

À propos de marches aléatoires

Lucile LAULIN

Image, Optimisation et Probabilités 12 Mars 2021

1. Marche aléatoire classique
2. Quelques marches originales

Supposons qu'un crabe se promène horizontalement sur la plage, représentée par \mathbb{Z} . Il part de l'origine et à partir de l'instant $n \geq 1$, le crabe se déplace vers la droite avec probabilité p ou vers la gauche avec probabilité 1-p. Lorsque p=1/2 on parle de marche aléatoire symétrique.

Supposons qu'un crabe se promène horizontalement sur la plage, représentée par \mathbb{Z} . Il part de l'origine et à partir de l'instant $n \geq 1$, le crabe se déplace vers la droite avec probabilité p ou vers la gauche avec probabilité 1-p. Lorsque p=1/2 on parle de marche aléatoire symétrique. Si on note (X_n) la suite des pas effectués par le crabe, on a pour tout $n \in \mathbb{N}^*$

$$X_n = \begin{cases} +1 & \text{avec probabilité} & p, \\ -1 & \text{avec probabilité} & 1-p. \end{cases}$$

Supposons qu'un crabe se promène horizontalement sur la plage, représentée par \mathbb{Z} . Il part de l'origine et à partir de l'instant $n \geq 1$, le crabe se déplace vers la droite avec probabilité p ou vers la gauche avec probabilité 1-p. Lorsque p=1/2 on parle de marche aléatoire symétrique. Si on note (X_n) la suite des pas effectués par le crabe, on a pour tout $n \in \mathbb{N}^*$

$$X_n = \begin{cases} +1 & \text{avec probabilite} & p, \\ -1 & \text{avec probabilite} & 1-p. \end{cases}$$

$$S_{n+1} = S_n + X_{n+1}$$
.

Supposons qu'un crabe se promène horizontalement sur la plage, représentée par \mathbb{Z} . Il part de l'origine et à partir de l'instant $n \geq 1$, le crabe se déplace vers la droite avec probabilité p ou vers la gauche avec probabilité 1-p. Lorsque p=1/2 on parle de marche aléatoire symétrique. Si on note (X_n) la suite des pas effectués par le crabe, on a pour tout $n \in \mathbb{N}^*$

$$X_n = \begin{cases} +1 & \text{avec probabilite} & p, \\ -1 & \text{avec probabilite} & 1-p. \end{cases}$$

$$S_{n+1} = S_n + X_{n+1}$$
.

Supposons qu'un crabe se promène horizontalement sur la plage, représentée par \mathbb{Z} . Il part de l'origine et à partir de l'instant $n \geq 1$, le crabe se déplace vers la droite avec probabilité p ou vers la gauche avec probabilité 1-p. Lorsque p=1/2 on parle de marche aléatoire symétrique. Si on note (X_n) la suite des pas effectués par le crabe, on a pour tout $n \in \mathbb{N}^*$

$$X_n = \begin{cases} +1 & \text{avec probabilite} & p, \\ -1 & \text{avec probabilite} & 1-p. \end{cases}$$

$$S_{n+1} = S_n + X_{n+1}$$
.

Supposons qu'un crabe se promène horizontalement sur la plage, représentée par \mathbb{Z} . Il part de l'origine et à partir de l'instant $n \geq 1$, le crabe se déplace vers la droite avec probabilité p ou vers la gauche avec probabilité 1-p. Lorsque p=1/2 on parle de marche aléatoire symétrique. Si on note (X_n) la suite des pas effectués par le crabe, on a pour tout $n \in \mathbb{N}^*$

$$X_n = \begin{cases} +1 & \text{avec probabilite} & p, \\ -1 & \text{avec probabilite} & 1-p. \end{cases}$$

$$S_{n+1} = S_n + X_{n+1}$$
.

Supposons qu'un crabe se promène horizontalement sur la plage, représentée par \mathbb{Z} . Il part de l'origine et à partir de l'instant $n \geq 1$, le crabe se déplace vers la droite avec probabilité p ou vers la gauche avec probabilité 1-p. Lorsque p=1/2 on parle de marche aléatoire symétrique. Si on note (X_n) la suite des pas effectués par le crabe, on a pour tout $n \in \mathbb{N}^*$

$$X_n = \begin{cases} +1 & \text{avec probabilite} & p, \\ -1 & \text{avec probabilite} & 1-p. \end{cases}$$

$$S_{n+1} = S_n + X_{n+1}$$
.

