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In  order  to efficiently  obtain  all frequencies  of the  solution,  a multigrid  solver  is  used  to  solve  the
Navier–Stokes  equations  for incompressible  flows.  The  method  uses  a cell-by-cell  Gauss–Seidel  smoother
that  is  not  straightforwardly  parallelizable.  Moreover  the  coarsest  grids  are  very  coarse  and  cannot  be
solved  in  parallel.  The  proposed  method  splits  the  3D  Cartesian  computational  domain  into  well-balanced
sub-domains  with  respect  to  two  dimensions.  Efficient  parallel  procedures  using  MPI libraries  permit  us
to  get  a high  strong  and  weak  scalability  of  the  whole  parallel  software.  Comparison  is  done  between  MPI
eywords:
avier–Stokes equations
ultigrid solver parallelism
auss–Seidel smoother parallelism
trong and weak scalability
PI  and hybrid MPI/OpenMP parallelism

and hybrid  MPI/OpenMP  parallelism.
©  2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

It is nowadays impossible to perform high performance com-
uting without strong parallelism which yields high efficiency on
s many cores or threads as possible. The direct numerical simu-
ation (DNS) of complex flows requires a large number of degrees
f freedom. This is the main reason for introducing intermediate
ethods like Reynolds-averaged Navier–Stokes equations (RANS),

nsteady Reynolds-averaged Navier–Stokes equations (URANS),
artially-averaged Navier–Stokes equations (PANS), detached eddy
imulation (DES) or large eddy simulation (LES) [16]. Because of the
ncrease of computer resources today, it is possible to use DNS in
wo-dimensions and even in three-dimensions when the simula-
ions are performed with an efficient parallel software.

Parallelism has quite a long history starting with some pioneer-
ng clusters in the sixties [26] and transputers in the late seventies
4,19,23]. Nearly fifty years ago, some researchers already thought

hat a way to improve computational power was to put some micro-
rocessors in a row and to teach them how to communicate. At
he same period other researchers had another idea that consisted

∗ Corresponding author at: University of Bordeaux IMB, CNRS UMR  5251, 351,
ours de la Libération, F-33405 Talence, France.

E-mail addresses: Charles-Henri.Bruneau@math.u-bordeaux.fr (C.-H. Bruneau),
hodor.Khadra@math.u-bordeaux.fr (K. Khadra).
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877-7503/© 2016 Elsevier B.V. All rights reserved.
in transforming sequential operations into vectorized operations.
This idea gave rise to the famous CRAY computers able to perform
for instance 64 operations at the same time inside a loop. Since
then there were many attempts to develop various parallel comput-
ers and more recently the spreading of computer clusters all over
the world [12]. The two  main ideas above are linked respectively
to distributed and shared memory and gave rise to the Message
Passing Interface (MPI) in 1993 and to the Open Multi-Processing
(OpenMP) in 1997 that are nowadays commonly used. On new com-
puter architectures, it is possible to couple the two  libraries in order
to perform hybrid parallelism MPI/OpenMP, MPI on different nodes
or cores and OpenMP on different cores or threads as the nodes of
the computer clusters have generally several cores with several
threads each.

The parallelization of CFD softwares started with the develop-
ment of parallel computers, specially to solve linear systems using
for instance gradient type methods that are very easy to parallelize.
For Navier–Stokes equations, a well-known method is to use a pro-
jection method involving a Poisson solver to get the pressure. Thus
the parallelism is achieved with MPI  directives at different steps of
the algorithm and for solving a linear system at each time step. A lot
of papers have been written on this subject: In [3] a good efficiency

is achieved up to 60 processors, in [32,31] on big meshes of size
2403 an efficiency of up to 0.75 for MPI  on 48 cores or MPI/OpenMP
on 32 cores is obtained. In [28] a preconditioned GMRES method is
used to solve Navier–Stokes equations with 3.3 billion unknowns

dx.doi.org/10.1016/j.jocs.2016.09.005
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2016.09.005&domain=pdf
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n 65536 cores and a good relative efficiency is reached on fine
rids.

Another interesting aspect is the use of the multigrid method
hat works for all but the coarsest grids. These cannot be paral-
elized as they do not contain enough unknowns. In the literature

e find a survey in 2006 exploring the parallelism techniques for
ultigrid solvers [18]. The multigrid method can be applied in two
ays, either by inverting a linear system using the multigrid as a
reconditioner or by fully resolving a given problem on a series of
rids. Many authors use the first method: In [13] they first solve a
aplace problem with very good efficiency on 32,768 cores, then
hey apply the multigrid solver to the Poisson equation. In [24]

 multigrid preconditioner is used to solve Stokes problem with
nite elements approximation. They use the PETSc library [25] and
btain a good relative speedup using up to 4,096 cores and fine
eshes of size 3843. In [14] a multigrid solver is applied to solve

he Stokes problem. The method is run on an Intel Xeon cluster up
o 30,720 cores and on IBM Blue Gene up to 122880 cores with 1 to

 threads (these computers are the ones we have access to). A rela-
ive efficiency is provided that decreases to 0.55 when multiplying
he number of cores by 16. In [17] the tests range up to 29 billion
oints involving 11 grid levels in the multigrid preconditioner for
he Poisson problem on 13,824 cores. The weak scalability is given
or 2.1 million unknowns per core and is very good.

