the following diagram
ast (V)
Bst ®K0 Dst(v) Bst ®QPV
$ 1®as (V) \L

Frac(Bst) ®x, Dst(V) Frac(Bst) ®

| |

ast (V)
Frac(Bst) ®k, (Frac(Byt) ®q, V)G oalV) Frac(Bst) ®q, V
and the injectivity of Byt @k, Dst(V) — Frac(By) ®k, (Frac(Bst) ®q, V)&x (deduced from the
inclusions Byy C Frac(By:) and Dg (V) C (Frac(BSt)®QPV)GK). This implies that dim g, (Dst (V) <
+00, so that Dg (V) € MFg (p, N). O

Furthermore, the map as (V) is compatible to Frobenius maps (¢ ® ¢ on the LHS, and
¢ @ Idy on the RHS), monodromy operators (N & Idp_(v)+Ids, ®N on the LHS, and
N ® Idy on the RHS) and filtrations after extending the scalars to K (where Fil"(K ®g,
Byt @Ko Dst(V)) = 3 ez Im (Fil'(K @k, Bst) @k Fil' (Dt (V) k) = K ®k, Bst @k, Dst(V)) and
Fil" (K ®k, Bst ®q, V) = Fil"(K ®k, Bst) ®q, V).

Definition 3.13. — V € Repr(GK) is called semi-stable if as (V') is an isomorphism. The full
subcategory of RepQP (Gk) of semi-stable representations is denoted by Repy. (Gk).

The good properties of Repy (G ) follow from:
Proposition 3.14 (cf. [18, §1.4.1] & [36, Proposition 5.1.2]). — By is Gk -regular.

Knowing proposition 3.12, this follows from:

Lemma 3.15. — Let b € By \{0} such that the line Q,b C B is stable by Gr. Then b €
tZKI" C BX,

cris®

Proof. — We only use the stability under the inertia Iy = Gal(K /K™): we may assume G =
Ik, i.e. k = k hence Koy = I/(OFT. Multiplying b by the appropriate power of ¢, we may also
assume b € BJ; \t Bj;: the map 6 induces a G-equivariant morphism Q, b= K6(b) C C. This
implies that the representation Q, b is C-admissible. By [55, Corollary 1] (cf. also [18, Theorem
2.2.1]), the action of Gk on the line Q,, b is finite: there exists a finite extension L/Kj such that

be BSCiL = Lo = Ky (recall Ky = I/(Om by assumption). O
Proposition 3.14 and lemma 3.15 imply (¢f. [36, Proposition 1.5.2]):
Corollary 3.16. — (i) V € Repy(Gk) & dimg, (Dst(V)) = dimq, (V);

(i) if V1, Vo € Repy (Gk), then V1@V, € Repy (Gi) and the natural map Dg (V1) ®k, Dst (V2) —
Dyt (V1 ® Vi) is an isomorphism compatible with Frobenius maps, monodromy operators and
filtrations after extending the scalars to K; similarly, if V € Repy(Gk), then VY, A*V €
Repg, (Gx) and Dgt(VY) — Dst(V)VY, A®Dgt (V) — Dgt(A®V) are isomorphisms compatible
with extra structures;

(iii) if V € Repy(Gr) and 0 = V! -V — V" — 0 is an ezxact sequence in Repr(GK) then
V', V" € Repy(Gk) and the sequence 0 — Dgt (V') = Dgt(V) — Dgt (V") — 0 is exact in
MF i (¢, N);

(iv) Let n € Homeont(Gk,Q, ). Then 1 is semi-stable (i.e. Q,(n) € Repy(Gk)) if and only if
N = N X’ With Ny, € Homeont (G, Q;) unramified and i € Z.

Remark 3.17. — (a) Properties (i)-(iii) in the preceding corollary can be summarized by say-
ing that Rep, (G k) is a sub-tannakian category of Repq, (Gk), with fiber functor Dg.
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(b) Of course, if V is semi-stable, it is de Rham and Dg(V)x — Dar(V) (by a dimension argu-
ment).

(c) IV € Repq (Gxk) then Ders(V) = Dt (V)N=0. In particular, if V is crystalline, then V is
semi-stable, Deyis(V) = Dge (V) and N = 0.

(d) Ve Repr(GK) is semi-stable if and only if V|7, is semi-stable (in Repq (Gg=)). This
follows from H!(Gal(k/k),GL,(W(k))) = {1} (Hilbert 90), which implies that I?g\r R K,
Dst (V) :> Dst(V\IK)'

Definition 3.18 (cf. [36, §5.3]). — If (D, ¢, N,Fil®* Dg) € MF (o, N), one puts

=1
V(D) = (By @1, D)N=0 N Fil’(Bar @5 D)

where the intersection is taken in Byqr ® k Dx = Bgr ®k,D and Bgr @ x Dk is endowed with
the usual tensor product filtration. This provides a functor on MFg (¢, N) with values in the
category of topological Q,,-vector spaces endowed with a continuous linear action of Gk (since
Gk commutes to the Frobenius maps, the monodromy operators and filtrations).

Proposition 3.19 (cf. [36, Théoreme 5.3.5]). — If V € Repy(Gr), then V 5 Vg (Dg(V)).
The functor

Dst: Repy(Gx) = MFk (o, N)
induced by Dg; is fully faithful.

Proof. — Let V € Repy (Gk): one has Bg ®x, Dst (V) = Byt ®q,V- Extending the scalars to
Bar yields an isomorphism Bar ®x Dt (V) x — Bar ®q, V., so that

p=1 N =1
V = (Bé\t/:O N Fi|0 BdR) ®Qp Vv —)(Bst ®QPV);©:O N Fi|O(BdR ®va) = Vst(DSt(V))

(the first equality follows from the fundamental exact sequence, cf. proposition 3.7).
This implies that if V7, V2 € Repy (G k), the composite

Hom(V1, V2) — Hom(Dgt (V1), Dst(V2)) — Hom(Ve (Det (V1)), Vst (Dst (V2))) ~ Hom(V, Va)

is the identity. Also, one has f = Dg(Vs(f)) for all f € Hom(Dg:(V1),Dst(V2)) (because
Dst (Vi) = Dgt (Vi (Dst (V3)))): the second map is injective, and Dy is fully faithful. O

Remark 3.20. — Of course, the category Repg, (Gx) is not stable by extension. For instance,
assuming k finite, a non trivial extension

0-Q,(i)—-V—->Q,—-0

is semi-stable if 4 > 1 (even crystalline when ¢ > 2), but it is not de Rham (hence not semi-stable)
when ¢ < 0. For ¢ = 0, there are extensions that are not de Rham (cf. [15, Example 3.9]).

3.5. Admissible filtered (p, N)-modules. — Recall (Dieudonné-Manin theory, c¢f. [31, Chap-
ter 4]) that when k = k, the category of ¢-modules over K, (i.e. the category of F-isocrystals
over k) is semi-simple, with simple objects { D) }aeq Where, if a = ;- with r € Z, h € Z~( and
ged(r, h) =1,
Do) = Ko[T)/(T" = p")

is endowed with the o-semi-linear Frobenius given by the multiplication by 7T'. This means that if
D is a p-module over Ky, there exists a unique sequence aq < - -+ < @, of rationals (the slopes of
D) and a unique decomposition D = &]_; D(«;) where D(c;) is isomorphic to a finite sum of copies
of Di,,. The multiplicity of the slope «a; is the integer dimg,(D(;)) € Z. The slope sequence
of D is the non-decreasing sequence \; < --- < A, of slopes of D, each one repeated according
to its multiplicity (hence n = dimg,(D)). The Newton polygon Px(D) of D is the piecewise
linear curve of the plane starting at the origin whose vertices have coordinates (j, A1 + -+ + A;)
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for 0 < 57 < n. The slopes of its segments are precisely a3 < --- < ., and its break-points
have integral coordinates (because o; dimg,(Djq,)) € Z). In the general case (i.e. when k is not
algebraically closed), the slopes and Newton polygon of D are those of I?On\r ®K, D. The Newton
polygon of D is nothing but the Newton polygon of the characteristic polynomial of the matrix of
@ in any Ky-base of D.

