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7 Two-dimensional turbulence admits two different ranges of scales: a direct enstrophy cascade from
8 the injection scale to the small scales and an inverse energy cascade at large scales. It has already
9 been shown in previous papers that vortical structures are responsible for the transfers of energy
10 upscale while filamentary structures are responsible for the forward transfer of the enstrophy. Here
11 we propose an original mathematical tool, the interaction function, for studying the space
12 localization of the enstrophy fluxes. It is defined using an orthogonal two-dimensional wavelet
13 decomposition. © 2009 American Institute of Physics. [DOI: 10.1063/1.3153910]

15 |. INTRODUCTION

16 Two-dimensional turbulence has interested and contin-
17 ues to interest different scientific communities. Its relevance
18 to atmospheric and oceanic flows at large scales has largely
19 motivated its detailed study.l_3 Its importance for the under-
20 standing of turbulence, in general, due to the existence of
21 two cascades, as opposed to the direct cascade of energy in
22 three dimensional turbulence, is another reason to study this
23 phenomenon. While three dimensional turbulence is gov-
24 erned by a direct cascade of energy from the scale of injec-
25 tion to the small scales where the energy is dissipated, two-
26 dimensional turbulence admits two different ranges.‘l’5 The
27 first one is governed by an inverse energy cascade from the
28 scale of injection to the large scales. The second one is gov-
29 erned by a cascade of enstrophy from the scale of injection to
30 the small scales. This scenario, proposed by Kraichnan and
31 Batchelor over 40 years ago, finds confirmation in many dif-
32 ferent numerical simulations and experimental realizations
33 (see, for example, Refs. 6-11). According to the Kraichnan
34 theory, at large scales, the energy spectrum has the form
35 E(k) k™3 while at small scales it is E(k)«<k™3. However,
36 for the direct cascade at small scales,lzf17 found spectra
37 steeper than k™3 in earlier simulations and experiments. We
38 also observed steeper energy spectra in our particular two-
39 dimensional set uplg_20 confirming these earlier results.

40 Two distinct kinds of structures can be detected in two-
41 dimensional turbulent flows: vortical structures and filamen-
42 tary structures. The first play an important role for the in-
43 verse transfers of energy while the filamentary structures can
44 be associated with the forward transfers of enstrophy. These
45 links between the presence of structures and the transfer of
46 energy or enstrophy have been observed by many authors as
47 Refs. 17 and 19-23.

48 The inverse energy cascade, whose the merging of same
49 sign vortices is probably one of the mechanisms, transfers
50 energy from the injection scale to the large scales. At scales
51 smaller than the injection scale, an enstrophy cascade, whose
52 origin is certainly the straining of vorticity gradients, trans-
53 fers enstrophy from large to small scales. The wavelet de-
54 compositions used for filtering the turbulent flows have been
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introduced and extensively studied by Farge and Rabreau 2°

since 1988 (Refs. 24 and 25; see also her webpage for an 56
exhaustive list of publications: http://wavelets.ens.fr). How- 57
ever, the usual wavelet-based methods do not allow us to get 58
a precise space localization of the enstrophy fluxes. We 59
know, according to the classical theory and to numerous nu- 60
merical simulations, that the enstrophy transfers are small- 61
scale physical transfers. We also know that the filamentary 62
structures are responsible for these transfers. However, we 63
do not know yet if these transfers uniformly occur every- 64
where in the flow and if not, where these transfers precisely 65
take place. Very recent work points out that the mechanism 66
behind these two cascades is the thinning of vortices.”'* 67
Stretching of small-scale vorticity gradient by the strain aris- 68
ing from larger-scale vortices is believed to be the mecha- 69
nism for the enstrophy cascade. Thus the forward enstrophy 70
flux should mainly occur in strain-dominated regions of the 71
flow. Using a Gaussian-based filtering and the Weiss 72
criterion,”® Ref. 21 showed that the enstrophy flux is either 73
forward or backward with almost equal likelihood in vortic- 74
ity regions, but tends to be mainly forward in the strain re- 75
gions. However, this scale Gaussian-based filtering is unable 76
to accurately detect the very spatially localized events re- 77
sponsible for the enstrophy cascade. Quoting,17 “Local fluxes 78
are strongly inhomogeneous in physical space: there are 79
relatively small regions of intense (positive and negative) flux 80
in both the energy and enstrophy inertial ranges,” we pro- 81
pose here a complementary mathematical tool for the analy- 82
sis of the enstrophy flux. We call this mathematical object the 83
interaction function since it describes the interactions respon- 84
sible for the enstrophy transfers in the flow. It is based on 85
two-dimensional orthogonal wavelet decompositions of the 86
two terms involved in the transport term of the Navier— 87
Stokes equations. 88

