BOUNDARY VALUES FOR THE CANONICAL SOLUTION TO J0-EQUATION AND W/2
ESTIMATES

ALINE BONAMI & PHILIPPE CHARPENTIER

ABSsTRACT. Let 2 be a bounded pseudo-convex domain in C” for which there exist a smooth defining plurisubharmonic
function. Then the §-Neumann and the Bergman operators satisfiy W1/2 estimates. The case of domains with Lipschitz
boundary is considered, and we give applications of the method to LP estimates with loss.

1. INTRODUCTION

Let Q be a bounded pseudo-convex domain with smooth boundary, given by p < 0 where p is a ¥°° function such
that |Vp # 0] on 99Q. For o = > a;dz; a (0, 1)-form with smooth coefficients in 2, let us define

(9041' = 0
ﬁa:—z a7, and < o, 0p >:Zaja—:j.

To obtain LZestimates at the boundary for a solution to the d-equation du = fstrictly pseudo-convex domains, B.
Berndtsson introduced in [I] the (0, 1)-harmonics forms as the forms asuch that da = Ja = 0. We show in secti01
that the fact that the operator giving the canonical solution to dmaps L?(£2) into L?(£2) is a immediate consequence of
(L*(Q), W'/2(Q) estimates and classical potential theory; but nevertheless the idea of B. Berndtsson to study the dual
problem seemed to be powerfull, and we tried to develop it sistematically to get estimates when there is no compacity
hypothesis as in [16] or [7].

We define pseudo-harmonic (0, 1)-forms as (0, 1)-forms such that da = dda = 0. We then prove that any smooth
function on 9§ may be written as the boundary values (in a distribution sense) of < «,dp >, where « is pseudo-
harmonic. Moreover this extension operator < a, dp >|aq+r ais the adjoint of the operator 3 — 5*JV,6’|BQ, where 0* A
gives the canonical solution to the J-equation, while < «, dp > 90— —VYa is the adjoint to the operator u — Bujaq,
where B is the Bergman projection. This is proved in section 2| In section [3} we prove how Sobolev estimates for
the operators < a, dp >jaar a (and its analog for (p, ¢)-forms) imply Sobolev estimates for all operators related to
O0-Neumann problem. Our results, here, are close to results of H. Boas and E. Straube [2]. In section [4] we develop
identities for pseudo-harmonics forms and prove the following theorems:

Theorem 1.1. Assume that p may be choosen plurisubharmonic in Q. Then all operators related to the O-Neumann
map continuously W'/2(Q) into itself.

Here W1/ 2(©2) means the Sobolev space, and a precise list of the operators which are considered is given in section
We had alredy proved this result for the Bergman projection, see [4]. Under a different hypothesis, which we do
not know how to compare to ours, H. Boas and E. Straube give Sobolev estimates W* for all s in [3]. Our method
has the advantage not to ask for smoothness:

Theorem 1.2. Let Q be a bounded pseudo-conver domain with Lipschitz boundary for which there exist a Lipschitz
defining function p which is plurisubharmonic inside ). Then the operators 0*. A and the Bergman projection B map
W/2+e(Q) into W/2(Q), for all € > 0.

In [10] J.E. Fornaess and N. Sibony have proved L? estimates with loss for solutions to the O-equation in all smooth
pseudo-convex domains. In section [5| we show how these estimates can be deduced, via the notion of pseudo-harmonic
forms extended to weighted d-Neumann problem, from W1'/2 estimates, and somehow give more precise estimates
than theirs. But of course we are far from critical results, which remain an open problem.

Some further developpements have been given in [5], [§].

NOTATIONS

Let Q be a bounded domain of C*. A (p, ¢)-form on £ may be written, as in [12],
as

/
o= Z qudzI /\dEJ7
1,7
where the sum is taken over strictly increasing multi-indices. We shall write 60 (Q), €50 (€), L2, (€2), W5, (€).... for
the spaces of (p, q)-forms with coefficients in (), €>=(Q), L*(Q), W/2(Q),...
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We set, for a and § two (p, ¢)-forms:

/ _
<a,f>= Z arifry; ol =< ay« >1/2
1,J

¥ is the formal adjoint of O :
_ roN~Qangk g, ook
Ya = (=1)P Z Z szdz AdzZ™.
|=p, K|=g—1 i=1
If Q has a ¢! boundary and Q = {p < 0}, p € €1(Q) and Vp # 0 on Q, let N be the (0,1)-normal vector field :

0
N = Z g:;@z] The normal component of « is defined as:

_ / - dp
_ 0P 1 K
Noa = g g O‘”JKazde ANdz™.
[ |=p,| K|=g—1j=1

We shall also need (p, q)-forms on 9 : a (p, q)-form on 9Q is defined as a (p, ¢)-form such that Noa = 0 on 99 (see
[19]). B -

0* will denote the adjoint of 0, 0 = 90 + 09", A, the Neumann operator for (p, q)-form, B, the orthogonal
projection in qu onto the subspace of d-closed forms.

The definition of the Sobolev spaces W#(Q), for s € R, and W*(9f), is given in [I1I] and [I8] for instance. We shall
use the following classical result (see [18]) :

Proposition 1.3. Let Q be a bounded domain with smooth boundary in R™. If :
(i) f € W(Q) and Af € W=1(Q), then f has a trace at the boundary in W*=1/2(9Q). Moreover f is the sum of
the Poisson integral of its trace and the solution in W} (Q) of the equation Ng = Af, and :

1 o200y < C {1l @y + 1wy }-
(ii) f has a trace in W*=1/2(0Q) and Af € W*=2(Q) "W ~1(Q), then f belongs to W*(Q) and :
||f||ws(Q) <C {maX {HAf”W—l(Q) J ”AfHWS—Q(Q)} + Hf||ws—1/2(aﬂ)} :

We shall need the fact that Proposition [1.3| generalises to elliptic systems (see again [18]).