These last few years a very good scalability was achieved solv-
ng linear systems with the help of PETSc library or not. In our
pinion the full multigrid method is much more efficient to get
he Navier–Stokes solution. However it is not so easy to get good
arallel performances as on the one hand the parallelism is not effi-
ient on the coarsest grids and on the other hand the Gauss–Seidel
moother cannot be parallelized straightforwardly. There are very
ew results available. For instance in [20] the author uses a 2D
ub-domain decomposition into 32 rectangular domains and gets a
elative efficiency of up to 0.86 and a global efficiency that decreases
rom 0.76 to 0.56 when increasing the number of cores. In [21]
he author uses a multigrid solver with Gauss–Seidel smoother
nd gets better results with hybrid MPI/OpenMP parallelism than
ith MPI  parallelism on up to 24,576 cores that compute 500,000
nknowns each. Good results are obtained for the weak scalability.

 fully MPI  or hybrid MPI/OpenMP parallelism are also studied on
nstructured meshes using up to 32 processors in [29]. The results
how that the best score is obtained using a maximum of MPI  pro-
esses, for instance 32 MPI  processes are faster than 16 MPI  ones
nd 2 OpenMP threads. It was shown in [30] that a cell-by-cell
auss–Seidel smoother is much more efficient to get convergence

n the full multigrid method. This smoother is studied in [11] on up
o 256 processors in two-dimensions. They show for instance that
hey can get a weak efficiency as high as 0.93 on 4 cores on fine
rids containing about one million finite elements but this weak
fficiency decreases to 0.78 on 64 cores.

This literature review is far from being exhaustive, indeed we
an find in the literature other ideas to get parallelism. For instance
n [1] the authors study a parallelization of Navier–Stokes equa-
ions in space and time on up to 8 processors and get an efficiency
etween 0.87 and 0.61 when increasing the number of cores from

 to 8 on a 1293 mesh. A recent study using multi-color ordering
ives results with OpenMP [27] that are very good on 4 threads
nd quite good until 16 threads. In [10] the domain decomposition
s studied in details and its application to parallel implementation

ith numerical experiments up to 8192 cores show good relative
fficiency.

In this work we use a method based on a full multigrid algorithm

o capture the modes of the flow solving Navier–Stokes equations
y DNS in three-dimensions. The smoother used in the multigrid
lgorithm is a cell-by-cell Gauss–Seidel method that is unfortu-
ately based on a backward dependency. However, it is not possible
Fig. 1. Computational domain around a simplified vehicle on top of a road.

to replace it by a cell-by-cell Jacobi method (which could be easily
parallelized) as the multigrid algorithm would not converge any
more. So we have to focus on this part of the program in order to
get the best possible efficiency. In addition the multigrid algorithm
involves very coarse grids on which no parallelism can be applied
and intermediate grids on which parallelism can be performed only
on a restricted number of cores. Despite these difficulties, the chal-
lenge is to get the best efficiency on as many cores or threads as
possible. As we use the volume penalization method to handle
obstacles immersed in a fluid, the computational domain is a 3D
box on which a domain decomposition can be easily applied.

In the following the modelling and the numerical method to
approximate Navier–Stokes equations are given, then the multi-
grid solver. Next, the paper focuses on MPI  parallelism of the
tough subroutines of the program, namely the Gauss–Seidel relax-
ation procedure, the multigrid algorithm and the prolongation and
restriction operators. At the end an hybrid MPI/OpenMP parallelism
on nodes with 16 cores and 4 threads (IBM Blue Gene) is performed.
A comparison of the full MPI  and hybrid parallelisms is given as well
as the efficiency and the scalability obtained in each case.

2. Modelling and numerical simulation

The aim is to simulate the flow governed by the dimensionless
Navier–Stokes equations in a computational domain � that is a box
eventually around obstacles (Fig. 1). To ease the parallelism, the
first idea is to use an uniform Cartesian mesh on a regular three-
dimensional domain, let us say � = (0, X) × (0, Y) × (0, Z) where X,
Y and Z are integer numbers in practice. In case of a flow around
obstacles, an immersed boundary method is used to take them into
account. Namely the volume penalization method that consists in
adding a term U/KP in the momentum equation is used, the obsta-
cles being considered as porous bodies with a very low permeability
coefficient [2,22]:

∂tU + (U · ∇)U − 1
Re

�U + U

KP
+ ∇p = 0 in � × I

div U = 0 in � × I

U(0, .) = U0 in �

U = U∞ on �i ∪ �r × I

�(U, p) n + 1
2

(U  · n)−(U − Uref ) = �(Uref , pref ) n on  �l ∪ �o × I

(1)
where U is the velocity field, p the pressure, I = (0, T) with T the sim-
ulation time, Re = �ŪH/� is the Reynolds number, KP = �kŪ/�	H
is the non-dimensional coefficient of permeability of the medium
without gravity. In these two numbers without dimension, � is the
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unknowns of a cell. Let us point out to the reader that this FAS
Fig. 2. The staggered unknowns in a cell.

ensity of the fluid, Ū is the velocity of the vehicle, H is the height of
he vehicle, � is the viscosity of the fluid, k and 	 are respectively
he permeability and the porosity of the bodies. The boundary con-
itions require to know the flow at infinity U∞, the tensor � and
he reference flow (Uref, pref) used to write the traction [7], in prac-
ice this reference flow is taken as the flow computed just before
he exit section [5]. This last boundary condition conveys properly
he vortices downstream without any reflection on the artificial
rontier than can be located close to the body.

The system of equations (1) is solved by a strongly coupled
pproach for the physical unknowns (U = (u, v, w),  p). To get effi-
iency a multigrid solver using V-cycles is used to capture easily
ll frequencies approached by the mesh. This solver is coupled to

 cell-by-cell Gauss–Seidel relaxation smoother and to reinforce
he coupling, the unknowns are set on staggered cells as shown
n Fig. 2. Indeed, the divergence operator at the pressure point in
he center of the cells is directly obtained at second order with the
alues of the velocity at the center of the faces in 3D. The time dis-
retization is achieved using a second-order Gear scheme with an
xplicit treatment of the convection term that is approached by a
hird-order finite difference upwind scheme. All the linear terms
re treated implicitly and discretized through a second-order cen-
red finite difference scheme. Thus at each time step the system to
olve reads:

