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Numerous direct numerical simulations of soap film flows yield a large amount of data on two-dimen-
sional turbulence. The analysis of such data is very sensitive to the analysis tools and the way they are
used. On the one hand, some of the possible errors obtained by a misuse of the analysis tools are reported.
On the other hand, a rigorous use of wavelet packets analysis reveals surprising results that slightly differ

from the KLB theory for the flow considered. A careful wavelet packets filtering and a good computation
of the energy and enstrophy fluxes show the role of the solid rotation vortices and the vorticity filaments
to both the inverse energy cascade and the direct enstrophy cascade.

© 2009 Published by Elsevier Ltd.

1. Introduction

The application of wavelets to fluid dynamics has been the topic
of many papers [1-4] for the last sixteen years.! The main idea
developed in these papers is that the vorticity field of a turbulent
flow can be easily decomposed in coherent and incoherent parts
thanks to an orthogonal wavelet decomposition. The coherent part,
corresponding to the strongest wavelet coefficients, is in fact com-
posed by vortices and the so-called incoherent part, corresponding
to the weakest coefficients, is mainly composed by vorticity fila-
ments. The part composed by the vorticity filaments is often consid-
ered as a background that can be neglected in the computations [4].
However, as it has been shown in [5], these filaments play a funda-
mental role in the creation of the direct enstrophy cascade, and can-
not be removed from the main flow in numerical simulations. It has
been shown in [5,6] that the wavelet packets filtering can be suc-
cessfully applied for analyzing two-dimensional turbulence. This
technique allows the highlighting of the two main structures: the
vortices and the filaments. The wavelet packets filtering leads to
continuous filtered fields and thus avoids the discontinuities that
would be created by the filtering method. This is particularly true
for the direct filtering proposed by Bensi et al. [7,8] and later devel-
oped by Borue [9]. The spurious effects due to this kind of disconti-
nuities created by a direct filtering have been pointed out in [10],
and are also discussed in this paper. It is shown in particular that
these discontinuities are responsible for the creation of spurious
coefficients in Fourier space that alter the corresponding energy
and enstrophy spectra. The energy and enstrophy fluxes are also
computed to better understand the energy and enstrophy transfer
processes through the scales.
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! See also the web page of M. Farge <http://wavelets.ens.fr/PUBLICATIONS/
publications.htm>.
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The paper is organized as follows. The theoretical background is
recalled in Section 2, where we make some remarks about the
Danilov inequality. The experimental setup, the mathematical
modeling and the filtering process are described in Section 3. The
filtering algorithm leading to continuous filtered fields is described
but the theory of wavelet packets is not recalled here. In Section 4,
windowing methods for the computation of spectra in non periodic
domains are discussed. Numerical results showing the effects of
the filtering process are given and commented in this section.
The results about the energy and the enstrophy spectra and fluxes
are given in Section 5. It is shown that the two-dimensional turbu-
lence admits two distinct structures: vortical structures and fila-
mentary structures. The first ones are responsible for the inverse
transfers of energy while the second ones are responsible for the
forward transfer of enstrophy. A detailed description of the cas-
cades using various injection scales is reported in Section 6. Con-
clusions and remarks are given in Section 7.

2. The theoretical background

The two-dimensional turbulence, in a finite but periodic do-
main, is governed by two invariants, the energy and the enstrophy.
The mean energy per unit mass E is defined by

E— <% U\2> :%ﬁ / U@)P dx, 8

where U denotes the velocity vector, ¥ = (x1,x;) the two-dimen-
sional variable, ©; the physical domain and S(€;) its corresponding
surface. If one considers now the velocity U as a L-periodic function,
it can be decomposed as a Fourier series

U) =" Uk)et* ke z? 2)
k

The low-pass filtered velocity function is then defined as
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and the high-pass filtered velocity function as

Ug®) = > Ukye**. (4)

|k|>K
This decomposition of the velocity
Ux) = Ug (%) + Ug (%), )

was used for the first time by Obukhov [11,12]. Introducing this
splitting in the Navier-Stokes equations, one obtain a scale-by-scale
energy budget equation described by Frisch [13]

0:6(K) + He(K) = 2e(K) + Ze(K), (6)
where
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denotes the cumulative energy, ITx(K) the energy flux due to the
nonlinear terms through the wave number K, Z¢(K) the energy dis-
sipation, and Z(K) the energy injection. The energy spectrum is
then defined by

