
BOUNDARY VALUES FOR THE CANONICAL SOLUTION TO ∂̄-EQUATION AND W 1/2

ESTIMATES

ALINE BONAMI & PHILIPPE CHARPENTIER

Abstract. Let Ω be a bounded pseudo-convex domain in Cn for which there exist a smooth de�ning plurisubharmonic
function. Then the ∂̄-Neumann and the Bergman operators satis�y W 1/2 estimates. The case of domains with Lipschitz
boundary is considered, and we give applications of the method to Lp estimates with loss.

1. Introduction

Let Ω be a bounded pseudo-convex domain with smooth boundary, given by ρ < 0 where ρ is a C∞ function such
that |∇ρ 6= 0| on ∂Ω. For α =

∑
αidz̄i a (0, 1)-form with smooth coe�cients in Ω, let us de�ne

ϑα = −
∑ ∂αi

∂zi
and < α, ∂̄ρ >=

∑
αj

∂ρ

∂zj
.

To obtain L2estimates at the boundary for a solution to the ∂̄-equation ∂̄u = βstrictly pseudo-convex domains, B.
Berndtsson introduced in [1] the (0, 1)-harmonics forms as the forms αsuch that ∂̄α = ϑα = 0. We show in section2
that the fact that the operator giving the canonical solution to ∂̄maps L2(Ω) into L2(Ω) is a immediate consequence of
(L2(Ω),W 1/2(Ω) estimates and classical potential theory; but nevertheless the idea of B. Berndtsson to study the dual
problem seemed to be powerfull, and we tried to develop it sistematically to get estimates when there is no compacity
hypothesis as in [16] or [7].

We de�ne pseudo-harmonic (0, 1)-forms as (0, 1)-forms such that ∂̄α = ∂̄ϑα = 0. We then prove that any smooth
function on ∂Ω may be written as the boundary values (in a distribution sense) of < α, ∂̄ρ >, where α is pseudo-
harmonic. Moreover this extension operator < α, ∂̄ρ >|∂Ω 7→ αis the adjoint of the operator β 7→ ∂̄∗N β|∂Ω, where ∂̄

∗N

gives the canonical solution to the ∂̄-equation, while < α, ∂̄ρ >|∂Ω 7→ −ϑα is the adjoint to the operator u 7→ Bu|∂Ω,
where B is the Bergman projection. This is proved in section 2. In section 3, we prove how Sobolev estimates for
the operators < α, ∂̄ρ >|∂Ω 7→ α (and its analog for (p, q)-forms) imply Sobolev estimates for all operators related to

∂̄-Neumann problem. Our results, here, are close to results of H. Boas and E. Straube [2]. In section 4 we develop
identities for pseudo-harmonics forms and prove the following theorems:

Theorem 1.1. Assume that ρ may be choosen plurisubharmonic in Ω. Then all operators related to the ∂̄-Neumann
map continuously W 1/2(Ω) into itself.

Here W 1/2(Ω) means the Sobolev space, and a precise list of the operators which are considered is given in section
4. We had alredy proved this result for the Bergman projection, see [4]. Under a di�erent hypothesis, which we do
not know how to compare to ours, H. Boas and E. Straube give Sobolev estimates W s for all s in [3]. Our method
has the advantage not to ask for smoothness:

Theorem 1.2. Let Ω be a bounded pseudo-convex domain with Lipschitz boundary for which there exist a Lipschitz
de�ning function ρ which is plurisubharmonic inside Ω. Then the operators ∂̄∗N and the Bergman projection B map
W 1/2+ε(Ω) into W 1/2(Ω), for all ε > 0.

In [10] J.E. Fornaess and N. Sibony have proved Lp estimates with loss for solutions to the ∂̄-equation in all smooth
pseudo-convex domains. In section 5 we show how these estimates can be deduced, via the notion of pseudo-harmonic
forms extended to weighted ∂̄-Neumann problem, from W 1/2 estimates, and somehow give more precise estimates
than theirs. But of course we are far from critical results, which remain an open problem.

Some further developpements have been given in [5], [8].

NOTATIONS

Let Ω be a bounded domain of Cn. A (p, q)-form on Ω may be written, as in [12],
as

α =
∑′

I,J

αIJdz
I ∧ dz̄J ,

where the sum is taken over strictly increasing multi-indices. We shall write C∞
pq (Ω), C∞

pq (Ω̄), L2
pq(Ω), W s

pq(Ω),... for
the spaces of (p, q)-forms with coe�cients in C∞(Ω), C∞(Ω̄), L2(Ω), W 1/2(Ω),...
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We set, for α and β two (p, q)-forms:

< α, β >=
∑′

I,J

αIJ β̄IJ ; |α| =< α,α >1/2 .

ϑ is the formal adjoint of ∂̄ :

ϑα = (−1)p
∑′

|I|=p,|K|=q−1

n∑
i=1

∂αI,jK

∂zj
dzI ∧ dz̄K .

If Ω has a C 1 boundary and Ω = {ρ < 0}, ρ ∈ C 1(Ω̄) and ∇ρ 6= 0 on Ω, let N be the (0, 1)-normal vector �eld :

N =
∑ ∂ρ

∂z̄j

∂

∂zj
. The normal component of α is de�ned as:

N̄yα =
∑′

|I|=p,|K|=q−1

n∑
j=1

αI,jK
∂ρ

∂zj
dzI ∧ dz̄K .

We shall also need (p, q)-forms on ∂Ω : a (p, q)-form on ∂Ω is de�ned as a (p, q)-form such that N̄yα = 0 on ∂Ω (see
[19]).
∂̄∗ will denote the adjoint of ∂̄, � = ∂̄∗∂̄ + ∂̄∂̄∗, Npq the Neumann operator for (p, q)-form, Bpq the orthogonal

projection in L2
pq onto the subspace of ∂̄-closed forms.

The de�nition of the Sobolev spaces W s(Ω), for s ∈ R, and W s(∂Ω), is given in [11] and [18] for instance. We shall
use the following classical result (see [18]) :

Proposition 1.3. Let Ω be a bounded domain with smooth boundary in Rn. If :
(i) f ∈ W s(Ω) and 4f ∈ W−1(Ω), then f has a trace at the boundary in W s−1/2(∂Ω). Moreover f is the sum of

the Poisson integral of its trace and the solution in W 1
0 (Ω) of the equation 4g = 4f , and :

‖f‖W s−1/2(∂Ω) ≤ C
{
‖4f‖W−1(Ω) + ‖f‖W s(Ω)

}
.

(ii) f has a trace in W s−1/2(∂Ω) and 4f ∈W s−2(Ω) ∩W−1(Ω), then f belongs to W s(Ω) and :

‖f‖W s(Ω) ≤ C
{

max
[
‖4f‖W−1(Ω) , ‖4f‖W s−2(Ω)

]
+ ‖f‖W s−1/2(∂Ω)

}
.

We shall need the fact that Proposition 1.3 generalises to elliptic systems (see again [18]).