3Um

2ıt
− 1

Re
�Um + Um

KP
+ ∇pm = 2Um−1

ıt
−  2(Um−1 · ∇)Um−1 − Um

2

∇ · Um = 0 

Um = U∞

�(Um, pm) n + 1
2

(Um−1 · n)
−

(Um−1 − Uref ) = �(Uref , pref ) n 

o get the solution at time tm = mıt where tm−2 and tm−1 are
he previous times. The CFL condition related to the convection
erm requires a time step ıt of the order of magnitude of the
pace step h as Ū = (1,  0, 0) [9]. A set of grids is defined start-
ng from the coarsest mesh with X × Y × Z cells to the finest mesh
efined by dyadic refinement on L levels. For instance in the
omain � = (0, 20) × (0, 6) × (0, 4), the coarsest uniform grid num-
ered 1 has 20 × 6 ×4 = 480 cells, the second uniform grid has
0 × 12 × 8 =480 × 8 =3840 cells and so on, each grid having 8 times
he number of cells of the previous one. If L = 8, the finest grid
as 2560 × 768 × 512 = 1, 006, 632, 960 cells and 4, 030, 201, 856

nknowns because of the staggered cells. This is the least number
f unknowns required to perform a direct numerical simulation at
eynolds numbers up to 30, 000.
utational Science 17 (2016) 35–46 37

 (Um−2 · ∇)Um−2 in �

in �

on �i ∪ �r

on �l ∪ �o

(2)

3. Full multigrid solver of Navier–Stokes equations

The discretization of the coupled velocity–pressure system of
equations above yields to solve a discrete linear system AhVm

h
=

Bm−1
h

where Ah represents the linear part of the discrete operator,

Bm−1
h

is the discrete right hand side (previous times and convection
terms) and Vm

h
= (Um

h
, pm

h
) is the approximate solution to compute

at time t = mıt. Despite the discrete system is linear, we solve it by
the FAS (Full Approximation Storage or Scheme) nonlinear multi-
grid algorithm [19] as the artificial boundary condition is nonlinear.
Indeed this boundary condition uses the flow computed just before
the exit section as the reference flow. Which implies also to have
a progression of the smoother to the x direction. In addition to
impose this boundary condition on �l, the domain is split into two
parts in the y direction, left and right starting from the middle and
the smoother moves from the road to the top in the z direction.
Let us note that the fact that the domain is split into two parts
in the y direction increases the efficiency of the initialization pro-
cess as two rows are computed in parallel. The sequence of grids
is denoted Gl with 1 ≤ l ≤ L. Thus, the multigrid algorithm using a
V-cycle procedure is illustrated below for the computation of the
fine grid solution Vm

h
= Vm

L on grid GL.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For q = 1 to number ofV -cycles do

Ṽ q
L = S(
1)

L (AL, Vq−1
L , Bm−1

L )

Correction on coarse grids⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

For l = L-1 to 1 by −1 do

V̄ q
l

= Rl+1
l

Ṽ q
l+1

Bq
l

= Rl+1
l

(Bq
l+1 − Al+1Ṽ q

l+1) + AlV̄
q
l

Ṽ q
l

= S(
1)
l

(Al, V̄q
l

, Bq
l
)

Updating of the fine grids⎧⎪⎨
⎪⎩

For l = 2 to L do

V̂ q
l

= Ṽ q
l

+ Pl
l−1(Vq

l−1 − V̄ q
l−1)

Vq
l

= S(
2)
l

(Al, V̂q
l

, Bq
l
)

Convergence test

if ||Bm−1
L − ALVq

L || ≤ � stop iterations

In this algorithm S(
)
l

denotes the smoother used on grid Gl to
compute an approximate solution of the linear system doing 

iterations. The restriction Rl+1

l
is the linear interpolation opera-

tor from the finer grid Gl+1 and the prolongation Pl
l−1 is the linear

interpolation operator from the coarser grid Gl−1. The smoothing
operator S performs 
 iterations of an iterative cell-by-cell method
that leads to solving a 7 × 7 linear system corresponding to the 7
multigrid algorithm provides the solution of Navier–Stokes sys-
tem on each grid, even the coarsest. Indeed, as our coarsest grid
is very coarse (for instance 20 × 4 ×4 cells), the results with the
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Fig. 3. Propagation of parallel algorithm of cell-by-cell Gauss–Seidel smoother in
two  dimensions. Core 1 can start to work when core 0 has sent its upper cell of the
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moother on that grid is very close to the one obtained by a direct
ethod.

 ̨ 0 0 0 0 0 1/h

0   ̨ 0 0 0 0 −1/h

0  0  ̨ 0 0 0 1/h

0  0 0  ̨ 0 0 −1/h

0  0 0 0  ̨ 0 1/h

0  0 0 0 0  ̨ −1/h

−1/h  1/h −1/h 1/h −1/h 1/h 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

um
i,j,k

um
i+1,j,k

vm
i,j,k

vm
i,j+1,k

wm
i,j,k

wm
i,j,k+1

pm
i,j,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dui,j,k

Dui+1,j,k

Dvi,j,k

Dvi,j+1,k

Dwi,j,k

Dwi,j,k+1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n this system  ̨ = (3/2ıt) + (6/Reh2) + (1/Kp) and the other quanti-
ies of the linear operator are relaxed in the second member. So
he Dui,j,k term represents the sum of these relaxed terms and
Bm−1

l
)
i,j,k

. We  solve this 7 × 7 coupled system directly. Indeed,
liminating the first six unknowns in the first six equations we  get
m
i,j,k

, then the other unknowns follow. Let us point out that the
eventh equation ensures the divergence-free constraint in each
ell.