Similarly, one attaches the Hodge polygon to the filtration Fil* Dy . Its slopes are the integers
i € Z such that grf Dx # 0 (the Hodge-Tate weights), with multiplicity dimg (gri(Dg)): let
i1 < --- <4, be the sequence of slopes, each one repeated according to its multiplicity. The Hodge
polygon Py (D) of D is the piecewise linear curve of the plane starting at the origin whose vertices
have coordinates (4,41 + --- + ¢;) for 0 < j < n. The slopes of its segments are precisely the
Hodge-Tate weights, and its break-points have integral coordinates.

tN(D) .................................... , tH(D) .................................... ,
dim g (D(a;)) / dimg (gr* (D)) /

dimpc, (D) : : dimg (D)
slope a; - slope ¢
FIGURE 1. The Newton polygon Ficure 2. The Hodge polygon
Definition 3.21 (cf. [36, §4.4.1]). — Let D € MFk(p, N). If dimg, (D) = 1, one can write

D = Kpe and ¢(e) = de with A € Ky: we put ty(D) = v(\) € Z. Also, there exists ty (D) € Z
0 if i > ty(D)
tn(D) = tn(det(D)). One easily that t§(D) = > cqadimg,(D(a)) is the valuation of the
determinant of the matrix of the Frobenius map (in any base), and is the ordinate of the endpoint
of Py(D). Also tg(D) =", idimg(gr' Dk) is the ordinate of the endpoint of P (D).

such that Fil' Di = { For general D, we put tg(D) = ty(det(D)) and

Proposition 3.22. — The functions tn and ty are additive on MFg (o, N), i.e. for any exact
sequence
0—-D —D— D" -0,

one has tn(D) = tn(D') + tn(D") and tg(D) = tg(D') + ty(D"). Also, they are invariant by
base change to K§*.
Definition 3.23 (cf. [36, Définition 4.4.3]). — A filtered (¢, N)-module D is called admissi-
ble") if for every sub-object D' C D (in the category MFg (¢, N)), one has

tu(D') < tn(D')
with equality when D’ = D. The full sub-category of MF g (p, N) made of admissible objects is
denoted by MF3(p, N).

Remark 3.24. — (1) One can show (c¢f. [32, Proposition 4.3.3]) that D is admissible if and
only for every sub-object D’ of D, the polygon Py (D’) lies above Py (D’), with same end-
points when D’ = D.

(") Historically, these objects were called weakly admissible, admissible objects being those in the essential image of
Dst. As they are a posteriori the same (cf. theorem 3.28), we call them admissible from the start.
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(2) An object D € MFg (¢, N) is admissible if and only if K§* ®x, D € MF3_ e N)
(¢f. [52, Proposition 1.7]).
Proposition 3.25 (cf. [25, Proposition 4.4]). — Assume D € MFg(p, N) has dimension 1.
Then

0 if tH(D) <t
dime (Vst(D)) == 1 Zf tH(D) t
+00 Zf tH( ) >tn

)i

).
In particular, D lies in the essential image of Dyt : Repy(Gx) — MF (o, N) if and only if D is
admisstble.

N(D)a

(D
(D

Proof. — Omne has N = 0 since it is nilpotent. Write D = Kye and ¢(e) = p'v (D) \e with A € WX,
By successive approximations, one can construct 3 € W(k)* such that o(3) = A3, i.e.

P we)=o(B) P PAee=p"Pg e
One has V(D) = (Beris ®e)¥=! N Fil®(Bar ®e), and Fil'(Bqr ®e) = ti~#(P) BT, @e hence
Vee(D) = {t7 b5 @ | b € Beris, () = p'" P~ Pp, b € By

Put i =tz (D) — ty(D): one has Vg (D) =t~ = (P) g1 (Bfmp NFil”Bar ) ® e, which is {0} when
i < 0, has dimension 1 if ¢ = 0, and has infinite dimension when i > 0 (¢f. [25, Proposition 1.3]).

In the case i = 0, the character n: G — Q; corresponding to V(D) = Q, t—ta(D)g=1 g
eis n = x Py with 9y unramified (since f € W(k)*), hence Vg (D) is semi-stable (and
even crystalline). Moreover, one has By ®q, V(D) = Bst(t*tH(D)ﬂ*1 ® e) = By @, D, thus
Dst(Vst (D)) = D lies in the essential image of Dy : Repy (Gr) — MF g (p, N). Conversely if D ~
Dyt (V) with V' € Repy (Gk) of dimension 1, then dimg, (D) =1 and V =~ V4 (Ds (V) =~ Vg (D)
has dimension 1, hence ¢ty (D) = tn(D) by what precedes. O

Proposition 3.26. — If V € Repq_ (Gk) is semi-stable, then Dg (V) is admissible, hence the
functor Dy induces a fully faithful functor Repy (Gk) — MFz}?(ga, N).

Proof. — Let D’ be a sub-object of D := Dg (V). If r = dimg, (D’), one has det(D’) C A"D ~
Dst(A"V) (cf. corollary 3.16 (ii)), with equality if D’ = D. Applying the functor Vg gives the
inclusion (equality when D" = D)

Vst (det(D/)) C VSt(DSt (/\TV)) ~ ANV
so that dimq, (Vs (det(D'))) < +oo (and dimq, (Vse(det(D'))) = 1 when D’ = D). As

dimpg, (det(D’)) = 1, proposition 3.25 implies that tg(det(D’)) < ty(det(D")), i.e. tg(D') <
ty(D'), with equality when D’ = D. O

A rather elementary consequence of proposition 3.25 is the following useful fact.

Lemma 3.27 (cf. [25, Proposition 4.5]). — Let D € MFk (o, N) and V := V(D). Assume
that for all sub-object D" of D (in MF (¢, N)), one has tg(D") < tn(D'). Then dimq (V) <
dimg, (D), the p-adic representation V is semi-stable and Dy (V') is a sub-object of D. In partic-
ular, D lies in the essential image of Dst: Repg(Gr) — MF (i, N) if and only if dimq (V) =

In fact, Colmez and Fontaine proved (cf. [25, Théoreme A]) that MF33 (¢, N) is precisely the
essential image of Dg; on Repy (Gk) (¢f. §5), hence:
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Theorem 3.28. — The functor
Dt : Repy (Gr) — MF¥(p, N)

is an equivalence of categories, with quasi-inverse V.

3.6. A proof of theorem 3.28. — The first proofs of theorem 3.28 are of analytic nature (cf.
[25], [24], [10] and [51]). Here we review that of Kisin’s article [51], which is based on ideas of
Berger (cf. [10]). Filtered (¢, N)-modules are seen as fibers of vector bundles over the open unit

analytic disc A over K (whose K -points are G,-conjugacy classes of {zx € K, |z| < 1}, where
|.| is the absolute value associated with the valuation v). Denote by u the coordinate of A, and
by O the ring of Ky-analytic functions on A:
0= {f = Zanu € Kofu] ’ (Vr €[0,1]) ngr}rloo|an|r = 0}.
n>0
Let & = Wu] be the sub-ring of functions whose coefficients have absolute values bounded by 1.
Finally, let

X = {f = Zzanu" € Kofu,u™'] ’ (Fry € [0,1]) (Vr € [ry, 1]) ngrﬂleoo|an|r" = 0}
ne
be the Robba ring: the ring of functions defined on some annulus (depending on the function) of
outer radius 1. Of course one has the inclusions & C O C Z. All these rings are endowed with
the o-semi-linear Frobenius endomorphism ¢ defined by

p(u) = uP.
Recall we fixed an element 7 € R, i.e. a sequence (7)), cn such that 7(?) = 7 and (z("+1)P =
7" for all n € N. Let E(u) € W[u] be the minimal polynomial of 7 over K (this is an Eisenstein

polynomial). One has g%g; €1+ &[p~1], so the infinite product

=TT (B
n=0

converges in O, providing a function whose divisor is the set of (conjugacy classes of) the (™,

One has \ = g%g;gp(/\), so (A7) = /\’15%; € O[A71], and ¢ extends to O[A1].