2. Boundary Values for the Canonical Solution to ∂̄-Equation and Related Operators;
Pseudo-harmonic Forms and Tpq Operators

It is well known that holomorphic functions f in L2(Ω) have trace in W−1/2(∂Ω). This generalises easily by
Proposition 1.3 to functions f ∈ L2(Ω) for which ∂̄f ∈ L2

01(Ω). More generally, one has the following Proposition :

Proposition 2.1. Let Ω be a bounded domain with smooth boundary. For all f ∈ L2
pq(Ω), such that ∂̄f ∈ L2

pq+1(Ω),

there exists a unique g ∈W−1/2
pq (Ω) so that, for ϕ ∈ C∞

pq (Ω̄) with N̄yϕ = 0 on ∂Ω :

(2.1)

∫
∂Ω

< g, ϕ > dσ =
∫

Ω

< ∂̄f, ϕ ∧ ∂̄ρ > dV −
∫

Ω

< f, ϑ(ϕ ∧ ∂̄ρ > dV.

(We assume here that Ω = {ρ < 0}, with ρ ∈ C s(Cn), s large enough, |∇ρ| = 1 on ∂Ω.

When f ∈ C 1
pq(Ω̄), (2.1) is valid with g given by the boundary values of f : this is a direct consequence of Stokes

formula. It justi�es the following de�nition :

De�nition 2.2. g is called the trace of f , and denoted by f b.

Proof of proposition 2.1. For ψ ∈ C 1
pq(∂Ω), let ψ′ be the harmonic extention of ψ, coe�cient by coe�cient. As

‖ψ′‖W 1
pq(Ω) ≤ C ‖ψ‖W 1/2(∂Ω) ,

ψ 7→
∫

Ω

< ∂̄f, ψ′ ∧ ∂̄ρ > dV −
∫

Ω

< f, ϑ(ψ′ ∧ ∂̄σ > dV,

is a continuous linear form on W
1/2
pq (∂Ω) : let g be this current in W

−1/2
pq (∂Ω). We have proved unicity. To prove

(2.1), let ψ be ϕ|∂Ω : we have to prove that∫
Ω

< ∂̄f, ϕ ∧ ∂̄ρ > dV −
∫

Ω

< f, ϑ(ϕ ∧ ∂̄ρ) > dV

=
∫

Ω

< ∂̄f, ψ′ ∧ ∂̄ρ > dV −
∫

Ω

< f, ϑ(ψ′ ∧ ∂̄ρ) > dV.
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It is true for f ∈ C 1
pq(Ω̄) as both sides are equal to

∫
∂Ω

< f|∂Ω, ψ > dσ. For general f there exists, by Friedrich's

regularisation as in [12], a sequence (fn) in C 1
pq(Ω̄) such that fn → f in L2

pq(Ω) and ∂̄fn → ∂̄f in L2
pq+1(Ω). As

equality is valid for each fn it also holds for the limit f . �

Remark 2.3. If f belongs to the domain of ∂̄∗, then (Nyf)b = 0. In this case all the coe�cients of f at the boundary
are known as soon as one knows f b (f is "tangential" at the boundary). In particular, if one knows f b, ∂̄f and ∂̄∗f ,
one can write f as the sum of the Poisson integral of f b (coe�cient by coe�cient) and the solution of a Dirichlet
problem (see Proposition 1.3). Conversely, if (Nyf)b = 0 and ϑf ∈ L2

pq−1(Ω), then f is in Dom(∂̄∗).

Proposition 2.1 has immediate corollary :

Proposition 2.4. Let Ω be pseudoconvex and as in proposition 2.1. Then, for β ∈ L2
pq(Ω), Nβ, ∂̄∗Npqβ, Bpqβ,

(∂̄∗Npq)∗β have boundary values in W
−1/2
pq (∂Ω) (resp. W

−1/2
pq−1 (∂Ω), W−12

pq (∂Ω), W−1/2
pq+1 (∂Ω)).

Notation 2.5. We will denote by N b
pq, (∂̄∗Npq)b, Bb

pq and (∂̄∗Npq)∗b the associated operators.

Remark 2.6. Nβ, ∂̄∗Npqβ, (∂̄∗Npq)∗β and Bp0β are in Dom(∂̄∗), so Remark 2.3 applies.

Let us prove it for (∂̄∗Npq)bβ : by de�nition, if β and ψ are in L2
pq−1(Ω) and ∂̄ψ ∈ L2

pq(Ω) :∫
Ω

< (∂̄∗Npq)∗β, ∂̄ψ > dV =
∫

Ω

< β,ψ −Bpq−1ψ > dV.

This means that (∂̄∗Npq)∗β is in Dom(∂̄∗), and :

∂̄∗(∂̄∗N ∗
pqβ = β −Bpq−1β.

Proposition 2.4 allows us to de�ne the adjoint operators of N b
pq, (∂̄∗Npq)b, Bb

pq and (∂̄∗Npq)∗b. In particular we shall
call :

Tpq : W 1/2
pq−1(∂Ω) → L2

pq(Ω), 1 ≤ q ≤ n,

the adjoint operator of (∂̄∗Npq)b, de�ned by :

(2.2)

∫
∂Ω

< (∂̄∗N b
pqβ, f > dσ =

∫
Ω

< β, Tpqf > dV,

for f ∈W 1/2
pq−1(∂Ω) and β ∈ L2

pq(Ω); we shall call :

Spq : W 1/2
pq (∂Ω) → L2

pq(Ω), 0 ≤ q ≤ n− 1,

adjoint operator of Bb
pq, de�ned by :

(2.3)

∫
∂Ω

< Bb
pqβ, f > dσ =

∫
Ω

< β, Spqf > dV,

for f ∈W 1/2
pq−1(∂Ω) and β ∈ L2

pq(Ω).
When Ω is a domain of C, Tpq is easily deduced from harmonic extension. Our aim now is to �nd the corresponding

property in Cn. Let us de�ne :

De�nition 2.7. Let f ∈ C∞
pq (Ω). We say that f is pseudo-harmonic (resp. harmonic) if ∂̄f = ∂̄ϑf = 0 (resp.

∂̄f = ϑf = 0).

Alternatively, f is pseudo-harmonic if and only if f ∈ L2
pq(Ω), is ∂̄-closed and has harmonic coe�cients in the

canonical basis.
The following Proposition characterizes Tpqf in terms of pseudo-harmonic form :

Proposition 2.8. Let Ω be pseudoconvex as in Proposition 2.1. Let Tpq, 1 ≤ q ≤ n and Spq, 0 ≤ q ≤ n− 1 be de�ned
by (2.2) and (2.3). Then :

(i) for all f ∈W 1/2
pq−1(∂Ω), Tpqf is a pseudo-harmonic form in L2

pq(Ω) and ϑTpqf belongs to L2pq − 1 (Ω) .

(ii) for all f ∈W 1/2
pq (∂Ω), Spqf is a harmonic form in L2

pq(Ω) and Spqf = −ϑTpq+1f ;

(iii) for all f ∈W 1/2
pq−1(∂Ω), Tpqf is the unique pseudo-harmonic form α ∈ C∞

pq+1(Ω) such that :

(a) α ∈ L2
pq(Ω) and ϑα ∈ L2

pq−1(Ω) ;

(b) f is the boundary values of N̄yα on ∂Ω. Moreover, Tpqf is harmonic if and only if :∫
∂Ω

< ϕb, f > dσ = 0

for all ϕ ∈ L2
pq−1(Ω) such that ∂̄ϕ = 0.
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proof of proposition 2.8. Let us prove that Tpqf is pseudo-harmonic : we have to prove that :

(2.4)

∫
Ω

< ϕ, ∂̄Tpqf > dV = 0ϕ ∈ Dpq+1(Ω),

and

(2.5)

∫
Ω

< ϕ, ∂̄ϑTpqf > dV = 0, ϕ ∈ Dpq(Ω).