Il. THE INTERACTION FUNCTION 89

The motion of an incompressible viscous fluid in a two- 90
dimensional channel may be described by the vorticity equa- 91
tion obtained by taking the curl of the Navier—Stokes equa- 92
tion: 93

© 2009 American Institute of Physics
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dw 1
04 E+(v-V)w=R—eV2w+f. (1)
95 The velocity field is denoted by v=(u,v,0) and the vorticity
96 by 0=V Xv=(0,0, w) with w=(dv/dx)—(du/dy). In Eq. (1),
97 (v-V)w is the transport term, (1/Re)V?w the dissipation
98 term due to the viscosity and f a potential forcing term. In
99 the computations presented in the sequel, the forcing term is
100 taken equal to zero and the turbulence is naturally created by
101 obstacles in a channel.
102 The enstrophy flux derives from the nonlinear transport
103 term in the vorticity equation written in Fourier space

(k) = f T(k")dk', 2)

104 k

105 where the enstrophy transfer fun/c\tiorﬁ(k)\is obtained by
106 angular integration of Ny(w)=w*(k)-(v-V)w(k).

107 We can replace the Fourier transform by a wavelet trans-
108 form leading to a different representation of the enstrophy
109 transfers in the flow. The method we propose here leads to an
110 original representation, called the enstrophy interaction func-
111 tion. The term N (w) is, in fact, a scalar product, in Fourier
112 space, between the vorticity field o and its transported field
113 (v-V)w. If the transported field is spectrally close to the
114 initial vorticity field then N,(w) will be large but if it is very
115 different or even orthogonal then N,(w) will be insignificant.
116 So, the term N,(w) measures the correlation, in Fourier
117 space, between the transported and the initial vorticity fields.
118 This correlation is then used to compute the transfer function
119 T, and the enstrophy flux II,. By using a Fourier transform,
120 we obtain a description of the enstrophy transfers through the
121 scales, but all the information about the space localization of
122 these transfers is completely lost. However, it is well known,
123 from the classical theory of two-dimensional turbulence and
124 from numerical experiments, that the direct enstrophy cas-
125 cade takes place from the injection scale to the smallest
126 scales. The enstrophy cascade is thus essentially a small
127 scales phenomenon and may be localized in space. The
128 method we propose in this paper is based on a two-
129 dimensional wavelet transform and leads to a space-scale
130 description of the enstrophy transfers. It consists in replacing
131 the usual Fourier transform in the computation of N,(w) by a
132 wavelet transform. The interaction function for the enstrophy
133 transfer is obtained through a three step process:

134 (1) Computation of the two-dimensional orthogonal wavelet

135 transforms of w(k) and (v-V)w(k). This step leads to the
136 space-scale representations of these two terms. The re-
137 sults of these transforms are denoted by WT(w) and
138 WT((v-V)w) in the sequel.