Supposons qu'un crabe se promène horizontalement sur la plage, représentée par \mathbb{Z} . Il part de l'origine et à partir de l'instant $n \geq 1$, le crabe se déplace vers la droite avec probabilité p ou vers la gauche avec probabilité 1-p. Lorsque p=1/2 on parle de marche aléatoire symétrique. Si on note (X_n) la suite des pas effectués par le crabe, on a pour tout $n \in \mathbb{N}^*$

$$X_n = \begin{cases} +1 & \text{avec probabilite} & p, \\ -1 & \text{avec probabilite} & 1-p. \end{cases}$$

$$S_{n+1} = S_n + X_{n+1}$$
.

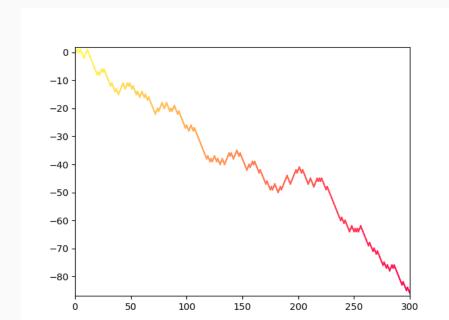
Supposons qu'un crabe se promène horizontalement sur la plage, représentée par \mathbb{Z} . Il part de l'origine et à partir de l'instant $n \geq 1$, le crabe se déplace vers la droite avec probabilité p ou vers la gauche avec probabilité 1-p. Lorsque p=1/2 on parle de marche aléatoire symétrique. Si on note (X_n) la suite des pas effectués par le crabe, on a pour tout $n \in \mathbb{N}^*$

$$X_n = \begin{cases} +1 & \text{avec probabilite} & p, \\ -1 & \text{avec probabilite} & 1-p. \end{cases}$$

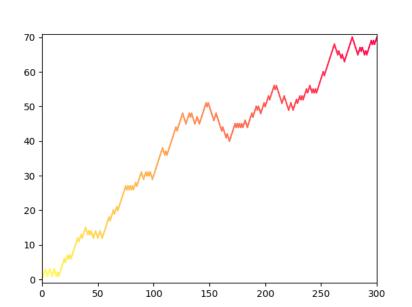
$$S_{n+1} = S_n + X_{n+1}$$
.

Marche aléatoire symétrique pour 300 pas

Marche aléatoire pour p = 0.4 et 300 pas



Marche aléatoire pour p = 0.6 et 300 pas



La suite des pas (X_n) est une suite de variables aléatoires indépendantes et identiquement distribuées.

La suite des pas (X_n) est une suite de variables aléatoires indépendantes et identiquement distribuées. On peut donc appliquer la loi des grands nombres et le théorème central limite.

La suite des pas (X_n) est une suite de variables aléatoires indépendantes et identiquement distribuées. On peut donc appliquer la loi des grands nombres et le théorème central limite.

Théorème (Loi des grands nombres)

$$\lim_{n\to\infty}\frac{S_n}{n}\stackrel{\mathbb{P}}{=} 2p-1$$

La suite des pas (X_n) est une suite de variables aléatoires indépendantes et identiquement distribuées. On peut donc appliquer la loi des grands nombres et le théorème central limite.

Théorème (Loi des grands nombres)

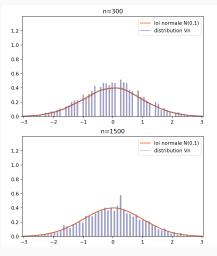
$$\lim_{n\to\infty}\frac{S_n}{n}\stackrel{\mathbb{P}}{=} 2p-1$$

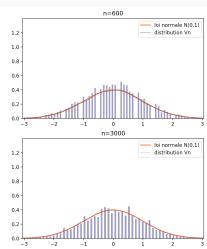
Théorème (Central limite)

$$\frac{S_n - (2p-1)n}{\sqrt{4p(1-p)n}} \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0,1)$$

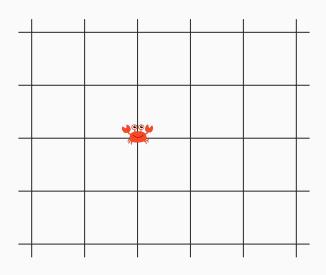
Illustration de la convergence en loi

$$V_n = \frac{S_n - (2p - 1)n}{\sqrt{4p(1 - p)n}}$$

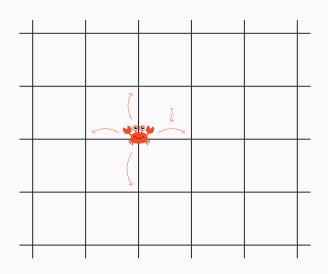




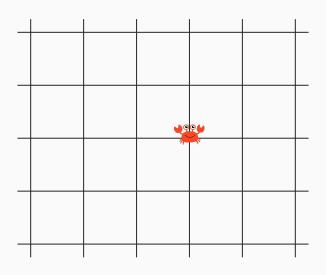
Marche aléatoire symétrique en dimension 2