Let Ny: O — O be the derivation given by Ny = Au-L. It extends to O[A~!], and

Nyp = p%sﬁNv-
Definition 3.29. — (1) D € MFx(p, N) is said effective if Fil® Dg = Dg. We denote by
MFT (o, N) (resp. MF‘}“’ad (¢, N)) the sub-category of effective (admissible) filtered (p, N)-
modules.

(2) A p-module over O is a finite and free O-module M endowed with an injective ¢-semi-
linear Frobenius endomorphism ¢: M — M. It is of finite E-height if the cokernel of the
linearization p* M — M is killed by some power of E.
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(3) A (¢, Ny)-module over O is a g-module (M, ¢) endowed with derivation Ny: M — M
(i.e. such that (Vf € O) (Vm € M) Ny(fm) = Nv(f)m + fNv(m)) and such that
Nyy = p%gpNv. We denote by Modo (¢, Nv) the category of (¢, Nv)-modules over O
that are of finite E-height.

(4) A (o, N)-module over O is a p-module (M, ) over O endowed with a Ky-linear endomor-
phism N: M /uM — M /uM such that N¢ = ppN modulo u. We denote by Modo(p, N)
the category of (¢, N)-modules over O that are of finite E-height.

(5) A (¢, N)-module over & is a finite and free G-module 2 endowed with an injec-
tive and ¢-semi-linear endomorphism ¢: 9 — 9 and a Kp-linear endomorphism
N: Ky @w (M/udM) — Ko Q@w (M/uMM) such that No = ppN modulo u. We de-
note by Mode (¢, N) the category of (¢, N)-modules over & that are of finite E-height
(i.e. whose cokernel of the linearization *90t — 9 is killed by some power of E), and by

Modg (¢, N)q its isogeny category (i.e. Modg(p, V) with Hom groups tensored by Q).

3.6.1. Kedlaya’s slope filtration. — To translate the admissibility of a filtered (¢, N)-module in
terms of the associated bundle over A (¢f. below), one needs Kedlaya’s results on the slope
filtration of ¢-modules on the Robba ring.

Definition 3.30. — A p-module over Z is a finite and free Z-module M endowed with a ¢-
semi-linear endomorphism ¢: M — M whose linearization is an isomorphism. We denote by
Modg(¢) the corresponding category.

In [49], Kedlaya constructs a %Z-algebra 28 such that for all M € Modg(y), there exists a
finite extension L/K{* such that
M Qup B @ o L
0
admits a basis (mq,...,m,) such that there exist aq,...,a, € L with ¢(m;) = a;m; for all
1 € {1,...,n}. The valuations of a1,...,a, only depend on M and are called the slopes of M

(when they are all equal to s € Q, M is said pure of slope s). Moreover, there is a Dieudonné-Manin
type filtration in this context:

Theorem 3.31 (cf. [49, Theorem 6.10]). — Let M € Modg(p). There exists a sequence of
rationals s1 < sg < --- < s, (the slopes of M) and a canonical filtration (the slope filtration)

{0}:M0§M1§"~§MTZM

by sub-@p-modules such that M;/M;_1 is pure of slope s; for alli € {1,... r}.

Remark 3.32. — This theorem is similar to Harder-Narasimhan filtration on vector bundles over
smooth projective curves. These are special cases of a very general formalism of slope filtrations
and semi-stability, developed by André (cf. [2]).

Definition 3.33. — We denote by Mody (¢, Ny) (resp. Mody (o, N)) the subcategory of
Modo (¢, Nv) (resp. Modop(p, N)) of M such that the g-module # defined by Z ®o M is
pure of slope 0.
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In [51], Kisin constructs functors between the preceding categories:

MF (o, N) =—= —D> Modo (¢,

Modes(p, N)q —> Modo

3.6.2. Indications on how the functors are defined. — To construct M, one considers the poly-
nomial ring O[A~1, £,], where £, is a variable that corresponds to “log(u)”. The maps ¢ and Ny
extend to O[\~1 ¢,] putting

o(ly) = ply and Nv(l,) ==\
We denote by N the derivation with respect to ¢,: one has NNy = Ny N and Ny = ppN on
O~ 4,].

For n € N, let @n be the completion of the localization of Ky(m,) ®w & at the ideal generated
by u—7(™: it is a complete discrete valuation ring, whose fraction field is (A‘Sn [(u — ﬂ'(”))*l]. We
endow it with the (u — 7(™)-adic filtration. This ring corresponds to germs of functions at 7(").
There are natural inclusions

Sp Y coOcolt)cé,
where the last inclusion maps ¢, to
u — () © (—1)ym1 Sy — N
log< +(7))=Z( T)n ( —) ) € G,.

m=1

If D € MFS (¢, N), the O-module M(D) is defined as a sub-O-module of
(Oltu, N @, D)V "
defined by conditions (related to the filtration) on the fibers at the points of A corresponding to
the 7(") (for n € N) as follows.
The Frobenius map on O[{,] factorizes as ¢ = ow o po,w where pw : O[l,] = O[{,] is Z,[u]-
linear and acts by ¢ on coefficients, whereas v/ is W-linear and maps u to u?. We consider

the composite

—n

® —n ~ ~
Oltu) ®x, D X""5 Ot ) @, D —— &, @, D = &, ©x D .
— _twERe TR
As the image of ¢/ (A) = [] @%_"(Eg;(z) )) in &, belongs to Egzg) )érf = (u— ﬂ'(”))érf, it
meN

extends into a localization map:
ln O[)\fl,fu] K, D — én[(u — 71'(”))71] ®r Dik.
The O-module O[A™!, £,]®k, D is endowed with the operator N defined by N®ldp + ldojy-1,0,] ®N.
Furthermore, the @n—module @n [(u — ﬁ(”))_l] ®K Dx is equipped with the tensor product fil-
tration, given by:
Fil' (én {(u - w<">)—1] DK DK) =Y Im ((u —2M=iG, ok FiPﬂ'(DK))
jez
for all ¢ € Z. Then
-1 N=0 10 (R -1
M(D) = {x € (Ot \"Y @, D) ‘ (Vn € N) 1 () € Fil (Gn [(u = m) Y] ®x DK)}.
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Basically, D(M) is just M/uM endowed with the induced Frobenius and the monodromy
operator N given by the reduction of Ny modulo u. The filtration on D(M)g is more difficult
to define (it is related to the fibers at {7(™},cn, cf [51, §1.2.7]).

The functor ¥ consists in replacing Ny by its reduction N modulo u. As for ©, it is merely
the scalar extension from & to O.

The functors M and D are quasi-inverse equivalences of categories (¢f. [51, Theorem 1.2.15]),
and induce quasi-inverse equivalences of categories between MFif’ad(go,N ) and MOd%((p,Nv)
(¢f. [51, Theorem 1.3.8]). This provides a fully faithful functor

MF<"2(p, N) = Mode (¢, N)q,

hence an “integral” p-adic Hodge theory (p is not invertible in &), without restriction on the
absolute ramification index of K or the length of the filtration. The interest of such a theory is
that it is convenient to deal with deformation problems, finite flat group-schemes over Ok, etc.