. Parallel algorithm of the Gauss–Seidel smoother

The iterative method used as smoother is a cell-by-cell
auss–Seidel method. Indeed the Jacobi method, despite it is easily
arallelized, does not converge as the reference flow in the trac-
ion boundary condition must be taken at the same iteration. The
moother is performed on each grid including the coarsest one.
ome authors use a direct solver on the coarsest one but this does
ot change the convergence in our application. Due to the staggered
rids, the velocity components located on the sides are updated
wice whereas the pressure in the centre of the cell is updated once.
esides there is a backward dependency as for computing the solu-
ion in the next cell it is necessary to have the new solution on
he previous one. Taking into account the backward dependency,
t is not possible to write a parallel algorithm in one of the three
imensions. Here the larger length corresponds to the flow direc-
ion that is chosen in the x direction. Thus the domain is cut into
niform sub-domains in both y and z directions. This is a strong lim-

tation as the parallelization is achieved on two dimensions instead
f three. The result will be a good efficiency on a few thousands of
ores on fine grids instead of tens or hundreds thousands of cores
f it was possible to parallelize the three dimensions. To illustrate
his we show in Fig. 3 what is done in two dimensions taking for x
he main direction and cutting the domain into four sub-domains
n z direction. Each core computes one sub-domain. At the begin-
ing the first core computes the first row and the other cores do not
ork, the first core (0) sends the solution of the last cell in the first

ow to the second core (1) and then the two first cores compute a
ow and the other cores do not work and so on until the last core is
eached. A core c cannot work until it receives the last cell of core

 − 1. When the last core is reached, all the cores can compute in
arallel until the first core reaches the end of the domain in the x
irection. At this point, the first core waits until the last one has
nished.

In three dimensions the domain is split into uniform sub-
omains in both y and z directions as shown in Fig. 4. The core
umbers go from left to right and bottom to top. So one core com-
utes the solution in an elongated sub-domain containing all the
ells in x direction but only a small piece in (y, z) planes. In the appli-
ation presented in Section 2, both computational domain limits

n the y direction are artificial and to specify the traction bound-
ry condition, it is necessary to know the solution on the second
r the penultimate cell. So this suggests to start in the middle of
he domain and to propagate the computation both sides. This way
first row coloured in green. The yellow color represents the beginning of the full
parallel computing of the four cores.

the parallelism is improved but an even number of cores in the y
direction is compulsory. So the Gauss–Seidel smoother is propa-
gated both from left to right on the right part and from right to
left on the left part of the domain and from bottom to top inside a
sub-domain. That means that when the first core of the right part
(3) has computed all the unknowns of the first cell it can send the
values to the first core of the left part (2) that starts to compute
immediately. Then the first core (3) goes on computing to the right
and when it has computed the last cell of the first line it can send
it to the next core on its right (4) that can start in its turn. Sym-
metrically when the first core of the left part (2) has computed the
last cell of the first line to the left, it can send it to the next core
on its left (1) that can start in its turn. In addition, the cores must
send their first cell to their neighbour for the next iteration (see
the right part of Fig. 4). At the end, when one core c has computed
its whole sub-domain, it sends the whole last line up to the core
above. In addition it has to send the right cell of the last line in diag-
onal to the core on its right-above side and the left cell of the last
line in diagonal to the core on its left-above side. Reciprocally this
core c will receive the neighbouring cells from its neighbours for
the next iteration. All the receive and send directives are blocking
communications.

Let us suppose there are N1, N2 and N3 cells in x, y and z direc-
tions respectively in the global domain, and each sub-domain goes
from the cell 1 to the cell N1 in x direction and goes from the
cell D2 to the cell F2 and from the cell D3 to the cell F3 in the
parallel y and z directions. Let us point out to the reader that for
the discretization of the Laplace operator we use a centered sec-
ond order finite difference scheme that requires one fictitious row
on each side of the sub-domain in the y and z directions. In the
algorithm below are given the communications inter cores for the
smoother using the four directions to indicate the core. For instance
Receive − left means from the core on the left (from core 9 for core
10 in Fig. 4) and Receive − left − down means from the core on the
left and below (from core 3 for core 10). So, receiving one cell from
the left means receiving the 7 values of the cell D2 − 1 of the ficti-

tious zone corresponding to a Send − right of the cell F2 by the left
core. In addition the cores send or receive either a cell or a full line
of length 6(F2 − D2 + 1) in z direction. The sketch of the solver is the
following:
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ill  send its first right cell of the first line to core 3 for the next x plane. The cores 

he  right for the left hand part of the domain. When cores 21 and 20 start on the firs
rst  ones and will wait until cores 23 and 18 finish.

Do I = 1 to N1
If ((D2 > = N2/2+1) and (D3 > 1)) Receive-line-

own (I, D3-1)
Receive-cell-left-down (I, D2-1, D3-1)

If (F2 < N2) Receive-cell-right-down (I, F2+1,
3-1)

End If
If ((F2 < = N2/2) and (D3 > 1)) Receive-line-

own (I, D3-1)
Receive-cell-right-down (I, F2+1, D3-1)

If (D2 > 1) Receive-cell-left-down (I, D2-1,
3-1)

End If
Do K = D3 to F3

If ((D2 > = N2/2+1) and (F3 < N3) and (K = =
3))

Receive-line-up (I-1, F3+1)
Receive-cell-left-up (I-1, D2-1, F3+1)

If (F2 < N2) Receive-cell-right-up (I-1, F2+1,
3+1)

End If
If ((F2 < = N2/2) and (F3 < N3) and (K = = F3))

Receive-line-up (I-1, F3+1)
Receive-cell-right-up (I-1, F2+1, F3+1)

If (D2 > 1) Receive-cell-left-up (I-1, D2-1,
3+1)

End If
If ((D2 > = N2/2+1) and (K > D3)) Receive-cell-

eft (I, D2-1, K-1)
If (D2 > N2/2+1) Receive-cell-left (I, D2-1, K)
If ((F2 < = N2/2) and (K > D3)) Receive-cell-

ight (I, F2+1, K-1)
If (F2 < = N2/2) Receive-cell-right (I, F2+1, K)
Do J = D2 to F2

If ((D2 > = N2/2+1) and (F2 < N2) and (K >
3))

Receive-cell-right (I, F2+1, K-1)

If ((F2 < = N2/2) and (D2 > 1) and (K > D3))

Receive-cell-left (I, D2-1, K-1)
COMPUTE the solution in the cell (I,J,K)
same colour work in parallel but not in the same plane in x direction as shown on
e in that direction cores 3 and 2 start the fourth plane. Cores 3 and 2 will finish the

If ((D2 > = N2/2+1) and (J = D2+1)) Send-cell-
left (I, D2, K)

If ((F2 < = N2/2) and (J = F2-1)) Send-cell-
right (I, F2, K)

End Do
If ((D2 > = N2/2+1) and (F2 < N2)) Send-cell-

right (I, F2, K)
If ((F2 < = N2/2) and (D2 > 1)) Send-cell-left

(I, D2, K)
If ((D3 > 1) and (K = = D3+1)) Send-line-down

(I, D3)
If (D2 > 1) Send-cell-left-down (I, D2, D3)
If (F2 < N2) Send-cell-right-down (I, F2, D3)
End If

End Do
If (F3 < N3) Send-line-up (I, F3)

If (D2 > 1) Send-cell-left-up (I, D2, F3)
If (F2 < N2) Send-cell-right-up (I, F2, F3)

End If
End Do
Let us point out to the reader that the number of send and receive

is not the same as the receive operates in the left and the right parts
of the domain.