_dé&(k)
E(k) = =5, (8)
and the total energy can be rewritten as
E-— / E(k)dk. 9)
JO

The same splitting can be used in the Navier-Stokes equation
written for the vorticity and a scale-by-scale enstrophy budget
equation can be obtained

0% (K) + z(K) = 27(K) + 7 7(K), (10)
where 2 (") denotes the cumulative enstrophy, I17(K) the enstro-
phy flux, Z;(K) the enstrophy dissipation, and #;(K) the enstrophy

injection. The enstrophy Z can be defined in the same way as the
energy

I U R
2= (3lof) =3 5y .l dx. an

where o = V x U is the vorticity field. The relation between the ens-
trophy and the enstrophy spectrum is then given by

Z:/O Z(k) dk, (12)

where Z(k) stands for the enstrophy spectrum. The energy and ens-
trophy spectra are linked to each other in Fourier space by the
relation

2
Z(k) = <2T"k> E(k), (13)
which reduces to
Z(k) = K*E(k) (14)

in a 2n-periodic bounded domain. Using the same notation as Tung
and Gkioulekas in [14] this relation can be written in a more general
form

Z(k) = A(k)E(k). (15)
The fluxes are also related to each other by such a relation
6172(k) 7 BIYE(k)
ok (k) ok (16)

Outside the forcing range, the fluxes should verify the following
Danilov inequality:

A(k) (k) < Iz (k). (17)

This inequality is a consequence of the classical frame of the
KLB theory in a periodic or infinite domain. However, our experi-
ments consist in the numerical simulation of two-dimensional
channel flow perturbed by arrays of cylinders with a no-slip
boundary condition in the across-channel direction. A Poiseuille
flow is imposed on the entrance section of the channel, and a
non reflecting condition is imposed on the exit section. The numer-
ical experiments give a realistic picture of a fluid entering in a
channel, perturbed by cylindrical obstacles and exiting the chan-
nel. These simulations describe the behavior of a shallow river or
a real soap film experiment like in [15-18]. The spectra are com-
puted in a selected square located at the end of the channel. Thus
we do not have any periodic condition in any case, and the rela-
tions described above between the energy and the enstrophy spec-
tra do not hold anymore. It will be shown in Section 4 that the
energy-enstrophy relation numerically diverges in our particular
case. This relation is verified only for a short range of frequencies
in the middle part of the spectra, approximately between k ~ 2L
(where L is the width of the channel) and k = k. A detailed study
is performed, and the results show that a windowed Fourier trans-
form has to be used for the spectra computations in order to re-
move the discontinuities created by the boundary conditions.

3. The experimental setup, the mathematical modeling and the
filtering process

We present in this section the main tools used to compute the
two-dimensional turbulent flows and to analyze the flows.

3.1. The experimental setup

Many numerical experiments have been performed. All of them
consist in the numerical simulation of a two-dimensional channel
flow perturbed by an horizontal array of cylinders inducing a 50%
blocage. Two vertical arrays of additional cylinders have been
added in order to increase the number of merging events, and thus
to enhance the inverse energy cascade phenomenon [19]. The
injection scale k;,; is given by the diameter of cylinders and so var-
ious sizes are considered as shown in Fig. 1 to better capture the
inverse energy cascade or the direct enstrophy cascade. The length
of the rectangular channel Q is four times its width L and the Rey-
nolds number based on the cylinders diameter is Re = 50,000. This
diameter varies from L/8 to L/40 and consequently the injection
scale varies from k;; = 8 to ki;; = 40; the setups plotted in Fig. 1
correspond to ki, = 20 (left) and ki, = 8 (right). As we shall see
in the next section, the penalization method is used to solve the
flow around the obstacles. Consequently the Brinkman-Navier—
Stokes equations are solved in the whole channel @ including the
solid obstacles Qs and the fluid domain €. In all the simulations,
the evolution in time of the velocity U = (u;,u;), of the vorticity
o and of the pressure p have been recorded at six monitoring
points located on the vertical row x; = 3L/8 between 5L/16 and
15L/16. These 1D temporal signals have been analyzed and used
to compute the energy spectra reported in [20,21].