139 (2) Computation of the scalar product of WT(w) and
140 WT((v-V)w). The result of this product is a wavelet-
141 based representation of the interactions responsible for
142 the enstrophy transfers. The coefficients obtained here
143 will be strong if the strong coefficients of WT(w) and
144 WT((v-V)w) are localized at the same place and the
145 same scale. In the usual enstrophy flux computation in
146 Fourier space, the space information is completely lost
147 and only scale localizations are considered.
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(3) Reconstruction in the physical space, using an inverse
wavelet transform, of the result obtained at the previous
step. This last step restitutes in physical space the inter-
actions between WT(w) and WT((v-V)w) occurring at
various scales. The result of this last computational step
is by definition the interaction function and is denoted
by IF,.

This three steps algorithm can be summarized by the
formula

IF,=WT  [WT(0)WT((v - V)w)], (3)

where WT denotes the two-dimensional wavelet transform
and WT~! its inverse transform. The interaction function is
used by itself, but is not used to compute the enstrophy flux
which does not give any spatial information. It can be con-
veniently represented onto a contour plot of the vorticity
field. No thresholding is applied on the wavelet coefficients,
but the color representation enhances the regions correspond-
ing to strong enstrophy interactions. So the wavelet trans-
form gives a space-scale representation of the object under
study. When performing the scalar product, we compare, in
fact, the wavelet decompositions of the two terms involved
in the product. If the two terms have the same behavior at the
same place and the same scale then the result of the scalar
product will present large coefficients at the corresponding
scale and place. Then by applying an inverse wavelet trans-
form we can get a space representation of the interactions
involved in the enstrophy transfers. The same process can be
used for the energy transfers using the corresponding data.

lll. NUMERICAL TESTS ON TWO TEXTBOOK
CASES

A first textbook case of the interaction function is given
in Fig. 1. This figure corresponds to the simulation of the
evolution of two vortices of different signs in a 27 periodic
square domain. After a while a third but less energetic vortex
is created. The interaction function mainly focus on the two
original vortices where the strong interactions take place. A
second textbook case is presented in Figs. 2 and 3. In this
experiment, 14 vortices of different signs have been ran-
domly dispatched in a 27 periodic square domain. During
the decaying process, some vortices merged and we obtained
the vorticity field shown in Fig. 2. As can be easily noticed,
the interaction function points to one particular event. Com-
puting the enstrophy fluxes corresponding to the whole flow
and to a small area delimited by the interaction function
allows us to show that the interaction function effectively
points to the main event in the flow (Fig. 3).

The relevance and the interest of the interaction function
cannot be fully assessed on mere examples like those pre-
sented here since they correspond to decaying homogeneous
isotropic turbulent flows and thus the notion of enstrophy
cascade is limited. The power of this new mathematical func-
tion is presented in the next part where fully developed tur-
bulence simulations are carefully analyzed.
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FIG. 1. (Color online) Two vortices interacting and giving birth to a third
one. (a) Vorticity field. (b) Interaction function with contour lines of
vorticity.

201 |v. EXPERIMENTAL SETUP

202 The numerical experiments presented in this paper have
203 been originally motivated by experiments carried out with
204 soap films where grid turbulence was studied in details.">?’
205 They consist in the numerical simulation of a two-
206 dimensional channel flow perturbed by an horizontal array of
207 cylinders. Two vertical arrays of additional cylinders have
208 been added in order to increase the number of vortices, and
209 thus to enhance the turbulent behavior of the flow.'® The
210 numerical results obtained through such direct numerical
211 simulation are the same than those discussed in Ref. 18.
212 They can be compared to those obtained by soap film experi-
213 ments where the flow is perturbed by analogous arrays of
214 small cylinders.18

215 This unusual set up is more related to realistic cases than
216 the classical two-dimensional periodic domain approach. It
217 corresponds to a river flowing under a bridge with the cylin-
218 ders playing the role of the bridge pillars. Furthermore, the
219 production of vorticity by real physical boundaries cannot be

501

100 s

150 F

200 [

250

300
asob LS
400
450

500 F ; ; po Yy

(b) 100 200 300 400 500

FIG. 2. (Color online) Fourteen vortices of different signs interacting in a
27 periodic domain. (a) Whole vorticity field. (b) Interaction function with
contour lines of vorticity.

studied with classical periodic domain conditions and re-
quires particular set up as we study here. Indeed, the numeri-
cal setup and the interaction function method presented here
are particularly well adapted for studying boundary vorticity
creation.

