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a b s t r a c t 

The aim of this work is to study the platooning of square-back vehicles on top of a road. When two or 

three bodies are following each other with a short distance between them, the presence of the preceding 

body changes significantly the pressure force in front of the following one as a weak flow is present in 

between. The preceding body plays the role of a buckler and so the following body has to face completely 

different flow conditions. Therefore the drag coefficient of the following bodies can be drastically reduced 

as shown on the results. But the reduction is strongly linked to the distance between the bodies and the 

differences are significant. The numerical simulations are performed around simplified vehicles, namely 

the square back Ahmed body and the simplified European tractor-trailer geometry. The results are also 

linked to the shape of the bodies. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Saving energy has become one of the main challenges of human

eings today. Among energy consumers, transportation represents

 significant part, in particular ground transportation. Flow control

s a way to reduce the consumption but another way is platooning.

he idea is to take benefit of the following vehicle to reduce the

rag coefficient and thus to save energy. Many researchers try to

mprove inter vehicular communications. The goal is to have trucks

utonomously following their leaders to form a road train in order

o improve traffic flow efficiency and to reduce fuel consumption.

ince the 1980s inter vehicular communications have been devel-

ped as can be seen in Segata et al. (2015) ; Sommer and Dressler

2014) ; van Arem et al. (2006) and references therein. In parallel

ome research studies have been performed on the flow dynam-

cs to quantify the impact on the drag coefficient. The researches

oncern more stochastic optimization ( Caltagirone et al., 2015;

arokhi and Johansson, 2014 ) than aerodynamics ( Caltagirone et al.,

015; Bruneau et al., 2013; Uystepruyst and Krajnovi ́c, 2013 ). In

avathekar and Chen (2011) the authors describe precisely what
∗ Corresponding author. 
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s vehicle platooning and provide a summary of the literature pub-

ished between 1994 and 2010. Driving in a platoon has generally

een considered to offer a reduction in aerodynamic drag for all

he vehicles. Many experiments and numerical simulations have

een performed, specially with Ahmed bodies with a rear slant

ngle and for different inter-vehicle distances ( Pagliarella, 2009;

agliarella and Watkins, 2016; Watkins and Vino, 2008 ). In Mirzaei

nd Krajnovi ́c (2016) ; Pagliarella (2009) ; Pagliarella and Watkins

2016) ; Watkins and Vino (2008) , for the case of two Ahmed bod-

es with a critical slant angle, a drag increase was observed for the

ollower compared to the drag value of a single body in isolation.

inally, in Frahadi and Sedighi (2008) the authors studied numer-

cally the flow behavior around two tandem cubes depending on

heir distance. They explored the cavity-like effects for such a con-

guration. That is why in this paper only square-back bodies close

o tractor-trailers or heavy-duty vehicles are considered. 

Concerning heavy-duty vehicles platooning, many experimental

tudies have been made comparing to a few numerical simulations.

hey show that the best choice with respect to a heavier or lighter

ead vehicle depends on the desired time gap. For example, a max-

mum fuel reduction of 4.7% to 7.7% depending on the time gap, at

 set speed of 70 km/h, can be obtained with two identical trucks

 Alam et al., 2010 ). A few numerical simulations on heavy-duty ve-

icules were conducted, the separation distance was varied in or-

er to determine how the drag reduction behaves with respect to

http://dx.doi.org/10.1016/j.ijheatfluidflow.2017.05.008
http://www.ScienceDirect.com
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the separation distance. The simulation data show that the percent

drag reduction increases with decreasing separation distance. For

two trucks ( Humphreys and Bevly, 2016 ), and a twenty feet sep-

aration distance, the front truck and the rear truck have respec-

tively a drag reduction close to 13% and 34%. In the case of three

heavy-duty vehicles resulting drag coefficients are shown in Watts

(2015) as a percentage of single vehicle drag according to the dis-

tance between the vehicles. For a twenty feet separation distance,

the front vehicule, the middle one and the rear one have respec-

tively a drag reduction close to 13%, 48% and 40%. 

In this work the flow around one single, two or three following

simplified square-back ground vehicles called Ahmed body ( Ahmed

et al., 1984 ) or European tractor-trailer geometry is simulated. The

study is performed using direct numerical simulations to achieve

an accurate benchmarking with a very fine flow resolution. There-

fore, Reynolds number values are low compared to road configura-

tions but permit to achieve precise flow trends in various platoon-

ing cases. The method has been validated for square back Ahmed

bodies ( Bruneau et al., 2013 ). In order to study the influence of the

distance between the bodies to the flow characteristics, the dis-

tance d between the bodies is set to 20%, 50% and 100% of the

length of Ahmed body. The shortest distance is close to the best

results obtained for inter vehicular communications ( Segata et al.,

2015 ). These three distances allow to observe the influence of a

close body to the development of the wake of the preceding one

and to quantify the impact on the drag coefficient. The influence

of the preceding body to the flow around the following body is

also explored. As expected the first body plays the role of a buck-

ler and thus the second body does not face at all the same flow

conditions at infinity than the first one. Now it is well known that

a large part of the drag coefficient around the bodies is due to the

pressure forces on the front and at the back walls ( Bruneau et al.,

2014; Brunn et al., 2007; Krajnovi ́c and Davidson, 2003 ). Therefore,

in this case, the pressure forces are drastically reduced and so is

the drag coefficient. According to the distance between the bodies,

the flow inside the gap between the bodies changes as the wake of

the preceding body cannot fully develop. Consequently the pres-

sure forces change and thus the drag coefficient of both bodies.