The numerical results obtained through such direct numerical
simulation can be compared to those obtained by soap film exper-
iments where the flow is perturbed by analogous arrays of small
cylinders [19].

3.2. The mathematical modeling
Let Q be a rectangular bounded domain in R2. The union of all

the solid cylinders is denoted by @ and Qf = Q\ Q; is the incom-
pressible fluid domain in which the Navier-Stokes equations are
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Fig. 1. Numerical experiments setup.

prescribed. The boundary of ©f is defined by 0Qf = 0Q; U I'pu
I'wUTIy. A non homogeneous Dirichlet boundary condition,
namely a Poiseuille flow, is imposed at the entrance section I'p
and a no-slip boundary condition is specified on the walls I'y.
The solid obstacles are considered like a porous medium of very
low permeability and taken into account by a L* penalization pro-
cedure which consists in adding a penalization term U/« in the
equations which are now set on the whole domain Q [22]. Let ¢
be the stress tensor defined by

a(U,p) :Rle(vu+vuf) —pl (18)

where [ is the identity tensor, we have to solve the following initial
boundary value problem for the primitive variables (U,p) as
unknowns

atU+(U~V)deiVJ(U,p)Jr’]ch:O in Qr = Qx (0,T),

divU =0 in Qr,

U(x,0) = Up(x) in Q,
U=Up onIpx(0,T),
U=0 onTIw x(0,7T)

(19)

oU,p)-n +%(U n)"(U—U™) = U™ p*)-n on Iy,

where Uy stands for the initial datum, Up for the Poiseuille flow and
(U™ pref) for a reference flow that is supposed to have the same
traction at the exit section than the studied flow [23]. In this Brink-
man-Navier-Stokes model, the scalar function « is the non-dimen-
sional permeability coefficient of the porous medium. In the fluid
domain « goes to infinity and the penalization term vanishes to
get the Navier-Stokes equations while in the solid domain « goes
to zero and the Darcy equations are recovered [22]. For numerical
experiments we set x = 107% in the cylinders and « = 10'° else-
where. This problem (19) has been theoretically studied in [24].

The equations are discretized in time by a second-order Gear
scheme with an implicit treatment of the linear terms and an expli-
cit treatment of the convection term. The spatial approximation is
performed on uniform staggered grids using second-order cen-
tered finite differences for the linear terms and a third-order up-
wind scheme for the convection term [25]. The location of the
unknowns enforce the divergence-free equation which is discret-
ized on the pressure points and the choice of uniform grids is nec-
essary to maintain the accuracy of the finite differences schemes.
The whole problem is solved by a multigrid method with a cell
by cell Gauss-Seidel iterative procedure as smoother. A sequence
of grid from 4 x 16 cells up to 1024 x 4096 cells or from 5 x 20
cells up to 640 x 2560 cells is used on the domain Q = (0,1)x
(0,4) to get accurate results.

3.3. The filtering process

The theory concerning the wavelet packets has been detailed in
[6] and will not be repeated here. The same Daubechies type wave-
lets are used in the current paper to build the packets array, and
the entropy criterion is used in the best basis selection process.
In [6], a few tests were performed in order to get the best wavelet
mother, and to determine the number of scales necessary for an
efficient representation of the flow. The criterion was then the
minimization of the entropy. It had been shown that it was not
necessary to perform the wavelet packets decomposition over
more than 3 scales when the finest scale corresponds to a
320 x 1280 grid. It has to be reminded here that the scale sequence
goes from finest scales to coarsest scales. It leads to the most effi-
cient representation according to the entropy criterion but not to
the smoothest fields after filtering. Indeed, to smooth the disconti-
nuities, it is necessary to go over at least 4 scales for such a grid
[10]. That means that in [6], where only 3 scales were considered,
some spurious coefficients due to the discontinuities remained in
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the spectra, and the slopes detected in the figures were partly al-
tered. So in this paper, all the decompositions have been performed
over 5 scales for a 640 x 2560 or a 1024 x 4096 grid.

The overall filtering process can be summarized as follows:

(1) Computation of the wavelet packets decomposition of the
two components of the velocity U = (uy,u;) over 5 scales.