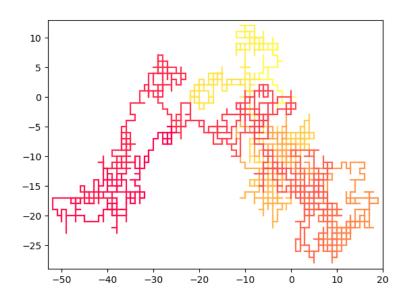
Marche aléatoire symétrique en dimension 2



Marche aléatoire symétrique en dimension 2



Marche aléatoire symétrique 2D pour 3000 pas



Le crabe va-t-il repasser par son point de départ ? Plusieurs fois ?

Le crabe va-t-il repasser par son point de départ ? Plusieurs fois ?

• Si $p \neq \frac{1}{2}$: oui, mais au plus un nombre fini de fois.

Le crabe va-t-il repasser par son point de départ ? Plusieurs fois ?

- Si $p \neq \frac{1}{2}$: oui, mais au plus un nombre fini de fois.
- Si $p=\frac{1}{2}$: oui, mais avec une influence de la dimension quand d=1,2 une infinité de fois et quand $d\geq 3$, au plus un nombre fini de fois.

Le crabe va-t-il repasser par son point de départ ? Plusieurs fois ?

- Si $p \neq \frac{1}{2}$: oui, mais au plus un nombre fini de fois.
- Si $p=\frac{1}{2}$: oui, mais avec une influence de la dimension quand d=1,2 une infinité de fois et quand $d\geq 3$, au plus un nombre fini de fois.

Dans les cas d=1,2 quelle est la durée moyenne des voyages du crabe ?

Le crabe va-t-il repasser par son point de départ ? Plusieurs fois ?

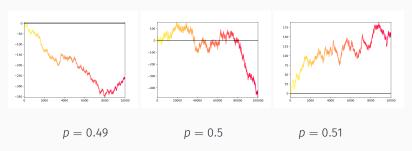
- Si $p \neq \frac{1}{2}$: oui, mais au plus un nombre fini de fois.
- Si $p=\frac{1}{2}$: oui, mais avec une influence de la dimension quand d=1,2 une infinité de fois et quand $d\geq 3$, au plus un nombre fini de fois.

Dans les cas d = 1, 2 quelle est la durée moyenne des voyages du crabe ? La durée moyenne est infinie!

Le crabe va-t-il repasser par son point de départ ? Plusieurs fois ?

- Si $p \neq \frac{1}{2}$: oui, mais au plus un nombre fini de fois.
- Si $p = \frac{1}{2}$: oui, mais avec une influence de la dimension quand d = 1, 2 une infinité de fois et quand $d \ge 3$, au plus un nombre fini de fois

Dans les cas d=1,2 quelle est la durée moyenne des voyages du crabe ? La durée moyenne est infinie!



Applications

· Finance : modèles boursiers

Applications

· Finance : modèles boursiers

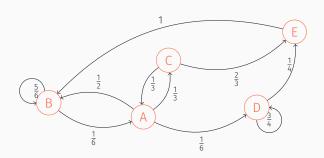
· Casino : ruine du joueur

Applications

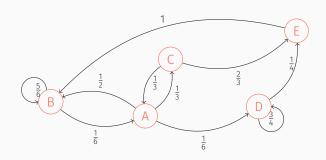
- · Finance: modèles boursiers
- · Casino : ruine du joueur
- Généralisation au temps continu : le mouvement Brownien (déplacement d'une particule de pollen, diffusion dans certains milieux)

Quelques marches originales

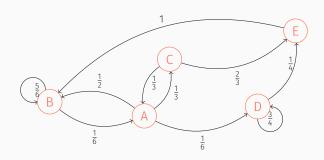
Marche aléatoire sur un graphe



Marche aléatoire sur un graphe

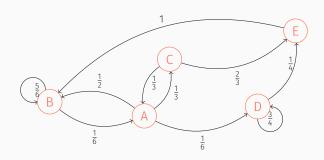


Applications:

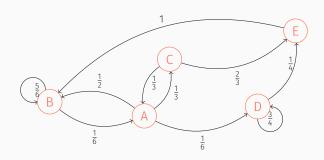


Applications:

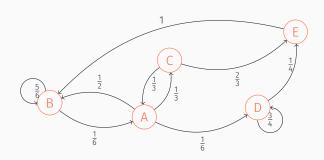
· Réseau d'électricité



- · Réseau d'électricité
- · Algorithme de minimisation



- · Réseau d'électricité
- · Algorithme de minimisation
- · Diffusion sur des fractales régulières



- · Réseau d'électricité
- · Algorithme de minimisation
- · Diffusion sur des fractales régulières
- · Algorithme PageRank de Google

L'éléphant part de l'origine et, à l'instant n=1, il va à droite avec probabilité q et à gauche avec probabilité 1-q.

