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Abstract. The widely accepted theory of two-dimensional turbulence pre-
dicts a direct downscale enstrophy cascade with an energy spectrum behaving

like k
−3 and an inverse upscale energy cascade with a k

−5/3 decay. Neverthe-
less, this theory is in fact an idealization valid only in an infinite domain in
the limit of infinite Reynolds numbers, and is almost impossible to reproduce
numerically. A more complete theoretical framework for the two-dimensional
turbulence has been recently proposed by Tung et al. This theory seems to
be more consistent with experimental observations, and numerical simulations
than the classical one developed by Kraichnan, Leith and Batchelor.
Multiresolution methods like the wavelet packets or the cosine packets, well
known in signal decomposition, can be used for the 2D turbulence analysis.
Wavelet or cosine decompositions are more and more used in physical appli-
cations and in particular in fluid mechanics. Following the works of M. Farge
et al, we present a numerical and qualitative study of a two-dimensional tur-
bulence fluid using these methods. The decompositions allow to separate the
fluid in two parts which are analyzed and the corresponding energy spectra are
computed. In the first part of this paper, the methods are presented and the
numerical results are briefly compared to the theoretical spectra predicted by
the both theories. A more detailed study, using only wavelet packets decom-
positions and based on numerical and experimental data, will be carried out
and the results will be reported in the second part of the paper. A tentative
of physical interpretation of the different components of the flow will be also
proposed.

1. Introduction. The application of wavelets to fluid dynamics have been the
topic of many papers, published since 1992, and many of them by Farge et al

[16, 17, 18] 1. The main idea developed in these papers is that the vorticity field of
a turbulent flow can be easily decomposed in coherent and incoherent parts thanks
to an orthogonal wavelet decomposition. The coherent part, corresponding to the
strongest wavelet coefficients, is in fact composed by vortices and the so-called
incoherent part, corresponding to the weakest coefficients, is mainly composed by
vorticity filaments. In the present paper, the computations have been performed
from vorticity and velocity fields obtained from two Numerical Simulations. These
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experiments are based on a two-dimensional channel flow perturbed by an horizontal
array of five cylinders. They will be briefly described in the sequel but the details
can be found in [8, 9].

2. Wavelet and Cosine packets decompositions. Wavelet packets are gen-
eralizations of the classical orthogonal compactly-supported wavelets, and cosine
packets generalizations of the Discrete Cosine Transform. One will first introduce
the one-dimensional wavelet packets theory, and then extend it to higher dimension.
The Best Basis algorithm will be described in the last section of this part following
the review on the cosine packets method.

2.1. One-dimensional wavelet bases. The theoretical construction of orthogo-
nal wavelet families is intimately related to the notion of Multiresolution Analysis
[28]. A Multiresolution Analysis is a decomposition of the Hilbert space L2(R)
of physically admissible functions (i.e square integrable functions) into a chain of
closed subspaces,

. . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . .

such that

•
⋂

j∈Z

Vj = {0} and
⋃

j∈Z

Vj is dense in L2(R)

• f(x) ∈ Vj ⇔ f(2x) ∈ Vj−1

• f(x) ∈ V0 ⇔ f(x− k) ∈ V0

• There is a function ϕ ∈ V0, called the father wavelet, such that {ϕ(x−k)}k∈Z

is an orthonormal basis of V0

Let Wj be the orthogonal complementary subspace of Vj in Vj−1:

Vj ⊕Wj = Vj−1 (1)

This space contains the difference in information between Vj and Vj−1, and allows
the decomposition of L2(R) as a direct form:

L2(R) = ⊕j∈ZWj (2)

Then, there exists a function ψ ∈ W0, called the mother wavelet, such that {ψ(x−
k)}k∈Z is an orthonormal basis of W0. The corresponding wavelet bases are then
characterized by:

ϕj,k(x) = 2−j/2ϕ(2−jx− k), k, j ∈ Z, (3)

ψj,k(x) = 2−j/2ψ(2−jx− k), k, j ∈ Z. (4)

The mother wavelet corresponding to the chosen wavelet basis verifies:
∫

R

dxψ(x)xm = 0, m = 0, . . . ,M − 1 , (5)

which means that it has M vanishing moments.
Since the scaling function ϕ(x), and the mother wavelet ψ(x) belong to V−1,

they admit the following expansions:

ϕ(x) =
√

2

L−1
∑

k=0

hk ϕ(2x− k), hk = 〈ϕ,ϕ−1,k〉 , (6)

