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Two-dimensional turbulence admits two different ranges of scales: a direct enstrophy cascade from
the injection scale to the small scales and an inverse energy cascade at large scales. It has already
been shown in previous papers that vortical structures are responsible for the transfers of energy
upscale while filamentary structures are responsible for the forward transfer of the enstrophy. Here
we propose an original mathematical tool, the interaction function, for studying the space
localization of the enstrophy fluxes. It is defined using an orthogonal two-dimensional wavelet
decomposition. © 2009 American Institute of Physics. �DOI: 10.1063/1.3153910�

I. INTRODUCTION

Two-dimensional turbulence has interested and contin-
ues to interest different scientific communities. Its relevance
to atmospheric and oceanic flows at large scales has largely
motivated its detailed study.1–3 Its importance for the under-
standing of turbulence, in general, due to the existence of
two cascades, as opposed to the direct cascade of energy in
three dimensional turbulence, is another reason to study this
phenomenon. While three dimensional turbulence is gov-
erned by a direct cascade of energy from the scale of injec-
tion to the small scales where the energy is dissipated, two-
dimensional turbulence admits two different ranges.4,5 The
first one is governed by an inverse energy cascade from the
scale of injection to the large scales. The second one is gov-
erned by a cascade of enstrophy from the scale of injection to
the small scales. This scenario, proposed by Kraichnan and
Batchelor over 40 years ago, finds confirmation in many dif-
ferent numerical simulations and experimental realizations
�see, for example, Refs. 6–11�. According to the Kraichnan
theory, at large scales, the energy spectrum has the form
E�k��k−5/3 while at small scales it is E�k��k−3. However,
for the direct cascade at small scales,12–17 found spectra
steeper than k−3 in earlier simulations and experiments. We
also observed steeper energy spectra in our particular two-
dimensional set up18–20 confirming these earlier results.

Two distinct kinds of structures can be detected in two-
dimensional turbulent flows: vortical structures and filamen-
tary structures. The first play an important role for the in-
verse transfers of energy while the filamentary structures can
be associated with the forward transfers of enstrophy. These
links between the presence of structures and the transfer of
energy or enstrophy have been observed by many authors as
Refs. 17 and 19–23.

The inverse energy cascade, whose the merging of same
sign vortices is probably one of the mechanisms, transfers
energy from the injection scale to the large scales. At scales
smaller than the injection scale, an enstrophy cascade, whose
origin is certainly the straining of vorticity gradients, trans-
fers enstrophy from large to small scales. The wavelet de-
compositions used for filtering the turbulent flows have been

introduced and extensively studied by Farge and Rabreau
since 1988 �Refs. 24 and 25; see also her webpage for an
exhaustive list of publications: http://wavelets.ens.fr�. How-
ever, the usual wavelet-based methods do not allow us to get
a precise space localization of the enstrophy fluxes. We
know, according to the classical theory and to numerous nu-
merical simulations, that the enstrophy transfers are small-
scale physical transfers. We also know that the filamentary
structures are responsible for these transfers. However, we
do not know yet if these transfers uniformly occur every-
where in the flow and if not, where these transfers precisely
take place. Very recent work points out that the mechanism
behind these two cascades is the thinning of vortices.21,22

Stretching of small-scale vorticity gradient by the strain aris-
ing from larger-scale vortices is believed to be the mecha-
nism for the enstrophy cascade. Thus the forward enstrophy
flux should mainly occur in strain-dominated regions of the
flow. Using a Gaussian-based filtering and the Weiss
criterion,26 Ref. 21 showed that the enstrophy flux is either
forward or backward with almost equal likelihood in vortic-
ity regions, but tends to be mainly forward in the strain re-
gions. However, this scale Gaussian-based filtering is unable
to accurately detect the very spatially localized events re-
sponsible for the enstrophy cascade. Quoting,17 “Local fluxes
are strongly inhomogeneous in physical space: there are
relatively small regions of intense (positive and negative) flux
in both the energy and enstrophy inertial ranges,” we pro-
pose here a complementary mathematical tool for the analy-
sis of the enstrophy flux. We call this mathematical object the
interaction function since it describes the interactions respon-
sible for the enstrophy transfers in the flow. It is based on
two-dimensional orthogonal wavelet decompositions of the
two terms involved in the transport term of the Navier–
Stokes equations.

II. THE INTERACTION FUNCTION

The motion of an incompressible viscous fluid in a two-
dimensional channel may be described by the vorticity equa-
tion obtained by taking the curl of the Navier–Stokes equa-
tion:
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��

�t
+ �v · ��� =

1

Re
�2� + f . �1�

The velocity field is denoted by v= �u ,v ,0� and the vorticity
by �=��v= �0,0 ,�� with �= ��v /�x�− ��u /�y�. In Eq. �1�,
�v ·��� is the transport term, �1 /Re��2� the dissipation
term due to the viscosity and f a potential forcing term. In
the computations presented in the sequel, the forcing term is
taken equal to zero and the turbulence is naturally created by
obstacles in a channel.