L'éléphant part de l'origine et, à l'instant n=1, il va à droite avec probabilité q et à gauche avec probabilité 1-q. Ensuite, à l'instant $n\geq 1$, il choisit uniformément au hasard un instant k parmi les instants précédents $1,\ldots,n$, et fait un nouveau pas selon

$$X_{n+1} = \begin{cases} +X_k & \text{avec probabilité} & p, \\ -X_k & \text{avec probabilité} & 1-p. \end{cases}$$

L'éléphant part de l'origine et, à l'instant n=1, il va à droite avec probabilité q et à gauche avec probabilité 1-q. Ensuite, à l'instant $n\geq 1$, il choisit uniformément au hasard un instant k parmi les instants précédents $1,\ldots,n$, et fait un nouveau pas selon

$$X_{n+1} = \begin{cases} +X_k & \text{avec probabilité} & p, \\ -X_k & \text{avec probabilité} & 1-p. \end{cases}$$

La position de l'éléphant est donnée par la relation

$$S_{n+1} = S_n + X_{n+1}.$$

L'éléphant part de l'origine et, à l'instant n=1, il va à droite avec probabilité q et à gauche avec probabilité 1-q. Ensuite, à l'instant $n\geq 1$, il choisit uniformément au hasard un instant k parmi les instants précédents $1,\ldots,n$, et fait un nouveau pas selon

$$X_{n+1} = \begin{cases} +X_k & \text{avec probabilité} & p, \\ -X_k & \text{avec probabilité} & 1-p. \end{cases}$$

La position de l'éléphant est donnée par la relation

$$S_{n+1} = S_n + X_{n+1}.$$

Théorème (Loi des grands nombres)

$$p < 3/4 \qquad p = 3/4 \qquad p > 3/4$$

$$\lim_{n \to \infty} \frac{S_n}{n} \stackrel{p.s.}{=} 0 \qquad \lim_{n \to \infty} \frac{S_n}{\sqrt{n} \log n} \stackrel{p.s.}{=} 0 \qquad \lim_{n \to \infty} \frac{S_n}{n^{2p-1}} \stackrel{p.s./\mathbb{L}^4}{=} L$$

L'éléphant part de l'origine et, à l'instant n=1, il va à droite avec probabilité q et à gauche avec probabilité 1-q. Ensuite, à l'instant $n\geq 1$, il choisit uniformément au hasard un instant k parmi les instants précédents $1,\ldots,n$, et fait un nouveau pas selon

$$X_{n+1} = \begin{cases} +X_k & \text{avec probabilité} & p, \\ -X_k & \text{avec probabilité} & 1-p. \end{cases}$$

La position de l'éléphant est donnée par la relation

$$S_{n+1} = S_n + X_{n+1}$$
.

Théorème (Central limite)

$$p < 3/4 \qquad p = 3/4$$

$$\frac{S_n}{\sqrt{n}} \xrightarrow[n \to \infty]{} \mathcal{N}\left(0, \frac{1}{3 - 4p}\right) \qquad \frac{S_n}{\sqrt{n \log n}} \xrightarrow[n \to \infty]{} \mathcal{N}\left(0, 1\right)$$

Un marcheur se trouve à l'origine en 0 et se déplace sur \mathbb{Z} . En tout point de \mathbb{Z} se trouve une pile de M cookies notés c_1, \ldots, c_M du haut au bas de la pile et qu'à chaque cookie c_i de la pile est associé un paramètre p_i , en particulier p_1, \ldots, p_M sont indépendants de l'endroit.