ψ(x) =
√

2

L−1
∑

k=0

gk ϕ(2x− k), gk = (−1)khL−k−1 , (7)
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where the number L of coefficients is connected to the number M of vanishing
moments and is also connected to other properties that can be imposed to ϕ(x).
The families {hk} and {gk} form in fact a conjugate pair of quadrature filters H
and G. Functions verifying (6) or (7) have their support included in [0, . . . , L− 1].
Furthermore, if there exists a coarsest scale, j = n, and a finest one, j = 0, the
bases can be rewritten as:

ϕj,k(x) =

L−1
∑

l=0

hl ϕj−1,2k+l(x), j = 1, . . . , n , (8)

and

ψj,k(x) =

L−1
∑

l=0

gl ϕj−1,2k+l(x), j = 1, . . . , n . (9)

The wavelet transform of a function f(x) is then given by two sets of coefficients
defined as

dj
k =

∫

R

dx f(x)ψj,k(x) , (10)

and

rj
k =

∫

R

dx f(x)ϕj,k(x) . (11)

Starting with an initial set of coefficients r0k, and using (8) and (9), coefficients dj
k

and rj
k can be computed by means of the following recursive relations:

dj
k =

L−1
∑

l=0

gl r
j−1
2k+l , (12)

and

rj
k =

L−1
∑

l=0

hl r
j−1
2k+l . (13)

Coefficients dj
k, and rj

k are considered in (12) and (13) as periodic sequences with

the period 2n−j . The set dj
k, is composed by coefficients corresponding to the

decomposition of f(x) on the basis ψj,k and rj
k may be interpreted as the set of

averages at various scales.

2.2. One-dimensional wavelet packets. Let H and G be a conjugate pair of
quadrature filters whose the coefficients are respectively denoted by hj and gj. One
denotes by ψ0 and ψ1 the corresponding father and mother wavelets. The following
sequence of functions can be defined using the filters H and G:

ψ2n(x) =
√

2
∑

j∈Z
hjψn(2x− j),

ψ2n+1(x) =
√

2
∑

j∈Z
gjψn(2x− j).

(14)

The set of these functions {ψn}n defines the wavelet packets associated to H and
G. An orthonormal wavelet packet basis of L2(R) is any orthonormal basis selected
from among the functions 2s/2ψn(2sx−j). The selection process, the so-called Best
Basis algorithm, will be described in the sequel. Each basis element is characterized
by three parameters: scale s, wavenumber n and position j. A useful representation
of the set of wavelet packet coefficients is that of a rectangle of dyadic blocks. For
instance, if one considers a signal defined at 8 points {x1, ..., x8}, then the wavelet
packet coefficients of this function can be summarized by Table 1.
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x1 x2 x3 x4 x5 x6 x7 x8

r1 r2 r3 r4 d1 d2 d3 d4

rr1 rr2 dr1 dr2 rd1 rd2 dd1 dd2

rrr1 drr1 rdr1 ddr1 rrd1 drd1 rdd1 ddd1

Table 1. Dyadic blocks of wavelet packet coefficients

Each row is obtained by the application of either filter H or G to the previous
row. The application of H is denoted by r as “resuming” and the application
of G by d as “differencing”. For instance, the set {rd1 rd2} is obtained by the
application of the filter H to {d1 d2 d3 d4}, and {dd1 dd2} by the application
of the filter G. The so called Daubechies wavelets defined in [14] with several
numbers of vanishing moments have been used in the sequel.

2.3. One-dimensional Cosine packets. Many papers dealing with the design
of orthonormal bases built from an overlapping bell and a Fourier-like transform
has been published during the last few years [1], [4], [29], [30]. The family of local
cosine basis functions chosen in this paper can be written as:

Wk,n(x) = bk(x) cos((n+
1

2
)πx) (15)

where the function bk is a smooth window. We briefly review here the construction
of the family of basis functions . Let ∪k=+∞

k=−∞
[xk, xk+1] be a cover of R. We define

a neighborhood around each point xk : [xk − ǫ, xk + ǫ] such that xk − ǫ < xk <
xk + ǫ ≤ xk+1 − ǫ. Then the bells bk verify:

∀x ∈ [xk − ǫ, xk + ǫ], bk(x)bk−1(2xk − x) + bk(2xk − x)bk−1(x) 6= 0 (16)

and
∀x ∈ [xk + ǫ, xk+1 − ǫ], bk(x) 6= 0. (17)

These special properties insure orthogonality. The local cosine functions are then
defined as:

ψk,n(x) = bk(x)Ck,n(x) (18)

where Ck,n(x) is the family of basis functions of the DCT-IV:

Ck,n(x) =

√

2

xk+1 − xk
cos

(

(n+
1

2
)π

x− xk

xk+1 − xk

)

