Théoréme de la base normale effectif
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English title : Effective normal basis theorem.

Abstract : Let K be a finite Galois extension of Q. The normal basis theorem pro-
vides an element of K whose conjugates form a Q-basis of K. Here we obtain such an
element with controlled size. This improves a recent result by Fukshansky and Jeong. By
the way, we estimate Minkowski’s minima of ideals of integers of number fields.

Résumé : Soit K une extension finie galoisienne de Q. Le théoréme de la base normale
fournit un élément de K dont les conjugués forment une Q-base de K. On obtient ici un
tel élément de taille contrdlée. Cela améliore un résultat récent de Fukshansky et Jeong.
On estime au passage les minima de Minkowski des idéaux d’entiers des corps de nombres.

2020 Mathematics Subject Classification : 11R32, 11HO06.

1 Introduction

Soit K une extension finie galoisienne de @Q, de groupe de Galois G = {o1,...,0,}.
Le théoréme de la base normale (voir par exemple le théoréme 28 de [2]) énonce 'exis-
tence d'un a € K tel que (o1(a),...,on()) soit une Q-base de K. On montre dans le
présent article comment controler la “taille” d’une telle base en fonction du degré n et du
discriminant Dy de K.

Théoréme 1 : i existe a € O tel que (o1(a),...,on(a)) soit une Q-base de K et
que |oi(a)| < n|Dg|"™ pour tout i € [[1,n]].

En particulier, la hauteur de cet élément vérifie
h(a) = 1 En:lnmax(l loi(@)]) < In| D] +1nn
n < T S oon

A titre de comparaison, Fukshansky et Jeong [5] obtiennent une base (o1(),. .., 0, (o))
avec o/ € K et h(a/) < (n—1)(4n —3)In|Dg| + ¢(n), ou ¢(n) ~ 12nInn.

On observe également qu’une base normale ne peut pas étre trop petite :



Proposition 2 : Soit § € Ok tel que (01(B),...,0n(B)) forme une Q-base de K.
Alors |o1(B)? + -+ + |on(B)]> > | D[V

L’argument du théoréme 1 repose sur le fait que ’ensemble des a € K tels que
(01(),...,on()) soit liée, est contenu dans une hypersurface du Q-espace K. On se
rameéne ainsi a trouver un petit point du réseau Og qui évite cette hypersurface.

Aprés quelques préliminaires sur les réseaux (section 2), on estime a la section 3
les minima de Minkowski des idéaux d’entiers des corps de nombres. On en déduit les
résultats ci-dessus a la section 4.

Pour finir, on montre que notre approche permet aussi de donner une version effective
du théoréme de I'élément primitif (voir la section 5).

2 Géométrie des nombres

Définition : Soit E un Q-espace vectoriel de dimension finie n > 1. Une application
f: E — C est dite polynomiale de degré d € N lorsque pour toute base (e1,...,ey,) de
E, il existe P € C[X},...,X,] de degré d tel que f(ajeq + -+ + anen) = Pay,...,an)
pour tout (ag,...,a,) € Q™.

Soient V' un R-espace vectoriel de dimension finie n > 1 et || || une norme sur V.
Lorsque I' est un réseau de V et i € [[1, n]], on note A;(I") le i-éme minimum de Minkowski
de T, i.e. Ni(T') = min{max(|le1],...,[les]]) ; (e1,-..,€;) est une famille libre de I'}.

On aura besoin du lemme d’évitement suivant.

Proposition 3 (Gaudron-Rémond) : Soit I' un réseau de V. Soit f : I'g — C une
application non nulle, polynomiale de degré d. Il existe o € T' tel que f(a) # 0 et que
o] < dAn(T).

Démonstration : C’est un cas particulier du théoréme 1.1 de [6]. Pour le confort du
lecteur, on donne un argument direct. Par définition de A, ("), le réseau I' contient une
famille libre (eq,. .., e,) telle que |le;|| < A, (T') pour tout i € [[1,n]]. Il existe un polynéme
P e C[Xy,...,X,] de degré d vérifiant f(ajeq + - -+ + anen) = P(a,...,a,) pour tout
(at,...,an) € Q™.

Le théoréme des zéros combinatoire (théoréme 1.2 de [1]) fournit un (aq,...,a,) € N*
tel que P(aq,...,a,) # 0 et que a; + -+ -+ a, < d. Alors élément o = aje; + -+ + apen,
convient. [

3 Minima des idéaux d’entiers

Lemme : Soient K un corps et L une extension finie de K de degré n. Soient
(x1,...,2k) et (y1,...,ye) deux familles K-libres de L. Supposons k + € > n + 1. Alors
la partie {z;y; ; i € [1,k]] et j € [[1,£]} engendre le K -espace vectoriel L.