5. Parallel algorithm of the prolongation and restriction
operators

Let us point out to the reader that on the full computational
domain as well as on the sub-domains it is necessary to add
fictitious cells in all directions in order to perform easily the inter-
polations.

5.1. Prolongation operator

The operator Pl
l−1 consists in interpolating the solution from a

coarse grid l − 1 to a finer one l. The important point in the algo-

rithm is the size of the finer grid on the current core. When the
dimensions D2(l), F2(l), D3(l) and F3(l) are equal to 1, N2(l), 1 and
N3(l) respectively the two  consecutive grids are not treated in par-
allel and there is nothing to do. As soon as the dimensions are
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ifferent the grid l is computed in parallel and thus the prolon-
ation is necessary only on the real size corresponding to (D2(l),
2(l)) × (D3(l), F3(l)) of the sub-domain computed by the core. So it
s only necessary to test if the indices (I, J, K)l of the unknowns of the
ne grid are included in the sub-domain with extended fictitious
ells to perform the interpolation.

.2. Restriction operator

In our methodology each core computes on its corresponding
omain on each grid level from L to 1. All the cores compute on
heir given sub-domain on the finest grids and generally compute
n the full domain on grid G1 (see next section). In between they can
ompute on intermediate sub-domains larger than their given sub-
omain and smaller than the full domain. In addition the restriction
perator is not straightforward. Indeed, because of the staggered
rids, the restriction operator is not a projection. The operator Rl−1

l
onsists in interpolating the solution from a fine grid l to a coarser
ne l − 1. Whatever is the sub-domain at level l − 1, the restriction
s performed only on the size of the sub-domain at level l. Then
here are two cases: either the size of the sub-domain at level l − 1
s identical to the size of the sub-domain at level l or not. In that
ast case the sub-domain at level l − 1 is always larger than the sub-
omain at level l and can even be the full domain. In the first case

t is necessary to communicate the values of the unknowns in the
ctitious cells between the cores. In the second case it is necessary
o gather the restricted values of the smaller sub-domains corre-
ponding to level l in order to obtain the restricted values on the
arger sub-domains or domain at level l − 1. This operation is per-
ormed using an MPI  A LLREDUCE routine with MPI S UM.  Using
his routine it is required to give the dimensions of the full domain
t level l − 1 to perform the sum that is stored in a full array corre-
ponding to the full domain. If several cores do the same calculation
n the same sub-domain at level l − 1, it is necessary to divide the
alues in the array by this number of cores as the sum performed
y the MPI  A LLREDUCE routine adds the same value in the array
everal times. The values on a sub-domain different from the full
omain at level l − 1 can be obtained by picking the necessary val-
es in the full array. In that case it is also necessary to communicate
he values of the unknowns in the fictitious cells between the cores.

. Full multigrid coarse-grids parallelism

Due to the finite difference approximation that uses a five-cell
tencil in each direction for the convection terms, the fictitious
ones contain two row cells and so a sub-domain must contain at
east four row cells in each direction to avoid overlapping. The full

ultigrid coarse-grids parallelism consists in computing the max-
mum number of grids in parallel. On the computational domain

 we choose to use the coarsest grid G1 : N1(1) × N2(1) × N3(1)
ells of a uniform mesh with the three dimensions as small as
ossible but greater than or equal to four; and then to compute
n L consecutive grids up to GL obtained from dyadic refinement
s Gl : N1(l) × N2(l) × N3(l) cells where N1(l) = 2l−1N1(1). So, with
L−3N2(1) × 2L−3N3(1) cores it is possible to compute in parallel
nly the finest grid. This number can be seen as an upper limit of
ores than can be used but in practice it is necessary to compute
n parallel several grids, at least three to get a good efficiency. So
he limit is in fact 2L−5N2(1) × 2L−5N3(1) cores to compute in par-
llel the three finest grids and to compute sequentially the coarsest
nes. That means that each core computes the full domain from grid

1 to grid GL−3. Indeed, instead of having one core doing the job on

he coarse grids and then sending the solution to the other cores,
e have chosen to compute the solution on the coarse grids on all

he cores as the storage of the coarse grids is negligible compared
utational Science 17 (2016) 35–46

to the finest grids. Consequently no communications are required
and all the cores are perfectly synchronized.

To increase the efficiency and the upper limit of the number of
cores, it is possible for instance to use 2L−3N2(1) × 2L−3N3(1) cores
on grid GL, 2L−4N2(1) × 2L−4N3(1) cores on grid GL−1 and so on while
the number of cells in each direction is greater than four. Which
means that four cores will do the same job on grid GL−1, sixteen
cores will do the same job on grid GL−2 and so on. This is what
we call the full multigrid coarse-grids parallelism, going from the
finest grid to the coarsest one, a core will work on larger and larger
sub-domains until it reaches the full domain.

7. Hybrid parallelism

In the sections above is presented MPI  parallelism of the whole
method but to take into account the specificity of a new generation
of computers it is also interesting to consider hybrid MPI/OpenMP
parallelism. Indeed a computer like IBM Blue Gene has nodes with
16 cores and each core can use 4 threads. In that case it can be judi-
cious to perform MPI  parallelism on the cores (one MPI  process per
core) and to use the 4 threads for OpenMP procedures to increase
the efficiency.