Indeed, when the wake is compressed by the following body, the

pressure increases, the pressure force at the back of the preceding

one decreases and the drag coefficient also decreases. We shall see

that platooning can decrease significantly the drag coefficient of

the whole train. Some numerical experiments on a simplified Eu-

ropean tractor-trailer geometry confirm the benefit of platooning

in a more realistic configuration. 

This paper is organized in four sections in addition to this in-

troduction. The first one is devoted to the modeling and numerical

simulations. The second one concerns the numerical results around

one, two or three Ahmed bodies in two or three dimensions. In

the third section the flow around the simplified European tractor-

trailer geometry (SETTG) is presented. At the end some conclusions

are provided. 

2. Modeling and numerical simulations 

In this section, the method used to simulate the flow past

full scale Ahmed bodies on top of a road using Cartesian grids

is presented. To compute the flow around solid bodies an im-

mersed boundary model is used, namely the penalized Navier–

Stokes equations for the velocity and pressure ( U, p ) as unknowns

( Angot et al., 1999 ). The non dimensional form based on the far

field velocity of the flow U ∞ 

and the height H of Ahmed body,

these equations read: 

∂ t U + (U · ∇) U − 1 

Re 
�U + 

U 

K 

+ ∇p = 0 in �T = � × (0 , T ) (1)
i  
U = 0 in �T (2)

here Re = 

| U ∞ 

| H 
ν is the non dimensional Reynolds number asso-

iated to the kinematic viscosity of the fluid ν , K = 

k | U ∞ 

| 
ν�H 

= 

kRe 
�H 2 

s the non dimensional coefficient of permeability of the medium

epresenting the bodies with k the intrinsic permeability and �

he porosity of the medium, � is the full domain including the

olid bodies and T is the simulation time. In the fluid domain

he permeability coefficient goes to infinity, the penalization term

anishes and we solve the genuine non dimensional Navier-Stokes

quations. In the solid body the permeability coefficient goes to

ero, so U / K is large and dominate other velocity terms that be-

ome negligible. It has been shown in Angot et al. (1999) that solv-

ng these equations corresponds to solve Darcy’s law in the solid

arts and that the velocity is proportional to K . For numerical sim-

lations we set K = 10 16 in the fluid and K = 10 −8 in the solid

odies. In the non dimensional form of the equations the time is

 = t r | U ∞ 

| /H and the pressure is p = p r / (ρr | U ∞ 

| 2 ) where the

ubscript r stands for the real values. 

The Eqs. (1) and (2) above are associated to an initial datum

 X = (x, y, z) in 3D): 

U(X, 0) = U 0 (X ) in � and the following boundary conditions: 

U = U ∞ 

= (u ∞ 

, 0 , 0) = (1 , 0 , 0) at the entrance section and on

he road; 

∂ n U = 0 on the longitudinal far field boundaries; 

σ (U, p) n + 

1 
2 (U · n ) −(U − U re f ) = σ (U re f , p re f ) n on the

xit downstream boundary to convey properly the vor-

ices through the artificial frontiers ( Bruneau, 20 0 0 ), where

(U, p) = 1 /Re (∇ U + ∇ U 

t ) − pI is the stress tensor, n is the

nit normal pointing outside of the domain and the notation

 = a + − a − is used. 

Then a simulation is performed using a second-order Gear

cheme in time with explicit treatment of the convection term. All

he linear terms are treated implicitly and discretized via a second-

rder centered finite differences scheme. The CFL condition related

o the convection term requires a time step of the order of mag-

itude of the space step as U is of order one. A third-order finite

ifferences upwind scheme is used for the space discretization of

he convection terms ( Bruneau and Saad, 2006 ). The efficiency of

he resolution is obtained by a multigrid procedure using a cell-

y-cell Gauss–Seidel smoother. For each cell in 3D, it consists in

eversing the 7 × 7 matrix: ⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a 11 0 0 0 0 0 

1 
δx 

0 a 22 0 0 0 0 − 1 
δx 

0 0 a 33 0 0 0 

1 
δy 

0 0 0 a 44 0 0 − 1 
δy 

0 0 0 0 a 55 0 

1 
δz 

0 0 0 0 0 a 66 − 1 
δz 

− 1 
δx 

1 
δx 

− 1 
δy 

1 
δy 

− 1 
δz 

1 
δz 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

×

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

u i − 1 
2 , j,k 

u i + 1 2 , j,k 

v i, j− 1 
2 ,k 

v i, j+ 1 2 ,k 

w i, j,k − 1 
2 

w i, j,k + 1 2 

p i, j,k 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

b 1 
b 2 
b 3 
b 4 
b 5 
b 6 
b 7 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(3)

ith ( a ii ) 1 ≤i ≤6 the diagonal composed of the time term, the diag-

nal of the linear diffusion terms and the penalization term, and

 b i ) 1 ≤i ≤7 the second member made of all the remaining terms in-

luding the non-linear convection terms and the second member

f the equation if any. 

Several test cases are considered in this work. The first test case

s to compute the flow over a single square back Ahmed body on



C.-H. Bruneau et al. / International Journal of Heat and Fluid Flow 66 (2017) 43–59 45 

Table 1 

Grid convergence for the flow around one single body on top of a road in a short 

domain � = (0 , 10 H) × (0 , 6 H) × (0 , 6 H) . 