(2) Separation of the velocity fields into two subfields: the first
subfield Us = (uqs, Ups) corresponds to the wavelet packet
coefficients with a modulus larger than a given threshold e,
and the second one U; = (uyg, Uyr) corresponds to the wavelet
packet coefficients with a modulus smaller than e.

(3) Construction of the corresponding vorticity fields, ws and w.
The filtered field w;s is then essentially composed by the solid
rotation part of the vortices, and the filtered field w¢ by the
vorticity filaments in between that roll-up in spirals inside
the vortices.

(4) Computations of the physical data: energy and enstrophy
spectra and fluxes.

4. Numerical pitfalls in windowing process and filtering
methods

A snapshot of the vorticity field in the wake of the cylinders for
the first numerical experiment setup of Fig. 1 is plotted in Fig. 2. To

compute the energy and enstrophy spectra, we select the square of
size L = 1 located at the end of the channel (delimited by a thin
dotted line in Fig. 2) as domain of analysis.

4.1. Numerical pitfalls in windowing process

The cutting process to select this domain creates many discon-
tinuities in the velocity and vorticity fields at the boundaries, and
thus introduces essentially high frequency coefficients in Fourier
space. This phenomenon, well known from people using the classi-
cal FFT algorithm, is described in [26,27] but its negative conse-
quence for interpreting the two-dimensional turbulence spectra
has never been enlightened. One can avoid this problem by using
a windowed Fourier transform that removes the spurious coeffi-
cients created by the discontinuities. Some of the windows gener-
ally used, as the Hanning window often applied in energy
spectrum computations, remove a significant part of the energy
and enstrophy contained in the fields.

The Tukey windows use a parameter allowing to vary the size of
the horizontal plateau in order to increase the percentage of the
energy kept in the analysis process. The resulting energy spectra
computed using such windows on the coarse mesh of 320 x 1280
cells are shown in Fig. 3. It can be noticed that the slope detected
between k ~ 10 and k ~ 70 is the same for the Hanning, Tukey
(0.5) and Tukey (0.1) windows. The three curves are parallel and

10 T T
— Original spectrum
— Tukey 0.5
o = - + Tukey 0.1
b — — — —O- _ . — - Tukey 0.02
O~ N2
102 L eN : —O- Hanning =
\O\& =~
107 b A
10° -
10° -
107 .
10-12 I I
10° 10' 10°

Fig. 3. Various windowed energy spectra.
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the only difference is the level of energy kept by the windowing
process. The best level is given by a Tukey window with a quite
small parameter equal to 0.1. A Tukey window with a larger pla-
teau (smaller parameter equal to 0.02 for instance) does not
smooth enough the discontinuities and the spectrum is closer to
the non windowed spectrum which is completely wrong beyond
the injection scale. The first bound of this slope is close to the injec-
tion scale while the second bound is linked to the grid, the finer the
computational grid is the larger this bound is. The energy decrease
is around k> and so far from the KLB theory that predicts a de-
crease in k. But the simulations correspond to a real flow in a
bounded domain with various boundary conditions completely dif-
ferent from the periodic case.

These results show that the discontinuities alter drastically the
energy or enstrophy spectra by generating many spurious coeffi-
cients not linked to the real frequency content. They show also that
some windows like Hanning window are relevant to compute the
spectra but can not be used for other purposes like the computa-
tion of the fluxes as they cancel a too large amount of the energy
or the enstrophy.

Computing the energy and enstrophy spectra in the selected do-
main of analysis, one can check the validity of the relation (13)
which writes

Z(k) = 4n*K*E(k) (20)

in our case.

The results show that without windowing the results are not
correct and the relation above is satisfied only in a range from
k ~ 2 to k ~ 20 (see Fig. 4 where the average ratio Z(k)/E(k) is plot-
ted). The first bound corresponds to the biggest possible structure
and the second bound to the injection scale. Once again these re-
sults show the need of windowing to get reliable results. Then
the relation is satisfied in the whole significant spectrum where
the upper bound can be pushed forward using a finer approxima-
tion as it corresponds to the smaller structures captured on the gi-
ven mesh. The curve for the Hanning windowing has not been
reproduced in Fig. 4 since it was exactly the same as for the Tukey
(0.5) windowing.