To prove (2.4), we write (2.2) with β = ϑϕ = ∂̄∗ϕ. Then β is orthogonal to ∂̄-closed forms, so Bpqβ = 0, and
∂̄∗Npqβ = 0. To prove (2.5), we write 2.2 with β = ∂̄ϑϕ = ∂̄∂̄∗ϕ : ∂̄∗Npqβ = ∂̄∗ϕ is compactly supported in Ω, so
(∂̄∗Npq)bβ = 0.

Now to �nish the proof of (i) and (ii), as we already know that Tpqf and Spqf are in L2
pq(Ω), we have only to prove

that Spq−1f = −ϑTpqf : the fact that Spq−1f is a harmonic form is an immediate consequence. So let us show that,
for ϕ ∈ Dpq−1(Ω) : ∫

Ω

< ϕ,Spq−1f > dV = −
∫

Ω

< ∂̄ϕ, Tpqf > dV.

By de�nition the left hand side is : ∫
∂Ω

< Bb
pq−1ϕ, f > dσ,

while the right hand side is : ∫
∂Ω

< ∂̄∗Npq)b∂̄ϕ, f > dσ.

But ∂̄∗Npq∂̄ϕ = ϕ−Bpq−1ϕ, and, as ϕ
b = 0,

(∂̄Npq)b(∂̄ϕ) = −Bb
pq−1ϕ.

Now let us prove that f = (N̄yTpqf)b. Let f ′ be the harmonic extension of f , coe�cient by coe�cient. Then ∂̄(f ′ρ)
belongs to W 1

pq(Ω), and (N̄y∂̄(f ′ρ))b = f . By Remark 2.3, to prove that N̄yTpqf and N̄y∂̄(f ′ρ) have the same
boundary values it is su�cient to prove that :

Tpqf − ∂̄(f ′ρ) ∈ Dom(∂̄∗),

or, which is equivalent :

(2.6)

∫
Ω

< ∂̄ϕ, Tpqf − ∂̄(f ′ρ) > dV = −
∫

Ω

< ϕ, ϑTpqf − ϑ∂̄(f ′ρ) > dV.

By Stokes formula, for ψ ∈ L2
pq−1(Ω) with ∂̄ψ ∈ L2

pq(Ω) :

(2.7)

∫
∂Ω

< ψb, f > dσ =
∫

Ω

< ∂̄ψ, ∂̄(f ′ρ)dV −
∫

Ω

< ψ, ϑ∂̄(f ′ρ)dV.

In particular if ψ = ∂̄∗Npqβ\ :∫
Ω

< β, Tpqf > dV =
∫

∂Ω

< ψb, f > dσ

=
∫

Ω

< ∂̄∂̄∗Npqβ, ∂̄(f ′ρ) > dV −
∫

Ω

< ∂̄∗Npqβ, ϑ∂̄(f ′ρ) > dV

=
∫

Ω

< β, ∂̄(f ′ρ) > dV −
∫

Ω

< ∂̄∗Npqβ, ϑ∂̄(f ′ρ) > dV,

as ∂̄∂̄∗Npqβ = β − ∂̄∗∂̄Npqβ, and the last term is orthogonal to ∂̄-closed forms. Finally, if β = ∂̄ϕ we �nd that the
left hand side of (2.6) is equal to

−
∫

Ω

< ϕ−Bpq−1ϕ, ϑ∂̄(f ′ρ)dV.

Now, by (2.7) used with ψ = Bpq−1ϕ :∫
Ω

< Bpq−1ϕ, ϑ∂̄(f ′ρ) > dV =
∫

∂Ω

< Bb
pq−1ϕ, f > dσ

=
∫

Ω

< ϕ, ϑTpqf > dV.

It remains to prove unicity of α satisfying (a) and (b). But if α1 and α2are two such forms, then α = α1−α2 belongs
to Dom(∂̄∗) by (a) and Remark 2.3. Moreover �α = 0, so α = 0.

Finally, if Tpqf is harmonic, Spq−1f = 0, so∫
∂Ω

< Bpqβ, f > dσ = 0, β ∈ L2
pq(Ω).
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In particular

∫
∂Ω

< ϕbf > dσ = 0 if ∂̄ϕ = 0. Conversely if this condition is satis�ed for all ϕ's, then Spq−1f = 0 and

Tpqf is harmonic by (ii). �

Remark 2.9. In the proof we have obtained the following formula :∫
Ω

< β, Tpqf > dV =
∫

Ω

< β, ∂̄(f ′ρ) > dV −
∫

Ω

< ∂̄∗Npqβ, ϑ∂̄(f ′ρ) > dV,

which gives immediately :

(2.8) Tpqf = ∂̄(f ′ρ)−Npq∂̄ϑ∂̄(f ′ρ).

Remark 2.10. Let us de�ne T ∗pq as the adjoint of (∂̄∗Npq)∗b :

T ∗pq : W 1/2
pq (∂Ω) → L2

pq−1(Ω), 1 ≤ q ≤ n,

is given by :

(2.9)

∫
∂Ω

< (∂̄∗Npq)∗bβ > dσ =
∫

Ω

< β, T ∗pqf > dV,

for f ∈W 1/2
pq (∂Ω) and β ∈ L2

pq−1(Ω).

Using (2.7) with ψ = (∂̄∗Npq)∗β, it follows that∫
Ω

< β, T ∗pqf > dV = −
∫

Ω

< (∂̄Npq)∗β, ϑ∂̄(f ′ρ) > dV

= −
∫

Ω

< β, ∂̄∗Npqϑ∂̄(f ′ρ) > dV,

so

(2.10) Tpqf = −∂̄∗Npqϑ∂̄(f ′ρ).

From (2.10) it follows that T ∗pqf ∈ Dom(∂̄∗), ∂̄∗T ∗pqf = 0, and ϑ∂̄T ∗pqf = 0. In particular, the coe�cients of T ∗pqf
are harmonic functions.

Remark 2.11. Let us de�ne Rpq as the adjoint of N b
pq :

Rpq : W 1/2
pq (∂Ω) → L2

pq−1(Ω), 1 ≤ q ≤ n,

is given by : ∫
∂Ω

< N b
pqβ, f > dσ =

∫
Ω

< β,Rpqf > dV,

for f ∈W 1/2
pq (∂Ω) and β ∈ L2

pq(Ω).

From the well known formula :

Npq = (∂̄∗Npq)∗(∂̄∗Npq) + (∂̄∗Npq+1)(∂̄∗Npq+1)∗,

it follows that:

(2.11) Rpq = (∂̄∗Npq)∗T ∗pq + (∂̄∗Npq+1)Tpq+1.