2. BOUNDARY VALUES FOR THE CANONICAL SOLUTION TO J-EQUATION AND RELATED OPERATORS;
PSEUDO-HARMONIC FORMS AND T},, OPERATORS

It is well known that holomorphic functions f in L*(2) have trace in W~/2(99). This generalises easily by
Proposition to functions f € L2() for which 0f € L3,(2). More generally, one has the following Proposition :

Proposition 2.1. Let Q be a bounded domain with smooth boundary. For all f € L2 (2), such that of € L2,1(9),
there exists a unique g € Wp}1/2(Q) so that, for ¢ € €2 (Q) with Nop =0 on 9Q :

(2.1) / <g,ap>d0=/<5f,<p/\5p>dV—/<f,19(<p/\5p>dV.
re) Q Q
(We assume here that Q = {p < 0}, with p € €*(C"), s large enough, |Vp| =1 on 0Q.

When f € ‘KI}Q(Q), |i is valid with g given by the boundary values of f : this is a direct consequence of Stokes
formula. It justifies the following definition :

Definition 2.2. ¢ is called the trace of f, and denoted by f°.

Proof of proposition|2.1. For ¢ € %;q(aﬂ), let 1)’ be the harmonic extention of 1, coefficient by coefficient. As
14w, @) < Cllbllwarzon)
w'—>/ <5f,¢’/\5p>dV—/ < £,9(' N O > dV,
Q Q

is a continuous linear form on Wplq/ 2(89) : let g be this current in Wp_ql/ 2(89). We have proved unicity. To prove
([2.1), let 1) be @|pq : we have to prove that

/<5f,g0/\5p>dV — /<f,19(<p/\5p)>dV
Q Q

= /<5f7¢’/\5p>dV—/<f,q9(¢’/\5p)>dv.
Q Q
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It is true for f € ‘Kplq(ﬁ) as both sides are equal to / < floq,®¥ > do. For general f there exists, by Friedrich’s

_Joa
regularisation as in [I2]. a sequence (f,) in %,,(Q) such that f, — f in L2,(Q) and 0f, — 9f in L2 ,,(Q). As
equality is valid for each f,, it also holds for the limit f. O

Remark 2.3. If f belongs to the domain of 9*, then (N_f)? = 0. In this case all the coefficients of f at the boundary
are known as soon as one knows f° (f is "tangential" at the boundary). In particular, if one knows f°, 0f and 9* f,
one can write f as the sum of the Poisson 1ntegral of fb (coefﬁ(:lent by coefficient) and the solution of a Dirichlet
problem (see Proposmlonn Conversely, if (N2f)? =0 and 9f € L2, (), then f is in Dom(9*).

Proposition 2:1] has immediate corollary :

Proposition 2.4. Let Q) be pseudoconver and as in proposition |2 Then, for B € Lf)q(Q), N0, 5*%q6, By,
(0 MNpg)* B have boundary values in Wp_ql/Q((?Q) (resp. W_1/2(8Q) W 12(8(2) _1/2(89)).

pg—1 pg+1

Notation 2.5. We will denote by %Z,

(0 M), B, and (0% pq)*® the associated operators.
Remark 2.6. NB, 0* Npg3, (0" Npg)* 3 and Bpof3 are in Dom(9*), so Remark applies.
Let, us prove it for (0*.A4;4)"3 : by definition, if § and ¢ are in L2, | (Q) and 9y € L2 (Q) :

/ < (0 M) B,0¢ > dV = / < B,% — Bpg—1¢ > dV.
Q Q
This means that (9% A4;,)*3 is in Dom(9*), and :

(8*%6 B — Bpq-15.

Proposition allows us to define the adjoint operators of A%, (9* Ap,)°, qu and (0* A,,)*. In particular we shall

pq’
call :

Tpy : Wh2(09) — L2,(Q), 1 < g <n,

the adjoint operator of (9*.4,,)", defined by :
(2.2) / < (0" ALB, f > do = / < B, Tpef > dV,
09 0

for f € W,/2,(8Q) and 8 € L2,(Q): we shall call :

Spg : Wpl?(09) — L2, (Q),0< g<n—1,

adjoint operator of B? . defined by :

pq’
(2.3) / <ng5,f>da:/ < B8,S,uf > dV,
o Q

for f € W,/2,(89) and 3 € L2,(€).
When Q is a domain of C, T}, is easily deduced from harmonic extension. Our aim now is to find the corresponding
property in C™. Let us define :

Definition 2.7. Let f € 459(€). We say that f is pseudo-harmonic (resp. harmonic) if f = 99f = 0 (resp.
af —9f = 0).

Alternatively, f is pseudo-harmonic if and only if f € Lf,q(Q), is O-closed and has harmonic coefficients in the
canonical basis.
The following Proposition characterizes T, f in terms of pseudo-harmonic form :

Proposition 2.8. Let Q be pseudoconver as in Proposztwnm Let Ty, 1 < g <nand Spq, 0 < g <n—1 be defined

by (-) and (2.9 (-) Then :

(i) for all f € W;fl(aﬁ) Tyef is a pseudo-harmonic form in L2 (Q) and 9Ty, f belongs to L*pg — 1 (Q) .