Démonstration : Etant donnée une forme K-linéaire ¢ : L — K non nulle, on va
prouver qu’il existe ¢ € [[1,k]] et j € [[1,]] tels que ¢(z;y;) # 0.
L — LY

est injective, donc la famille
z = (y lay))

L’application K-linéaire f :

k

(f(z1),..., f(zx)) est K-libre dans L. Le sous-espace V = ﬂ Kerf(x;) est ainsi de
i=1

dimension n — k < £ — 1. D’oti I'existence d’un indice j € [[1,/]] vérifiant y; ¢ V, puis de

€ [[1. K] tel que p(xiy;) = £(:)(y) # 0. O

Soit K un corps de nombres de degré n. On note r1 le nombre de plongements réels
de K et 2ry le nombre de ses plongements imaginaires. Numérotons o1, ..., o, les plon-
gements complexes de K de sorte que 0;(K) C R pour i € [[1,71]] et que 04, = 7; pour
Jj e[ +1,r1+ ]

On munit V = R™ x C™ de la mesure de Lebesgue et on plonge K dans V via

(01, 0p4r5). S1 I C K est un idéal fractionnaire de Ok de norme N(I), on sait que
D
I est un réseau de V' de covolume Dx| N(I).
Soit || || une norme sur V telle que ||zy|| < ||=]|||ly|| pour tout (x,y) € V2. Désignons

par B la boule unité fermée de V.

Proposition : Soit (k,¢) € [[1,n]]? tel que k+ ¢ > n+ 1. Soient I et J deuz idéauz
fractionnaires de Ok . Alors Ay (1J) < Mi(I)Ae(J).

Démonstration : 11 existe une famille Q-libre (z1,...,zx) de I vérifiant ||z;|| < A\x (1)
pour tout i € [[1,k]]. De méme, il existe une famille hbre (y1,---,y0) € J* telle que
ly;]l < Ae(J) pour tout j € [[1,£]].

La partie {z;y; ; (4,7) € [[1,k]] x [[1,4]]} engendre le Q-espace vectoriel K d’aprés le
lemme précédent. Et pour tout (7, ) € [[1,k]] x [[1,¢]], on a

[zsy;ll < llslllly; ]l < Ae(DAT) -

D’ou 'inégalité énoncée. [J

Corollaire : Soit I un idéal fractionnaire de Og. On a la majoration
Aritr2
vol(B)Ql

An (D)™ <

Dx|N() .

Démonstration : La proposition précédente donne A, (I) < A;(I)Ap41-i(Ok) pour
tout 7 € [[1,n]], donc

A (Ok)

s
>
<
=

||:]:

Appliquons le deuxiéme théoréme de Minkowski & I et & Ok :

“ covol(I) — 2ri+r2
Ai(T) <27 = \/ Dg|N(I t Aj < Dkl .
1131 ( ) VOI( ) ’ e H J(OK) VOI(B) | K‘

vol




Le résultat en découle. I

Exemple 4 : Notons || || la norme sur V' définie par ||z||cc = max(|z1], ..., |Zr,4ry|)

pour z = (T1,...,%r+r,) € R™ x C™. En prenant || || = || ||, le volume de B vaut

9\ 2
271772 ; on obtient Ap(I)" < (7) " IDg|IN(D).
™

On retrouve ainsi une variante de la proposition 4.2 de [3] via une approche différente
(voir aussi le théoréme 1.6 de [4] pour une version moins précise).

4 Base normale

Soit K une extension finie galoisienne de Q, de groupe de Galois G = {o1,...,0,}.
On désigne par Tr : K — Q la forme Q-linéaire trace. Choisissons une Z-base (e1, ..., e,)
de Ok. Pour tout = € K, on pose A(z) = det[Tr(e;05(z))] € Q.

Lemme : Soit x € K. On a A(z) # 0 si et seulement si (o1(x),...,0n(x)) est une
Q-base de K.

Démonstration : 11 suffit de remarquer que la forme Q-bilinéaire (x,y) — Tr(zy) est
non dégénérée sur K. [

Prouvons maintenant les résultats de I'introduction.

Démonstration du théoréeme 1 : L’application A est non nulle d’aprés le théoréme de
la base normale, et polynomiale de degré n : si (e],...,el,) est une Q-base de K, alors

A(ar€} + -+ anel,) = P(ay,...,a,) pour tout (ay,...,a,) € Q", avec
n
P = det [Z Tr(emj(e;))Xk} € Q[Xy,..., Xn .
k=1

La proposition 3 fournit un o € Ok tel que A(a) # 0 et que |lafjw < nA(Ok). On
conclut via la majoration de I’exemple 4. [

Démonstration de la proposition 2 : En posant I' = Zo1(5) + - -+ + Zo,(B), on a la
relation |det [o;(e;)] [#(Ok /T) = |det[cio;(8)]|, donc

VIDk| < |det[oi0;(8)]| < (Jo1(B)[2 + - + |on(B)]?) "

par l'inégalité d’Hadamard. [J

5 Elément primitif

Soit K un corps de nombres. Notons o1, ..., 0, les plongements complexes de K. Le
théoréme de I’élément primitif assure 'existence d'un a € K tel que K = Q(«). Voici
une version effective de cet énoncé :



Proposition 5 : Il existe a € Ox vérifiant K = Q(a) et |oi(a)] < (n — 1)|Dg|/™
pour tout i € [[1,n]].

n
Démonstration : Posons g(z) = H((n (x) — oi(z)) pour tout x € K ; observons que
i=2
g(x) # 0 si et seulement si K = Q(x). L’application g : K — C est non nulle grace
au théoréme de 1’élément primitif, et polynomiale de degré n — 1. On conclut comme
précédemment, i.e. en combinant la proposition 3 et l’exemple 4. [J
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