Now (∂̄ϑ+ ϑ∂̄)Rpqf = −∂̄T ∗pqf + ϑTpqf . Using formulas (2.8) and (2.10) and the fact that Npq+1∂̄ = ∂̄Npq, it follows

that (∂̄ϑ+ ϑ∂̄)Rpq = 0 : Rpq has harmonic coe�cients.

3. Relations betwen Sobolev Estimates for Tpq and for the Neumann Operator N

Our �rst Proposition shows equivalence betwen Sobolev estimates for Tpq and ∂̄
∗Npq and relates them with Sobolev

estimates for Bpq projection :

Proposition 3.1. Let Ω be a pseudoconvex bounded domain with smooth boundary; s1 and s2 are two positive numbers,
s1 ≤ s2 + 1. Then the following are equivalent :

(i) Tpq maps continuously W
−s1+1/2
pq−1 (∂Ω) into W−s2

pq (Ω) ;

(ii) ∂̄∗Npq maps continuously W s2
pq (Ω) into W s1

pq−1(Ω) ;

(iii) T ∗pq maps continuously W
s2+1/2
pq (∂Ω) into W s1

pq−1(Ω).
Moreover, when these conditions are satis�ed, then Bpq and Bpq−1 map continuously W s2

pq (Ω) into W s
pq(Ω) (resp.

W s2
pq (Ω) into W s

pq−1(Ω)), with s = min(s1, s2).
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Proof.
(ii)⇒(i) : we have to prove that

(∂̄∗Npq)b : W s1
pq (Ω) →W

s1−1/2
pq−1 (∂Ω).

As (∂̄ϑ + ϑ∂̄)∂̄∗Npq = Bpq, the coe�cients of ∂̄∗Npqf , for f ∈ W s2
pq (Ω), have Laplacians in W−1(Ω). They have a

trace in W s1−1/2(∂Ω) by Proposition 1.3.
(i)⇒(ii) : Let us prove �rst that for all s1 (i) implies :

(∂̄∗Npq)b : W s2
pq (Ω) →W

s1−1/2
pq−1 (∂Ω).

It is a consequence of the fact that, if g ∈ C (Ω̄) and h ∈ L2(Ω) is harmonic, then :

(3.1)

∣∣∣∣∫
Ω

gh̄dV

∣∣∣∣ ≤ C ‖g‖W s(Ω) ‖h‖W−s(Ω) ,

see [20]. We know that Tpq maps into forms with harmonic coe�cients. Now, by proposition 1.3, as ∂̄∗Npqf , for

f ∈ C∞
pq (Ω̄), has boundary values in W

s1−1/2
pq−1 (∂Ω), it is in W s1

pq−1(Ω) if the Laplacians of its coe�cients are in

Wmax(−1,s1−2)(Ω). They are given by ϑBpqf , so it is the case if s1 ≤ 1, and we have proved (ii) in this case. Let us
prove it in general by induction on m, where the integer m is such that m < s1≤m+1. We can assume m ≥ 1, and by
induction hypothesis we alredy know that ∂̄∗Npq maps W s2

pq (Ω) into Wm
pq−1(Ω). So, using the proof below, Bpq maps

W s2
pq (Ω) into Wmin(s2,m)

pq (Ω), and ϑBpq maps W s2(Ω) into W s1−2(Ω) as s1 ≤ s2 + 1. We conclude from this.
(ii)⇒continuity for Bpq and Bpq−1 : it is a consequence of the following formulas given by H. Boas and E.

Straube [2] :

(3.2) Bpq−1 = wtB
t
pq−1w−t − ∂̄∗Npq

(
∂̄wt ∧Bt

pq−1w−t

)
,

(3.3) Bpq = Bt
pq +

(
∂̄∗Npq

)∗ (
∂̄∗ − ∂̄∗t

) (
id−Bt

pq

)
,

where wt is the weight wt(z) = exp
(
−t |z|2

)
, t big enough and Bt

pq the associated projection which is known to be

bounded in W s(Ω) by [16]. Continuity of Bpq−1 follows at once from (3.2). For Bpq take the adjoints in (3.3), and
use the fact that ∂̄∗ − ∂̄∗t is a zero order operator.
(ii)⇒(iii) : Follows from (2.10).
(iii)⇒(i) : Using formula (3.1) again, it follows from (iii) that :(

∂̄∗Npq

)∗b : W−s1
pq−1(Ω) ∩Hpq →W−s2−1/2

pq (∂Ω),

where Hpq is the space of forms whose coe�cients are �nite linear combinations of harmonic functions multiplied by
given smooth functions. In particular :

f 7→
(
∂̄∗Npq

)∗b
ϑ∂̄ (f ′ρ)

mapsW
−s1+1/2
pq−1 (∂Ω) intoW−s2−1/2

pq (∂Ω). By formula (2.8), the coe�cients of Tpqf have boundary values inW
−s2−1/2
pq (∂Ω)

(as the coe�cients of ∂̄ (f ′ρ) have boundary values in W−s1+1/2(∂Ω) and s1 ≤ s2 + 1). As they are harmonic, they
are in W−s2

pq (∂Ω).
This concludes the proof of Proposition 3.1. �

The similar Proposition, with Tpq replaced by T ∗pq and conversely, can be proved in the same way. We will only
write :

Proposition 3.2. Proposition 3.1 still holds with Tpq replaced by T ∗pq, T
∗
pq by Tpq, and ∂̄

∗Npq by
(
∂̄∗Npq

)∗
.

Conversely, continuity of Bpq and Bpq−1 imply continuity for ∂̄∗Npq and
(
∂̄∗Npq

)∗
; the following Lemma is implicit

in [2] :

Lemma 3.3. If Bpq+i, with i = −1, 0, maps continuously W s
pq+i(Ω) into W r

pq+i(Ω), with r ≤ s, then, if r1 =
r2

s
,

(i) ∂̄∗Npq maps continuously W s
pq(Ω) into W r1

pq−1(Ω) ;

(ii)
(
∂̄∗Npq

)∗
maps continuously W s

pq(Ω) into W r1
pq−1(Ω) ;

(iii) Npq, restricted to the kernel of ∂̄, maps continuously W s
pq(Ω) into W r2

pq (Ω), with r2 =
r31
s2

; Npq−1, restricted

to the orthogonal of ker(∂̄), maps W s
pq−1(Ω) into W r2

pq−1(Ω).

(i) follows from the classical formula :

∂̄∗Npq = (Id−Bpq−1)
(
∂̄∗t N t

pq

)
Bpq,

and the fact that, by interpolation, Bpq−1 maps W r
pq−1(Ω) into W r1

pq−1(Ω). Take the adjoints for
(
∂̄∗Npq

)∗
. Finally,

Npq =
(
∂̄∗Npq

)∗
∂̄∗Npq +

(
∂̄∗Npq+1

) (
∂̄∗Npq+1

)∗
,
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reduces to the �rst term on the kernel of ∂̄, to the second on its orthogonal.
From Proposition 3.1, 3.2 and Lemma 3.3, we get :

Proposition 3.4. The following are equivalent :

(i) Tpq maps continuously W
−s+1/2
pq−1 (∂Ω) into W−s

pq (Ω) ;
(ii) For i = −1, 0, Bpq+i maps continuously W s

pq(Ω) into itself ;

(iii) Tpq maps continuously W
s+1/2
pq−1 (∂Ω) into W s

pq(Ω).