4.2. Numerical pitfalls in filtering methods

We have discussed in the previous subsection the effects of the
discontinuities created by the selection of a domain of analysis
within a velocity or vorticity field. Here we focus on the disconti-
nuities created by a filtering process allowing to separate the vor-
tices from the vorticity filaments. The goal of the present section is
to reveal the real frequency content of the filtered fields. A cut-off
filtering and a wavelet packet decomposition are considered in the
sequel. All the computations in this section have been performed
on a 640 x 2560 grid.

It is shown in Fig. 5 the two cut-off filtered vorticity fields cor-
responding to the particular snapshot studied. This cut-off filtering
is done directly on the vorticity function splitted into two parts
according to a chosen threshold. For a good threshold the vortices
are clearly extracted from the whole flow, the remaining is the
complementary part with the background showing vorticity fila-
ments. The vortices and the filaments fields, as described in [9],
should lead to different energy spectra. The average energy spectra
computed with 80 snapshots for the filtered fields are plotted in
Fig. 6. According to the previous section, these spectra are com-
puted using a windowed Fourier transform with a Tukey (0.1) win-
dow to remove the spurious coefficients generated by the
boundary conditions. As expected, the spectrum of the fields with
only the vortices does not present the same decrease as the spec-
trum of the filaments fields. A slope around —3 is observed for
the vortices, and around —5/3 for the filaments before the injection
scale. The theoretical value of —5/3 has been explained by Vassili-
cos and Hunt, and numerically observed by Borue. However, if one
carefully observes the spectra, one can notice that both fields have
the same behavior from the injection scale kj,;; = 20 to the end of
the spectra. This range is exactly the same as the one enlightened
in the previous section. But here the slopes observed in this range
are only due to the discontinuities created by the filtering process
instead of the boundary cutting. So it is not surprising that both
fields present the same behavior in this spectral range since the
discontinuities are the same in both filtered fields. In order to bet-
ter understand the phenomenon, we propose to study the problem
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Fig. 5. Cut-off filtering of a snapshot at the end of the channel (k;, ~ 20).
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Fig. 6. Energy spectra obtained thanks to a cut-off filtering.
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on a one-dimensional cut of the field located for instance along the
row 250 of the global vorticity field of Fig. 5. This one-dimensional
curve is plotted in Fig. 7. This cut contains four vortices, and the
corresponding one-dimensional Fourier spectrum is given in
Fig. 8. This spectrum is obviously very noisy since it has been com-
puted with only one signal. To remove the discontinuities, we can
use a continuous Gaussian fit of the signal very close to the original
cut as seen in Fig. 7. The main difference between these two curves
is the smoothing of the discontinuities. One can compare the spec-
trum of the Gaussian fit to the spectrum of the original cut previ-
ously computed (see Fig. 8). Both spectra are identical in the
beginning of the frequency range and differ only from the injection

scale, where the continuous approximation spectrum presents a
very fast decay to zero as expected as there are no high frequencies
in the signal. The conclusion is that many spurious coefficients due
to the discontinuities are hiding the real spectral behavior beyond
the injection scale and consequently the direct enstrophy cascade
cannot be studied properly. The same phenomenon obviously oc-
curs during the computation of two-dimensional spectra of filtered
fields. A nice solution to avoid this problem consists in substituting
a smooth filtering wavelet packets decomposition to the discontin-
uous cut-off process.

This section mainly points out two technical pitfalls when com-
puting energy or enstrophy spectra and filtering velocity or vortic-

—— Discontinuous original signal
— — Continuous Gaussian fit

~10 |

10° 10'

Fig. 8. One-dimensional cut spectra.
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ity fields. These pitfalls can lead to a misinterpretation of the phys-
ical contents. Of course the above discussion does not affect the re-
sults of the literature in the periodic case or in the non periodic
case when a window is properly used but could affect some results
obtained with a discontinuous filtering.

5. Computation of the physical spectra and fluxes

In this section is presented the main result of the paper con-
cerning the analysis of the role of each filtered subfield to the
two-dimensional turbulence mechanism.