Some operations all along the code are suitable for OpenMP
directives as they involve several loops without dependency. This
is the case for the computation of the linear operator, the compu-
tation of the residuals or the interpolations in the prolongation or
restriction operators as they require three do loops in I, J and K that
can be written in any way. As the product X × Y × Z is large the gain
will compensate the opening of OpenMP to give a higher efficiency.
In some cases it is useful to change the order of the DO loops putting
the longer one in I in the outer place to increase the gain on a large
number of cores.

However the main part of the elapsed real time is devoted to
solve the linear system by means of the Gauss–Seidel smoother.
Unfortunately, we have seen in section 4 that to have a good MPI
parallelism it is necessary to put the larger loop in I as the outer
loop but the complexity of its contents with many MPI commu-
nications cannot be handled efficiently by OpenMP directives that
always damage the efficiency. So the hybrid parallelism is not used
explicitly for the smoother. Nevertheless the compilation option
qsmp = omp saves 20% of the elapsed real time. At the end, as all the
other parts of the program benefit of the OpenMP directives, the
smoother requires a larger part of the whole elapsed real time.

8. Applications to unsteady turbulent flows

The simulations concern either the flow over a simplified ground
vehicle on top of a road with active or passive control procedures
to reduce the drag coefficient [6] or the flow over two  following
ground vehicles to study the effect of the distance between the two
vehicles on the drag coefficient of both vehicles [16,8].

So we  consider a computational domain � = (0, 20) × (0, 6) × (0,
4) in three dimensions where the first square-back Ahmed body
is set at 5.3 in x direction from the entrance section. The distance
between the two bodies is set d = 3.625H where H is the height of the
body located between 0.17 and 1.17 from the road. The Reynolds
number is Re = 15,000 and the non dimensional permeability coef-
ficient is KP = 1016 in the fluid so that the term U/KP vanishes and
KP = 10−7 inside the bodies to get a coupling with the pressure term
and recover Darcy equation [2].

The solution is computed on a finest grid involving 4 billions

unknowns and the simulation time is chosen large enough to get
realistic mean flows. So a simulation requires 40, 000 time steps.
To improve the efficiency we  initialize the solution on the finest
grid with the solution obtained on the previous grid from a much
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Fig. 5. Instantaneous z-vorticity field 

heaper simulation, mimicking the full multigrid method. The pre-
ision required on the residual is � = 10−4 that is reached after a few
-cycles as the solution is well initialized. During the computation
ne to four V-cycles are necessary to get the convergence, these
-cycles are performed with 
1 = 2 iterations down to the coars-
st grid and 
2 = 1 iteration the other way to minimize the number
f iterations on the finest grid. The global cost of the simulation is
roportional to the total number of V-cycles necessary to reach the
nal time. This number is about 100, 000 and requires about eight
ays of elapsed real time on 384 cores for instance.

Fig. 5 shows the instantaneous z-vorticity field around the two
odies computed on eight consecutive grids.

. Efficiency and scalability

In the application above there is a set of grids starting from G1
ith 20 × 6 ×4 = 480 cells. As said in Section 2 the second grid G2 has

0 × 12 × 8 =480 × 8 =3840 cells and so on with a dyadic refinement,
ach grid having 8 times the number of cells of the previous one. If

 = 8, the finest grid G8 has 2560 × 768 × 512 = 1,006,632,960 cells
nd 4,030,201,856 unknowns for the velocity and the pressure on
taggered grids.

So (see Section 6) the maximum number of cores that can be
sed on that grid G8 is (25 × 6) × (25 × 4) = 192 × 128 = 24,576 and

f we want to compute the three last grids with the same number
f cores the maximum is then (23 × 6) × (23 × 4) = 192 × 128 = 1536.
he question is to know if this number of cores will give the best
fficiency. In addition to the numeric, it is necessary to take into
ccount the architecture of the computer platform and the policy
f the computer centre. Indeed we had the opportunity to work
n the IBM Blue Gene computer of IDRIS in France. This platform
as many nodes with 16 cores each and each core has 4 threads
nd 1 GB of memory. In addition there is a dyadic distribution of
he nodes and an invoice based on this distribution. So it is much

ore advantageous to reserve a number of nodes equal to 2p. Thus,
nstead of choosing 1536, we have to take 1024 cores. Therefore
n G6 each core has to compute 6 × 4 cells, on G7 each core has to
ompute 12 × 8 cells and on G8 each core has to compute 24 × 16
ells in a cross section (y, z).

Let us give the useful definitions required to appreciate the per-
ormances of the parallelization. The (absolute) speedup is the ratio
f the sequential time (on one core) to the parallel time on nc cores

 = Tseq/Tpar(nc) on a given grid. The ideal ratio must be equal to the
umber of cores. The (absolute) efficiency or strong scalability is

he speedup on the number of cores Ef = S/nc. Thus the ideal num-
er is one. Sometimes the sequential time cannot be obtained due
o the size of the problem. Therefore we use the relative speedup
r relative strong scalability evaluating S or Ef with respect to the
d the two bodies in three dimensions.

time obtained on a smaller number of cores ncref different from one
setting S = ncref * Tpar(ncref)/Tpar(nc).

The weak scalability consists in increasing the number of cores
together with the mesh grids in order to keep the same number
of cells on each sub-domain computed by one core. The (abso-
lute) weak scalability is the scalability between consecutive grids
when the number of unknowns computed on one core does not
change starting from one single core. For instance one core com-
putes 48 × 32 = 1536 cells (G4-1c) on the whole domain, four cores
compute the same amount of cells on a 1536 × 4 =6144 grid (G5-
4c) on one fourth of the domain, sixteen cores compute again the
same amount of cells on a 1536 × 16 = 24,576 grid (G6-16c) and so
on. Here again the ideal value is one. It is also possible to consider
a relative weak scalability which is the ratio of the parallel time
using ncref cores different from one over the parallel time using nc
cores, but the results can be quite far from the absolute values. In
addition the weak scalability can be close to one and not the strong
scalability.