(i) for all f € Wplq/z(aﬂ) Spef is a harmonic form in L2 () and Spqf = —9Tpgir f :
(i) for all f € W;q/zl(aﬁ) Tyof is the unique pseudo-harmonic form o € 6571 (2) such that :

(a) a € L2 (Q) and Ya € L2, ,(Q) ;
(b) f is the boundary values of N o on 9. Moreover, Ty, f is harmonic if and only if :

/ <@ f>do=0
o0

for all p € L?,_1(Q) such that dp = 0.

pq—1
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proof of proposition [2.8, Let us prove that T}, f is pseudo-harmonic : we have to prove that :

(2.4) / <0, 0Tpgf >dV =0p € Dpy1(Q),
Q

and

(2.5) / < 0 IOTpyf > AV =0, ¢ € Dy ().
Q

To prove (2.4), we write (2.2) with 3 = ¥¢ = 9*p. Then 3 is orthogonal to d-closed forms, so Bp,3 = 0, and
5*%,15 = 0. To prove (2.5), we write with 8 = 0Y¢ = 00* ¢ : 5*%qﬂ = 0% is compactly supported in €, so
(8 N8 = 0.

Now to finish the proof of (i) and (ii), as we already know that Ty, f and Sy, f are in qu(Q), we have only to prove
that Spq—1f = —V1Tpqf : the fact that Spq—1f is a harmonic form is an immediate consequence. So let us show that,

for ¢ € Dpq—1(Q) :
/ <, Spg—1f >dV = —/ < 0p, Tpgf > dV.
Q Q
By definition the left hand side is :
/ < B, o, f > do,
a0
while the right hand side is :
/ < & N)PBp, f > do.
a0
But 0* A,,0¢ = ¢ — Bpy_1¢p, and, as ¢° = 0,
(5%11)1)(5%0) = _quq@

Now let us prove that f = (Nprqf)b. Let f" be the harmonic extension of f, coefficient by coefficient. Then a(f'p)
belongs to W, (€), and (N1d(f'p))® = f. By Remark to prove that N.T,,f and N_9(f'p) have the same
boundary values it is sufficient to prove that :

Tpof — d(f'p) € Dom(9%),

or, which is equivalent :

(2.6) [ <Ot =0(p) > aV == [ < p08uf - 00(1'5) > av.
Q Q
By Stokes formula, for ¢ € L2, () with 9y € L2, () :
b _ 3 a( f! _ a0 ¢!
(2.7) | <utssao= [ <ovapiv - [ <o

In particular if 1) = 9* A, 0\ :

/ < B, Tpef >dV
Q

/ < f>do
o0

/ < 55" N B,0(f'p) > AV — / < & NuB,95(f'p) > AV
Q Q

= / < B3,0(f'p) > dV —/ < 0" Ny 3,90(f'p) > dV,
Q Q

as 55*%qﬁ =0 - 5*5%(1@ and the last term is orthogonal to d-closed forms. Finally, if 3 = 0y we find that the
left hand side of (2.6)) is equal to

- [ <o Buorpodl sy,
Q
Now, by (2.7) used with ¢ = Bpq_1¢ :

/ < qu—l%ﬂé(flp) > dV
Q

/ < qu_lgo,f > do
o0

= / < @, 0T, f > dV.
Q

It remains to prove unicity of « satisfying (a) and (b). But if @; and asare two such forms, then o = a3 — g belongs
to Dom(0*) by (a) and Remark Moreover Oa = 0, so a = 0.
Finally, if T} f is harmonic, Spq—1f = 0, so

/ < ByfB.f>do=0,3€L%(Q).
o0
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In particular / < <pbf > do =0 if dp = 0. Conversely if this condition is satisfied for all ¢’s, then Spq—1f =0 and
a0
T,qf is harmonic by (ii). O

Remark 2.9. In the proof we have obtained the following formula :

/<B,quf>dV:/ <ﬁ,5(f’p)>dV—/ < 0 NpoB,90(f'p) > dV,
Q Q Q

which gives immediately :

(2.8) Toqf = O(f'p) = A2q099(f'p)-

Remark 2.10. Let us define T7%, as the adjoint of (9* Apq)*" :
* 1/2 2
Ty, « Wp/?(0Q) — L

pq—l(Q)ﬂ 1 S q é n,

is given by :

(2.9) / < (" Npy)™B > do = / < B, T f>dv,
0 Q

for f € W,}f(a(z) and € L2, (Q).

Using (2.7) with 1 = (0*.A4,,)* 3, it follows that
/Q <BILf > dV

7/9 < (0Mpg)*B,90(f'p) > dV

- [ < B A00se) > av.
Q

SO

(2.10) )
From (2.10) it follows that T, f € Dom(9*), 8* T, f = 0, and 90Ty, f = 0. In particular, the coefficients of T/ f
are harmonic functions.

Remark 2.11. Let us define R, as the adjoint of ‘/%?1 :
Ry : WI2(09Q) — L2

qul(Q)v 1 S q S n,
is given by :

/ <J1§,Zﬁ,f>da=/<ﬁ,quf>dV,
o0 Q

for f € Wyq (9) and 8 € L2,(%).