Remark 3.34. — The p-adic completion Og of G[u~!] is a discrete valuation ring, whose residue
field is k((u)). The G-algebra structure of W(R) given by u — [7] extends to a Og-algebra structure
of W(Frac(R)). Put 6™ = 0" N"W(R) C W(Frac(R)). It is an extension of & endowed with an
action of Gy (rtm|neny = Gal (k((w)**/k((w)).

As every (p, N)-module becomes effective after an appropriate Tate twist, Theorem 3.28 then
follows from:

Proposition 3.35 (cf. [51, Proposition 2.1.5]). — Let D € MF‘;{fF’ad(gp, N) and M € Modg(p, N)q
such that ©(IMM) =~ D. Then there is a canonical (G g (zm|neN)-€quivariant) isomorphism

Homg#,({m, 6”) :> HomMFK(%N) (D, B:t)
and dimq (Hommr (o, 3) (D, BE)) = dimg, (D) so D is admissible.
The map is constructed as the composite of injective maps

cris cris

Homgyw(m, Gnr) — Homoﬁkp(/\/l, B+ ) — Hom(l)ﬁF“’(P(Do, B+ ) — H0m|:i|7907]\[(D7 B:;)

where MM = (M) = M(D) and Dy = (O[l,] @k, D)N=". The first map comes form the injection
& < B, (in which u is mapped to the Teichmiiller element [7] € BZ, ), that extends into
injections G™ < B, and O < B, . The last one is deduced from the inclusion D C O[¢,]®@x, D
and the isomorphism O[¢,] ®o B, — BZ; €. + log[7] (cf. proposition 3.4). Classical arguments
(cf. [34, A.1.2 & B.1.8.4]) imply that dimq (Home,, (9, &™)) = dimk, (D). As D is admissible,
lemma 3.27 implies that dimq (Homgi,e n (D, Bf)) < dimg, (D), so the injectivity of the map

shows that this inequality is an equality, and that the map is an isomorphism.

4. The comparison theorem

Theorem 4.1 (cf. [61, Theorem 0.2]). — Let X' be a proper scheme over O with semi-stable
reduction, X its geometric generic fiber and Y = Xy its special fiber (endowed with the log-
structure induced by that it defines on X, cf. §6.4). Then there exists a canonical and functorial
Bst-linear isomorphism

Bst ®Qp Hgtl(XI?’ Qp) = Bst ®WHirgg—cris (Y/W)

compatible with Frobenius maps, monodromy operators and filtrations after extending the scalars
to Bar. In other words, the p-adic representation HJ (X, Q,) is semi-stable, and

DSt (HZZ(XI?’ Qp)) = KO QW H?gg—cris(Y/W)'
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This was proved by Kato when dim(X) < p—;l (¢f. [48, Theorem 1.2]), by Tsuji in general, by
Niziot and extended by Faltings to the case of non constant coefficients (see the introduction of [62]
for more details). Tsuji’s proof uses a generalization of Fontaine-Messing’s syntomic cohomology
(¢f. [39]), symbols (defined by Bloch and Kato (¢f. [14]) and relative versions of period rings
(introduced by Faltings). Recently, it has been reproved and generalized by various authors:

e by Andreatta-lovita (cf. [3] & [4]), using Faltings’ ideas, based on the sheafification of period
rings (in some appropriate topos);
e by Beilinson (cf. [6] & [7]), using “derived de Rham complexes” and “h-topology”;

e by Yamashita and (¢f. [64]) Yamashita-Yasuda in the case of open varieties;

e by Tan-Tong (c¢f. [58]) for the crystalline comparison theorem, based on ideas of Scholze (cf.
[54]);

e by Colmez-Niziol (¢f. [26]), using syntomic cohomology and the cohomology of (¢,T')-
modules.

4.1. (Log-)crystalline interpretation of B and Bg. — If n € N+, put

ngis (O[?/pnO[?WVn) = h_r)n Hq((OL/pnOL|Wn)CriSa ﬁL,n)
L/K

where the limit runs over finite extensions L/K in K, and where 0 L,n is the structure sheaf of
(OL/pnOL |Wn)cris-

Theorem 4.2 (cf. [33, Théoréme 1]). —

Acris Zf q= 0,

limHL. (O=/p"O=|W,,) =
< CI‘IS( K/p K| ) {0 qu>0

n

Proof. — The first isomorphism follows from the fact that both HY (O /p"Or|W,) and
Acris /P™ Acris are universal divided powers thickenings of O /p"Of in the category of W,-
algebras, and that A is p-adically separated and complete.

To compute H?((OL/p"OL|Wy)ais; OL.n), one embeds Spec(Of/p"OL) into a smooth W,-
scheme: as Or, = W{z| is monogenic, we can write O /p"Or, ~ W, [X]/(f(X)) with f € W, [X],
so that the crystalline cohomology of Oy /p"Oy, is that of the de Rham complex with divided
powers

0— DL,n — DL,n ®WR[X] Q%/Vn[X]/Wn — DL,n ®WR[X] Q%/Vn[X]/Wn =0—---

where Dy, ,, is the divided powers envelope of W,,[X] with respect to the ideal generated by f.
This implies that Hq((OL/p"OL|Wn)CriS, ﬁLyn) =0if ¢ > 2. Also, if y € K is such that y*" = z,
and take the presentation Op,,)/p"Or,) ~ W, [Y]/(f(YP")), we have the commutative diagram

X Dpy —— Drn ®w,[x] Q%/Vn[X]/Wn dx

b | J

yv" Dry)yim == Diry)m @w,[v) Qll/vn Y]/ Wn dy?" =0

which implies that the image of H! ((OL/p"OL|Wn)CriS, ﬁLm) in H! ((OL(y)/p”OL(y) |Wh)eris ﬁLm)
is zero, hence H! (Og/p"OﬂWn) = 0, proving the case ¢ > 0. O

cris

Similarly, the ring By has a strong connection with log-crystalline cohomology. Endow S =
Spec(Ok) and S = Spec(Op) with the canonical log-structures N and N respectively®) | and

(8)Note that the log-structure on S is not fine but only “integral” (cf. [48, 2.4]), which causes no trouble.
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S, = Spec(Ok /p"Of) and S,, = Spec(Oz/p"Of) with the inverse image log-structures N,, and
N, for n € N+g. Following Kato (cf. [48, §3]), let

h: (Sn, Ny) — (Sn, Nn)

and hcris: ((gnv Nﬂ)/Wn)
crystalline topoi.

= ((Sns Ny)/Wh) the map induced on the associated log-

cris cris

Proposition 4.3 (cf. [48, Proposition 3.1]). — heris «Og, jw,, s a quasi-coherent flat crystal of
Og,, yw,, -modules on ((Sn, N")/W")cris7 and for ¢ > 0, one has R? hcris,*O§n/Wn =0.

To describe the crystal .7 = hcris,*ogn/wn’ we embed (S, N,,) in a smooth object: let Z,, =
Spec(W,,[T]) endowed with the log-structure N — W,,[T]; 1 — T (which is smooth over W,,), and
in: Sp — Z, the closed immersion given by T — 7. Let E, = Spec(R,,) be the PD-envelope of
Z,, with respect to i,,. The crystal F# is characterized by its evaluation P, := %#(E,), which is an
R, -module with a connection with log poles

V: P, — P,dlog(T)

(cf. theorem 6.6). Put B, = H2, (O /p"O|W,).