3D simulation G6 G7 G8 G9 

Number of cells 11,796,480 94,371,840 754,974,720 6,039,797,760 

C D 0.522 0.487 0.467 0.463 
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a  
op of a road. Then the platooning of two or three bodies is con-

idered in two- and three-dimensions. Let H be the height, W =
 . 3507 H and L = 3 . 625 H be respectively the width and the length

f the square back Ahmed bodies, the distance d between the bod-

es is set to d = 0 . 2 L, d = 0 . 5 L and d = L to study the variation of

he characteristics of the flow with respect to d . The simulations

re performed in a computational domain � = (0 , 20 H) × (0 , 4 H)

n two-dimensions or � = (0 , 20 H) × (0 , 6 H) × (0 , 6 H) in three-

imensions with the bodies located at the distance 0.17 H from the

oad. For the computation over three bodies the domain is ex-

ended to 24 H in the x-direction with d = 0 . 2 L and d = 0 . 5 L and

o 28 H in the x-direction with d = L . 

The cpu time is reduced using an efficient MPI parallelism

 Bruneau and Khadra, 2016 ). The main difficulties are linked to

he multigrid solver, on the one hand because of the cell-by-cell

auss–Seidel smoother and not Jacobi smoother and, on the other

and due to the multigrid itself that uses very coarse grids that

annot be computed in parallel. Nevertheless the computational

ode can run on 384 cores in 3D with a strong scalability close

o one ( Bruneau and Khadra, 2016 ). 

The results are presented at Re = 15 , 0 0 0 based on the body

eight H for all the test cases. This value is far to the real value

s it corresponds to a velocity around one meter per second for

hmed body to compare to a real value around 30 m per sec-

nd. To insure the reliability of the results, the simulations are

erformed on four uniform meshes where grid convergence is

eached on the drag coefficient (see Table 1 ). The values obtained

ere are about 25% higher than the value obtained in the exper-

ments or numerical simulations with turbulence models at high

eynolds number. This is due to the low value of Re and the

resent DNS method has already been validated in previous works

 Bruneau et al., 2013 ). The simulation for the grid convergence

re performed around one single body in a short domain � =
(0 , 10 H) × (0 , 6 H) × (0 , 6 H) . The value obtained on the G 8 grid and

n the G 9 grid are very close and thus the simulations will be

erformed on G 8 in the following sections. On the domain � =
(0 , 20 H) × (0 , 6 H) × (0 , 6 H) the grid G 8 will have 2 , 560 × 768 ×

68 = 1 , 509 , 949 , 440 cells and 6,044,319,744 unknowns for the

elocity and the pressure on staggered grids. The numerical sim-

lations use a time step δt = 10 −3 in order to take into account

he Kolmogorov time scale for the chosen low Reynolds number.

n addition the simulation time will be large enough for the flow

rosses the domain more than twice in order to get realistic mean

ows. 

The physical quantities are computed using either a direct com-

utation or the penalization term. Indeed the drag and lift forces

re given by: 

 D = −
∫ 

body 

∂ x p d X + 

∫ 
body 

1 

Re 
�u d X ≈

∫ 
body 

u 

K 

d X 

F L = −
∫ 

body 

∂ z p d X + 

∫ 
body 

1 

Re 
�w d X ≈

∫ 
body 

w 

K 

d X. 

hen the drag coefficient C D and the lift coefficient C L are com-

uted as usual: 

 D = 2 F D /S, C L = 2 F L /S, 

here S is the cross section of the body. In two-dimensions S = H

nd in three-dimensions S = W H. The results on the drag coeffi-
ient are very close with the two computations G 8 and G 9. The

rag coefficient as well as the pressure forces in the front p f and

t the back p b of the bodies are presented throughout the paper. 

. Numerical results with Ahmed body 

.1. Platooning on top of a road in two dimensions 

In this section we explore the flow around one single or two

hmed bodies following each other on top of a road. The simula-

ions are performed in two-dimensions on a 2, 560 × 768 grid at

eynolds number Re = 15 , 0 0 0 . In Fig. 1 are represented the vortic-

ty field and the pressure contours for one single body. Throughout

he paper the red color stands for the negative vorticity and the

lue color stands for the positive vorticity. It shows clearly that

here is a long wake with a strong pressure well behind the body.

onsequently both pressure forces in front p f and at the back p b 
re at a high level. They are in fact responsible of 95% of the drag

oefficient. The history in Fig. 2 shows that the pressure force at

he back is slightly higher than in front and that the drag coeffi-

ient is strongly linked to p b . For instance at time 40, despite the

ressure force in front is very high, the drag coefficient is quite

ow. Elsewhere the drag coefficient follows the variation of p b . So,

t is obvious that the presence of another body in the wake will

hange the pressure force p b at the back of the preceding one and

onsequently will change the drag coefficient. Let us point out to

he reader that the values of the drag coefficient correspond to

oth a low Reynolds number and the two-dimensions. What is

onsidered in this paper are not the values themselves but their

ariation with platooning. 

The main question is to know what is the best distance that

nsures a significant reduction of the drag coefficient for both bod-

es. We have decided to test three distances between the two ve-

icles d = 0 . 2 L = 0 . 725 H, d = 0 . 5 L = 1 . 8125 H and d = L = 3 . 625 H.

he smallest distance corresponds to the best results obtained us-

ng inter vehicular communications ( Segata et al., 2015 ). The re-

ults are computed in the same domain with the same grid than

efore. Fig. 3 shows again the vorticity field and the pressure con-

ours for d = 0 . 2 L . At this short distance the flow cannot develop

n the gap between the two bodies that looks like the gap be-

ween trailers and behave as a cavity, the flow being dominated

y a single vortex. As shown in Fig. 4 , this time the pressure force

t the back is much lower than the pressure force in front but the

rag coefficient is still strongly linked to it. Table 2 even shows

hat the mean value is slightly negative. That means that the sec-

nd body is so close that the pressure increases drastically in this

avity and pushes the first body. Consequently the drag coefficient

s reduced by 64%. For the second body, as expected the pressure

orce in front is strongly reduced but also the pressure at the back.

ndeed due to this lack of pressure in front of the second body,

he wake is significantly shorter than for a single body as shown

y the mean pressure contours in Figs. 1 and 4 . Thus the pressure

ell is less deep. The conjunction of the two phenomena yields a

rag reduction of 49% (see Table 2 ). 