9.1. Efficiency or strong scalability

The first results concern only MPI  parallelism with IBM MPI
library and the highest level of optimization proposed by the com-
piler (O5 giving the same results as the default O3). Let us point
out that for our applications and specially for the communications
inside the Gauss–Seidel smoother program it is strongly recom-
mended to use buffered communications instead of synchronized
communications (the default is buffered until 2048 bytes and syn-
chronized beyond). The gain by forcing buffered communications
is up to 40% of the global elapsed real time.

According to the required memory the number of cores used on
one node is 16 if possible. Of course to get the sequential time only
one core on one node is used. Then, as the domain is split in the (y,
z) section, the tests are performed on 2 × 2 cores, 4 × 4 cores and so
on until 32 × 32 cores. On G8 for instance, because of the required
memory, it is not possible to run on 64 cores using only 4 nodes.
Indeed 16 nodes are required and thus the run is performed using
4 cores only on each node.

The times provided concern the solution obtained after three
time steps on G4, G5, G6, G7. In the sequential case the ratio between
two consecutive grids should be equal to 8. However this is not the
case due to the memory access and the length of the cache as can
be seen in Table 1. On the coarsest grids the ratio is lower at 6.8 but

this ratio increases suddenly on G6 because of this. Of course this
remark has a great impact on the weak scalability as the sequential
time on G7 is 1004 times greater than the sequential time on G4
instead of 512 for the solver!
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Table 1
Sequential time for three time steps on various grids, global time on the left and solver time on the right.

G4 G5 G6 G7 G4 G5 G6 G7

Time in seconds 16 108 1141 10,320 7 54 726 7031
Ratio  6.8 10.6 9 7.7 13.4 9.7

Table 2
Elapsed real time (T) and ratio of time (R) between two  consecutive number of cores on five levels (G4 to G8) of grids for MPI  parallelism.

T G4 T G5 T G6 T G7 T G8 R G4 R G5 R G6 R G7 R G8

1 core 16 108 1141 10,320
4 cores 8 33 319 2574 21,628 0.5 0.31 0.28 0.25
16  cores 7 16 100 763 6128 0.88 0.48 0.31 0.3 0.28
64  cores 10 32 230 1632 0.63 0.32 0.3 0.27
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Once we have got the elapsed real times on five consecutive
rids it is possible to get the efficiency or strong scalability of the
PI  program when increasing the number of cores. The reader has

o remind that a full multigrid coarse-grids parallelism is used, that
eans for instance that when 16 × 16 = 256 cores are used on G6,

he 256 cores are used on grids G5 and G6, 64 cores are used on G4,
6 cores are used on G3, 4 cores are used on G2 and one single core
n G1. In practice sets of 4 cores are doing the same job on G4, sets
f 16 cores are doing the same job on G3, sets of 64 cores are doing
he same job on G2 and the 256 cores are doing the same job on G1.
he times are summarized in Table 2, the number of cores on a grid
evel is limited by the number of cells in the z direction divided
y four and generally the two or three finest grids benefit of the
igher number of cores. We  see that the ratio of times between the
equential case and the 4 cores case converges to 1/4 when the grid
r the size of the problem increases. On the contrary, with respect
o a grid level, the two consecutive number of cores ratios of time
an be closer to 1 when the number of cores is too high. On G4 the
esults are already bad on 4 cores whereas on G8 the results are still
ood on 256 cores.

Using these times it is easy to compute the strong scalability
in Fig. 6). It appears that with MPI  the best efficiency is always
btained for 4 cores, then the efficiency decreases quite fast on
oarse grids and much slowler on fine grids. For instance the effi-
iency is still greater than 0.8 for 64 cores on G8 but decreases to

.61 for 256 cores and to 0.24 for 1024 cores although on this last
ase the three finest grids use the 1024 cores. Therefore the results
re a little bit disappointing using the full MPI  parallelism.

ig. 6. Comparison of the strong scalability of the MPI  (dark) and the MPI/OpenMP (ligh
efer  to the sequential time obtained on each grid except for the grid G8 that cannot be so
5 0.72 0.37 0.34
5 0.72 0.64
4 0.86

Now the results with the hybrid MPI/OpenMP parallelism are
presented. Let us recall that the first step is to add OMP  directives
to benefit from the 4 threads available by core. However it appears
that only the compiler option OMP  adds a lot of optimization and
change the elapsed real times even on a single thread! That means
that with this compiler option the level of optimization is higher.
For the smoother there is a real gain on four threads although there
is no OpenMP directives. In addition the OMP  directives for the DO
loop parallelism on the larger loops in the x direction reduce again
the elapsed real times.

These elapsed real times are given in Table 3. They are close to
those obtained with MPI  parallelism on coarse grids or for a low
number of cores. We can even notice that for G7 and G8 the time is
slightly increased for a low number of cores, this is probably due to
cache effects for large OpenMP loops. On the other hand the elapsed
real times are really decreased for large grids on a high number of
cores, for instance on G8 with 4096 cores the time is almost divided
by four. Consequently the efficiency changes drastically. Moreover
on the finest grid, the two  consecutive number of cores ratio of time
is more than optimal for 256 cores as it is less than one fourth.

Fig. 6 shows again that on the one hand the elapsed real times are
close for coarse grids and a small number of cores and on the other
hand there are large discrepancies for the fine grids and a large
number of cores. Indeed now the efficiency is not always decreasing
when the number of cores increases on a given grid. For instance on

G8, the best efficiency is obtained for 256 cores and is even greater
than one. Which is very good news for the numerical simulations
as we  can use a large number of cores on the fine grids with a very

t) parallelism on five levels of grids (G4 to G8) for the global program. The values
lved on one single core.
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Table  3
Elapsed real time (T) and ratio of time (R) between two consecutive number of cores on five levels (G4 to G8) of grids for hybrid parallelism.