From the well known formula :

it follows that:
(2~11) qu = (6*%q)*Tp*q + (5*%q+1)qu+1~
Now (99 4+ 90)Rpy f = —5T; f+ 9T, f. Using formulas 1j and 1} and the fact that Apg410 = 0.4y, it follows

Z ~ q
that (09 +¥0)Rpq = 0 : R,q has harmonic coefficients.

3. RELATIONS BETWEN SOBOLEV ESTIMATES FOR T,; AND FOR THE NEUMANN OPERATOR .4

Our first Proposition shows equivalence betwen Sobolev estimates for 7}, and 5*%(1 and relates them with Sobolev
estimates for B, projection :

Proposition 3.1. Let Q) be a pseudoconvexr bounded domain with smooth boundary; s; and ss are two positive numbers,
s1 < so + 1. Then the following are equivalent :

(i) Tpq maps continuously Wp_quflm(ﬁﬂ) into Wy () :

(ii) O* Npq maps continuously Wy2(Q) into Wi _,(Q) ;

(i) T,, maps continuously W,f;H/Q(@Q) into Wy (€2).

Moreover, when these conditions are satisfied, then By, and Bpy—1 map continuously W32(Q) into Wy, (2) (resp.
Wp2(Q) into Wy, _1(Q)), with s = min(s1, s2).

pq—1
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Proof.
(ii)=(i) : we have to prove that

(0" ) = Wik (Q) — WpaTy " (09).

pg—1
As (00 4 90)0* Npq = Bpg, the coefficients of 9* A, f, for f € W32(Q), have Laplacians in W~1(€2). They have a
trace in W*1=1/2(9Q) by Proposition
(i)=(ii) : Let us prove first that for all s; (i) implies :

(0" M) Wiz () = WiaZ1/?(09).

pg—1
It is a consequence of the fact that, if g € € (Q) and h € L?*(Q) is harmonic, then :

/ ghdV
Q

see [20]. We know that T}, maps into forms with harmonic coefficients. Now, by proposition as 5*%(1 f, for

f € €2(Q), has boundary values in W;;__ll / 2(09), it is in Woi—1(€) if the Laplacians of its coefficients are in
Wmax(=1,51-2)(Q)), They are given by UBpqf, so it is the case if s; < 1, and we have proved (ii) in this case. Let us
prove it in general by induction on m, where the integer m is such that m < s1<;,+1. We can assume m > 1, and by

induction hypothesis we alredy know that 0* .4}, maps Wp2(Q) into Wi (£2). So, using the proof below, B, maps
W;2(9) into meqin(sz’m)(Q), and YB,, maps W*2(Q) into W*172(Q) as s; < sa + 1. We conclude from this.

(3.1)

< Cligllw= ) 12l -+ (o) »

(ii)=continuity for B,;, and B,,_1 : it is a consequence of the following formulas given by H. Boas and E.
Straube [2] :
(32) qu—l = th;q—lw—t — 5*%(1 (5‘wt A\ B;q_lw_t) 5
(3.3) Bpg = Bl + (0" M) (07 = 0F) (id — BY,)

where w; is the weight w;(z) = exp (ft |z|2) , t big enough and B}, the associated projection which is known to be

bounded in W*(Q2) by [16]. Continuity of By,—1 follows at once from (3.2). For B, take the adjoints in (3.3), and
use the fact that 0* — 0} is a zero order operator.

(ii)=(iii) : Follows from ([2.10).

(iii)=(i) : Using formula (3.1)) again, it follows from (iii) that :

A% *b —s1 —5y—
(a %q) : quil(Q) N %q - qu 2 1/2(89)’

where 7, is the space of forms whose coefficients are finite linear combinations of harmonic functions multiplied by
given smooth functions. In particular :

A% *b —
f= (9" M) 90 (f'p)
maps W;]sjflﬂ(aﬂ) into WPZSTl/Q (09). By formula 1' the coefficients of T, f have boundary values in WpTZSTl/Q(@Q)
(as the coefficients of  (f'p) have boundary values in W=*1+1/2(9Q) and s; < sp + 1). As they are harmonic, they
are in W, *2(082).
This concludes the proof of Proposition [3.1] O

The similar Proposition, with T, replaced by T}, and conversely, can be proved in the same way. We will only
write :

Proposition 3.2. Proposition still holds with Tyq replaced by T

pq’

Ty, by Tpg. and 0% Npg by (9" Npg)

Conversely, continuity of By, and B,,_1 imply continuity for 9*.4,, and (5*%q)* ; the following Lemma is implicit
in [2] :
2

Lemma 3.3. If Bpgti, with i = —1,0, maps continuously W (Q), with r < s, then, if r1 = T—,
s

pq+i
(i) 0* Npq maps continuously W3, () into W)i_, () ;

(ii) (0" Mpq)™ maps continuously Wi, (Q) into Wi 1(Q) ;

pq—1

(Q) into W\,

3
(iii) Npq, restricted to the kernel of 9, maps continuously Wi (Q) into Wi2(Q), with ro = % ; Npg—1, restricted
to the orthogonal of ker(0), maps Wy, _1(Q) into W2 _,(Q).
(i) follows from the classical formula :

5*%q = (Id = Bpg-1) (5:%2) Bypqs
and the fact that, by interpolation, By, 1 maps W, _;(Q) into W' _(€2). Take the adjoints for (5*%q)*. Finally,

Mg = (0" Npg)" O Mg + (0" Mpgi1) (0" Npgi1) ",
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reduces to the first term on the kernel of 9, to the second on its orthogonal.
From Proposition and Lemma we get :

Proposition 3.4. The following are equivalent :
(i) Tpq maps continuously V[/p_qul/2 (092) into W, 2(2) ;
(ii) For i = —1,0, Bpgri maps continuously Wy, (S2) into itself ;

(i1i) Tpy maps continuously W;;_ll/z(aﬂ) into W5, ().

