

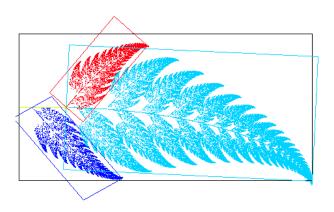
Fractales et Dynamique Holomorphe

Jasmin Raissy

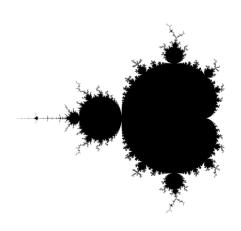
Institut de Mathématiques de Bordeaux & IUF

Soirée IMB-UFMI de présentation des masters et de la recherche

18 octobre 2022



Fougère de Barnsley : image fractale de type IFS (Iterated Function System).



L'ensemble de Mandelbrot.

$$\begin{cases} z_{n+1} = f(z_n) \\ z_0 \in \mathbb{C} \end{cases}$$

$$\begin{cases} z_{n+1} = f(z_n) \\ z_0 \in \mathbb{C} \end{cases}$$

But : décrire l'ensemble des valeurs d'adhérence ω de $(z_n)_{n\in\mathbb{N}}$

$$\begin{cases} z_{n+1} = f(z_n) \\ z_0 \in \mathbb{C} \end{cases}$$

But : décrire l'ensemble des valeurs d'adhérence ω de $(z_n)_{n\in\mathbb{N}}$

• f linéaire : f(z) = az + b avec $a, b \in \mathbb{C}$.

$$\begin{cases} z_{n+1} = f(z_n) \\ z_0 \in \mathbb{C} \end{cases}$$

But : décrire l'ensemble des valeurs d'adhérence ω de $(z_n)_{n\in\mathbb{N}}$

- f linéaire : f(z) = az + b avec $a, b \in \mathbb{C}$.
 - si $|a| \neq 1$ ou si a = 1 et $b \neq 0$, alors on a une seule valeur d'adhérence dans $\mathbb{C} \cup \{\infty\}$.
 - sinon l'ensemble ω dépende de z_0 et est fini ou le cercle euclidien \mathbb{S}^1 .

• f quadratique?

- f quadratique?
 - $f(z) = z^2$

- f quadratique ?
 - $f(z) = z^2$
 - si $|z_0| < 1$, alors $z_n \to 0$;
 - si $|z_0| > 1$, alors $|z_n| \to +\infty$;
 - si |z₀| = 1, alors |z_n| = 1 et l'ensemble ω peut être égal à S¹ ou être fini de cardinalité arbitraire.

- f quadratique?
 - $f(z) = z^2$
 - si $|z_0| < 1$, alors $z_n \to 0$;
 - si $|z_0| > 1$, alors $|z_n| \to +\infty$;
 - si $|z_0| = 1$, alors $|z_n| = 1$ et l'ensemble ω peut être égal à \mathbb{S}^1 ou être fini de cardinalité arbitraire.

Question

Comment l'ensemble des valeurs d'adhérence ω de $(z_n)_{n\in\mathbb{N}}$ dépende-t-il de z_0 ?

- f quadratique?
 - $f(z) = z^2$
 - si $|z_0| < 1$, alors $z_n \to 0$;
 - si $|z_0| > 1$, alors $|z_n| \to +\infty$;
 - si $|z_0| = 1$, alors $|z_n| = 1$ et l'ensemble ω peut être égal à \mathbb{S}^1 ou être fini de cardinalité arbitraire.

Question

Comment l'ensemble des valeurs d'adhérence ω de $(z_n)_{n\in\mathbb{N}}$ dépende-t-il de z_0 ?

Ensemble de Julia de f : $\mathcal{J}(f)$, points z_0 où le système est sensible aux conditions initiales.

Ensemble de Fatou de $f: \mathcal{F}(f)$, le complémentaire de $\mathcal{J}(f)$.

•
$$P_c(z) = z^2 + c$$
, avec $c \in \mathbb{C}$

•
$$P_c(z) = z^2 + c$$
, avec $c \in \mathbb{C}$

• si
$$|z_0| > 1 + |c|$$
, alors $|z_n| \to +\infty$;

- $P_c(z) = z^2 + c$, avec $c \in \mathbb{C}$
 - si $|z_0| > 1 + |c|$, alors $|z_n| \to +\infty$;
 - si $|z_0| \le 1 + |c|$?

- $P_c(z) = z^2 + c$, avec $c \in \mathbb{C}$
 - si $|z_0| > 1 + |c|$, alors $|z_n| \to +\infty$;
 - si $|z_0| \le 1 + |c|$?

Théorème

Soit $(z_n)_{n\geq 0}$ la suite avec $z_0=c$.

 $(z_n)_{n\geq 0}$ est bornée $\iff \mathscr{J}(P_c)$ est connexe $(z_n)_{n\geq 0}$ non bornée $\implies \mathscr{J}(P_c)$ est un Cantor

- $P_c(z) = z^2 + c$, avec $c \in \mathbb{C}$
 - si $|z_0| > 1 + |c|$, alors $|z_n| \to +\infty$;
 - si $|z_0| \le 1 + |c|$?

Théorème

Soit $(z_n)_{n\geq 0}$ la suite avec $z_0=c$.

$$(z_n)_{n\geq 0}$$
 est bornée $\iff \mathscr{J}(P_c)$ est connexe $(z_n)_{n\geq 0}$ non bornée $\implies \mathscr{J}(P_c)$ est un Cantor

L'ensemble de Mandelbrot est l'ensemble

$$\mathcal{M} = \{c \in \mathbb{C} : \text{ la suite } (z_n)_{n > 0} \text{ avec } z_0 = c \text{ est bornée} \}$$

$P_c(z) = z^2 + c$ et l'ensemble de Mandelbrot

Question

Quand l'ensemble ω_c de $(z_n)_{n>0}$ avec $z_0=0$ est-il fini ?

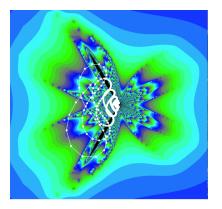
$P_c(z) = z^2 + c$ et l'ensemble de Mandelbrot

Question

Quand l'ensemble ω_c de $(z_n)_{n>0}$ avec $z_0=0$ est-il fini ?

Conjecture

L'ensemble de Mandelbrot est localement connexe.



Merci pour votre attention!