Now we increase the distance up to d = 0 . 5 L . The vorticity field

nd the pressure contours are shown in Fig. 6 . They show that for

his distance the flow is developing inside the gap between the

wo vehicles. So there is a pressure well at the back of the first

ody and the pressure force is higher than before. Nevertheless

he drag coefficient is reduced by 25%, which is much less than

or d = 0 . 2 L . Due to the pressure well at the back of the first body

here is a tremendous decrease of the pressure force in front of

he second body that is now slightly negative as shown in Table 2 .

hat means that the second body is sucked by the first body. This

henomenon is well-known by the F1 pilots. In addition it implies

lso a reduction of the wake and both reductions induce a decrease
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Fig. 1. Coloured vorticity field and pressure contours (black lines) of the flow over one single body on top of a road in two dimensions. Top: instantaneous flow, bottom: 

mean flow. 

Fig. 2. Single body on top of a road in two dimensions: pressure forces p f in front and p b at the back (left) and strong correlation of the pressure at the back p b and the 

drag coefficient C D (right). 

Table 2 

Mean pressure forces and drag coefficient for one single body or two bodies on top of a 

road in two-dimensions. The variations are computed with respect to the single body. 

Two-dimensions p f variation p b variation C D variation 

Single body 0.22 0.31 1.13 

First body d = 0 . 2 L 0.24 + 9% −0.01 −103% 0.52 −64% 

Second body d = 0 . 2 L 0.024 −89% 0.25 −19% 0.58 −49% 

First body d = 0 . 5 L 0.24 + 9% 0.16 −48% 0.85 −25% 

Second body d = 0 . 5 L −0.09 −141% 0.2 −35% 0.24 −79% 

First body d = L 0.3 + 36% 0.15 −52% 0.96 −15% 

Second body d = L −0.03 −114% 0.25 −19% 0.48 −58% 
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Fig. 3. Coloured vorticity field and pressure contours (black lines) of the flow over two bodies with d = 0 . 2 L on top of a road in two dimensions. Top: instantaneous flow, 

bottom: mean flow. 

Fig. 4. Two bodies with d = 0 . 2 L on top of a road in two dimensions: pressure forces p f in front and p b at the back of the first body (left) and strong correlation of the 

pressure at the back p b and the drag coefficient C D (right). 
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t  
f the drag coefficient by 79%. As for d = 0 . 2 L the drag coefficient

f the first body is correlated to the pressure force at the back and

he drag coefficient of the second body is correlated to the pres-

ure force in front as shown in Fig. 7 . 

For the distance d = L the flow is fully developed between the

wo bodies as shown in Fig. 8 . In the two previous cases, the pres-

ure in front of the first body slightly increases but for this new

istance the increase is more significant. Thus the gain in the drag

oefficient is only 15% (see Table 2 ). For the second body the be-

aviours are similar than for d = 0 . 5 L but weaker and so the re-

uction is weaker but still high with 58%. Once again the drag
 d
oefficient of the first body is correlated to the pressure force at

he back and the drag coefficient of the second body is correlated

o the pressure force in front as shown in Fig. 9 . The analysis re-

orted here is close to what was observed in Martinuzzi and Havel

20 0 0) . 

.2. Platooning on top of a road in three dimensions 

In this section we explore the flow around one single, two or

hree Ahmed bodies following each other on top of a road in three

imensions. The simulations are performed on a 2, 560 × 768 ×
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Fig. 5. Two bodies with d = 0 . 2 L on top of a road in two dimensions: pressure forces p f in front and p b at the back of the second body (left) and strong correlation of the 

pressure in front p f and the drag coefficient C D (right). 

Fig. 6. Coloured vorticity field and pressure contours (black lines) of the flow over two bodies with d = 0 . 5 L on top of a road in two dimensions. Top: instantaneous flow, 

bottom: mean flow. 
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768 grid at Reynolds number Re = 15 , 0 0 0 . The bodies are centered

in the span wise direction. 

Fig. 10 shows the pressure contours of the mean flow around

the single body. Throughout the paper the blue contours reveal low

pressures and the red contours high pressures. There are a high

pressure zone in front and a low pressure zone at the back that

have a crucial influence on the drag coefficient as both slow down

the vehicle. In Fig. 11 the vorticity field and the pressure contours

in the mid plane for one single body are represented. It shows that

the wake is shorter than in two dimensions due to the size of the
ortical structures but there is still a significant pressure well be-

ind the body. Consequently, both pressure forces p f and p b are

trong and responsible of 81% of the drag coefficient and thus the

rictional drag is less than 20%. The pressure force at the back is

bout 1.5 larger than the pressure force in the front and the drag

oefficient fluctuates with the pressure force at the back as in two

imensions (see Fig. 12 ). The mean drag coefficient obtained for

ne single body in a large domain and a long simulation time is

 D = 0 . 455 ( Table 3 ) that is a little bit different from the value

btained for the grid convergence. This is due to the fact that in
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Fig. 7. Two bodies with d = 0 . 5 L on top of a road in two dimensions: pressure force p b at the back and drag coefficient C D of the first body (left) and pressure force p f in 

front and drag coefficient C D of the second body (right). Strong correlation is seen in both cases. 

Fig. 8. Coloured vorticity field and pressure contours (black lines) of the flow over two bodies with d = L on top of a road in two dimensions. Top: instantaneous flow, 

bottom: mean flow. 