5.1. Computation of the energy and enstrophy spectra

The velocity decomposition U = Us + Uy obtained with the
wavelet packets based filtering is orthogonal and leads to the en-
ergy spectrum decomposition

E(k) = Es(k) + Er (k). (21)

where E; is the energy of the solid rotation vortices and E; is the en-
ergy of the vorticity filaments, as can be verified in Fig. 9. We ob-
serve that both subfields are multiscale even if the Es spectrum
dominates before the injection scale and the E; spectrum dominates
after the injection scale. And the filtered energy spectra are super-
imposed to the global energy spectrum when they dominate. As
the spurious coefficients due to the discontinuities have been re-
moved by the wavelet packets filtering, a first decreased in k>
and a second decreased in k> on both sides of the injection scale
are obtained. The first slope is not really clear as it is short but the
second one is obvious.

The same decomposition of the enstrophy spectrum yields a
behavior in k° and k~3°, respectively, as can be observed in
Fig. 10. The decomposition into the two subfields obtained by the
wavelet packets filtering process is given in Fig. 11. The solid rota-
tion subfield w, reveals all the vortices with a smooth transition
and the vorticity filaments subfield o shows the vorticity fila-
ments between the vortices that end up in spirals inside the vorti-

ces. Both subfields are continuous and multiscale. The first subfield
is obtained with less than 1% of the coefficients of the decomposi-
tion. It contains more than 95% of the total energy and around 70%
of the enstrophy while the second one contains less than 5% of the
total energy but around 30% of the enstrophy. This share-out of the
enstrophy shows that unfortunately the whole flow can not be rep-
resented properly only by the first subfield. Indeed, when the vor-
ticity filaments subfield is neglected, the global motion cannot be
correct.

5.2. Computation of the energy and enstrophy fluxes

We recall that the energy flux is computed from the nonlinear
term in the Navier-Stokes equation written in Fourier space

+00

1T (k) = / Te(K) dK, 22)
k

where Tg(k) is the nonlinear energy transfer function, and is ob-

tained by angular integration of U"(k) - (U- V)U(k). The enstrophy

flux is obtained in the same way

Iz (k) = /

Jk

" +00

T,(K)dK, (23)

where T(k) is the enstrophy transfer function, and is obtained by
angular integration of w*(k) - (U- V)w(k).

The energy and enstrophy fluxes corresponding to the numeri-
cal experiments above with k;,j = 20 are, respectively, given in Figs.
12 and 13. The energy flux of the whole flow is negative for wave
numbers k below the injection scale 20 and almost zero above. The
enstrophy flux is on the other hand positive beyond the injection
scale, and negative below. The zero crossing corresponds approxi-
mately to the injection scale. These results show the existence of
leading cascades, upscales for the inverse energy cascade and
downscales for the direct enstrophy cascade; but also the existence
of subleading cascades as theoretically shown by Tung and Gkio-
ulekas in [28,29,14]. Let us remark that, as the injection scale is rel-
atively large, the energy cascade cannot be completely developed.
A priori, if the turbulence is inertial, the energy flux should present

Total energy E
. Filtered energy ES

, Filtered energy Ef

— — — Slope K2
"""" Slope kS5

10 10

Fig. 9. Energy spectra of the original and filtered fields obtained by a 5 scales wavelet packets decomposition (ki ~ 20).
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Fig. 11. Wavelet packets filtering of a snapshot at the end of the channel (ki ~ 20).

a plateau in the small wave number range. Our simulations do not However, both the energy flux and the enstrophy flux show that
produce a large plateau but an explanation for this is the limitation the classical picture of 2D turbulence is valid for the flow
of the range of scales probed and the presence of the boundaries. considered.



C.-H. Bruneau, P. Fischer/Computers & Fluids 38 (2009) 1324-1337 1333

0.2
)
S — S
...... e
01 fof H
IR

Fig. 12. Energy fluxes of the whole flow and of the filtered subfields (ki ~ 20).

1000

500

-500 ‘

10 10

10°

Fig. 13. Enstrophy fluxes of the whole flow and of the separate structures (k;,; ~ 20).