Proposition 3.5. Under one of the following conditions :

(i) Tpg+i maps continuously Wz;lit-lm(@(l) into W, °2,(Q),i=0,1;

(i) Tpgti maps continuously W;;le(@(l) into Wopg+1i (Q)|,i=0,1;

3
then Apq maps continuously W2 () into W, () with s = s if s2<s,, § = =5 if 51 < so.
< 52

Remark 3.6. We have just written Proposition [3.4] for the case s; = s = s. In general one gets a weaker result with
no equivalence.

Remark 3.7. Conversely, if .47, is hypoelliptic and maps W, () into W5, (2), H. Boas and E. Straube have proved in
[2] that B,q+; maps continuously W$ . .(Q) into W2, .(Q2) for i = —1,0,1. Proposition Tpq+i maps, for i = 0,1,

pq+i pq-+i
WoH2 (89) into W, (Q) and W, SEVE(0Q) into W,.%,(9).

pq+i—1 pq+i

4. W1/2 ESTIMATES FOR THE O-NEUMANN OPERATOR WHEN ) HAS A PLURISUBHARMONIC DEFINING FUNCTION

We shall first prove the W1/2 estimates for all operators under a smoothness assumption on the boundary. We shall
then prove that 1/2 is not critical, one can as well get a W1/2%¢ estimate. Finally, we shall prove estimates for d.4;,
and Bgg under the assumption that the boundary of  is Lipschitz.

Theorem 4.1. Let Q be a bounded pseudo-conver domain with smooth boundary. Assume that there exists a €2((2)
defining function p which is plurisubharmonic in . Then the operators 5*Npq, (resp. (5*%,1)*, By and Ap,,) maps

continuously Wz}q/z(ﬂ) into W/ (Q) (resp. w2 (Q) into Wz}f(ﬂ), Wz}q/z(ﬂ) into itself).

pq—1 pq—1

Remark 4.2. C. Kiselman has shown in [I5] that the worm domain introduced by K. Diederich and E. Fornaess gives
the example of a € pseudo-convex domain which has no pluirsubharmonic defining function.

Remark 4.3. In order to proove Theorem by section it is sufficient to prove that T, maps L?(9Q) into Wp_qlm(Q).
As T, f has harmonic coefficients and |p| is equivalent to the distance to the boundary, it is even sufficient to prove
that Ty, maps L2, ;(8Q) into L2 (Q; (—p)dV). One may ask which smoothness on 99 and p is really necessary to be
able to use the techniques of section [3| and conclude from estimates on T}, (and S,,). As far as 0*.4,, and By are
concerned, it is easy to see that it is sufficient to assume p € €1(Q2) and that the two key points of potential theory

that we used are the following :

Fact 4.4. a) Harmonics functions which have boundary values in L?(02) are in W/2(Q).
b) Harmonics functions which are in L*(6dV), & beeing the distance to the boundary, are in the dual of W1/2(€).

The first assertion is true as soon as 052 is Lipschitz by B. Dahlberg’s theorem (see [9] for instance). We shall use
it below. We did not find a discussion of the second assertion in the literature. Going through the proof of Lions-
Magenes, it seems to be the case for > boundaries, but it is probably valid for €'*¢ boundaries. The smoothness
that we ask for B,,, ¢ > 1, is at least the smoothness which is asked by the proof of J.J. Kohn [I6] for B;q.

Theorem is a corollary of the following Proposition :

Proposition 4.5. Let 2 be a bounded pseudo-convexr domain of C" with smooth boundary which is given by @ = {p <
0}, with p € €%(Q), |Vp| # 0 on 0Q and plurisubharmonic in Q. Then, for f € €1 _,(0Q) :

pq—1
| {Din(@) ™ 11+ 15,057} (=)av < € [ 1719l
with C independant of Q; Diam(QY) is the diameter of Q.

Proof. The following lemma gives a Hérmander-Morrey type identity for all forms in €1 (2). A similar identity has
been obtained by Bo Berndtsson in [1].
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Lemma 4.6. Let Q be a bounded domain with €*(Q) defining function p and o € €, (Q). Then :

_ d
/(—p)|aa|2dv + 2(_1)P§R/(—paﬂa,a>dv+/ |V oo =
Q Vol
Z / Z aI,jKaI,]Kaaa
7,k=1 Zk
/ "o
+/(—p) Dal*dv + 3 / Y15 a”
Q 1,70 79 j=1
Proof of Lemma[.6. As in [I3], p. 83, let us start from :
= 2 5a1J dar,jk Oarkk
paff = 35| | - S
T 0z, 0%,
multiply by (—p), integrate on i and integrate by parts the last term. Writing
(-1)P < MWa, a >,
instead of :
' PPar K _
Z Z Droz, CLEK
Tk jr Rk
we get :
/(—p)|5a|2dV + (—1)1'/( p) < 00a, a0 > dV
Q
(4.1) - Z / ‘%‘” av
7 /9
(4.2) = / / gp aa”K arjkdV.
QT K zk zj 9%
Another integration by parts gives :
(4.3) (—1)?/ <a,a>dV + /(—p) [9al? dV
Q Q
0ay kK
4.4 ik ———dV.
(44) /Q Z Z 9z, 1K "z,
LK jk
To conclude, we use the divergence formula to prove that :
dp > do
/39 Zﬂjaizj Vol /Zazj Bz (85 0k)dv
+ 7, % dV,
/Q jzk 02;0Z, Bil
use it for each term I and K being fixed, and add them. [