. (19)

Depending on the choice for the bells bk, different sets of basis functions can be
defined. The bell function chosen for the computation in the sequel is the simple
positive lobe of a sine function.
A multiscale version of the local cosine bases can be designed using dyadic partitions
of R. Like the one-dimensional wavelet packets, the set of cosine packets contains
atoms that can be characterized by scale s, wavenumber n and position k. The
scale s will be connected to the bell size, the wavenumber n to the frequency index,
and the position k to the left endpoint of the bell:

ψsnk(x) =

√

2

2s
bk

( x

2s

)

cos

(

(n+
1

2
)π
x− xk

2s

)

(20)

The cosine packet coefficients can also be described by a rectangle of dyadic blocks
(as in Table 1) where each block corresponds to a bell in a given scale (1 row = 1
scale).



MULTIRESOLUTION ANALYSIS FOR 2D TURBULENCE. PART I 663

2.4. Two-dimensional packets. Two-dimensional wavelet or cosine packets can
be obtained by tensor products ψsnk(x).ψs′n′k′(y) of one-dimensional basis ele-
ments. The support of these functions is exactly the cartesian product of the sup-
ports of ψsnk(x) and ψs′n′k′ (y). The same scale s = s′ will be used in the sequel.
Subsets of such functions can be indexed by dyadic squares, with the squares cor-
responding to the nominal supports of the functions in the cosine packets case, and
to the application of one of the following filters H ⊗H = HxHy, H ⊗G = HxGy,
G⊗H = GxHy, or G ⊗G = GxGy for the wavelet packets case. A graphical rep-
resentation of a two-dimensional wavelet packets decomposition is given in Figure
1.

2.5. Best basis algorithm. Arrays of wavelet and cosine packets constitute huge
collections of basis from which one has to choose and pick. The main criterion
consists in seeking a basis in which the coefficients, when rearranged into decreasing
order, decrease as fast as possible. Several numerical criteria do exist and one refers
to [36] for more details. The entropy has been chosen since it is the more often used
for this type of application. For a given one-dimensional vector u = {uk}, it is
defined as:

E(u) =
∑

k

p(k) log(
1

p(k)
), (21)

where p(k) =
|uk|2
‖u‖2

is the normalized energy of the kth element of the vector under

study. If p(k) = 0 then we set p(k) log( 1
p(k) ) = 0. All the terms in the sum are

positive. In fact, the entropy measures the logarithm of the number of meaningful
coefficients in the original signal. The vector p = {p(k)}k can be seen as a discrete
probability distribution function since 0 ≤ p(k) ≤ 1, ∀k and

∑

k p(k) = 1. It can
be easily shown that if only N of the values p(k) are nonzero, then E(u) ≤ logN .
Such a probability distribution function is said to be concentrated into at most N
values. If E(u) is small then we may conclude that u is concentrated into a few
values of p(k), with all other values being rare. The overabundant set of coefficients
is naturally organized into a quadtree of subspaces by frequency. Every connected
subtree containing the root corresponds to a different orthonormal basis. The most
efficient of all the bases in the set may be found by recursive comparison: the
choice algorithm will find the global minimum in O(N) operations, where N is the
initial degree of freedom number. In fact, the basis is chosen automatically to best
represent the original data. Hence the name best basis. Routines in Matlab written
by D. Donoho [15] and based on the algorithms designed by M.V. Wickerhauser
are used for performing the packets decompositions and for searching for the best
bases.

3. Experimental setup.

3.1. General description. Two numerical experiments have been performed.
Both of them consist in the numerical simulation of a two-dimensional channel
flow perturbed by an horizontal array of five cylinders, as on Figure 2. The length
of the channel Ω is four times its width L ; the Reynolds number based on the
cylinders diameter (equal to 0.1 × L) is Re = 50000.
The first experiment consists in solving numerically the NS/Brinkman model which
is described in section 3.2, Ω being the rectangular channel, Ωs (the “obstacle” sub-
set) being the union of the five disks corresponding to the five cylinders and Ωf
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I33
=