T G4 T G5 T G6 T G7 T G8 R G4 R G5 R G6 R G7 R G8

1 core 14 82 1123 10,868
4  cores 7 28 311 2615 22,006 0.5 0.34 0.28 0.24
16  cores 7 15 97 736 5972 1 0.54 0.31 0.28 0.27
64  cores 10 27 197 1321 0.67 0.28 0.27 0.22
256  cores 18 53 274 0.67 0.27 0.21
1024  cores 35 123 0.66 0.45
4096  cores 81
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ig. 7. Comparison of the speedup of the MPI/OpenMP parallelism on five levels
G4  to G8) of grids for the global program. The ideal speedup is achieved for a larger
umber of cores as the mesh increases.

ood efficiency as can be seen in Fig. 7 that gives the speedup on
ve different grids.

A crucial point is to analyze the elapsed real times of the
moother to see if the MPI  parallelism described in Section 4 is effi-
ient enough. We  know that this smoother requires a lot of time and
s difficult to parallelize. Surprisingly it appears that the efficiency
or this solver is close and quite often higher than the efficiency

btained for the whole program (see Fig. 8).

An interesting remark is the percentage of the elapsed real time
pent for the smoother with respect to the global elapsed real
ime varies a lot when the number of cores increases with MPI

ig. 8. Comparison of the strong scalability of the MPI  (dark) and the MPI/OpenMP (lig
moother. The values refer to the sequential time obtained on each grid except for the gri
 0.66

parallelism. For instance on G8, it goes from almost 70% for a
low number of cores to less than 50% for 1024 cores as shown in
Fig. 9(left). The same percentage is shown for the MPI/OpenMP case
(Fig. 9(right)). It stays close to 70% for every number of cores except
for 1024 cores that give 58%. This is due to the fact that there are
no OpenMP directives in the smoother subroutine.

9.2. Weak scalability

Now we would like to observe the weak scalability with respect
to the cross section (y, z), that means that when the level of grid
increases, so does the number of cores in such a way that the num-
ber of cells per core in a cross section (y, z) is the same. For instance
there are 48 × 32 = 1536 cells on G4 in this cross section, so if we
take 1 core on G4, 4 cores on G5, 16 cores on G6, 64 cores on G7
and 256 cores on G8 the cores have to solve 1536 cells in each case
in the cross section (y, z). Consequently the weak salability is com-
puted by dividing the time by a factor 2 as there is no parallelism in
the x direction. This factor 2 is an ideal factor that is correct for the
computation because we  have noticed that doubling the number of
cells doubles effectively the job for a cell-by-cell solver. In addition
we have used very large buffers for the communications in order
to have the same efficiency when the size of the communications
is increased avoiding buffer restrictions. Then Fig. 10 shows that
the weak scalability decreases from 0.96 for G5 to 0.46 for G8 in
the MPI  case. But this weak scalability increases to 0.93 for G8 in
the MPI/OpenMP case. Once again we see that high scalability can
be reached with the hybrid parallelism. Nevertheless, as we have

seen above, it does not mean that we have a good efficiency. Indeed
on the right hand side of this figure the reference elapsed time is
the one obtained with 16 cores on G4 that has a very bad efficiency
as shown in Fig. 7. That is why the relative weak scalability is very

ht) parallelism on five levels (G4 to G8) of grids for the cell-by-cell Gauss–Seidel
d G8 that cannot be solved on one single core.
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Fig. 9. Percentage of the elapsed real time of the smoother (dark) and of the elapsed real time of the rest of the program (light) for MPI  (left) and hybrid MPI/OpenMP (right)
parallelism. The part of the smoother represents 70% of the elapsed real time when the parallelism is efficient and then decreases because of the communications.

Fig. 10. Comparison of the weak scalability of the MPI  (dark) and the MPI/OpenMP (light) parallelism on five levels (G4 to G8) of grids for the global program. The cores
compute 1536 cells on the left, 384 cells in the middle and 96 cells on the right in the cross section (y, z).
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84  cells by core and on the right for 96 cells by core. (For interpretation of referen

ood! Further if we refer to 4 cores on G4 having 24 × 16 = 384 cells
ach in the cross section (y, z), the weak scalability still decreases
rom 0.94 for G5 to 0.34 for G8 in the MPI  case but is close to one
n every case for the hybrid parallelism even for the 1024 cores on

8 as shown in Fig. 11. However we have seen that the speed up is

ower than one.
 parallelism on five levels (G4 to G8) of grids for the global program. On  the left for
olor in this figure legend, the reader is referred to the web  version of this article.)

Another possibility is to look at the relative weak scalability.
That means to compute the weak scalability between two consec-
utive grids, for instance considering G5 with 16 cores and G6 with
64 cores. Then Fig. 12 shows that this relative weak scalability is

mostly greater than 0.8 even for MPI  parallelism and that peaks as
high as 1.4 can be reached with the hybrid parallelism. This shows
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Fig. 12. Comparison of the relative weak scalability of the MPI  (dark) and the

he drawback of using relative quantities as they give generally
etter results than the absolute quantities.

0. Conclusions

The goal of this paper is to show that it is possible to reach
igh scalability results for solving Navier–Stokes equations with a
ultigrid solver using a cell by cell Gauss–Seidel smoother. Despite

he difficulties due to the smoother and the multigrid solver the
rogram is fully parallel with MPI  or MPI/OpenMP directives.

Taking benefit of the architecture of the platform, 16 cores per
ode and 4 threads per core, the efficiency with the hybrid paral-

elism is close to one for a medium number of cores in relation to the
umber of unknowns of the finest grid. The computation is quite
fficient on one billion mesh cells with 1024 cores. Unfortunately
he number of cores can not be increased much more than that as
our cells are needed in the y and z directions in each sub-domain.
o, when the number of cores is increased, the number of grids on
hich all the cores are active is reduced due to the multigrid algo-

ithm. In addition it is not possible to extend the parallelism to the
 direction because of the smoother.

In conclusion it is possible to solve complex flows by DNS involv-
ng billions of unknowns using a few thousands of cores with an
fficiency close to one.
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