Proposition 3.5. Under one of the following conditions :

(i) Tpq+i maps continuously W
−s+1/2
pq+i (∂Ω) into W−s2

pq+i(Ω), i = 0, 1 ;

(ii) Tpq+i maps continuously W
s2+1/2
pq+i (∂Ω) into W s1pq + i (Ω)\, i = 0, 1 ;

then Npq maps continuously W s2
pq (Ω) into W s

pq(Ω) with s = s2 if s2≤s1 , s =
s31
s22

if s1 ≤ s2.

Remark 3.6. We have just written Proposition 3.4 for the case s1 = s2 = s. In general one gets a weaker result with
no equivalence.

Remark 3.7. Conversely, if Npq is hypoelliptic and maps W s
pq(Ω) into W s

pq(Ω), H. Boas and E. Straube have proved in
[2] that Bpq+i maps continuously W s

pq+i(Ω) into W s
pq+i(Ω) for i = −1, 0, 1. Proposition 3.4, Tpq+i maps, for i = 0, 1,

W
s+1/2
pq+i−1(∂Ω) into W s

pq+i(Ω) and W−s+1/2
pq+i−1 (∂Ω) into W−s

pq+i(Ω).

4. W 1/2 Estimates for the ∂̄-Neumann Operator when Ω has a Plurisubharmonic Defining Function

We shall �rst prove theW 1/2 estimates for all operators under a smoothness assumption on the boundary. We shall
then prove that 1/2 is not critical, one can as well get a W 1/2+ε estimate. Finally, we shall prove estimates for ∂̄Npq

and B00 under the assumption that the boundary of Ω is Lipschitz.

Theorem 4.1. Let Ω be a bounded pseudo-convex domain with smooth boundary. Assume that there exists a C 2(Ω̄)
de�ning function ρ which is plurisubharmonic in Ω. Then the operators ∂̄∗N̄pq, (resp.

(
∂̄∗Npq

)∗
, Bpq and Npq) maps

continuously W
1/2
pq (Ω) into W

1/2
pq−1(Ω) (resp. W

1/2
pq−1(Ω) into W

1/2
pq (Ω), W 1/2

pq (Ω) into itself).

Remark 4.2. C. Kiselman has shown in [15] that the worm domain introduced by K. Diederich and E. Fornaess gives
the example of a C∞ pseudo-convex domain which has no pluirsubharmonic de�ning function.

Remark 4.3. In order to proove Theorem 4.1, by section 3, it is su�cient to prove that Tpq maps L2(∂Ω) intoW−1/2
pq (Ω).

As Tpqf has harmonic coe�cients and |ρ| is equivalent to the distance to the boundary, it is even su�cient to prove
that Tpq maps L2

pq−1(∂Ω) into L2
pq(Ω; (−ρ)dV ). One may ask which smoothness on ∂Ω and ρ is really necessary to be

able to use the techniques of section 3 and conclude from estimates on Tpq (and Spq). As far as ∂̄∗Npq and B00 are
concerned, it is easy to see that it is su�cient to assume ρ ∈ C 1(Ω̄) and that the two key points of potential theory
that we used are the following :

Fact 4.4. a) Harmonics functions which have boundary values in L2(∂Ω) are in W 1/2(Ω).
b) Harmonics functions which are in L2(δdV ), δ beeing the distance to the boundary, are in the dual of W 1/2(Ω).

The �rst assertion is true as soon as ∂Ω is Lipschitz by B. Dahlberg's theorem (see [9] for instance). We shall use
it below. We did not �nd a discussion of the second assertion in the literature. Going through the proof of Lions-
Magenes, it seems to be the case for C 3 boundaries, but it is probably valid for C 1+ε boundaries. The smoothness
that we ask for Bpq, q ≥ 1, is at least the smoothness which is asked by the proof of J.J. Kohn [16] for Bt

pq.
Theorem 4.1 is a corollary of the following Proposition :

Proposition 4.5. Let Ω be a bounded pseudo-convex domain of Cn with smooth boundary which is given by Ω = {ρ <
0}, with ρ ∈ C 2(Ω̄), |∇ρ| 6= 0 on ∂Ω and plurisubharmonic in Ω. Then, for f ∈ C 1

pq−1(∂Ω) :∫
Ω

{
(Diam(Ω))−2 |Tpqf |2 + |Spqf |2

}
(−ρ)dV ≤ C

∫
∂Ω

|f |2 |∇ρ| dσ,

with C independant of Ω; Diam(Ω) is the diameter of Ω.

Proof. The following lemma gives a Hörmander-Morrey type identity for all forms in C 1(Ω̄). A similar identity has
been obtained by Bo Berndtsson in [1].
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Lemma 4.6. Let Ω be a bounded domain with C 2(Ω̄) de�ning function ρ and α ∈ C 1
pq(Ω̄). Then :∫

Ω

(−ρ)
∣∣∂̄α∣∣2 dV + 2(−1)p<

∫
Ω

(−ρ∂ϑα, α > dV +
∫

∂Ω

∣∣N̄yα
∣∣2 dσ

|∇ρ|

=
∑′

I,J

∫
Ω

n∑
j,k=1

αI,jK ᾱI,jK
∂2ρ

∂zj∂z̄k
dV

+
∫

Ω

(−ρ) |ϑα|2 dV +
∑′

I,J

∫
Ω

(−ρ)
n∑

j=1

∣∣∣∣∂αI,J

∂z̄j

∣∣∣∣2 dV.
Proof of Lemma 4.6. As in [13], p. 83, let us start from :∣∣∂̄α∣∣2 =

∑′

I,J

∑
j

∣∣∣∣∂αIJ

∂z̄j

∣∣∣∣2 − ∑′

I,K

∑
j,k

∂αI,jK

∂z̄k

∂αI,kK

∂z̄j
,

multiply by (−ρ), integrate on Ω i and integrate by parts the last term. Writing

(−1)p < ∂̄ϑα, α >,

instead of : ∑′

I,K

∑
j,k

∂2αI,jK

∂zj z̄k
ᾱI,kK ,

we get : ∫
Ω

(−ρ)
∣∣∂̄α∣∣2 dV + (−1)p

∫
Ω

(−ρ) < ∂̄ϑα, α > dV

−
∑′

I,J

∫
Ω

(−ρ)
∑

j

∣∣∣∣∂αIJ

∂z̄j

∣∣∣∣2 dV(4.1)

=
∫

Ω

∑′

I,K

∑
i,k

∂ρ

∂zj

∂αI,jK

∂z̄k
ᾱI,jKdV.(4.2)

Another integration by parts gives :

(−1)p

∫
Ω

< α, ∂̄ϑα > dV +
∫

Ω

(−ρ) |ϑα|2 dV(4.3)

=
∫

Ω

∑′

I,K

∑
j,k

∂ρ

∂zj
αI,jK

∂ᾱI,kK

∂z̄k
dV.(4.4)

To conclude, we use the divergence formula to prove that :∫
∂Ω

∣∣∣∣∑βj
∂ρ

∂zj

∣∣∣∣2 dσ

|∇ρ|
=

∫
Ω

∑ ∂ρ

∂zj

∂

∂z̄k
(βj β̄k)dV

+
∫

Ω

∑
j,k

∂2ρ

∂zj∂z̄k
βj β̄kdV,

use it for each term I and K being �xed, and add them. �

To be able to prove Proposition 4.5, we shall use Lemma 4.6 to obtain weighted inequalities : let us write Lemma
4.6 for β = eλα, where λ is a plurisubharmonic function in C 2(Ω̄) : then N̄yβ = eλ

(
N̄yα

)
, ∂̄β = eλ∂̄α+ eλ

(
∂̄λ ∧ α

)
,

e−2λ < ∂̄ϑβ, β > = < ∂̄θα, α > + < ∂̄λ ∧ ϑα, α > −
∑′

I,K

∑
j

∣∣∣∣αI,jK
∂λ

∂zj

∣∣∣∣2
−
∑ ∂2λ

∂zj∂z̄k
αI,jK ᾱI,jK −

∑ ∂λ

∂zj

∂αI,jJ

∂z̄k
ᾱI,kK .