The length of the rectangular channel () is four times its
width L and the Reynolds number based on the cylinders
diameter is Re=5000. In this experiment, the cylinders create
and maintain the turbulent behavior of the flow. Thus the
injection scale ki, is given by the diameter of cylinders L/38
and consequently the injection scale is around k;,j=8. We use
here a large injection scale as we focus on the enstrophy
cascade range (Fig. 4).

The penalization method is used to solve the flow around
the obstacles. Consequently the Brinkman—Navier—Stokes
equations are solved in the whole channel () including the
solid obstacles (), and the fluid domain (). This problem has
been theoretically studied in Ref. 28.

The equations are discretized in time by a second-order
Gear scheme with an implicit treatment of the linear terms
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FIG. 3. (Color online) Fourteen vortices of different signs interacting in a
27 periodic domain. (a) Partial vorticity field. (b) Enstrophy fluxes for the
whole flow and for the selected area.

240 and an explicit treatment of the convection term. The spatial

241 approximation is performed on uniform staggered grids us-
242 ing second-order centered finite differences for the linear
243 terms and a third-order upwind scheme for the convection
244 term.” The location of the unknowns enforce the
245 divergence-free equation which is discretized on the pressure
246 points and the choice of uniform grids is necessary to main-
247 tain the accuracy of the finite differences schemes. The
248 whole problem is solved by a multigrid method with a cell
249 by cell Gauss—Seidel iterative procedure as smoother. A se-
250 quence of grids from 4 X 16 cells up to 1024 X 4096 cells is
251 used on the domain Q=(0,1) X (0,4) to get accurate results.

FIG. 4. Snapshot of the vorticity field.
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FIG. 5. Energy spectrum.

With respect to the Reynolds number, the finest grid is fine
enough to properly capture the whole dynamics.

Several wavelet bases have been used to test the validity
of the interaction function. They all point to the same local-
izations for the enstrophy transfers, even if the colored pat-
terns were not exactly the same. The method does not de-
pend on the choice of the wavelet basis used in the
computations. The results obtained with Daubechies wave-
lets with ten vanishing moments are presented in here. The
wavelet decompositions have been performed over all the
scales (ten for this grid).

V. NUMERICAL RESULTS

The computation of the enstrophy flux has been per-
formed for different configurations (several Reynolds num-
bers, several diameters for the obstacles) and many snapshots
of the flow for each configuration. We present here the re-
sults obtained for a series of 100 images. A snapshot of the
vorticity field from the upstream cylinders to the end of the
channel is given in Fig. 4. To compute the energy spectrum
and the enstrophy flux, we select a square of size L=1 lo-
cated at the end of the channel as domain of analysis. The
cutting process to select this domain creates many disconti-
nuities in the velocity and vorticity fields at the boundaries,
and thus introduces high frequency Fourier coefficients. This
phenomenon is well known from people using the classical
fast Fourier transform (FFT) algorithm and has been de-
scribed in Refs. 20 and 30. We avoid this problem by using a
windowed Fourier transform that removes the spurious coef-
ficients created by the discontinuities. We use, for the results
presented in this paper, a Tukey window with a parameter
equal to 0.1. A larger value for this parameter would cancel a
too large amount of the energy and the enstrophy, and a
smaller one would not sufficiently smooth the discontinui-
ties. The averaged energy spectrum for the 100 first snap-
shots is given in Fig. 5. We can observe two slopes on both
sides of the injection scale, the first slope being around k=2
and the second one around k= and so far from the classical
theory that predicts a decrease in k=>. The first slope is not
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290 really clear but the second one is evident. Many papers in