GxHyI3

I34
=

GxGyI3

I43
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Figure 1. Two levels of two dimensional wavelet packets decomposition

being the fluid domain. This experiment is referred as simulation I.
In the second experiment (which also consists in solving numerically the
NS/Brinkman model as described precisely in section 3.2, with the same boundary
data as in simulation I), the“obstacle” set Ωs is the union of the five horizontal
disks together with 18 small disks (with diameter equal to 0.05 × L) lying sym-
metrically along the vertical edges of the channel, as shown on Figure 2. In this
second experiment (denoted as simulation II), additional disks (corresponding to
additional cylinders) have been added in order to increase the number of merging
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Figure 2. Computational domains

events, and thus to enhance the inverse energy cascade phenomenon ; the value of
the Reynolds number is kept equal to 50000.
In both simulations, the evolutions in time of the velocity (two components), of the
vorticity and of the pressure have been recorded at six monitoring points located
on the vertical row x1 = 3L/8 between 5L/16 and 15L/16. These 1D temporal
signals have been analyzed and used to compute the energy spectra. The results
have been reported in [8, 9].
Numerical results obtained through such DNS can be compared to those obtained
in the experiments realized thanks to physical devices by Hamid Kellay in [6]: a
soap film in a rectangular channel is disturbed by five big cylinders (as in simulation

I) or five big cylinders together with two rows of smaller cylinders (as in simulation

II).

3.2. Mathematical modelization. Let Ω be a rectangular bounded domain in
R

2. The reunion of the five big cylinders and the eighteen small ones is denoted
by Ωs. One denotes by Ωf = Ω\Ωs the domain for the incompressible fluid in
which the NS equations are applied. The boundary of Ωf is defined by ∂Ωf =
∂Ωs∪ΓD ∪ΓW ∪ΓN . A non homogeneous Dirichlet boundary condition is imposed
on ΓD and a no-slip boundary condition on ΓW . The obstacles are taken into
account by a L2 penalization procedure which consists in adding a mass term in
the equations which are now specified on the whole domain Ω as in [2].
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The tension tensor is denoted by:

σ(U, p) =
1

Re
(∇U + ∇U t) − pI (22)

where U is the velocity vector, p is the pressure, Re is the Reynolds number and I
is the identity operator.
Thus, we are looking for the solution of the following initial boundary value problem:

∂tU + (U · ∇)U − divσ(U, p) + 1
KU = 0 in ΩT = Ω × (0, T )

divU = 0 in ΩT

U(X, 0) = U0(X) in Ω
U = UD on ΓD × (0, T )
U = 0 on ΓW × (0, T )

σ(U, p) · n+ 1
2 (U · n)−(U − U ref ) = σ(U ref , pref) · n on ΓN

(23)
where U0 is the initial datum, UD the flow at the beginning of the channel and
(U ref , pref ) is a reference flow that is supposed to have the same traction at the exit
section than the studied flow [10]. In this NS/Brinkman model, the scalar function
K can be considered as the permeability of the porous medium. The permeability
is set equal to 10−8 in the cylinders, and equal to 1016 (should be infinity according
to the theory) elsewhere. The NS equations are solved in the fluid, and the Darcy
equation is considered in the cylinders [2]. This problem (23) has been theoretically
studied in [7]. The numerical solution is based on a finite differences approximation
with an explicit second-order scheme in time, an implicit second-order scheme for
the pressure and the diffusion terms, and an explicit scheme for the convection
terms discretized by a third-order upwind scheme. The simulation is performed on
a regular rectangular mesh (1280 × 320) with a multigrid approach. The wavelet
or cosine packets transforms have been computed on a square mesh (1024 × 1024).

4. Numerical Results.

4.1. Energy spectrum computation. The vorticity fields, obtained thanks to
the method described in the previous section, for both experiments are represented
in Figures 3 and 4. A black and white scale with 256 gray levels has been used.
Negative vortices are in black and positive ones in white. A first comment can be
made concerning the number and the size of the vortices in both figures. More small
vortices, in particular at the end of the channel, can be observed for Simulation II

due to the action of the nineteen small cylinders. For Simulation I, vortices are
larger and mainly located in the first half of the channel.

The widely accepted theory of two-dimensional turbulence predicts a direct en-
strophy cascade with an energy spectrum which behaves in terms of the frequency
range k as k−3 and an inverse energy cascade with a k−5/3 decay.

The study of three-dimensional turbulence theory was initiated by Kolmogorov
[22, 23], and then extended to two-dimensional turbulence by Kraichnan [24, 25, 26],
Leith [27], and Batchelor [3] (named as KLB theory in the sequel). The theoretical
prediction of two inertial ranges is a consequence of both energy and enstrophy
conservation laws in the two-dimensional Navier-Stokes (NS) equations. Observing
these two ranges in numerical or physical experiments remains a current challenge
within the frame of turbulence studies ([5, 31]).
According to Saffman [32], the dominant contribution in the energy spectrum comes
from effects resulting from the discontinuities of vorticity. The value of the slope