In order to study in detail the energy transfer, we focus now on
the nonlinear energy transfer function which, due to the orthogo-
nal decomposition, can be written as

Te(k) = U (k) - (U- V)U(k)
= U(k) - (U-V)Us(k) + U(k) - (U-V)Ur (k)

+ UL(K) - (U-V)Us(k) + Ui (K) - (U- V)Us (k). (24)

The global energy transfer can be split into four parts corre-
sponding to the multiscale transfers from one subfield to itself or
to the other one. For instance, Us*(k) - (U- V)U¢(k) is the energy

transfer from the vorticity filaments subfield to the solid rotation
subfield. The fluxes corresponding to each term in the expression
for the total energy transfer function will be denoted as for exam-
ple 115 which is the flux corresponding to the transfer term pre-
viously described. In the same way, the nonlinear enstrophy
transfer term is also split into four parts

Tz(k) = w (k) - (U- V) (k)
= wi(k) - (U- V)os(k) + wy(k) - (U-V)owr(k)

— — — —

+ (k) - (U-V)as(k) + of (k) - (U- V)or (k). (25)
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Fig. 14. Cross-fluxes of enstrophy (ki ~ 20).

Using these decompositions, the fluxes associated with each
structure as well as the fluxes associated with the interactions of
the two structures can be obtained. Let us first consider the energy
fluxes of the whole flow and of the separate structures in Fig. 12.
The energy flux for the vortices shows a large negative part at small
k which is similar to the total flux. The energy flux associated with
the filaments is almost zero everywhere. The enstrophy flux for the
vortices is negative at small k and becomes close to zero beyond
the injection scale as shown in Fig. 13. The enstrophy flux for the
filaments is on the other hand large and positive for the high k after
the injection scale and is very close to the value of the total flux in
this region of wave numbers. This preliminary examination of the
fluxes indicates that the main part of the energy flux comes from
the solid rotations while the main part of the enstrophy flux comes
from the filamentary structures.

It is, however, possible to give a more detailed analysis of the
energy and enstrophy transfers looking at the cross-fluxes. The en-
ergy flux from the vortices to the filaments and vice versa are an
order of magnitude smaller than the flux due to the filaments or
the flux due to the vortices. But it is shown in Fig. 14 that the
cross-enstrophy fluxes 17575 and 175~ are of opposite sign and have
amplitudes comparable to the total enstrophy flux. However, the
sum of these two fluxes 11575 + 15~ turns out to be close to zero.
While the transfer from the filaments to the vortices is negative
at small k and very close to zero beyond the injection scale, the flux
of enstrophy from the vortices to the filaments is positive at small k
and goes to zero at high k. Concerning the enstrophy, there is a
clear interaction between the two different structures. The vortices
transfer enstrophy to the filaments from the large scales to the
small scales up to ki, while the filaments transfer enstrophy to
the vortices from the injection scale to the large scales.

6. Further analysis of the cascades

In order to improve the generation of each cascade separately,
one can try to move the injection scale k;; from one side of the
spectrum to the other one. However, the possible shifts are limited
due to numerical constraints. The penalization method used to

take into account the obstacles in the equations and the discretiza-
tion step size do not allow the use of very small cylinders. Another
interesting point is to see what are locally the events or the inter-
actions responsible of strong energy or enstrophy transfers.

6.1. The inverse energy cascade

To better study the inverse energy cascade, it is useful to move
the injection scale to a smaller scale, for instance by taking obsta-
cles of size corresponding to an injection scale of k;;; ~ 40. The Rey-
nolds number is still kept equal to 50,000 in these new numerical
computations. The computations have been performed on a grid of
size 1024 x 4096. A snapshot corresponding to this new geometry
is given in Fig. 15. The statistics to compute the fluxes have been
performed only on 20 snapshots in order to limit the size of the
data. Consequently the fluxes are less smooth than in the previous
case. The energy flux shown in Fig. 16 behaves globally like for the
previous geometry. However, as expected, the inverse energy cas-
cade has more room to take place. The energy flux tends to go to
zero at the largest scales and goes back to zero close to the injec-
tion scale k ~ 40 instead of k ~ 20 as seen in the previous section.
The energy flux of the solid rotations is very close to the global flux
while the energy flux of the filaments is very low.