291 literature discussed the influence of solid boundaries on the
292 evolution of two-dimensional turbulence in a finite
203 domain.’'° According to these studies, the classical theory
294 proposed by Refs. 4 and 5 does not take into account the
295 effects of these particular boundary conditions. Indeed ac-
296 cording to Ref. 34, no-slip walls are sources of vorticity fila-
297 ments which may affect the behavior of two-dimensional tur-
298 bulence. Furthermore, they could show that their influence
299 are not restricted to regions close to the boundary but also
300 extend over the full domain. In our experiments, due to the
301 presence of many cylinders, the flow is dominated by vorti-
302 ces created by the cylinders and vorticity filaments in be-
303 tween.

304 The enstrophy flux corresponding to this spectrum is
305 given in Fig. 6. The enstrophy flux is positive above the
306 injection scale, and negative below. The zero crossing corre-
307 sponds approximately to the injection scale. Our simulations
308 do not produce a large plateau but an explanation for this is
309 the limitation of range of scales probed and the presence of
310 the boundaries. In our mathematical model, we did not use
311 any artificial dissipation terms which would improve the cre-
312 ation of the cascades.

313 The flux presented in Fig. 6 is, in fact, a mean obtained
314 by averaging 100 snapshot fluxes, but does not correspond to
315 the flux of any snapshot. In order to assess the local interac-
316 tions in the flow, we have to study the flux of few snapshots
317 separately. We can represent the fluxes of the 100 snapshots
318 in one color representation. The color map goes from blue
319 for negative values to red for positive values. The wavenum-
320 ber range extends from k=1 to k=100 since no flux could be
321 obtained beyond. This representation is given in Fig. 7. We
322 can observe that some snapshots present a strong direct en-
323 strophy flux, and others a strong inverse flux leading to the
324 average given in Fig. 6. We can find a very few snapshots
325 with the inverse and direct fluxes in the same time. This
326 proves that the direct enstrophy cascade is not a permanent
327 phenomenon, but rather a transient phenomenon that alter-
328 nates with an inverse enstrophy cascade. It can be noticed
329 that these inverse enstrophy flux periods coincide with strong
330 inverse energy flux periods. It is not surprising that strong
331 energy transfers carry also some enstrophy with them. As can
332 be also observed, the inverse energy cascade is only local-
333 ized between k=1 and the injection scale k=8 in accordance
334 with the classical theory.

335 A. Interaction function for the whole field

336 In order to study the interactions occurring into the en-
337 strophy cascade, the interaction function is now computed
338 for few snapshots with strong direct enstrophy fluxes. Snap-
339 shots 85 and 92 have been chosen for that purpose. The
340 vorticity field corresponding to snapshot 85 is given in Fig.
341 8(a). Various structures can be observed in this vorticity
342 field. According to previous studies,'” we already know
343 that the vorticity filaments are responsible for the inverse
344 enstrophy cascade, but we do not have yet any information
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345 about the space localization of the interactions leading to this

346 cascade. The enstrophy interaction function, represented in
347 Fig. 9(a), allows us to get this kind of information. The con- 4500 ‘

348 trast and the color map have been chosen such that only the ___ TotalTl,
349 most important coefficients are noticeable. Tuning the con- 4000 — Partial TT, |4
350 trast would make regions appear more colored corresponding 5500
351 to weak enstrophy fluxes. In this snapshot, a region with | -------
352 strong values around (90,285) can be detected. This zone 3000
353 corresponds to interactions between two vortices of opposite
354 signs and where most of the enstrophy cascade occurs. This
355 can be verified by computing the total enstrophy flux and the 2000
356 partial one corresponding to this region. Different strategies
357 can be developed to select this area. We first chose all the

2500

L,(K)