Un marcheur se trouve à l'origine en 0 et se déplace sur \mathbb{Z} . En tout point de \mathbb{Z} se trouve une pile de M cookies notés c_1,\ldots,c_M du haut au bas de la pile et qu'à chaque cookie c_i de la pile est associé un paramètre p_i , en particulier p_1,\ldots,p_M sont indépendants de l'endroit. À l'instant n le marcheur regarde la pile des cookies là où il se trouve

Un marcheur se trouve à l'origine en 0 et se déplace sur \mathbb{Z} . En tout point de \mathbb{Z} se trouve une pile de M cookies notés c_1, \ldots, c_M du haut au bas de la pile et qu'à chaque cookie c_i de la pile est associé un paramètre p_i , en particulier p_1, \ldots, p_M sont indépendants de l'endroit. À l'instant n le marcheur regarde la pile des cookies là où il se trouve

• si il reste au moins un cookie c_j sur la haut de la pile, il le mange puis se déplace vers la droite avec probabilité p_j et vers la gauche avec probabilité $1-p_j$,

Un marcheur se trouve à l'origine en 0 et se déplace sur \mathbb{Z} . En tout point de \mathbb{Z} se trouve une pile de M cookies notés c_1,\ldots,c_M du haut au bas de la pile et qu'à chaque cookie c_i de la pile est associé un paramètre p_i , en particulier p_1,\ldots,p_M sont indépendants de l'endroit. À l'instant n le marcheur regarde la pile des cookies là où il se trouve

- si il reste au moins un cookie c_j sur la haut de la pile, il le mange puis se déplace vers la droite avec probabilité p_j et vers la gauche avec probabilité 1 – p_j,
- si il ne reste plus de cookies, il se déplace vers la droite avec probabilité p_0 et vers la gauche avec probabilité $1 p_0$.

Un marcheur se trouve à l'origine en 0 et se déplace sur \mathbb{Z} . En tout point de \mathbb{Z} se trouve une pile de M cookies notés c_1, \ldots, c_M du haut au bas de la pile et qu'à chaque cookie c_i de la pile est associé un paramètre p_i , en particulier p_1, \ldots, p_M sont indépendants de l'endroit. À l'instant n le marcheur regarde la pile des cookies là où il se trouve

- si il reste au moins un cookie c_j sur la haut de la pile, il le mange puis se déplace vers la droite avec probabilité p_j et vers la gauche avec probabilité 1 – p_j,
- si il ne reste plus de cookies, il se déplace vers la droite avec probabilité p_0 et vers la gauche avec probabilité $1 p_0$.

On note $\mathbf{p} = (p_0, \dots, p_M)$. Quand $p_0 = 1/2$ on a sous certaines hypothèses

Un marcheur se trouve à l'origine en 0 et se déplace sur \mathbb{Z} . En tout point de \mathbb{Z} se trouve une pile de M cookies notés c_1,\ldots,c_M du haut au bas de la pile et qu'à chaque cookie c_i de la pile est associé un paramètre p_i , en particulier p_1,\ldots,p_M sont indépendants de l'endroit. À l'instant n le marcheur regarde la pile des cookies là où il se trouve

- si il reste au moins un cookie c_j sur la haut de la pile, il le mange puis se déplace vers la droite avec probabilité p_j et vers la gauche avec probabilité $1 p_j$,
- si il ne reste plus de cookies, il se déplace vers la droite avec probabilité p_0 et vers la gauche avec probabilité $1 p_0$.

On note $\mathbf{p} = (p_0, \dots, p_M)$. Quand $p_0 = 1/2$ on a sous certaines hypothèses

Théorème

Loi des grands nombres

$$\frac{S_n}{n} \stackrel{p.s.}{=} c_{M,p}$$

Central limite

$$\frac{S_n}{\sqrt{n}} \xrightarrow[n \to \infty]{\mathcal{L}} Y_{M,p}$$

· Phénomènes de physique statistique

- · Phénomènes de physique statistique
- Biologie

- · Phénomènes de physique statistique
- · Biologie
- · Déplacement de personnes ou d'argent

- · Phénomènes de physique statistique
- · Biologie
- · Déplacement de personnes ou d'argent
- · Mouvement des membranes

- · Phénomènes de physique statistique
- · Biologie
- · Déplacement de personnes ou d'argent
- · Mouvement des membranes
- Diffusion/propagation dans des milieux poreux

- · Phénomènes de physique statistique
- · Biologie
- · Déplacement de personnes ou d'argent
- · Mouvement des membranes
- · Diffusion/propagation dans des milieux poreux
- · Un lien avec les urnes de Pòlya pour la marche de l'éléphant

- · Phénomènes de physique statistique
- · Biologie
- · Déplacement de personnes ou d'argent
- · Mouvement des membranes
- · Diffusion/propagation dans des milieux poreux
- · Un lien avec les urnes de Pòlya pour la marche de l'éléphant
- Un lien avec le gaz de Lorentz en physique statistique pour la marche des cookies

Merci pour votre attention!