To be able to prove Proposition we shall use Lemma 4.6 - to obtain welghted inequalities : let us write Lemma
. for B = e*a, where A is a plurlsubharmomc function in €2(Q2) : then Nog =e (NJO[) 08 = e*da+ e* (8)\ A a),

_ 5 X |?
e < B, B> = <0a,a >+ <INV, o > — ZZQIJKGJ
I.K j
82)\ oA 804[]]
7282&82’ o1 KOOI K — 2827 9%, O kK-

So neglecting positive terms on the left hand side and using Schwarz inequality, we can write :

/(_‘7)62A > A or ;O rrdV
9] 82’382k J ’

= / |NJO£‘2€2AdU+/(—p)€2)\{’8a’2+|’00{2+2
Q

/( p) < O, o > e”‘dV' +sup|Vp| / p) |al? e av.
Q

Oark
0z,

2
}dV

+2
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1
Let us take A(z) = ¢|z|°, with ¢ < 1. Then the last term is absorbed by the left hand side when : > C(Diam(9))?.
With this choice, using Lemma one gets :
t/(fp)|a\2dv+/(—p) [9a)*dV < 0/ |NJa| |+C’/(p)|5a|2dV
Q Q Q

+2

/(—p) < 51904,@ > eQAdV‘
Q

+2

/ < Mo, a0 > dV|.
Q

We want to use this 111equahty for @ = Tpq f, with f € €, pq 1(09). Let o™ € ‘Kp%z(Q) so that o™ — « in L? norm,
Yo — Yo in L2, 9a(™ — 0, and (Noa™) 90 = (Nua)sq = [Vp| f. Writing the inequality for o™ and taking the
limit, we find that :

Oian(@) 2 [ (o av + [ (o) palav < [ 1179l
Q Q o0
where C' a universal constant as soon as we have proven that :
/(—p) <™ o™ > qav — 0
Q
as well as the other term. But (—p)a(™ belongs to Dom(d*), so

/(—p) < o' o™ > qv = / < 9a™ ¥ {(—p)a(")} > dV,
Q Q

which tends to / < Ja,I(—pa) > dV. Again —pa belongs to Dom(9*), so this last integral is equal to
Q

/Q < (=p) < MWa,a > dV = 0.
The same for the other term. O
Remark 4.7. For g > 1, the hypothesis p plurisubharmonic can be weakned in a standart way, see [5].
Following a suggestion given by J.J. Kohn, one can obtain as well a W1/2t¢ — WW1/2+€ regult :

*

Theorem 4.8. Let |it Q be as in Theorem Then there exists € > 0 such that the operators 9*”'»a, (0* Apq)" . Byg
and Npq map continuously W1/2+6(Q) into W1/2+€( Q) (resp. W1/2+6(Q) into W1/2+6(Q), W1/2+6(Q) into itself).

pg—1 pq—1 pa+1
Skech of the proof. Let us remark first that while we proved Theorem. we have proven that if 5 € L ( ), 08 and
93 belong to L2, ., () and Nofjpq € L*(9Q) (just remark that regularisation works also for the 86}])
Zj

[ostav + | Z\aﬁ”

< {/m |J\7Jﬁ| dp+/ﬂ(—p) [[éﬁf +9B% + |< 898, 8 >|} dV}.

o / (—p) |98 AV

Let f € 6,,_1(0), a =Ty, f : we want to prove the a priori estimate :

pq 1
ledlw—1/2-c) < ClFllw—<o0) -

with C independent of f. Let us first remark that, as o has harmonic coefficients,
< 2
ol = [ (<)% fal*av

=~ [ olaalav
Q
where A, i is defined in the following way : if €y is such that {—ey < p < 0} is diffeomorphic to 9Qx]0, €[ and
g € €%(Q), then :
Aeg = pg + A[(1 - ¢)g]
where ¢ is €2 with compact support in {,0 < —%O} and is 1 for {p < —ep} ; for g supported in {—€¢p < p < 0}, A,

acts as AL @ ¥(n) + 1 —1(n))Id, where AL is a pseudo-differential operator of order —e on 92, ¢ is smooth, compactly
supported, and 1 near 0 ; moreover, A, is choosen in such a way that

191w <o) ~ 1M1l 12 (50
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and, for D a derivative and a a smooth function, [D,A.] and [a, A.] are tangential pseudo-differentials operators of
order —e and —1 — € with norm bounded by Ce.
Let us write (3.7) with 8 = Aca, where a = T, f. Then

55 = Ae(éa) + [5a Ae]a,

and
293 = OAIa+ I[A.,Va
= A0Va + [0, AV
+ Z (Operators of order — €) (%é:) + (Operator of order — €) (a),
S0 :

dary |2 2
—p)|AcaPav  + /— ‘AE _ dV+/ —p) |ASal? dV
| o [y |n T [ (=) 1a.00l

< C HfHW*E(BQ) +Oé ||04||W*1*6(89)
+Cé? / (=p) ||Aca)* + >
Q

Choosing € small enough and using the fact that for harmonic functions it is equivalent to belong to W=17¢(99) or
W=1/27¢(Q), we ge the announced result. O

2

T2 NG

0z;

A av.