1500

358 points where the enstrophy interaction function is greater 1000 i
359 than a given threshold (here, the average value between the

360 absolute value maximum and the absolute value mean of the 500 1
361 snapshot), and then chose a Gaussian mask that included all 0

362 these points. The total and partial enstrophy fluxes are given 10° 10’ 10°

363 in Fig. 10 and the selected area in the vorticity field in Fig.
364 8(b). As expected, the partial enstrophy flux almost fits the FIG. 10. Enstrophy fluxes (snapshot 85).
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FIG. 11. (Color online) Snapshot 92. (a) Vorticity field. (b) Partial vorticity
field.

365 total enstrophy flux proving that the main interactions creat-
366 ing the enstrophy cascade effectively take place in this re-
367 gion. About 80% of the total enstrophy flux takes place in
368 less than 15% of the flow surface. The energy interaction
369 function, computed in the same way as the enstrophy inter-
370 action function, is given in Fig. 9(b). The inverse energy
371 cascade taking place at larger scales, one can observe large
372 regions of interactions for the energy. Consequently, a local
373 analysis of the energy fluxes is not relevant.

374 A single area of strong interactions has been detected by
375 the interaction function in this snapshot. However, it may
376 happen in some cases that the enstrophy flux is due to inter-
377 actions localized in multiple small areas. In this case, the
378 interaction function is still able to precisely locate them as
379 can be verified with the following example. The same kind
380 of analysis is now repeated for snapshot 92 [vorticity field
381 given in Fig. 11(a)]. The corresponding interaction functions
382 are given in Fig. 12.

383 We can observe that the interactions occur in three dif-
384 ferent places. A smaller area around (425,75) can be visually
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detected in Fig. 12(a) but failed the automatic quantitative
selection process. This area could be included in the selected
zones group by slightly modifying our threshold. The partial
enstrophy flux computed with this fourth zone would be even
closer to the total enstrophy flux. The partial and the total
vorticity fields are given in Fig. 11. These three areas corre-
spond to places where interactions between different objects
occur. We can then compare the total enstrophy flux to the
partial one obtained with the three selected regions. The re-
sults are given in Fig. 13. For this snapshot too, the enstro-
phy flux computed in the selected areas almost fits the total
enstrophy flux proving that the main interactions creating the
enstrophy cascade effectively take place in these three re-
gions. The energy interaction function shows also larger ac-
tivity area but smaller than those obtained for snapshot 85.

B. Interaction function for the filtered fields

Using the same kind of filtering as in Refs. 19, 20, and
23, the velocity fields can be cut into two subfields: one
subfield with the solid rotation part of the vortices (denoted
by the subscript s) and the remaining mainly composed of
vorticity filaments that roll up in spiral inside the vortices
(denoted by the subscript f). The velocity decomposition v
=v,+v; obtained with the wavelet packets based filtering is
orthogonal and leads to the energy spectrum decomposition

E(k) = E((k) + E{k), (4)

where E; is the energy of the solid rotation vortices and Ej is
the energy of the vorticity filaments. Due to this orthogonal
decomposition, the enstrophy transfer function can be writ-
ten as

k) = ' (k) - (v - V) (k)

=0 (k) - (0 Vak) + o. (k) - @ V) w,k)

+ E(k\) (v Voyk) + E(k\) (- Vodk). (5)

The same decomposition can be also written for the energy
transfer function.

The global enstrophy transfer is thus split into four parts
corresponding to the multiscale transfers from one subfield

to itself or to the other one. For instance, o, (k)- (v-V)wylk)
is the enstrophy transfer from the vorticity filaments subfield
to the solid rotation subfield. The fluxes corresponding to
each term in the expression of the total enstrophy transfer
function are denoted as, for example, H-Qﬂ' which is the flux
corresponding to the transfer term previously described. We
already know from previous studies'***? that the filamen-
tary structures are responsible for the enstrophy fluxes. In-
deed it has been shown that H’;ﬁf is the main term in II,
whereas 1), is the main term in I1.