Proposition 4.4 (cf. [48, Proposition 3.3]). — (1) For all p™-th root B of m in O there ea-
ists a canonical element vg € P, and an PD-isomorphism:
B, (V)5 P,
V= vg — 1.

(2) V is the unique B,,-linear connection such that V((vg — D)) = (vg — D= dlog T for all
1€ Z>o.

(3) The Frobenius map on Z, given by T — TP induces a Frobenius map ¢: P, — P, that
extends the Frobenius on By, and satisfies p(vg) = vg.

(4) The natural action of Gk on By, extends to P, and g(vg) = vyg) for all g € Gk.

There exists a unique map®) N': P, — P, such that (Va € P,) V(x) = N(x) dlog(T). This is
a By-derivation. Also, as Ker(P, — O /p"Op) has divided powers, one can put ug = log(vg)
for 8 as above. It is transcendental over B,,. Then

Theorem 4.5 (cf. [48, Theorem 3.7]). — For all i € Ng, one has Ker(N'?) = G}Z t By u[] 50
pN-nile . {zeP,| (3 e N)N'(z) =0} = Bn(ug)

and there is a Bjns—linear isomorphism

B =Bl [log[7]] = Q®z @Pff‘“ﬂp

Cris
n

which is compatible with the actions of G, @ and N.

Remark 4.6. — The proofs are basically the same as that of theorem 4.2, though more technical
because of log-structures.

(9 Denoted by N instead of N to avoid confusion with log-structures.
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4.2. Reduction of the de Rham case to the semi-stable case. — (¢f. [11] and [62,
Appendix]).
Definition 4.7. — (1) Let X be an integral noetherian scheme. An alteration of X is a proper

and surjective morphism a: X’ — X with X’ integral, such that there exists a non empty
open U C X above which « is finite. It is generically étale when one can choose U such that
Y U) = U is étale.

(2) Let R be a complete discrete valuation ring and S = Spec(R). An S-variety is a flat, integral,
separated S-scheme of finite type.

(3) Let S as above, 7 (resp. s) its generic (resp. closed) point. An S-variety X is called strictly
semi-stable when X, is smooth over n, X, is reduced, schematic union of its irreducible
components (X, ;)ier and for all @ # J C I, the s-scheme X := Njcs X, ; is smooth, of
codimension #.J in X.

(4) Let X as above, and Z C X a closed subset containing X. Let Z}, be the schematic closure
of Z,, so that Z = Z,,UX,. The pair (X, Z) is called strictly semi-stable if X is strictly semi-
stable over S, Z is a strict normal crossing divisor in X and, if (Z, ;);er are the irreducible
components of Zj, then for all J C I, Zy 5 := NjcsZy,; is a union of strictly semi-stable
S-varieties.

Theorem 4.8 (cf. [46, Theorem 6.5]). — Let f: X — S an S-variety and f~1(s) C Z C X
a closed subset. There exist a discrete valuation ring R’ which is finite over R, an alteration of
S-varieties a: X' — X and an open immersion of S'-varieties j: X' < X' (where S’ = Spec(R'))
such that :

(i) X' is a projective S'-variety whose generic fiber is geometrically irreducible ;

(ii) the pair (X',a=1(Z) U (X' \ X)) is strictly semi-stable.

)_(/(L)X/_“»X

R S

SI:SI%S,

de Jong’s and Tsuji’s theorems imply Cyr. Indeed, let X be a Spec(Ox )-variety, whose generic
fiber X is proper smooth over K, and V = Hg (X%,Q,): let’s show that V is potentially
semi-stable (hence de Rham). We may make a base change replacing K by a finite extension and
assume X geometrically connected. By theorem 4.8, there exists a finite extension K’/ K, a strictly
semi-stable Spec(Ok)-variety X’ and an alteration a: X’ — X. The map ax/: X} — Xk is
generically finite and flat, of some degree d. Being a proper morphism between smooth schemes of
the same dimension, there is an associated trace map Tr,,, : Rag/ Q, — Q,, which composed
with the canonical morphism Q,, — Rag. Q,, is the multiplication by d (¢f. [42, VII, Theorem
4.1]). This provides a projector of Hg (X%, Q,) — HE (X7, Q,), that makes V' = H3 (X%, Q,) a
direct factor of V' = H?, (X}?, Q,), as Ggr-modules. As V' is a semi-stable representation of G-
by theorem 4.1, so is V. Extra arguments using algebraic cycles imply that Dar (V) ~ Hig (X /K)

(¢f. [62, Appendix]).

5. The p-adic monodromy theorem

Definition 5.1. — V € RepQP(GK) is potentially semi-stable if there exists a finite extension
L/K such that the restriction V|, of V to G lies in Repg (Gr).

Remark 5.2. — If V € RepQP(GK) is potentially semi-stable, and L/K is as above, then
dimz, D (V) = dimq (V') where D (V) = (Bar ®q,V)%*. One has L ®x Dar(V) = Djr(V)
(Hilbert 90), so V is de Rham.
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Conversely:

Theorem 5.3 (The p-adic monodromy theorem). — FEvery de Rham representation of G
s potentially semi-stable.

5.1. Indications on the proof. — Using deep connections between p-adic Hodge theory and
the theory of p-adic differential equations, Berger proved (c¢f. [8]) that theorem 5.3 is equivalent
to a conjecture on p-adic differential equations. The latter was solved shortly after, independently
by André, Kedlaya and Mebkhout (cf. theorem 5.7). The interested reader is advised to consult
Colmez’ extensive Bourbaki survey (c¢f. [23]). To avoid technicalities, we assume that K = K
for the rest of this section.

Interlude on p-adic differential equations. Recall the Robba ring (i.e. the ring of analytic
functions which converge on some open annulus of outer radius 1, denoted by Z in §3.6) is:

Ry = {f = ZaiTi € K[T,T7!] ’ f(T') converges on ry < |T| < 1 for some ry € [0, 1[}
i€Z
and its bounded elements subring is

&l = {f(T) = ZaiTi € K[T,T7'] ’ f(T') converges
i€Z

and is bounded on ry < |T'| < 1 for some r; € [0, 1[}

Note that (a@;{ is a (non complete) discrete valuation field with uniformizer p and residue field

k(T)). Its ring of integers O+ is the subring of functions bounded by one. These rings are
K

endowed with the Frobenius map ¢ given by

p(T)=(1+T)" -1

and acting by o on coefficients. They also carry an action of I' := Gal(K/K) (where K, =
Unen K (™) is the cyclotomic extension), given by

IT) = (14 TP —1
for all v € ' (where x denotes the cyclotomic character).

Remark 5.4. — (1) In general (i.e. when K # Kj), the coefficients should be taken in the
maximal unramified extension of Ky in K., and the actions of ¢ and 'k are more compli-
cated.

(2) In this section, the variable is denoted by T whereas is was u in section 3.6. The reason is
that in the latter, the variable u was corresponding to [7], whereas here it corresponds to
the cyclotomic “variable” [¢] — 1 (here again, this is a bit more complicated when K # Kj).

(3) In literature (especially [8]), the rings Zx and &}, are often denoted BLg,K and Bl respec-
tively. These notations, due to Colmez, are quite useful when has to deal with many period
rings.

Definition 5.5. — (1) A V-module over Z is a free Z-module M of finite rank, which is
endowed with a connection V: M — M Qg Q;/Z’K/Kg’ i.e. a map such that V(f(T)m) =
F(T)V(m) + $5(T)ym @ AT (where O, o = Zic dT).

(2) A (¢, V)-module over Zk is a V-module (M,V) over Zk endowed with a ¢-semi-linear
operator ®: M — M, which is compatible with the connection, i.e. such that the diagram

JV AR M®92KQ<%K/K

@l l@@dw

M—Y> M®g, QL ke
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commutes.