We shall now deals with Lipschitz domains :

Theorem 4.9. Let Q be a bounded pseudo-convex domain with Lipschitz boundary for which there evists a Lipschitz
defining function p which is plurisubharmonic inside Q. Then the operators 0 A,y Bergman projection By map

continuously Wpd > <(Q) into W2 (Q) (resp. WY/2+€(Q) into W/2(Q)) for any e > 0.

pq—1
Let us remind that p i is a Lipschitz defining function for € if and only if, after a €' change of variable, near a
point at the boundary, it may be written locally as xo, — f(x1,...,22,—1), for some Lipschitz function f. Under this
hypothesis, Vp is defined a.e. near 9Q with C; < |[Vp| < Cq, and —p is equivalent to the distance to the boundary.
We shall use an exhaustion of the domain {2 by domains €2, where

Qe, ={2€Q; pxpe, <—e(e1)},

1
with ¢ > 0, supported in the unit ball, ¢ € €°°(C") and / =1, 0 (2) = 50 ( . Tt is possible to choose
Ccn 61 €1
€2 = €2(€1) = key so that p * ¢, is plurisubharmonic in §2,. All conditions for Theorem are satisfied by Q., and,

for f € W,}q/ﬂe(ﬂ), o, = O* A f belongs to WZ}qM(Qel). Let us verify that its norm in W/2 (Q,) is bounded by

pg—1
a constant which is independent of ¢; ; then a,, converges weakly to a € Wplq/El(Q) (e, may be considered as an
element of W1/2(Q) as functions in Wl/z(Qelk) extends to functions of W'/2(C") (see [I1] for instance)), and it is

orthogonal to d-closed forms 3 € L? — pg — 1\ () as :

/<a7ﬁ>dV:lim < Qe ,B>dV =0,
QO k—o0 O k

and o = By, f as, for 8 € Gy (£2) compactly supported :

/<5a,ﬂ>dv = /<a,z9ﬁ>dV:lim <ae ,98>dV
Q Q k—o0 Qﬁlk k
= lim < Bpit f, > dV.
k—oo Qe
1k

But B;}f is bounded in L? uniformly, so again there is a subsequence weakly convergent. The limit is easily shown
to be Bpg f-

So the proof relies on the fact that a., belongs to Wplq/ 2 (Qe¢,) uniformly. We use the fact and the facts that
Diam({,) < Diam(€2), supyq, [V [p* ¢, ]| is bounded by C'sup|Vp| on a neighborhood of 9€2 iand the constants
which give the equivalence between —p x ., — €3 and dist(., 982, ) may be choosen independent of €;. It remains to
show that the fact with W1/2(Q) replaced by W'/27¢(Q) in the second assertion, is satisfied for ., with constants
which do not depend on €;. The first fact follows from B. Dahlberg’s theorem (see, for instance [14] to see that the
constants depends only on the Lipschitz constants). The second one follows also from B. Dahlberg’s theorem and the
fact that functions in W1/2¢(Q) have traces at the boundary. As we did not find any reference, we sketch the proof
in the appendix.

For the bergman projection the proof follows the same lines.

Remark 4.10. Examples in C prove that W1/2 is the best possible result for domains with Lipschitz boundary.
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5. FURTHER RESULTS

The aim of this paragraph is to show how one can deduce LP results with loss from W* results for the canonical
solution to the d-equation. For simplicity, we will consider only domains with smooth boundary; but using technics
similar to those developed in the last paragraph, one can prove the same results with a 2 boundary. The key point
is contained in the following Proposition :

Proposition 5.1. Let Q be bounded pseudo-convexr domain with smooth boundary; § denotes the distance to the
boundary. Let 0 < s < 1/2. Then the following are equivalent :
(a) O* Npy maps continuously W (Q) into Wy, _1(Q) ;
5 . 5 (dV' . 9 av
(b) 0" Npq maps continuously L, () into L ( )

52s pg—1\ g52s
Moreover the analogous equivalences are valid for (5*%,1)*, Npq and Byo, as well as for O M. (5:%2)*, Nk

and Bl,. where A} ... denotes the d-Neumann operator for the weight e—tl=l®

[16].

Let us prove that (a)= (b). As W,,_;

which was considered by J.J. Kohn in

d = d
(Q) — L127q—1 <(5;Z>’ we only have to prove that 0*.4,, maps Lf,q ((5;/‘;)
av

into W, _1(2). But by (), it is sufficient to prove that (5’2/1{”1)[) maps L2, <525) into W;qill/Q((“)Q), or, by duality,

that T, maps ijzsfll/Q (092) into W.°(€2). By hypothesis and Proposition T,q maps ijzs'_Jrll/Q (092) into W,.°(92).
But T, f has harmonic coefficients, so it is equivalent for Ty, f to be in W, *(Q) L2 (625dV).

= av
Let us prove that (b)=> (a). We have now to prove that 0*.4,, maps continuously L2, (525) into W5, _1(€2). But,

if 0* Mpqf = u, u = v+ h, where v € Wg ,,_1(€2) is the solution to the Dirichlet problem, coefficient by coefficient,

d
and h has harmonic coefficients. Now, by hypothesis, h belongs to qu_l <V) so h belongs to Wy, _1(Q).