MULTIRESOLUTION ANALYSIS FOR 2D TURBULENCE. PART I 667

Figure 3. Vorticity field for Simulation I

Figure 4. Vorticity field for Simulation II

in the representation of the logarithm of the energy spectrum in terms of the loga-
rithm of the wave number is then predicted to be of −4. It follows from the works of
KLB that a local cascade of enstrophy from the injection scale to the smaller scales
leads to a value of −3 for such a slope. However, the rough value which is obtained
by numerical simulations is in general located between these two theoretical val-
ues. Vassilicos and Hunt [35] pointed out that accumulating spirals above vortices
make the flow more singular, so that the slope is attenuated, down to the value
of −5/3. The creation of vorticity filaments leading to these accumulating spirals
occurs during the vortices merging process [21]. This process transfers energy to
larger scales, thus creating the inverse energy cascade. The theoretical behavior of
the energy spectrum in the framework of the KLB theory is depicted in Figure 5.
See also [33] for a review on two-dimensional turbulence. Tung, Gkioulekas, and
Orlando propose a more general theory based on a double cascades of energy and
enstrophy located both upscale and downscale of injection [19, 20, 34]. In their
theory, a two dimensional fluid can be written as a linear combination of two dis-
tinct homogeneous solutions corresponding to two conservation laws (energy and
enstrophy conservation laws) and a particular solution raised by the forcing term
and the boundary conditions. The energy spectrum can then be written as:

E(k) = E(ǫ)(k) + E(η)(k) + E(p)(k) (24)

where E(ǫ)(k) is expected to scale as k−5/3, E(η)(k) as k−3 and E(p)(k) is the
contribution of the particular solution.
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Figure 5. Theoretical spectrum cascades in 2D turbulence

The energy spectra corresponding to both simulations I and II have been com-
puted with a classical two-dimensional Fourier transform applied to a part of the
channel. A square containing as many vortices as possible has been selected within
each channel for both simulations: in the first half of the channel for Simulation I

and in the second half one for Simulation II. The squares are delimited by dashed
lines on Figures 3 and 4. The corresponding energy spectra have been computed
directly from one ’snapshot’ of the flow and have not been time averaged. The
spectra, quite noisy, are given in Figure 6. It can be noticed that the second slope,
corresponding to the enstrophy cascade, is steeper (−4.5) than the theoretical value
(−3). This phenomenon has often been observed in experimental and numerical
results.

The problem of the exact determination of the slopes has been addressed in a pre-
vious paper [8, 9]. The diameter of the big cylinders being of one tenth of the width
of the channel, the main frequency of injection is about k ≈ 10. The diameter of the
smaller cylinders in the two vertical arrays is 1

20 which corresponds to an injection
frequency of k ≈ 20. It can be noticed that the second injection frequency does
not seem to interfere in any way in the energy spectrum of Simulation II. A more
detailed study of the fluids thanks to wavelet and cosine packets decompositions
will allow to determine the effective role of the nineteen small cylinders.

4.2. Wavelet packets decomposition. Daubechies type wavelets [14] have been
used to build the packets array and the entropy criterion governs the selection
process of the best basis. Few tests have been performed in order to chose the
best wavelet mother, and to determine how many scales will be necessary to get an
efficient representation of the flow. The results are summarized in Tables 2 and 3.

The first remark concerns the difference between Simulation I and Simulation II:
the entropy values are bigger for the second simulation. This is due to the presence
of more small vortices creating more irregularities in the two-dimensional field.
More wavelet coefficients are then requested to represent the signal. For Simulation

I, it can be noticed that the gains for the entropy from scale 1 to scale 2 and from
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Figure 6. Energy spectra

1 2 3 4 5
D 4 57.07 48.32 (-15.33%) 41.69 (-13.72%) 39.72 (-4.43%) 39.72 (-)

D 6 57.06 48.16 (-15.60%) 41.18 (-14.49%) 39.58 (-3.89%) 39.58 (-)

D 8 57.09 48.18 (-15.61%) 41.07 (-14.76%) 40.33 (-1.80%) 40.31 (-0.05%)

D 10 57.12 48.21 (-15.60%) 41.00 (-14.96%) 40.64 (-0.88%) 40.63 (-0.02%)

D 12 57.17 48.26 (-15.59%) 41.20 (-14.63%) 40.45 (-1.82%) 40.44 (-0.02%)

D 14 57.22 48.43 (-15.36%) 41.38 (-14.56%) 40.67 (-1.72%) 40.67 (-)

D 16 57.27 48.54 (-15.24%) 41.54 (-14.42%) 41.16 (-0.91%) 41.13 (-0.07%)