Table 3 

Mean pressure forces and drag coefficient for one single body or two bodies on top of a 

road in three-dimensions. The variations are computed with respect to the single body. 

Three-dimensions p f variation p b variation C D variation 

Single body 0.1 0.15 0.455 

First body d = 0 . 2 L 0.11 + 10% 0.05 −67% 0.31 −32% 

Second body d = 0 . 2 L 0.006 −94% 0.14 −7% 0.29 −36% 

First body d = 0 . 5 L 0.11 + 10% 0.05 −67% 0.32 −30% 

Second body d = 0 . 5 L 0.1 0.13 −13% 0.41 −10% 

First body d = L 0.11 + 10% 0.11 −27% 0.41 −10% 

Second body d = L 0.07 −30% 0.13 −13% 0.37 −19% 
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Fig. 9. Two bodies with d = L on top of a road in two dimensions: pressure force p b at the back and drag coefficient C D of the first body (left) and pressure force p f in front 

and drag coefficient C D of the second body (right). Strong correlation is seen in both cases. 

Fig. 10. Pressure contours of the mean flow around the single body in three dimensions. The dark colors show the high absolute values. 
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the short domain used for the grid convergence the exit section is

close to the back of the body and thus can induce a small change

in the pressure field. Moreover the simulation time is shorter for

the grid convergence study. So the mean value is less reliable than

in this section. This value of the mean drag coefficient will be the

reference value for comparison to other simulations in a large do-

main with two or three bodies. For all the following simulations

we keep the same level of grid and the same simulation time. In

addition the mean flow is always computed on the same time in-

terval taking the mean of 40,0 0 0 solutions. 

The next simulations concern two bodies following each other

with a distance d = 0 . 2 L, d = 0 . 5 L or d = L as in two dimensions.

In Fig. 13 there is no high or low pressure zone between the two

bodies that are so close that they almost behave like a long single

body. Fig. 14 shows the vorticity field and the pressure contours in

the mid plane. We notice that the presence of the second body in-

hibits the wake of the first body, reducing drastically the pressure

force at the back of the first body and the pressure force in front

of the second body. Consequently there is a strong reduction (more

than 30%) of the drag coefficient of both bodies ( Table 3 ). 
l  
When the distance is increased to d = 0 . 5 L the situation is dif-

erent as the wake can be developed inside the gap between the

wo vehicles but there is still a strong compression at the back

f the first body (see Figs. 16 and 17 ). Thus the pressure force at

he back of the first body remains very low whereas the pressure

orce in front of the second body increases significantly. As a con-

equence the drag coefficient of the first body is still reduced by

0% but the drag coefficient of the second body is only reduced

y 10% as shown in Table 3 . Finally for d = L the wake of the first

ody is almost fully developed as can be seen in Fig. 18 . Thus the

ressure force at the back is high and the reduction of the drag

oefficient is only 10% (see Fig. 19 and Table 3 ). This time the pres-

ure force in front of the second body is lower and the reduction

f the drag coefficient for this body is 19%. ( Fig. 15 ). 

On the other hand we can notice in Table 3 that the pressure

orce in front of the first body is always the same whatever the

istance d is. It is 10% higher than those of the single body. This

s probably due to the apparent length of the convoy that is larger

han the length of a single body. Similarly the pressure force at the

ack of the second body is also about the same and is about 10%

ower than those of the single body. So the reduction of the drag
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Fig. 11. Coloured Y-vorticity field and pressure contours (black lines) of the flow over one single body on top of a road in the mid plane in three dimensions. Top: instanta- 

neous flow, bottom: mean flow. 

Fig. 12. Pressure forces p f in front and p b at the back and drag coefficient C D of the 

single body in three dimensions. 
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c  

c  
oefficient is strongly linked to the flow behaviour inside the gap

etween the vehicles as we have already seen in two dimensions.

n Fig. 20 is plotted the Y-vorticity contours for the instantaneous

nd mean flows showing almost the same behaviour for both bod-

es. That means that for a longer distance as d = 2 L = 7 . 25 H for in-

tance the flow around the two bodies would behave like the flow

round two separate single bodies and there is no platooning any

ore. In a previous study ( Bruneau et al., 2013 ) we have seen that

here is still a positive effect for d = 5 H, but beyond there is no

ore link between the two vehicles. So the inter vehicular com-
unications must be able to handle quite short distances to have

n efficient platooning. 

To conclude this section we propose a new set of simulations

nvolving three bodies to really quantify the platooning effect with

 vehicle neither in front nor in queue. These simulations are per-

ormed on an extended domain � = (0 , 24 H) × (0 , 6 H) × (0 , 6 H)

or d = 0 . 2 L and d = 0 . 5 L and � = (0 , 24 H) × (0 , 6 H) × (0 , 6 H) for

 = L . To present the results we focus on the case d = 0 . 5 L =
 . 8125 H, that means that for a truck of height about 4 meters, the

istance between the trucks is about 7 meters. Which is a quite

lose distance actually. For this distance the flow inside the two

aps between the vehicles shown in Figs. 21 and 22 is very simi-

ar. So this is a situation that seems very stable and gives a strong

ense of platooning. The result is quite surprising as the drag re-

uction is better than for the two bodies case. Indeed the drag re-

uction is now 34% for the two first bodies instead of 30% and the

rag reduction is 25% for the last body instead of 10% (see Table 4 ).

his result shows the real efficiency of platooning that can induce

 drastic reduction of the fuel consumption. The same computa-

ions have been performed for the two other distances and the

esults are gathered in Table 5 . They show about the same drag

eduction than in the two bodies case for the first body but again

he results are better for the other bodies. Even for d = L = 3 . 625 H

here is a significant gain of the order 25%. This distance, although

uch less than the security distance, is probably more realistic as

or a truck of 4 meters high it corresponds to 15 meters. 