(3) A (p,V)-module over Zk is quasi-unipotent when tensored by a finite étale extension Zr,
of Zk (corresponding to a finite separable extension of k((T))), it admits a filtration by
sub-(p, V)-modules whose graded pieces are trivial, i.e. admit a basis made of horizontal
elements.

Remark 5.6. — The definition of quasi-unipotency can be reformulated without filtrations by
saying that M ®g, %r[log(T)] is trivial, i.e. admits a basis made of horizontal elements.

Theorem 5.7. — FEvery (¢, V)-module over Zk is quasi-unipotent.

This theorem was conjectured by Crew (c¢f. [27, 4.16.2] & [28, §10.1]), motivated by the study
of rigid cohomology with coefficients in an overconvergent F-isocrystal (in particular, the theorem
implies the finite dimensionality theorem, cf. [28] & [50]). It was proved by Tsuzuki in the unit-

root case (c¢f. [63]), and in full generality, independently by André (cf. [1]), Kedlaya (¢f. [49]) and
Mebkhout (¢f. [53]). Kedlaya’s proof relies on the study of ¢-modules on Robba rings, especially
theorem 3.31.

From p-adic representations to p-adic differential equations. Let V € RepQP(G k). IHVis
de Rham, Berger associates a (¢, V)-module Ngr (V) over Z, and shows that V is (potentially)
semi-stable if and only if Ngg (V) is (quasi-)unipotent, so that the p-adic monodromy theorem
follows from theorem 5.7.

This construction uses (¢, I')-modules: there is an equivalence of categories

D' Repq (Gk) — Modi%((go,l")

where Modi& (p,T) is the category of étale (p,T")-modules over é’};, whose objects are finite di-
K

mensional é’};—vector spaces D endowed with commuting semi-linear actions of I'x and a Frobenius
endomorphism ®: D — D, such that there exists a sub-O i -module D C D of finite type such
K

that ®(D) C D and the linearization 1 ® ®: ¢*D := O+ ®o_; D — D is an isomorphism (this
K,p £

is a refinement, due to Cherbonnier and Colmez, ¢f. [19] & [23, Proposition 5.3|, of “classical”
(¢, I')-module theory of Fontaine, cf. [34] & [20, §1]). As in classical Sen’s theory (c¢f. [56] & [23,
§3.3]), one considers the infinitesimal action of Ix on DY(V), given by:
log(v) s
Op:d— ————(d) = im ————
’ log(x(7)) n—o0 X (") — 1@

for any non torsion element v € I'x. This defines a differential operator on DT(V). An easy
computation shows that 9y(1+7)" = i(1+T)*log(1+T) for all i € Z, so that 9y = (1+T)log(1 +
T)-% on &, Aslog(1+T) € Zrc \ é";(, this infinitesimal action does not make sense on D(V'),
so one has to extend the scalars to Zi: put

DI (V) =%k ©g: DI(V).

rig
This is a free Zx-module of rank dimq (V') endowed with a Frobenius (because DT (V) and Zx
are equipped with Frobenius maps) and a differential operator. However, in general, this does
not provide a (¢, V)-module over Z, because log(1 + T') is not invertible in Zf (it has zeros all
the ¢ — 1 with ¢ € iy (K)): one would like to consider 9y = m&) instead. Because of the
possible poles it might introduce, this is not always possible. Berger shows that it is when V' is de
Rham.

To do so, one has to study (DL, (V),8y) around (™ — 1 (for n large enough), and show that

rig
when V' is de Rham, there are local solutions. To this end, one uses localization maps constructed
by Fontaine in [37] as follows. Assume V is positive, i.e. has no non positive Hodge-Tate weights

(so that Dar(V) = (Bl ®q, V)Ex). Tt is always possible to reduce to this case by an appropriate



SEMI-STABLE REPRESENTATIONS 21

Tate twist. Applying Sen’s method to BIR—representations, Fontaine constructed a canonical free
Koo [t]-module D¢ (V) C (Bj ®q, V)™ of rank dimq (V) (where Hx = Ker(x) C G), stable
under the residual action of I'k, such that

Bir @k 111 Dair (V) = Big ®q,V
(¢f. [37, Théoreme 3.6]). More precisely, there exists n € N (depending on V') and a free K, [t]-
module D3 (V) carrying an action of 'k, such that Keo[t] ®x, 1 Diis. (V) = D3i¢(V) (where
K, = K(e™) c K.,). Here again, the infinitesimal action of I'jc provides a connection!?) Vy,
on K,((t)) ®k, ¢ Dait,n(V). This connection is trivial if and only if V' is de Rham, and then

Dt (V) = Kn[t] @k Dar(V) (c¢f. [37, Théoreme 3.12]). One cannot map the Robba ring to Bjg
(cf. 19, IV.3.2] for enlightening heuristic analytic interpretations of period rings), but if

)

Ry = {f = ZaiTi € K[T,T7']| f(T) converges on p~" < |T| < 1}
i€Z
there is a map
b =" B — Kit] C Big
which corresponds to the localization at (™ — 1. For n large enough (depending on V), the
overconvergent (o, T')-module D'(V') is defined over é’};n = &' N Rk n: there exist a sub—é";( n"
module D} (V) of DY(V), stable under ¢ and T, such that DT(V) = &7 ® gt D! (V). Now there is
K,n
an isomorphism

K[t ®s  DL(V) ™D, (V)

compatible with connections on both sides (¢f. [8, Proposition 5.7]), which provides the localiza-
tion of DIign(V) = XK n D gt D! (V) at (™ — 1, and Fontaine’s theorem [37, Théoreme 3.12)]
? K,n

mentioned above implies the existence of local solutions when V is de Rham. In this case, one
puts

Nar(V) = Zx @z, Nar,n(V)
where
Nyr,(V) = {ac c D! (V) | (Vm > n), tm(z) € Knlt] @k DdR(V)}.

rig,n
This is a (¢, V)-module of rank dimq (V') over Z (cf. [8, Théoreme 5.20]).

The quasi-unipotent case. Using an enlarged Robba ring, Berger proves that if V €
Repq (Gk), one has

Dat(V) = (Zcllog(T)] @4 D'(V))™

where the action 'k on log(T) is given by vy(log(T')) = log(T') + log (@) (note that log (@) €
T

Zx ). The Frobenius ¢ extends semi-linearly to Zx [log(T)] by ¢(log(T)) = plog(T) + log (%p))
(note that log (%) € Zr), and one endows Zx [log(T)] with the Zy-linear derivation N given
by N(log(T)) = — ;5.

p—1

Remark 5.8. — Recall that here the variable T' corresponds to [¢] — 1 (¢f. remark 5.4 (2)), so
that log(1 + T') corresponds to t € By, and log(T) to log([e] — 1). Now E—_lll
(i.e. corresponds to an element in é";(, ¢f. [19, Corollaire I1.1.5]), as e — 1 € 'ﬁﬁRX (because
v((e™ —1)P") = 57 for all n € No), the element log(T") corresponds to -7 log[p] (modulo an

element in Bgis), so that this definition matches with that of section 3.2.

is overconvergent

(10) Coming from a logarithmic connection Dchrif V)= DT

qit (V) ® %, cf. [37, Proposition 3.7].
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The Frobenius ¢ and monodromy operator N on D4 (V') are deduced from the corresponding
structures (c¢f. [8, Théoreme 3.6]). When V is de Rham, this interprets Dy (V) as the set of
horizontal sections of Nag(V)[log(T')] (and then one has Naqr (V) = (Zk [log(T)] ® Dst(V))NZO).
In particular, V' is semi-stable if and only if the (¢, V)-module Ngg (V') is unipotent (¢f. remark
5.6). By theorem 5.7, this always holds after a finite extension of K, i.e. V is potentially semi-
stable.