Table 2. Simulation I: Entropy values from scale 1 to 5 for few
Daubechies bases (gain compared to the previous scale).
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1 2 3 4 5
D 4 95.76 83.08 (-13.24%) 78.22 (-5.85%) 78.22 (-) 78.22 (-)

D 6 95.43 82.33 (-13.73%) 78.21 (-5.00%) 78.21 (-) 78.21 (-)

D 8 95.40 82.10 (-13.94%) 78.32 (-4.60%) 78.32 (-) 78.32 (-)

D 10 95.49 82.00 (-14.13%) 77.88 (-5.02%) 77.88 (-) 77.88 (-)

D 12 95.59 82.20 (-14.01%) 78.24 (-4.82%) 78.24 (-) 78.24 (-)

D 14 95.65 82.64 (-13.60%) 79.42 (-3.90%) 79.40 (-0.03%) 79.40 (-)

D 16 95.75 82.93 (-13.39%) 80.38 (-3.07%) 80.35 (-0.04%) 80.35 (-)

Table 3. Simulation II: Entropy values from scale 1 to 5 for few
Daubechies bases (gain compared to the previous scale).

scale 2 to scale 3 are about 15 %. The gains by pursuing the decompositions till
scale 4 or more are very weak. So it is not necessary to perform the wavelet packets
decomposition over more than 3 scales (at least with the entropy criterion). For
Simulation II, the decomposition could be stopped after two scales. It has to be
reminded that the scale sequence goes from finest scales to coarsest scales. So in
the second simulation case (with small structures), it is not necessary to compute
approximations on large scales to get a good description of the field.
In brief, a decomposition till scale 3 is necessary for Simulation I and sufficient for
Simulation II. So three levels of decomposition will be performed in the sequel for
the next computations for both simulations. Concerning the choice of the basis,
the few bases which have been tested lead more or less to the same results. But
the one which seems to be a little bit better at scale 3 is Daubechies 10. This basis
will be chosen for the next computations. One can mention here that the size of
the support of a Daubechies 10 function at scale 3 corresponds more or less to the
size of the bigger vortex in the vorticity field.

The vorticity fields are then separated into two subfields: one where the wavelet
packet coefficients whose moduli are larger than a given threshold ǫ and the back-
ground subfield where the moduli of the wavelet packet coefficients are smaller than
ǫ. The subfield with the stronger coefficients corresponds to the coherent structures,
and the subfield with the weaker coefficients to the so-called incoherent contribu-
tions. The threshold has been chosen empirically, and has been set equal to 3.10−2

for a normalized vorticity field. The both subfields corresponding to Simulation I

are given in Figures 7 and 8.
The coherent structures are in fact composed by the cores of the vortices and

the incoherent contributions are made of the so-called vorticity filaments. In such
process, 1088 wavelet packet coefficients have been selected for the coherent field,
and the remaining weaker coefficients are all thus in the incoherent field. As it can
be checked on Figures 9 and 10, the results obtained for Simulation II are essentially
the same .

4.2.1. Energy spectra analysis. The coherent and the incoherent fields, as described
in [21], should lead to different energy spectra. They have been computed in the
previously defined squares and are given in Figure 11 for Simulation I and Figure
12 for Simulation II.

As expected, the fields constructed from the strong wavelet packet coefficients do
not present the same decrease as the fields constructed from the weak wavelet packet
coefficients. Slope values around -3 are observed for the coherent contributions,
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Figure 7. Zoom of the coherent contributions for Simulation I

Figure 8. Zoom of the incoherent contributions for Simulation I

and around -5/3 for the incoherent structures, namely the vorticity filaments. The
main difference between Simulation I and II lies in the incoherent contributions
field. Indeed the slope decreases like -5/3 till wavenumbers 25-30 for Simulation II,
whereas it stops around wavenumber 20 for Simulation I. This can be explained by
the fact that the small cylinders create more small vortices around their injection
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Figure 9. Zoom of the coherent contributions for Simulation II

	

Figure 10. Zoom of the incoherent contributions for Simulation II

scale 20. In a general way, one can say that the fitting with the theoretical values is
better for Simulation II than for Simulation I. An unexplained peak around k ≈ 60
can be observed in all the reconstructed field energy spectra.
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Figure 11. Energy spectra for Simulation I

The theoretical value of -5/3 has been explained by Vassilicos and Hunt: accu-
mulating spirals above the vortices make the flow more singular. This theory can
be verified by studying in details one vortex thanks to a wavelet packet decompo-
sition. A zoom of the reconstruction with weak wavelet packet coefficients of one
vortex from Simulation I is given in Figure 13. The spiral can be easily observed.
The same kind of structure can also be detected in Simulation II.