. Numerical results with a simplified truck 

To conclude this study, the flow around a more realistic body is

omputed. Indeed, the purpose of this work is to see how trucks

an take benefit of platooning but the Ahmed body is quite far
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Fig. 13. Pressure contours of the mean flow around two bodies with d = 0 . 2 L in three dimensions. The dark colors show the high absolute values. 

Fig. 14. Coloured Y-vorticity field and pressure contours (black lines) of the flow over two bodies with d = 0 . 2 L on top of a road in the mid plane in three dimensions. Top: 

instantaneous flow, bottom: mean flow. 

Table 4 

Mean pressure forces and drag coefficient for two or three bodies on top of a road in three-dimensions with d = 

0 . 5 L . The variations are computed with respect to the first of the two bodies and the last column is the variation 

with respect to the single body. 

Three-dimensions p f variation p b variation C D variation single body variation 

Single body 0.1 0.15 0.455 

First of two bodies 0.11 0.05 0.32 −30% 

Second of two bodies 0.1 −9% 0.13 + 160% 0.41 + 28% −10% 

First of three bodies 0.12 + 9% 0.03 −60% 0.3 −6% −34% 

Second of three bodies 0.11 0.05 0.3 −6% −34% 

Third of three bodies 0.06 −45% 0.12 + 140% 0.34 + 6% −25% 



C.-H. Bruneau et al. / International Journal of Heat and Fluid Flow 66 (2017) 43–59 53 

Table 5 

Mean pressure forces and drag coefficient for three bodies on top of a road in three- 

dimensions with d = 0 . 2 L, d = 0 . 5 L and d = L . The variations are computed with respect to 

the single body. 

Three-dimensions p f variation p b variation C D variation 

Single body 0.1 0.15 0.455 

First body d = 0 . 2 L 0.11 + 10% 0.05 −67% 0.31 −32% 

Second body d = 0 . 2 L 0.015 −85% 0.05 −67% 0.17 −63% 

Third body d = 0 . 2 L −0.004 −104% 0.12 −20% 0.24 −47% 

First body d = 0 . 5 L 0.12 + 20% 0.03 −80% 0.3 −34% 

Second body d = 0 . 5 L 0.11 + 10% 0.05 −67% 0.3 −34% 

Third body d = 0 . 5 L 0.06 −40% 0.12 −20% 0.34 −25% 

First body d = L 0.12 + 20% 0.1 −33% 0.4 −12% 

Second body d = L 0.08 −20% 0.1 −33% 0.33 −27% 

Third body d = L 0.06 −40% 0.13 −13% 0.35 −23% 

Fig. 15. Pressure forces p f in front and p b at the back and drag coefficient C D of the 

two bodies with d = 0 . 2 L in three dimensions. 
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rom a truck. So a simplified European tractor-trailer geometry

SETTG) is proposed to see the influence of the trailer on the whole

ow and to quantify the gain due to platooning for such a geom-

try more similar to real trucks. This simplified tractor is close in

izes to European tractors with a rounded shape (with radius R )
Fig. 16. Pressure contours of the mean flow around two bodies with d = 0 . 5
n top and both sides of the front of the tractor but not at the

ottom as shown on the profile plotted in Fig. 23 . It is lower than

he trailer and the gap between the tractor and the trailer is small

s usual. The trailer has a large length 4.7 times its height and a

idth 0.74 times its height. All the sizes of the SETTG are given in

ig. 23 . As in the previous sections, the Reynolds number is related

o the height of the body, here the height H 2 of the trailer. Thus

sing the same Reynolds number than before Re = 15 , 0 0 0 corre-

ponds to a very low speed. 

The first numerical test concerns the flow around one single

ETTG in a domain � = (0 , 16 H2) × (0 , 6 H2) × (0 , 6 H2) with the

ame level of grid than in the previous section and significant

imulation times to have a good mean flow. The first observa-

ion is that, due to the total length of the body, the front and the

ack flows are not strongly linked like for the Ahmed body. Con-

equently there is a strong pressure force in front of the trailer

still denoted p f ) but the pressure force at the back of the trailer

still denoted p b ) is much reduced as shown in Fig. 24 and indi-

ated in Table 6 . For such a long body the viscous force is now of

he same size than the pressure force at the back. So, the pres-

ure force in front represents 55% of the drag coefficient while the

ressure force at the back and the viscous force count for a little

it more than 20% each. The drag coming from the gap between

he tractor and the trailer is very low. 

The last numerical simulation involves three SETTG in a platoon

ith the distance between each other d = 1 . 8125 H2 that is pro-

ortionally the same distance than d = 0 . 5 L = 1 . 8125 H for Ahmed
 L in three dimensions. The dark colors show the high absolute values. 
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Fig. 17. Coloured Y-vorticity field and pressure contours (black lines) of the flow over two bodies with d = 0 . 5 L on top of a road in the mid plane in three dimensions. Top: 

instantaneous flow, bottom: mean flow. 

Fig. 18. Pressure contours of the mean flow around two bodies with d = L in three dimensions. The dark colors show the high absolute values. 

Table 6 

Mean pressure forces and drag coefficient for three trucks (SETTG) on top of a road in 

three-dimensions with d = 1 . 8125 H2 . The pressure force P f is only in front of the tractor 

and the pressure force P b is only at the back of the trailer. The variations are computed 

with respect to the single body. 