Moreover, one can specify how these interactions take
place or more exactly what are the media allowing those
transfers. Indeed, thanks to the decomposition of the trans-
port operator itself, it has been shown in Ref. 23 that the
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FIG. 12. (Color online) Snapshot 92 (vorticity field in contour lines). (a)
Enstrophy interaction function. (b) Energy interaction function.
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FIG. 13. Enstrophy fluxes (snapshot 92).
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solid rotations of the vortices are the means of transport of
the energy and enstrophy transfers. Thus the transport opera-
tor can be decomposed into two parts:

(®-V)=(0,- V) + (v V). (6)

By performing this decomposition one can separate the en-
strophy transport operated by the solid rotations from the
transport operated by the filaments. Finally each term of Eq.
(5) can be also split into two parts leading to the following
complete decomposition:

T(k) = 02 (k) - (0 - V) 0,(k) + 0. (k) - (07 Vo k)

+ 0,0 - (0 V)aoy(k) + 0, (K) - (0 V) )

—_—

* @ (v - V)ayk) + 0p(k) - (v V)o,(k)

(7)

The second term in the right hand side of Eq. (7) describes
the enstrophy transfer from the solid rotations to themselves
by the filamentary structures. The main term responsible for
the enstrophy flux, as shown in Ref. 23, can thus be written
as

where H’;_'Hf denotes enstrophy transported from filaments
to filaments by vortical structures, and T,/ is the same
but by filamentary structures. The interaction functions cor-
responding to the three terms in Eq. (8) are given in Fig. 14,
but those corresponding to the other subfields are not given
here because they do not present any strong coefficients. One
can remark in Fig. 14 that the strong coefficients are local-
ized at the same place as in Fig. 9. These figures are coherent
with the results obtained in Ref. 23: the filamentary struc-
tures are responsible for the enstrophy cascade, and the solid
rotations (and not the vorticity filaments since there is no
strong coefficients for Hfgﬁf ~/) transport the enstrophy from
the filaments to the filaments. The interaction function pro-
vides a new insight in the enstrophy cascade since it shows
that the enstrophy transfers are not uniformly spread in the
whole flow but are localized in particular regions. In all the
experiments we performed, enstrophy transfers occur where
different sign vortices interact with each other stretching in
new filamentary structures.

C. Attempt of physical interpretations

Many numerical simulations corresponding to different
geometries (the same channel but with different numbers of
obstacles of various sizes) have been realized and studied.
We noticed that some snapshots could present strong direct
enstrophy fluxes whereas others present strong inverse en-
strophy fluxes. The observations of the corresponding vortic-
ity fields could not give any explanation about this two quite
different behaviors. However, the wavelet packets filtering
leading to the two subfields associated to the interaction
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FIG. 14. (Color online) Interaction functions for the filtered fields (snapshot 85). (a) Héﬁf , (b) H-éﬂﬁf , and (c¢) H-éﬂf =/,

483 function analysis can give some information about the physi-
484 cal process. First, we isolated two of this kind of events from
485 several hundreds available snapshots. They correspond to ex-
486 periments on a fine grid with ten small cylinders across the
487 channel and nine small cylinders on each side (k;y;=20). The
488 corresponding enstrophy interaction functions are given in
489 Fig. 15. As can be seen on these figures, there is one particu-
490 lar zone in each snapshot where the interaction function de-
491 tects some strong activities. These zones are located around
492 (170, 180) for snapshot 147 and (200, 100) for snapshot 195.
493 The vorticity fields corresponding to these selected zones are
494 given in Fig. 16. The selected zones correspond to places
495 where vortices of different signs interact with each other. We
496 cannot notice any difference between the two snapshots in
497 Fig. 16 that could explain why they do have completely dif-
498 ferent behaviors from an enstrophy flux point of view. In-
499 deed, if we study their respective enstrophy fluxes (given in
500 Fig. 17) we can notice that snapshot 147 presents a strong
501 inverse enstrophy cascade whereas snapshot 195 has a strong

direct cascade. In both cases, the selected zones represent
less than 15% of the total surface but more than 80% of the
enstrophy fluxes.