The results presented in this part show that the wavelet packet decomposition is
a very well adapted tool for studying two-dimensional turbulence. It can separate
two kind of structures, the core of the vortices from the vorticity filaments. The
cores lead to an energy spectrum with a slope of about -3, and the filaments to
an energy spectrum with a slope of -5/3. The spirals predicted by Vassilicos and
Hunt have been clearly observed. These results seem to be in agreement with the
theories developed by Tung et al. The inertial ranges where the scale laws are ob-
served lie down on both sides, upscale and downscale, of the injection scale. This
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Figure 12. Energy spectra for Simulation II

could confirm the hypothesis that the both cascades, energy and enstrophy, coexist
in the all inertial range of the initial fluid. Another explanation suggested by the
reviewer leads to interpret differently these both components. The k−5/3 contribu-
tion would correspond to an inverse energy cascade but the k−3 contribution would
represent the particular solution associated with the coherent structures. These
both explanations will be discussed in the second part of the paper in the light of
new numerical and experimental data. In particular, a computation of the energy
and enstrophy fluxes could clear this point up. Furthermore, one can notice that
the overall spectrum presents a k−4.5 slope in a large part of his range instead of
the sum of the two components slopes in contradiction with the theory developed
by Tung et al.

4.3. Cosine packets decomposition. In the one-dimensional case, as mentioned
previously, a multiscale version of the local cosine bases is designed using dyadic
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Figure 13. Zoom of one selected vortex from the reconstructed
field (Simulation I)

partitions of R. An initial partition of the real line is refined by breaking the
intervals at their midpoints. After such a breaking, a folding is performed at the
midpoints. Two methods can be used for this folding: a “fixed folding” in which the
radii of the action regions are a fixed ǫ, or a “multiple folding” in which the radii of
the action regions depend on the level of refinement. In the fixed folding process,
the operators used in the refinement will remain disjoint as long as 2−j−1 ≥ ǫ
where j denotes the level. Thus the number of levels is limited by the choice of ǫ.
In multiple folding, the maximum radii ǫj = 2−j−1 which keep the folding operator
disjoints can be used. Then the number of levels of refinement is, in theory, not
limited. Both foldings can be adapted to two-dimensional case, and lead to different
results. Entropy values obtained by those methods for both Simulation I and II

are reported in Tables 4 and 5. The fixed ǫ in the fixed folding process is chosen
in order to be allow the computation of all the required levels. The best entropy
values are obtained with the fixed folding method and for scale 7. This folding
and this scale will be chosen for the next computations. In the same way as in
the wavelet packets decomposition, the vorticity fields are then separated into two
subfields: one where the cosine packet coefficients whose moduli are larger than a
given threshold ǫ = 3.10−2 and the background subfield where the moduli of the
cosine packet coefficients are smaller. The threshold is the same one as the one
chosen within the wavelet packets decomposition. The subfields corresponding to
strong and weak coefficients and to Simulation I and II are given in Figures 14, 15,
16 and 17.

One can first notice that the figures are very close to those obtained with the
wavelet packets decomposition. The same splitting between coherent and incoher-
ent parts has been obtained. That confirms that these components do not depend
on the method, but have a real physical meaning. The vorticity filaments and the
accumulating spirals (predicted by Vassilicos and Hunt) can be easily observed once
the cores of the vortices have been removed with an adapted tool.
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Scale Simulation I Simulation II

1 56.58 111.46
2 50.28 (-11.13%) 100.87 (-9.50%)

3 47.51 (-5.51%) 98.00 (-2.85%)

4 45.55 (-4.13%) 93.91 (-4.17%)

5 42.76 (-6.13%) 88.47 (-5.79%)

6 39.85 (-6.81%) 80.91 (-8.55%)

7 38.84 (-2.53%) 75.73 (-6.40%)

8 39.84 (+2.57%) 75.51 (-0.29%)

9 40.78 (+2.36%) 77.44 (+2.56%)

Table 4. Fixed folding: Entropy values from scale 1 to 9 for Sim-

ulation I and Simulation II(gain compared to the previous scale).

Scale Simulation I Simulation II

1 56.49 111.51
2 52.10 (-7.77%) 105.14 (-5.71%)

3 50.90 (-2.30%) 103.74 (-1.33%)

4 50.07 (-1.63%) 101.02 (-2.62%)

5 49.45 (-1.24%) 99.57 (-1.44%)

6 48.60 (-1.72%) 98.23 (-1.35%)

7 48.11 (-1.01%) 97.17 (-1.08%)

8 48.00 (-0.23%) 96.73 (-0.45%)

9 47.98 (-0.04%) 96.65 (-0.08%)

Table 5. Multiple folding: Entropy values from scale 1 to 9 for
Simulation I and Simulation II(gain compared to the previous
scale).