Three-dimensions p f variation p b variation C D Variation 

Single truck 0.15 0.06 0.74 

First of three trucks 0.16 + 7% 0.03 −50% 0.66 −11% 

Second of three trucks 0.07 −53% 0.02 −67% 0.42 −43% 

Third of three trucks 0.06 −60% 0.05 −17% 0.46 −38% 
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Fig. 19. Coloured Y-vorticity field and pressure contours (black lines) of the flow over two bodies with d = L on top of a road in the mid plane in three dimensions. Top: 

instantaneous flow, bottom: mean flow. 
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f  
odies. The simulation is performed with the same approximation

han before but on a larger domain � = (0 , 28 H2) × (0 , 6 H2) ×
(0 , 6 H2) . In Fig. 25 it can be seen clearly that the following body

ompresses slightly the pressure well at the back of the preceding

ody. It appears that the pressure forces of the body in the middle

re very low and consequently a 43% reduction of the drag coeffi-

ient is achieved. As the influence of the pressure force at the back

s weaker than for Ahmed body, on the one hand the third body

eaches a 38% reduction of the drag coefficient but on the other

and the first body obtains only a 11% reduction. In fact the pres-

ure force in front of the first body is slightly increased like for

hmed body. All these data are gathered in Table 6 . 

Similar results have been obtained in Uystepruyst and Krajnovi ́c

2013) for four cuboids in a row at a distance d = 0 . 4 L . In that pa-

er experiments and LES numerical simulations show a small re-

uction around 10% of the drag coefficient for the leading cuboid

ompare to a single one. But a strong reduction of the drag co-

fficient (more than 60%) is achieved for the following ones and

he reduction of the drag coefficient is a bit less strong for the last

ne. In Humphreys and Bevly (2016) the authors analyze a generic

wo trucks platoon and find, at short distance between the two

rucks, a drag coefficient reduction of 10% to 20% for the first truck

nd between 30% and 40% for the second one. Finally in Watts

2015) the author finds for three American trucks in platoon with

 twenty feet separation distance a drag reduction of 13%, 48% and

0% respectively at a typical highway speed of a tractor-trailer. Sur-

risingly, these last results are very close to what we find in this

tudy whereas the geometry and the speed are very different. 
2  

n

. Conclusions 

In this work numerical simulations of the flow around one, two

r three simplified square-back vehicles in a row have been per-

ormed. Results in two- and three-dimensions show the efficiency

f the platooning that induces a significant reduction of the pres-

ure forces and consequently the drag coefficient decreases. In-

eed, if the distance between the vehicles is small enough, the ve-

icle in front plays the role of a buckler and the pressure force

n front of the following vehicle decreases. Similarly, the follow-

ng vehicle compresses the pressure well at the back and thus the

ressure force at the back of the preceding vehicle also decreases.

s the pressure forces are responsible of a large part of the drag,

he decrease of the pressure forces implies a similar decrease of

he drag coefficient. 

The results for three Ahmed bodies give an higher drag re-

uction than for two Ahmed bodies as a drag reduction around

0% is reached. Besides the simulations around simplified Euro-

ean tractor-trailer geometries give even a better result with about

0% reduction of the drag coefficient except for the first simplified

ruck. Which is very encouraging for the application to truck trains

n highways. 

Let us point out that this study is restricted to square-back

ehicles like trucks for which the surrounding flow is very dif-

erent from the one around usual cars with a rear window at

 critical slant angle. In that case authors have reported a sig-

ificant enhancement of the drag coefficient of the rear vehicle

or d = 0 . 5 L for instance ( Mirzaei and Krajnovi ́c, 2016; Pagliarella,

0 09; Watkins and Vino, 20 08 ). This may be due to the longitudi-

al vortices that break on the following vehicle. 
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Fig. 20. Y-vorticity contours of the instantaneous (top) and mean (bottom) flow around two bodies with d = L in three dimensions. 

Fig. 21. Pressure contours of the mean flow around three bodies with d = 0 . 5 L in three dimensions. The dark colors show the high absolute values. 
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Fig. 22. Y-vorticity contours of the instantaneous (top) and mean (bottom) flow around three bodies with d = 0 . 5 L in three dimensions. 

Fig. 23. Profile of the simplified European tractor-trailer geometry (SETTG) on top of a road. The sizes have no dimensions as they are related to the height of the trailer. 

The total length is L = 5 . 44 , the width is W = 0 . 74 and the radius of the cylinders is R = e = 0 . 14 . 
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Fig. 24. Mean pressure contours of the mean flow around one single SETTG on top of a road in three dimensions. The dark colors show the high absolute values. 

Fig. 25. Mean pressure contours of the mean flow around three SETTG with d = 1 . 8125 H2 on top of a road in three dimensions. The dark colors show the high absolute 

values. 

 

 

 

 

 

 

 

 

 

 

 

B  

 

B  

 

 

 

 

 

 

H  

K  

 

K  

M

M  

 

P  
Acknowledgements 

The numerical simulations presented in this paper have been

run on PLAFRIM platform supported by IMB University of Bordeaux

and INRIA Bordeaux - Sud Ouest. 

References 

Ahmed, S.R. , Ramm, G. , Faltin, G. , 1984. Some salient features of the time-averaged

ground vehicle wake. SAE-Paper . 840300. 

Alam, A. , Gattami, A. , Johansson, K. , 2010. An experimental study on the fuel re-
duction potential of heavy-duty vehicle platooning. In: Proceedings of the 13th

International IEEE Annual Conference on Intelligent Transportation Systems . 
Angot, P. , Bruneau, C.-H. , Fabrie, P. , 1999. A penalization method to take into account

obstacles in incompressible viscous flows. Numer. Math. 81 . 
van Arem, B. , van Driel, C. , R., V. , 2006. The impact of cooperative adaptive cruise

control on traffic-flow characteristics. IEEE Trans. Intell. Transp. Syst. 7 (4) . 
Bruneau, C.-H. , 20 0 0. Boundary conditions on artificial frontiers for incompressible

and compressible Navier-Stokes equations. Math. Modell. Numer. Anal. 34 (2) . 