So neglecting positive terms on the left hand side and using Schwarz inequality, we can write :∫
Ω

(−σ)e2λ ∑ ∂2λ

∂zj∂z̄k
αI,jK ᾱI,kKdV

=
∫

∂Ω

∣∣N̄yα
∣∣2 e2λ dσ

|∇ρ|
+
∫

Ω

(−ρ)e2λ

{∣∣∂̄α∣∣2 + |ϑα|2 +
∑∣∣∣∣∂αIK

∂z̄k

∣∣∣∣2
}
dV

+2
∣∣∣∣∫

Ω

(−ρ) < ∂̄ϑα, α > e2λdV

∣∣∣∣+ sup
Ω
|∇ρ|2

∫
Ω

(−ρ) |α|2 e2λdV.
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Let us take λ(z) = t |z|2, with t < 1. Then the last term is absorbed by the left hand side when
1
t
≥ C(Diam(Ω))2.

With this choice, using Lemma 4.6, one gets :

t

∫
Ω

(−ρ) |α|2 dV +
∫

Ω

(−ρ) |ϑα|2 dV ≤ C

∫
∂Ω

∣∣N̄yα
∣∣2 dσ

|∇ρ|
+ C

∫
Ω

(−ρ)
∣∣∂̄α∣∣2 dV

+2
∣∣∣∣∫

Ω

(−ρ) < ∂̄ϑα, α > e2λdV

∣∣∣∣
+2
∣∣∣∣∫

Ω

< ∂̄ϑα, α > dV

∣∣∣∣ .
We want to use this inequality for α = Tpqf , with f ∈ C 2

pq−1(∂Ω). Let α(n) ∈ C 2
pq(Ω̄) so that α(n) → α in L2 norm,

ϑα(n) → ϑα in L2, ∂̄α(n) → 0, and (N̄yα(n))|∂Ω = (N̄yα)|∂Ω = |∇ρ| f . Writing the inequality for α(n) and taking the
limit, we �nd that :

(Diam(Ω))−2

∫
Ω

(−ρ) |α|2 dV +
∫

Ω

(−ρ) |ϑα|2 dV ≤ C

∫
∂Ω

|f |2 |∇ρ| dσ,

where C a universal constant as soon as we have proven that :∫
Ω

(−ρ) < ∂̄ϑα(n), α(n) > dV → 0

as well as the other term. But (−ρ)α(n) belongs to Dom(∂̄∗), so∫
Ω

(−ρ) < ∂̄ϑα(n), α(n) > dV =
∫

Ω

< ϑα(n), ϑ
[
(−ρ)α(n)

]
> dV,

which tends to

∫
Ω

< ϑα, ϑ(−ρα) > dV . Again −ρα belongs to Dom(∂̄∗), so this last integral is equal to∫
Ω

< (−ρ) < ∂̄ϑα, α > dV = 0.

The same for the other term. �

Remark 4.7. For q > 1, the hypothesis ρ plurisubharmonic can be weakned in a standart way, see [5].

Following a suggestion given by J.J. Kohn, one can obtain as well a W 1/2+ε →W 1/2+ε result :

Theorem 4.8. Let \it Ω be as in Theorem 4.1. Then there exists ε > 0 such that the operators ∂̄∗Npq ,
(
∂̄∗Npq

)∗
, Bpq

and Npq map continuously W
1/2+ε
pq−1 (Ω) into W

1/2+ε
pq−1 (Ω) (resp. W

1/2+ε
pq (Ω) into W

1/2+ε
pq+1 (Ω), W 1/2+ε

pq (Ω) into itself).

Skech of the proof. Let us remark �rst that while we proved Theorem 4.1, we have proven that if β ∈ L2
pq(Ω), ∂̄β and

ϑβ belong to L2
pq±1(Ω) and N̄yβ|∂Ω ∈ L2(∂Ω) (just remark that regularisation works also for the

∂βIJ

∂z̄j
),

∫
Ω

(−ρ) |β|2 dV +
∫

Ω

(−ρ)
∑∣∣∣∣∂βI,J

∂z̄j

∣∣∣∣2 dV +
∫

Ω

(−ρ) |ϑβ|3 dV

≤
{∫

∂Ω

∣∣N̄yβ
∣∣3 dρ+

∫
Ω

(−ρ)
[∣∣∂̄β∣∣2 + |ϑβ|2 +

∣∣< ∂̄ϑβ, β >
∣∣] dV} .

Let f ∈ C 1
pq−1(∂Ω), α = Tpqf : we want to prove the a priori estimate :

‖α‖W−1/2−ε(Ω) ≤ C ‖f‖W−ε(∂Ω) ,

with C independent of f . Let us �rst remark that, as α has harmonic coe�cients,

‖α‖W−1/2−ε(Ω) '
∫

Ω

(−ρ)1+ ε
2 ‖α‖2 dV

'
∫

Ω

(−ρ) |Λεα|2 dV,

where Λε i is de�ned in the following way : if ε0 is such that {−ε0 < ρ < 0} is di�eomorphic to ∂Ω×]0, ε0[ and
g ∈ C 2(Ω), then :

Λεg = ϕg + Λε[(1− ϕ)g]

where ϕ is C 2 with compact support in
{
ρ < −ε0

2

}
and is 1 for {ρ ≤ −ε0} ; for g supported in {−ε0 < ρ < 0}, Λε

acts as Λ′ε⊗ψ(η) + 1−ψ(η))Id, where Λ′ε is a pseudo-di�erential operator of order −ε on ∂Ω, ψ is smooth, compactly
supported, and 1 near 0 ; moreover, Λ′ε is choosen in such a way that

‖g‖W−ε(∂Ω) ∼ ‖Λ
′
εg‖L2(∂Ω)
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and, for D a derivative and a a smooth function, [D,Λε] and [a,Λε] are tangential pseudo-di�erentials operators of
order −ε and −1− ε with norm bounded by Cε.