5.2. Other proofs. — Theorem 5.3 has been reproved by Colmez (cf. [24]) using Galois co-
homology of some period rings (instead of using p-adic differential equations or (i, I')-modules)
to reduce to the case case of weight zero (that corresponds to the isoclinic case, i.e. Tsuzuki’s
theorem in the point of view of Kedlaya), which is the following;:

Theorem 5.9. — (Sen, [55, Theorem 1]) C-admissible representations are potentially unramified
(hence potentially semi-stable) representations.

Fontaine also gave a proof starting from Sen’s result, by induction on the Hodge polygon of V'

(cf. [38]).

5.3. Applications. — Using Hilbert 90, a straightforward consequence of the p-adic monodromy
theorem is:

Corollary 5.10 (cf. [8, Théoreme 6.2]). — Let 0 = V' =V — V" — 0 be an exact sequence
in Repq (Gk). Assume V' and V" are semi-stable, and that V is de Rham. Then V is in fact
semi-stable.

Definition 5.11. — A filtered (¢, N, G )-module over K is a finite dimensional K§*-vector space
D, endowed with

e a semi-linear action of GGx which is continuous for the discrete topology ;

e a bijective Gi-equivariant o-semi-linear Frobenius operator ¢: D — D ;

e a (Gi-equivariant linear monodromy operator N: D — D such that Ny = ppN ;

e a decreasing, separated, exhaustive filtration on Dg := (K ®gn D)K.
Let MFg (o, N,Gg) be the category of filtered (¢, N, Gk )-modules over K. An object D €
MFk (¢, N,Gg) is said admissible if DL € MFaLd(go,N) for some (any) L large enough. This
defines a subcategory MF3 (¢, N, Gk) of MFk (¢, N, G).

Let V' € Repgr(Gk). If L/K is a finite Galois extension such that Vg, is semi-stable then
DL (V) = (Bg ®QPV)GL € MF2 (¢, N) is endowed with an action of Gal(L/K) that commutes
with ¢ and N. Put

Dyse(V) = | (Bus 9, V)4
L/K
For L as above, one has Dy« (V) = K&* @1, D5 (V) (by Hilbert 90): this is a finite K§*-vector
space endowed with a discrete action of G, and equivariant operators ¢ and N as above. Fur-
thermore, one has K ®gar Dpst(V) 2 K @1, DL (V) 2 K @1 (L @1, D5(V)) 2 K @k Dar(V),
so (K ®xypr Dpst(V))9% = Dgr(V). Note that Dy (V)9 = DEL(V) € MF3 (¢, N), so that
Dpst (V) € MF3¥(¢, N, G ).

Theorem 5.12. — The functor Dpg induces an equivalence of tensor categories
Dpst: Repar(Gr) = MF%(p, N, Gk).
A quasi-inverse is given by

=1
D+ Vp(D) 1= (By @5z D)N=0 N Fil’(Byr ® Drc)
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(where the action of G on Bs ®@ar D is the diagonal one).
Proof. — This is the conjunction of theorems 3.28 and 5.3. O

Let X be a proper and smooth variety on K: the étale cohomology V' = Hg (X%, Q,) is de
Rham hence potentially semi-stable. The preceding theorem shows that one can recover V from
Dg = Dir(X/K) and the "hidden structure” D = Dy (V).

6. Appendix: Inputs from log-geometry

6.1. Basic definitions. — Developed by Kato and al. following ideas of Fontaine and Hlusie,
log-geometry is an enlargement of algebraic geometry: one can see the category of schemes as a
full subcategory of log-schemes, which are schemes with an extra structure, namely a log-structure,
which basically consists in keeping track of (local) equations of divisors. This allows to deal with
normal crossing divisors or K-schemes with semi-stable reduction as smooth objects (hence it is
also related to desingularization). What follows is a very cursory survey of the basic ideas, and is
taken from [47] and [43, §2] (see also the nice survey [45] by Illusie, and [62, §3]).

All monoids will be assumed to be commutative, and morphisms of monoids preserve unit
elements. If M is a monoid, M®P denotes the associated group, and M is called integral when the
map M — MP®P is injective.

Definition 6.1. — (i) Let X be a scheme. A pre-logarithmic structure on X is a sheaf of
monoids M on X¢ and a homomorphism of monoids a: M — Ox (for the multiplicative
law on Ox). A pre-logarithmic structure is logarithmic structure (or log-structure for short)
if moreover the map « induces an isomorphism a=1(0%) = O%. The trivial log-structure is
O;( — Ox.

(ii) A morphism between schemes X and Y with (pre-)log structures (M, a) and (N, 3) respec-
tively is a morphism of schemes f: X — Y and a commutative square

f_lN —>f71ﬁ f_l(/)y

) }

M4Q>OX

of arrows in Xg¢.
(iii) A log-scheme X = (X, M) is a scheme X endowed with a log-structure") (M, a).

Given a pre-log structure (M, «) on a scheme X, the associated log-structure is the push-out
of

O% +a H0%) - M
in the category of sheaves of monoids, i.e.
Mo = (O;; @M)/ - (incl., ) Ox

where (u,a) ~ (v,b) < there locally exists ¢, d € a~1(O%) such that a(c)u = a(d)v and ad = be.

Definition 6.2. — A log-structure M on X is called fine if étale locally on X, it is isomorphic
to the log-structure associated to Mx — Ox (which is then called a chart of M) for some finitely
generated integral monoid M (where Mx denotes the constant sheaf defined by M). One defines
the chart of a morphism of fine log-schemes in the obvious way.

(11) As often, the map o does not appear in the notation.
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Ezample 6.2. — Assume X is reqular. Let D be a reduced normal crossing divisor''? on X,
and j: U := X\ D — X. Then the inclusion M := Ox N .05 — Ox is a fine log-structure,
locally associated to

N — OX
(ni)i<i<r = ;"

where t; = 0 are equations of the components of D. A special case is that of Spec(R) where R
is a discrete valuation ring. The log-structure corresponding to the special fiber (i.e. associated
to N — R; 1 — w, where w is a uniformizer of R) is called the canonical log-structure on
Spec(R). More generally, if X — Spec(R) has semi-stable reduction, its special fiber defines a fine
log-structure on X.

Definition 6.3. — Given a morphism of log-schemes f: X = (X, M) = Y = (Y, N), the sheaf of
differentials with logarithmic poles relative to f is the Ox-module w}( = w(lx M)/(YN) quotient
of

Oy /y @ (Ox ©z M)

by the Ox-submodule generated by sections of the form (da(m),0) — (0, a(m) ® m) for m € M
and (0,1 ® m/) for m’ € f~1(N). For m € M, the image of (0,1 ® m) is denoted by dlog(m).
We get a logarithmic de Rham complex by putting Wi Y = /\"wi( ne and defining the derivation

d: Wiy = w}%l/ by

d(w A dlog(my) A--- Adlog(m,)) = dw A dlog(my) A - - - A dlog(m,.)

forweQ;Z; and mq,...,m, € M.

Definition 6.4. — Let f: (X, M) — (Y,N) be a morphism of schemes with fine log-structures.
(i) f is a closed immersion (resp. exact closed immersion) if f: X — Y is a closed immersion
of schemes and f*N — M is surjective (resp. bijective), where f*N denotes the log-structure
associated to the pre-log structure f~IN — f~10y — Ox.

(ii) f is smooth (resp. étale) if f is locally of finite presentation (as morphism of schemes) and
formally smooth (resp. formally étale), i.e. for all commutative square

(1", L") — (X, M)

z¢ g7 W

(T, L) —= (Y, \)

where 7 is an exact closed immersion whose ideal is nilpotent, then étale locally on T', there exists
(resp. there exists a unique) morphism g: (T, £) — (X, M) making the two triangles commute.
In that case, the Ox-module w} v s locally free of finite type.