Bruneau, C.-H. , Creusé, E. , Gilliéron, P. , Mortazavi, I. , 2014. Effect of the vortex dy-
namics on the drag coefficient of a square back Ahmed body: application to the

flow control. Eur. J. Mech. B/Fluids 45 . 
Bruneau, C.-H. , Khadra, K. , 2016. Highly parallel computing of a multigrid solver for

3d Navier-Stokes equations. J. Comput. Sci. 17 (1) . 
runeau, C.-H. , Khadra, K. , Mortazavi, I. , 2013. Analysis and active control
of the flow around two following Ahmed bodies. In: Proceedings FEDSM

FEDSM2013-16588 . 
runeau, C.-H. , Saad, M. , 2006. The 2d lid-driven cavity problem revisited. Comput.

Fluids 35 (3) . 
Brunn, A. , Wassen, E. , Sperber, D. , Nitsche, W. , Thiele, F. , 2007. Active drag control

for a generic car model, Active Flow Control. In: Notes on Numerical Fluid Me-

chanics and Multidisciplinary Design, 95. Springer, pp. 247–259 . 
Caltagirone, L. , Torabi, S. , Wahde, M. , 2015. Truck platooning based on lead vehicle

speed profile optimization and artificial physics. In: Proceedings IEEE Interna-
tional Conf.erence on Intelligent Transport Systems . 

Farokhi, F. , Johansson, K. , 2014. Investigating the interaction between traffic flow
and vehicle platooning using a congestion game. IFAC Proc. 19 . 

Frahadi, M. , Sedighi, K. , 2008. Flow over two tandem wall-mounted cubes using

large eddy simulation. Proc. Inst. Mech. Eng. Part C 222 . 
umphreys, L. , Bevly, D. , 2016. Computational fluid dynamic analysis of a generic 2

truck platoon. SAE Technical Paper . 2016-01-8008. 
avathekar, P. , Chen, Y. , 2011. Vehicle platooning: a brief survey and categoriza-

tion. In: ASME 2011 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference . 

rajnovi ́c, S. , Davidson, L. , 2003. Numerical study of the flow around the bus-shaped

body. ASME J. Fluids Eng. 125 . 
artinuzzi, R. , Havel, B. , 20 0 0. Turbulent flow around two interfering surface–

mounted cubic obstacles in tandem arrangement. J. Fluids Eng. 122 (1) . 
irzaei, M. , Krajnovi ́c, S. , 2016. Large eddy simulations of flow around two generic

vehicles in a platoon. In: Proceedings of the 5th International Conference on
Jets, Wakes and Separated Flows . 

agliarella, R. , 2009. On the Aerodynamic Performance of Automotive Vehicle Pla-

http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0001
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0001
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0001
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0001
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0001
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0002
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0002
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0002
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0002
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0003
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0003
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0003
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0003
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0004
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0004
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0004
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0004
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0005
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0005
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0006
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0006
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0006
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0006
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0006
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0007
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0007
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0007
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0008
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0008
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0008
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0008
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0009
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0009
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0009
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0010
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0010
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0010
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0010
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0010
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0010
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0011
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0011
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0011
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0011
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0012
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0012
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0012
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0013
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0013
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0013
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0014
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0014
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0014
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0014
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0015
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0015
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0015
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0016
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0016
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0016
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0017
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0017
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0017
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0018
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0018
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0018
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0019
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0019


C.-H. Bruneau et al. / International Journal of Heat and Fluid Flow 66 (2017) 43–59 59 

 

P  

S  

 

S
U  

W  

W  
toons Featuring Pre and Post-Critical Leading Forms. Ph.D. thesis. School of
Aerospace, Mechanical and Manufacturing Engineering, RMIT University . 

agliarella, R. , Watkins, S. , 2016. The effect of rear slant angle on vehicle wakes and
implications for platoons. SAE Technical Paper . 2006-01-0341. 

egata, M. , Bloessl, B. , Joerer, S. , Sommer, C. , Gerla, M. , Lo Cigno, R. , Dressler, F. , 2015.
Toward communication strategies for platooning: simulative and experimental

evaluation. IEEE Trans. Veh. Technol. 64 (12) . 
ommer, C. , Dressler, F. , 2014. Vehicular Networking. Cambridge Univ. Press . 
ystepruyst, D. , Krajnovi ́c, S. , 2013. Les of the flow around several cuboids in a row.

Int. J. Heat Fluid Flow 19, 414–424 . 
atkins, S. , Vino, G. , 2008. The effect of vehicle spacing on the aerodynamics of a

representative car shape. J. Wind Eng. Ind. Aerodyn. 96 (6) . 
atts, A. , 2015. Computational Characterization of Drag Reduction for Platooning

Heavy Vehicles. Ph.D. thesis. Auburn Alabama USA . 

http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0019
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0020
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0020
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0020
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0020
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0021
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0021
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0021
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0021
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0021
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0021
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0021
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0021
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0022
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0022
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0022
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0023
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0023
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0023
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0024
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0024
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0024
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0025
http://refhub.elsevier.com/S0142-727X(16)30627-0/sbref0025

	Flow analysis of square-back simplified vehicles in platoon
	1 Introduction
	2 Modeling and numerical simulations
	3 Numerical results with Ahmed body
	3.1 Platooning on top of a road in two dimensions
	3.2 Platooning on top of a road in three dimensions

	4 Numerical results with a simplified truck
	5 Conclusions
	 Acknowledgements
	 References