Let us write (3.7) with β = Λεα, where α = Tpqf . Then

∂̄β = Λε(∂̄α) + [∂̄,Λε]α,

and

∂̄ϑβ = ∂̄Λεϑα+ ∂̄[Λε, ϑ]α
= Λε∂̄ϑα+ [∂̄,Λε]ϑα

+
∑

(Operators of order − ε)
(
∂αIJ

∂z̄k

)
+ (Operator of order − ε) (α),

so : ∫
Ω

(−ρ) |Λεα|2 dV +
∫

Ω

(−ρ)
∑∣∣∣∣Λε

∂αIJ

∂z̄j

∣∣∣∣2 dV +
∫

Ω

(−ρ) |Λεϑα|2 dV

≤ C ‖f‖W−ε(∂Ω) + Cε2 ‖α‖W−1−ε(∂Ω)

+Cε2
∫

Ω

(−ρ)

[
|Λεα|2 +

∑∣∣∣∣Λε
∂αIJ

∂z̄j

∣∣∣∣2 + |Λεϑα|2
]
dV.

Choosing ε small enough and using the fact that for harmonic functions it is equivalent to belong to W−1−ε(∂Ω) or
W−1/2−ε(Ω), we ge the announced result. �

We shall now deals with Lipschitz domains :

Theorem 4.9. Let Ω be a bounded pseudo-convex domain with Lipschitz boundary for which there exists a Lipschitz
de�ning function ρ which is plurisubharmonic inside Ω. Then the operators ∂̄∗Npq Bergman projection B00 map

continuously W
1/2+ε
pq (Ω) into W

1/2
pq−1(Ω) (resp. W 1/2+ε(Ω) into W 1/2(Ω)) for any ε > 0.

Let us remind that ρ i is a Lipschitz de�ning function for Ω if and only if, after a C 1 change of variable, near a
point at the boundary, it may be written locally as x2n− f(x1, . . . , x2n−1), for some Lipschitz function f . Under this
hypothesis, ∇ρ is de�ned a.e. near ∂Ω with C1 < |∇ρ| < C2, and −ρ is equivalent to the distance to the boundary.
We shall use an exhaustion of the domain Ω by domains Ωε1 where

Ωε1 = {z ∈ Ω ; ρ ∗ ϕε1 < −ε2(ε1)} ,

with ϕ ≥ 0, supported in the unit ball, ϕ ∈ C∞(Cn) and

∫
Cn

ϕ = 1, ϕε1(z) =
1
ε2n
1

ϕ

(
z

ε1

)
. It is possible to choose

ε2 = ε2(ε1) = kε1 so that ρ ∗ ϕε is plurisubharmonic in Ωε1 . All conditions for Theorem 4.1 are satis�ed by Ωε1 and,

for f ∈ W
1/2+ε
pq (Ω), αε1 = ∂̄∗N ε1

pq f belongs to W
1/2
pq (Ωε1). Let us verify that its norm in W

1/2
pq−1(Ωε1) is bounded by

a constant which is independent of ε1 ; then αε1k
converges weakly to α ∈ W 1/2

pq−1(Ω) (αε1k
may be considered as an

element of W 1/2(Ω) as functions in W 1/2(Ωε1k
) extends to functions of W 1/2(Cn) (see [11] for instance)), and it is

orthogonal to ∂̄-closed forms β ∈ L2 − pq − 1\ (Ω) as :∫
Ω

< α, β > dV = lim
k→∞

∫
Ω

< αε1k
, β > dV = 0,

and ∂̄α = Bpqf as, for β ∈ C∞
pq (Ω) compactly supported :∫

Ω

< ∂̄α, β > dV =
∫

Ω

< α, ϑβ > dV = lim
k→∞

∫
Ωε1k

< αε1k
, ϑβ > dV

= lim
k→∞

∫
Ωε1k

< B
ε1k
pq f, β > dV.

But B
ε1k
pq f is bounded in L2 uniformly, so again there is a subsequence weakly convergent. The limit is easily shown

to be Bpqf .

So the proof relies on the fact that αε1 belongs to W
1/2
pq (Ωε1) uniformly. We use the fact 4.4, and the facts that

Diam(Ωε1) ≤ Diam(Ω), sup∂Ωε1
|∇ [ρ ∗ ϕε1 ]| is bounded by C sup |∇ρ| on a neighborhood of ∂Ω iand the constants

which give the equivalence between −ρ ∗ ϕε1 − ε2 and dist(., ∂Ωε1) may be choosen independent of ε1. It remains to
show that the fact 4.4, withW 1/2(Ω) replaced byW 1/2+ε(Ω) in the second assertion, is satis�ed for Ωε1 with constants
which do not depend on ε1. The �rst fact follows from B. Dahlberg's theorem (see, for instance [14] to see that the
constants depends only on the Lipschitz constants). The second one follows also from B. Dahlberg's theorem and the
fact that functions in W 1/2+ε(Ω) have traces at the boundary. As we did not �nd any reference, we sketch the proof
in the appendix.

For the bergman projection the proof follows the same lines.

Remark 4.10. Examples in C prove that W 1/2 is the best possible result for domains with Lipschitz boundary.



BOUNDARY VALUES FOR THE CANONICAL SOLUTION TO ∂̄-EQUATION AND W 1/2 ESTIMATES 11

5. Further Results

The aim of this paragraph is to show how one can deduce Lp results with loss from W s results for the canonical
solution to the ∂̄-equation. For simplicity, we will consider only domains with smooth boundary; but using technics
similar to those developed in the last paragraph, one can prove the same results with a C 2 boundary. The key point
is contained in the following Proposition :

Proposition 5.1. Let Ω be bounded pseudo-convex domain with smooth boundary; δ denotes the distance to the
boundary. Let 0 < s < 1/2. Then the following are equivalent :

(a) ∂̄∗Npq maps continuously W s
pq(Ω) into W s

pq−1(Ω) ;

(b) ∂̄∗Npq maps continuously L2
pq

(
dV

δ2s

)
into L2

pq−1

(
dV

δ2s

)
.

Moreover the analogous equivalences are valid for
(
∂̄∗Npq

)∗
, Npq and Bp0, as well as for ∂̄∗t N t

pq,
(
∂̄∗t N t

pq

)∗
, N t

pq

and Bt
p0, where N t

pq . . . denotes the ∂̄-Neumann operator for the weight e−t|z|2 which was considered by J.J. Kohn in
[16].

Let us prove that (a)⇒ (b). As W s
pq−1(Ω) ↪→ L2

pq−1

(
dV

δ2s

)
, we only have to prove that ∂̄∗Npq maps L2

pq

(
dV

δ2s

)
into W s

pq−1(Ω). But by ( ), it is su�cient to prove that
(
∂̄∗Npq

)b
maps L2

pq

(
dV

δ2s

)
into W

s−1/2
pq−1 (∂Ω), or, by duality,

that Tpq maps W
−s+1/2
pq−1 (∂Ω) into W−s

pq (Ω). By hypothesis and Proposition 3.1, Tpq maps W
−s+1/2
pq−1 (∂Ω) into W−s

pq (Ω).
But Tpqf has harmonic coe�cients, so it is equivalent for Tpqf to be in W−s

pq (Ω) L2
pq(δ

2sdV ).

Let us prove that (b)⇒ (a). We have now to prove that ∂̄∗Npq maps continuously L2
pq

(
dV

δ2s

)
into W s

pq−1(Ω). But,

if ∂̄∗Npqf = u, u = v + h, where v ∈ W 1
0,pq−1(Ω) is the solution to the Dirichlet problem, coe�cient by coe�cient,

and h has harmonic coe�cients. Now, by hypothesis, h belongs to L2
pq−1

(
dV

δ2s

)
so h belongs to W s

pq−1(Ω).