Example 6.3. — Let R be a discrete valuation ring, k its residue field and N the canonical
log-structure on' Y = Spec(R). Assume X — Spec(R) has semi-stable reduction: let M be the
log-structure on X associated to its special fiber Xy, (so that M is the subsheaf of Ox made of
sections that are invertible on Xy ). Then the morphisms of log-schemes (X, M) — (Y, N) and its

special fiber (Xi, M) — (Spec(k),N') are smooth. For instance, assume that X = Spec(A) with
A = Rlto,...,tn]/(to---t, — m) where 0 < r < n are integers. The equality to---t, = 7 in M8

(12)J e. for all closed point = of X, the divisor D has equation t ---t,. = 0 where t1,...,t, is part of a regular
sequence of parameters of X at x.
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translates into Z;:o dlog(t;) = dlog(m) = 0 in wi(/z. Multiplied by w, one recovers the relation
Z;:O to .. 'tj_ltj_H e tT dtj =0 in Qﬁ(/y we have

wxy = (@i Adt; @ ©_gAdlog(t;))/(X7_ dlog(t;), dt; — t; leg(ti))ogigr
= ®j_, Adlog(t;) ® @i, Adlog(t;)

6.4. Log-crystalline cohomology. — The crystalline theory (¢f. [12]) can be extended to the
logarithmic case, cf. [47, §5 & 6]. Let f: X = (X, M) — S = (S,N) be a morphism of schemes
with fine log-structures. We assume that p is nilpotent on S. Let Z C Og be a quasi-coherent
ideal and v a PD-structure on Z that extends to X.

Definition 6.5. — The crystalline site (X/S) is the site whose objects are diagrams

cris

(Ua M\U)C_Z> (Tv MT)

L |

(X’M) - (SaN)

where U is étale over X, Mt a fine log-structure on 7', and 7 an exact closed immersion; and the
data of a PD-structure § on the ideal of ¢, compatible with . The morphisms are the obvious
ones, and covering families are {gA: (U, Tn, Mr,,ix,65) = (U, T, Mr, 1, 5)}A such that for all A,
the map T\ — T is étale, Uy ~ T\ @7 U and {T — T}, is a covering for the étale topology. The
structure sheaf is defined by

ﬁ§/§(U7 Ta MT; Z.a 5) = F(Ta OT)

A sheaf of Oy, g-modules .7 on (X/S)_. is a crystal if the transition maps(1?)

g  Fr — Fr
are isomorphisms for all g: 77 — T in (X/ﬁ)cris.
Let i: (X, M) — (X', M) be a closed immersion. The associated PD-envelope

(X, M) = (D,Mp) — (X', M)

is defined by the usual universal property. One just has to be careful about the exactness condition
on closed immersions. When 1 is exact, this is simply the usual PD-envelope D of X in X’ endowed
with the inverse image of M’. A general ¢ admits (étale locally on X) a factorization

(X, M) : (X', M)

P

" M/I)

with 7’ an exact closed immersion and g étale. Then D is the PD-envelope of X in X” and Mp
is the inverse image of M.

Theorem 6.6 (cf. [47, Theorem 6.2])). — Assume there is a diagram of morphisms of schemes
with fine log-structures
X' sy

_f\ /g_
S

(13)Where, as usual, Zr is the sheaf on Ty induced by .Z.
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with g smooth and i a closed immersion. Let D = (D, Mp) be the PD-envelope of i. Then the

category of crystals on (X/S) is equivalent to the category of Op-modules £ endowed with an

cris
integrable connection™)

V: 5 — 5®Oy W}l//s
such that, for all x € D with image y € Y, if (ti)1<i<n € (/\/'y—gp)r are such that {dlog(t;) 1<i<r U

{dti}r<i<n is a basis of w}l,/sg, for all x € &z, there exist c1,...,cx € N, (n;;)1<i<r € N and
’ 1555k
Npt1,---,0n € N such that
T k n
! y N —
(I TTwes = e ) (I vir)@ =0
i=15=1 i=r+1

(where V = > Viog @dlog(t;) + >, V,®dt; on &;).
i=1 i=rt1

Remark 6.7. — (1) If & is a crystal on (X/_S) s> the corresponding Op-module is Ep.

Ccr

(2) The pair (€,V) provides a de Rham complex £ ®o, Wy g

As “usual”, log-crystalline cohomology can be computed by de Rham complexes with divided
powers (cf. [12, Proposition 5.18 & Theorem 7.1]): let

Ux/s: (X/S) — Xt

cris

be the map of topoi defined by
ux;s(F)U) =T(U/S)eis, F)

where U is the scheme U endowed with the log-structure obtained by the pull-back of the log-
structure on X.

Theorem 6.8 (cf. [47, Theorem 6.4])). — Under the hypothesis of theorem 6.6, if & is a crystal
on (2(/_5)“18 and £ = &p the corresponding Op-module with connection, there is a canonical
isomorphism

RUX/§*(y) :N‘:D ®op wi,/ﬁ
Recall k is a perfect field of characteristic p. For n € Zq, let S,, be the scheme Spec(W,,(k))

endowed with the log-structure associated to N — W,, (k) mapping 1 to 0 (then S is the standard
log point). Assume f: X — S) is smooth. We put

HE (X)W (1) = H((X/Su)erss Ox/5,)  and HI(X/W) 5= lim ' (X/5,)

which are a W,,(k)-module and a W-module respectively. When X is proper over k, the latter is
finitely generated (cf. [43, §3.2]).
By functoriality, the absolute Frobenius

F: (X/Sn) = (X/Sn)

(the absolute Frobenius between the underlying schemes and the p-th power on the monoids)
induces a o-semi-linear Frobenius map

1 HU(X/ W (k) = HY(X/ W () and  @: HY(X/W) = H(X/W).

(4T e. an additive map V such that V(az) = aV(z) +z ® da for all a € Op and = € £, and V) 0 V = 0, where

VM @y — MO

z2Quw— V(@) Aw+2z®dw
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When X is of Cartier type™™® (cf. [43, §2.12]), the map ¢ is an isogeny, i.e. ¢ ® Q is an
isomorphism (¢f. [43, Proposition 2.24]).

Another structure on these log-crystalline cohomology spaces is that of a monodromy operator.
Denote by Si™ the scheme Spec(W,, (k)) endowed with the trivial log-structure. Then R f,Ox /g
is a crystal in the derived category of (S1/SfV): let %, be its evaluation at S; — S, then

which can be computed by using the closed embedding i, : S; < (A\l,vn(k),N) (where N is the
log-structure given the divisor (¢ = 0)). Then %, is described by a complex on the divided power
envelope of i,, together with a connection with log poles at t = 0, the residue of which induces a
map

N HI(X/ Wa (k) = H(X/ Wa (k) and Nt HI(X/W) — H(X/W)
on cohomology. One has No = ppN (cf. [43, §3.6]).

An other relation with de Rham cohomology, on the generic fiber this time, is the generalization
of Berthelot-Ogus isomorphism (¢f. [13, Corollary 2.5]). Let X' a proper scheme with semi-stable
reduction, endowed with the log-structure defined by its special fiber Y = X}, and X = X its
generic fiber. We endow Y and X with the induced log-structures (here Spec(K) is endowed with
the trivial log-structure). We write H (Y/W) for H (Y /W). The choice'®) of the uniformizer

log - cris
7 provides an isomorphism (for a construction in a more general context, see [43, Theorem 5.1])

Pr: fog—cris(Y/W) Qw K :) HZiR(X/K)
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