However, the interaction function for the whole flow
does not give any explanation for the difference of enstrophy
behaviors between the two snapshots. However we can find a
beginning of explanation when studying the interaction func-
tions of the filtered fields obtained through the wavelet pack-
ets filtering process. We compute for each snapshot the in-
teraction functions of the eight terms in Eq. (8). For snapshot
147, we found that the term II, "7 is the dominant term
whereas for snapshot 195 the term I,/ is the main factor
in decomposition (8). So in snapshot 195, the enstrophy is
transferred from filaments to filaments transported by vorti-
ces, leading to the direct enstrophy cascade classical mecha-
nism, whereas in snapshot 147 the enstrophy is transported
by vortices from vortices to themselves. A detailed study of
the snapshots shows that the mechanism for the direct enstro-
phy cascade is a strong stretching created by the interactions
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FIG. 15. (Color online) Enstrophy interaction function. (a) Snapshot 147.
(b) Snapshot 195.

521 petween two vortices of different signs. This stretching cre-
522 ates a long filamentary structure where the transfers are lo-
523 cated as it is observed with the corresponding interaction
524 function. We do not see this kind of long filamentary struc-
525 ture in snapshot 195, but we can see the interactions between
526 an elongated vortex and another vortex of the same sign. In
527 this case, we can notice that, according to the interaction
528 function, the main interaction takes place between the two
529 like sign vortices.

530 VI. CONCLUSION

531 We propose in this paper an original wavelet-based
532 mathematical tool for studying two-dimensional turbulent
533 flows. This object, called the interaction function, reveals the
534 local enstrophy fluxes in the flow. It is based on the scalar
535 product in a wavelet approximation space of the two terms
536 involved in the computation of the regular enstrophy flux.
537 This study confirms that the enstrophy flux is not a homoge-
538 neous phenomenon spread over the whole flow but a local
539 phenomenon corresponding to local interactions. We ob-
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FIG. 16. (Color online) Selected zones of the vorticity fields detected by the
interaction function. (a) Snapshot 147. (b) Snapshot 195.

served that in most of the cases more than 80% of the en-
strophy flux take place in less than 15% of the flow surface.
An important application of the interaction function is ob-
tained in association to our regular wavelet packet filtering.
Indeed, using these two complementary tools we can observe
that inverse enstrophy fluxes are due to interactions between
vortices only whereas direct enstrophy fluxes are related to
vorticity filaments interactions with vortices. This is mainly a
confirmation of what has been thought for a while: the in-
verse energy cascade is for a large part due to the merging of
vortices and the direct enstrophy cascade is for a large part
due to the stretching of vortices that produces very long vor-
ticity filaments when they are laminated. In addition, the
balance between these two kinds of events governs the level
of enstrophy for large scales. When there are more merging
events the mean of the enstrophy flux can be negative for
scales larger than the injection scale. In the opposite, this
mean can be positive when stretching effects dominate in the
flow. An important application of our method is related to the
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FIG. 17. Enstrophy fluxes for the whole flows and for the selected areas. (a)
Snapshot 147. (b) Snapshot 195.

559 study of the walls influence in a turbulent flow. The interac-
560 tion function can bring relevant information about the vortic-
561 ity creation by the boundary layers. This is a challenging and
562 open problem that cannot rely on classical tools and that
563 requires efficient and accurate space-scale techniques. An-
564 other application is to follow along the time the vortical
565 structures pointed out by the interaction function to deter-
566 mine the role of the physical events (merging, stretching,
567 etc.).
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