628
The same proof is valid for (5: Jlﬁl)*, Apq and the Bergman projection Bpg. As the property that we used for
harmonic functions are also valid for any elliptic operator, the Lebesgue measure can be replaced by the measure
2 —
e !*°dV (2) to obtain the same result for the weighted d-Neumann operator.
We shall need the following Lemma :

av =
Lemma 5.2. ([10] for ¢ = 0, [6] for general q) Let u € Lf,q (529) . with du € L2, (dV) and Yu € L2, (dV). Then
1 s

. 1
uzsmqu(dV) wzth;:g—n_’_l,

Corollary 5.3. a) Let us assume that 5;"4/%2 maps Wplq/2 (Q) into W;[I/EI(Q). Then 5;‘%2 maps Ly, () into L} ()

>2andr <2 .
forr and rq +nr+2

b) Let us assume that (5‘:%2)* maps Wz}q/z(Q) into W;q/il(Q); then ét*%tq maps Ly, () into Ly 4
4 — 27’1

nri+2°

av
Proof. a) follows immediately from Proposition and Lemma using the fact that L"(Q) — L? ()when

(Q) forr; <
2and r > 2 —

§2s
1 - , . _
5 < 5~ —and W¥estimates for 9 #*.b) follows from the same proof with (8;‘%‘;) instead of 97 .4;%. We conclude
T
by duality. ([

Remark 5.4. The hypothesis of a) and b) are valid in two cases : t big enough by [I6] ; for all ¢ > 0 by theorem
when €2 has a plurisubharmonic defining function.

This allows to give a new proof of a theorem of J.E. Fornaess and N. Sibony [I0] with best indices and for known
operators solving the 0.

Remark 5.5. A similar Corollary can be given for %f],

(Or k)", and Bl
Modifying Lemma [5.2] we can obtain L” estimates with weights.
Proposition 5.6. Assume that 9; A} maps Wplq/2(Q)z'nto W2 (Q). Then :

pg—1
2r —4 - _
r 3 <r < oo,a;%g maps the 0-closed forms of Ly, (?) into L}

pq—1
1 1 1 1 1
— Hl=-—)—-(=—-].
2n’7>(n+)(2 7“1) <2 7“)

a) Forr > 2, and 2 + (67 dV)if the following
nr

conditions are satisfied :

1
r
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_ - 1
b) Forr > 2n, 6"0; N, maps the O-closed forms of L, (Q)into qu(Q)ifT > g -

To prove Proposition [5.6] it is sufficient to prove the following Lemma, which is in the same spirit as Lemma [5.2
For simplicity, we shall consider only (0, 1)-forms at first.

1%
Lemma 5.7. Let u € L? () Then :

02s
2 1
(i) forry > % u belongs to L™ (67" dV)if
1 1 1 1 1
>  —andr=(m+1) (- —) -
T on T (n+)(2 r1>
n+1

(i) 6" ubelongs to L=if r > 2nand T =

Proof. The key inequality is the following :

5.1 nav) <o 2dv ' C af|"av ?,
(5.1 (/Z<1|f| ) < </|Z|<2|f| >+ </|Z|<2|f| )

1 1 1
where — > — — Q—if try < oo, r > 2n for r; = co. To prove it, just write f = g + h, where Ag = Af in the ball
roTr n

of radius 2 with ¢ = 0 at the boundary, and h is harmonic : g is in the space W, which is contained in L™ for

1 1
— > — o Then, by homogeneity, if E. is the ellipsoid :

roor n’
B |21|2+zn:|2j|2 <1
€ — 62 > € )

(/ If”dv>”<ce‘("+1>(%-é) (/ |f|2dV> 4+ e mO(3-7) (/ |5f|rdv> ,
E. E; E:

where E* is the double of E.. Now, to conclude, one follows the proof of [I0], using a covering of Q by ellipsoids E.
with € equivalent to the distance to the boundary. (Il

1

For (p, q)-forms, Lemma is still valid with the additional assumption
du € LT (Q),

pq—1

which is satisfied by 9;.4,% 5 : for a (p, q)-form f, (5.1) is still true when

C Do f|" dV
</|Z|<2| fl )

is added on the right hand side, by elliptic theory.

3=

6. APPENDIX
We want to sketch the proof of the following result :

Lemma 6.1. if Q is a bounded domain which Lipschitz boundary, then any harmonic function which is in L*(5dV )is
in the dual of W'/2+¢(Q).

Let u be harmonic in ©, u € L?(§dV). Then u may be written as Xv where v is harmonic and X is a ¢! vector

field so that
inf < X, N >>0,
Ele)

a .
8$2n ’
oterwise take a partition of unity with supports in neighborhoods of boundary points of this form). Now, by Rellich’s
lemma (see [14] for instance),

where N is the exterior unit normal to 9Q (if Q was {z2, > f(z1,...%2,-1}, where f is Lipschitz, take X =

/ |Vo|? 6dV < c/ |Xv|?6dV.
Q Q

It follows that v belongs toW1'/2(2), and, by B. Dahlberg’s theorem, that v has boundary values in L?(99). Let w be
in W1/2+¢(Q). Then w has boundary values in 2(99) (see [I1] p.37) and its derivatives belong to W~1/2+¢(Q). As

/(Xv)de:—/v(Xw)dV—i—/avde—i—/ bvwdo,
Q Q Q

o
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where a b are bounded functions,

It

[1
[2
3
[4
[5
[6
[7
[s

[o

[10
11
12
13
[14
[15
[16
[17
[18
[19

[20

/ (Xv)wdV| < C (/ |u)® 6dV1/? lwllyy1/24e () )
Q Q

may be seen that, applying this to the domains €2, , the constants C' may be taken independent of ¢;.
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