6.2. The direct enstrophy cascade

In order to study the direct enstrophy cascade, the geometry of
the numerical experiment has been modified again. The turbulence
is now created by three arrays of big cylinders. This setup produces
an injection scale ki;; ~ 8. The computations have been performed
on a grid of size 512 x 2048 for the same Reynolds number
Re =50,000. A snapshot of the vorticity field corresponding to this
setup is given in Fig. 17. The enstrophy flux is plotted in Fig. 18 and
the global behavior is the same than for the original setup of the
previous section. There is a large positive region beyond the injec-
tion scale revealing the direct enstrophy cascade. But it can also be
observed a strong enstrophy transfer from the injection scale to-
ward the largest scales linked to the inverse energy cascade. One
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Fig. 17. Snapshot of the vorticity field.

notice again that the enstrophy flux crosses the zero axis around
the injection scale. The enstrophy flux of the filaments is close to
the global flux beyond the injection scale and reach another pla-
teau for the large scales. The enstrophy flux of the solid rotations
is close to zero beyond the injection scale and shows a negative
plateau at large scales. The positive pic just before the injection
scale should probably disappear with higher statistics. The modifi-
cation of the geometry shows that the global features of the flow
are always the same and proves the direct link between the diam-
eter of the cylinders and the injection scale.

6.3. The local analysis

Now we have established there are two subfields that have a
clear role on the turbulence cascades and that interact strongly
as we have seen on Fig. 14, it is necessary to understand the mech-
anism of the transfers. The filamentary subfield is made of vorticity
filaments that roll-up in spirals inside the vortices and so the inter-
action with the solid part of the vortices is obvious. Nevertheless, it
is important to well understand what is going on in the strain re-
gions. When two vortices interact, if the vortices move aside then



1336 C.-H. Bruneau, P. Fischer/Computers & Fluids 38 (2009) 1324-1337

400

300

200

100

-100

-200

-300

-400
10

Fig. 18. Enstrophy fluxes of the whole flow and of the separate structures (ki ~ 8).

the vorticity filament in between is stretched and if the vortices
move closer then the vorticity filament in between is confined like
a yo-yo. This suggests that the whole balance is zero and this is
true as the sum of the cross-fluxes of enstrophy is effectively close
to zero.
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To have a complete understanding of the mechanisms it would
be necessary to analyse each kind of structure, namely a single vor-
tex convected and diffused by the flow without interactions, a di-
pole or more complex structures also convected and diffused by
the flow without interactions with the rest of the flow, the merging
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Fig. 19. Energy fluxes (left) and enstrophy fluxes (right) corresponding to a single vortex of diameter ~ L/20.
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Fig. 20. Energy fluxes (left) and enstrophy fluxes (right) corresponding to a dipole of size ~ L/6.
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of two or more vortices of the same sign, the interaction of several
vortices of different sign and so on. Here, we restrict the analysis to
the two first events above. To avoid numerical pitfalls, the vortex
for instance is embedded into a two-dimensional Gaussian func-
tion sharing the same center. The contribution to the fluxes of such
a single vortex is plotted in Fig. 19, it is in accordance with the glo-
bal result for the inverse energy cascade but not for the direct ens-
trophy cascade as the enstrophy flux is strongly negative all way
long. The same fluxes are plotted on Fig. 20 for a single dipole with
a bigger size that does not interact with the rest of the flow. This
time there is a positive maximum and the negative energy flux
moves to the large scales as the size of the structure is bigger, this
corresponds to what we have seen above with bigger cylinders. But
now the enstrophy flux is always positive. In both cases we see that
the solid rotation subfield follows the total field for the energy
whereas the filamentary subfield follows the total field for the ens-
trophy and the contribution of the other subfield is very low. Re-
peated analysis of these two events gives always the same kind
of results. The total flux for one snapshot is the sum of the local
fluxes corresponding to the various structures that compose the
flow.

7. Conclusions

Good direct numerical simulations give a realistic approxima-
tion of two-dimensional turbulent flows corresponding to soap
film experiments. The flows perturbed by arrays of cylinders reveal
an injection scale directly linked to the diameter of the cylinders.

A careful analysis of the flows using wavelet packets filtering on
sufficient levels yields relevant results one can trust. Using an
adapted threshold on the wavelet coefficients allows to separate
the flow into two continuous and multiscale subfields, on one hand
the solid rotation of the vortices and on the other hand the vortic-
ity filaments that connect the vortices and roll-up in spirals inside
the vortices. The second subfield cannot be neglected as it contains
around 30% of the enstrophy and contributes for a significant part
of the motion of the whole flow.

The computation of energy and enstrophy spectra and fluxes
reveal that the first subfield contributes significantly to the inverse
energy cascade while the second subfield contributes significantly
to the direct enstrophy cascade. Further local analysis should reveal
the contribution of the various structures to the global dynamics.
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