The same proof is valid for
(
∂̄∗t N t

pq

)∗
, Npq and the Bergman projection Bp0. As the property that we used for

harmonic functions are also valid for any elliptic operator, the Lebesgue measure can be replaced by the measure

e−t|z|2dV (z) to obtain the same result for the weighted ∂̄-Neumann operator.
We shall need the following Lemma :

Lemma 5.2. ([10] for q = 0, [6] for general q) Let u ∈ L2
pq

(
dV

δ2s

)
, with ∂̄u ∈ L2

pq+1(dV ) and ϑu ∈ L2
pq−1(dV ). Then

u is in Lr
pq(dV ) with

1
r

=
1
2
− s

n+ 1
.

Corollary 5.3. a) Let us assume that ∂̄∗t N t
pq maps W

1/2
pq (Ω) into W 1/2

pq−1(Ω). Then ∂̄∗t N t
pq maps Lr

pq(Ω) into Lr1
pq−1(Ω)

for r > 2 and r1 < 2 +
4

nr + 2
.

b) Let us assume that
(
∂̄∗t N t

pq

)∗
maps W

1/2
pq (Ω) into W

1/2
pq−1(Ω); then ∂̄∗t N t

pq maps Lr
pq(Ω) into Lr1

pq−1(Ω) for r1 <

2and r > 2− 4− 2r1
nr1 + 2

.

Proof. a) follows immediately from Proposition 5.1 and Lemma 5.2, using the fact that Lr(Ω) ↪→ L2

(
dV

δ2s

)
when

s <
1
2
− 1
r
and W sestimates for ∂̄∗t N t.b) follows from the same proof with

(
∂̄∗t N t

pq

)∗
instead of ∂̄∗t N t

pq. We conclude

by duality. �

Remark 5.4. The hypothesis of a) and b) are valid in two cases : t big enough by [16] ; for all t ≥ 0 by theorem 4.1
when Ω has a plurisubharmonic de�ning function.

This allows to give a new proof of a theorem of J.E. Fornaess and N. Sibony [10] with best indices and for known
operators solving the ∂̄.

Remark 5.5. A similar Corollary can be given for N t
pq,
(
∂̄∗t N t

pq

)∗
, and Bt

p0.

Modifying Lemma 5.2, we can obtain Lr estimates with weights.

Proposition 5.6. Assume that ∂̄∗t N t
pq maps W

1/2
pq (Ω)into W 1/2

pq−1(Ω). Then :

a) For r > 2, and 2 +
2r − 4
nr + 2

≤ r1 <∞,∂̄∗t N t
pq maps the ∂̄-closed forms of Lr

pq(Ω) into Lr1
pq−1(δ

τr1dV )if the following

conditions are satis�ed :
1
r1
≥ 1
r
− 1

2n
, τ > (n+ 1)

(
1
2
− 1
r1

)
−
(

1
2
− 1
r

)
.
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b) For r > 2n, δr∂̄∗t N t
pqmaps the ∂̄-closed forms of Lr

pq(Ω)into L∂
pq(Ω)if τ >

n

2
− 1
r
.

To prove Proposition 5.6, it is su�cient to prove the following Lemma, which is in the same spirit as Lemma 5.2.
For simplicity, we shall consider only (0, 1)-forms at �rst.

Lemma 5.7. Let u ∈ L2

(
dV

δ2s

)
. Then :

(i) for r1 ≥
2 (n+ 1)
n+ 1− s

, u belongs to Lr1(δτr1dV )if

1
r1
≥ 1
r
− 1

2n
and τ = (n+ 1)

(
1
2
− 1
r1

)
− s ;

(ii) δrubelongs to L∞if r > 2nand τ =
n+ 1 − s.

Proof. The key inequality is the following :

(5.1)

(∫
|z|<1

|f |r1 dV

) 1
r1

≤ C

(∫
|z|<2

|f |2 dV

) 1
2

+ C

(∫
|z|<2

∣∣∂̄f ∣∣r dV) 1
r

,

where
1
r1
≥ 1
r
− 1

2n
if t r1 < ∞, r > 2n for r1 = ∞. To prove it, just write f = g + h, where 4g = 4f in the ball

of radius 2 with g = 0 at the boundary, and h is harmonic : g is in the space W 1,r, which is contained in Lr1 for
1
r1
≥ 1
r
− 1

2n
. Then, by homogeneity, if Eε is the ellipsoïd :

Eε =

{
|z1|2

ε2
+

n∑
2

|zj |2

ε
< 1

}
,

(∫
Eε

|f |r1 dV

) 1
r1

≤ Cε
−(n+1)

“
1
2−

1
r1

”(∫
E∗ε

|f |2 dV

) 1
2

+
√
εε
−(n+1)

“
1
r−

1
r1

”(∫
E∗ε

∣∣∂̄f ∣∣r dV) 1
r

,

where E∗ε is the double of Eε. Now, to conclude, one follows the proof of [10], using a covering of Ω by ellipsoïds Eε

with ε equivalent to the distance to the boundary. �

For (p, q)-forms, Lemma 5.7 is still valid with the additional assumption

ϑtu ∈ Lr
pq−1(Ω),

which is satis�ed by ∂̄∗t N t
pqβ : for a (p, q)-form f , (5.1) is still true when

C

(∫
|z|<2

|ϑtf |r dV

) 1
r

is added on the right hand side, by elliptic theory.

6. APPENDIX

We want to sketch the proof of the following result :

Lemma 6.1. if Ω is a bounded domain which Lipschitz boundary, then any harmonic function which is in L2(δdV )is
in the dual of W 1/2+ε(Ω).

Let u be harmonic in Ω, u ∈ L2(δdV ). Then u may be written as Xv where v is harmonic and X is a C 1 vector
�eld so that

inf
∂Ω

< X,N >> 0,

where N is the exterior unit normal to ∂Ω (if Ω was {x2n > f(x1, . . . x2n−1}, where f is Lipschitz, take X =
∂

∂x2n
;

oterwise take a partition of unity with supports in neighborhoods of boundary points of this form). Now, by Rellich's
lemma (see [14] for instance), ∫

Ω

|∇v|2 δdV ≤ C

∫
Ω

|Xv|2 δdV.

It follows that v belongs toW 1/2(Ω), and, by B. Dahlberg's theorem, that v has boundary values in L2(∂Ω). Let w be
in W 1/2+ε(Ω). Then w has boundary values in 2(∂Ω) (see [11] p.37) and its derivatives belong to W−1/2+ε(Ω). As∫

Ω

(Xv)wdV = −
∫

Ω

v (Xw) dV +
∫

Ω

avwdV +
∫

∂Ω

bvwdσ,
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where a b are bounded functions,∣∣∣∣∫
Ω

(Xv)wdV
∣∣∣∣ ≤ C

(∫
Ω

|u|2 δdV 1/2 ‖w‖W 1/2+ε(Ω) .

)
It may be seen that, applying this to the domains Ωε1 , the constants C may be taken independent of ε1.
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