The entropy values corresponding to the cosine packets decomposition are a little bit
better (38.84 for Simulation I and 75.73 for Simulation II) than those corresponding
to the wavelet packets method (41 for Simulation I and 77.88 for Simulation II),
but the difference is not really significant.
On the other hand, the pictures obtained thanks to the wavelet packets are better
than those obtained thanks to the cosine packets (for instance, in the cosine packets
representation of the coherent part, the cores of the vortices have a square shape
due to the grid segmentation whereas they have a circular shape closer to the real
shape in the wavelet packets representation).

4.3.1. Energy spectra analysis. The coherent and the incoherent fields, as with the
wavelet packets decomposition, should lead to different energy spectrum behaviors.
They have been computed in the previously defined squares and are given in Figure
18 for Simulation I and Figure 19 for Simulation II.

The results are not as good as the ones obtained with the wavelet packets analy-
sis. This can be easily explained by the fact that the velocity fields from which the
spectra are computed are less well described by the cosine packets method than by
the wavelet packets method. The artifacts due to the grid segmentation, already
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Figure 14. Zoom of the coherent contributions for Simulation I

Figure 15. Zoom of the incoherent contributions for Simulation I

previously described, are significant in the representation of the velocity field. These
artifacts modifies consequently the shape of the energy spectra. In order to appre-
hend this problem, the velocity fields (corresponding to Simulation I) constructed
from the strong coefficients of the wavelet and cosine packets decompositions are
given in Figure 20 and 21.
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Figure 16. Zoom of the coherent contributions for Simulation II

Figure 17. Zoom of the incoherent contributions for Simulation II

As can be noticed on Figure 21, the grid structure appears clearly and modify
consequently the physical field leading to artifacts in the energy spectrum decom-
position. In order to avoid this problem, one may consider the multiple folding
method (with ǫj = 2−j−1) instead of the fixed one. The velocity field (Figure 22)
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Figure 18. Energy spectra for Simulation I

obtained in this way is better, but the corresponding energy spectra are still bad
(Figure 23).

So even if the cosine packets decomposition seems to be close to the wavelet
packets one, the results are not good.

4.4. Fine grid and time-averaged results: validation of the method. In
order to check the validity of the decomposition obtained thanks to the wavelet
packet method, the time-averaged spectra for Simulation II are given on Figure 24.
As expected, the spectra are smoother and are quite close to the theoretical slopes.
So one can conclude that this separation in two different components is consistent
from a statistical point of view.

Considering now the grid dependence of the results, the computations have been
performed on a finer grid 640 × 2560 (instead of 320 × 1280 previously) for one
snapshot. The threshold leading to the separation in two components has to be
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Figure 19. Energy spectra for Simulation II

Figure 20. Velocity field: strong wavelet coefficients for Simula-

tion I
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Figure 21. Velocity field: strong cosine coefficients for Simulation

I (fixed folding)

Figure 22. Velocity field: strong cosine coefficients for Simulation

I (multiple folding)

slightly modified and has been set equal to 2.10−2. The spectra obtained for the
both parts are given in Figure 25.

One can remark that the component obtained with the wavelet packet coefficients
smaller than the threshold 2.10−2 still contains few coefficients describing the core
of the vortices. Indeed, a slope close to k−5/3 can be observed in the spectrum
for small wavenumbers. In order to remove these coefficients, a threshold slightly
smaller has to be used. In this way, the vorticity filaments have been almost
completely isolated (Figure 26). A complete discussion about the choice of the
threshold will be addressed in the second part of this paper.

5. Conclusions. The aim of the first part of this paper was to compare the
efficiency of two decomposition methods, the so-called wavelet and cosine packets,
for the analysis of two-dimensional turbulence. The wavelet packets decomposition
appears to lead to better results than the ones obtained with the cosine packets
method. This method has thus been chosen in order to develop an efficient tool
for 2D turbulence analysis. Furthermore, the results seem to be in agreement with
the two-dimensional turbulence theory developed by Tung, and could confirm his
hypotheses (coexistence of the double cascades of energy and enstrophy in the same
range). Nevertheless, the present results don’t permit to give an exact physical
interpretation for the two components obtained thanks to the wavelet packets
decomposition. More results obtained for various kind of numerical computations
and soap film experiments will be published in the second part of this paper and
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Figure 23. Energy spectra for Simulation I (multiple folding)

will give a better insight of the physical problem.
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