The enstrophy flux derives from the nonlinear transport
term in the vorticity equation written in Fourier space

�Z�k� = �
k

+�

TZ�k��dk�, �2�

where the enstrophy transfer function TZ�k� is obtained by

angular integration of NZ���=���k�̂ · �v ·����k�̂.
We can replace the Fourier transform by a wavelet trans-

form leading to a different representation of the enstrophy
transfers in the flow. The method we propose here leads to an
original representation, called the enstrophy interaction func-
tion. The term NZ��� is, in fact, a scalar product, in Fourier
space, between the vorticity field � and its transported field
�v ·��w. If the transported field is spectrally close to the
initial vorticity field then NZ��� will be large but if it is very
different or even orthogonal then NZ��� will be insignificant.
So, the term NZ��� measures the correlation, in Fourier
space, between the transported and the initial vorticity fields.
This correlation is then used to compute the transfer function
TZ and the enstrophy flux �Z. By using a Fourier transform,
we obtain a description of the enstrophy transfers through the
scales, but all the information about the space localization of
these transfers is completely lost. However, it is well known,
from the classical theory of two-dimensional turbulence and
from numerical experiments, that the direct enstrophy cas-
cade takes place from the injection scale to the smallest
scales. The enstrophy cascade is thus essentially a small
scales phenomenon and may be localized in space. The
method we propose in this paper is based on a two-
dimensional wavelet transform and leads to a space-scale
description of the enstrophy transfers. It consists in replacing
the usual Fourier transform in the computation of NZ��� by a
wavelet transform. The interaction function for the enstrophy
transfer is obtained through a three step process:

�1� Computation of the two-dimensional orthogonal wavelet
transforms of ��k� and �v ·����k�. This step leads to the
space-scale representations of these two terms. The re-
sults of these transforms are denoted by WT��� and
WT��v ·���� in the sequel.

�2� Computation of the scalar product of WT��� and
WT��v ·����. The result of this product is a wavelet-
based representation of the interactions responsible for
the enstrophy transfers. The coefficients obtained here
will be strong if the strong coefficients of WT��� and
WT��v ·���� are localized at the same place and the
same scale. In the usual enstrophy flux computation in
Fourier space, the space information is completely lost
and only scale localizations are considered.

�3� Reconstruction in the physical space, using an inverse
wavelet transform, of the result obtained at the previous
step. This last step restitutes in physical space the inter-
actions between WT��� and WT��v ·���� occurring at
various scales. The result of this last computational step
is by definition the interaction function and is denoted
by IFZ.

This three steps algorithm can be summarized by the
formula

IFZ = WT−1�WT���WT��v · ����� , �3�

where WT denotes the two-dimensional wavelet transform
and WT−1 its inverse transform. The interaction function is
used by itself, but is not used to compute the enstrophy flux
which does not give any spatial information. It can be con-
veniently represented onto a contour plot of the vorticity
field. No thresholding is applied on the wavelet coefficients,
but the color representation enhances the regions correspond-
ing to strong enstrophy interactions. So the wavelet trans-
form gives a space-scale representation of the object under
study. When performing the scalar product, we compare, in
fact, the wavelet decompositions of the two terms involved
in the product. If the two terms have the same behavior at the
same place and the same scale then the result of the scalar
product will present large coefficients at the corresponding
scale and place. Then by applying an inverse wavelet trans-
form we can get a space representation of the interactions
involved in the enstrophy transfers. The same process can be
used for the energy transfers using the corresponding data.

III. NUMERICAL TESTS ON TWO TEXTBOOK
CASES

A first textbook case of the interaction function is given
in Fig. 1. This figure corresponds to the simulation of the
evolution of two vortices of different signs in a 2� periodic
square domain. After a while a third but less energetic vortex
is created. The interaction function mainly focus on the two
original vortices where the strong interactions take place. A
second textbook case is presented in Figs. 2 and 3. In this
experiment, 14 vortices of different signs have been ran-
domly dispatched in a 2� periodic square domain. During
the decaying process, some vortices merged and we obtained
the vorticity field shown in Fig. 2. As can be easily noticed,
the interaction function points to one particular event. Com-
puting the enstrophy fluxes corresponding to the whole flow
and to a small area delimited by the interaction function
allows us to show that the interaction function effectively
points to the main event in the flow �Fig. 3�.

The relevance and the interest of the interaction function
cannot be fully assessed on mere examples like those pre-
sented here since they correspond to decaying homogeneous
isotropic turbulent flows and thus the notion of enstrophy
cascade is limited. The power of this new mathematical func-
tion is presented in the next part where fully developed tur-
bulence simulations are carefully analyzed.
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IV. EXPERIMENTAL SETUP

The numerical experiments presented in this paper have
been originally motivated by experiments carried out with
soap films where grid turbulence was studied in details.13,27

They consist in the numerical simulation of a two-
dimensional channel flow perturbed by an horizontal array of
cylinders. Two vertical arrays of additional cylinders have
been added in order to increase the number of vortices, and
thus to enhance the turbulent behavior of the flow.18 The
numerical results obtained through such direct numerical
simulation are the same than those discussed in Ref. 18.
They can be compared to those obtained by soap film experi-
ments where the flow is perturbed by analogous arrays of
small cylinders.18

This unusual set up is more related to realistic cases than
the classical two-dimensional periodic domain approach. It
corresponds to a river flowing under a bridge with the cylin-
ders playing the role of the bridge pillars. Furthermore, the
production of vorticity by real physical boundaries cannot be

studied with classical periodic domain conditions and re-
quires particular set up as we study here. Indeed, the numeri-
cal setup and the interaction function method presented here
are particularly well adapted for studying boundary vorticity
creation.

The length of the rectangular channel � is four times its
width L and the Reynolds number based on the cylinders
diameter is Re=5000. In this experiment, the cylinders create
and maintain the turbulent behavior of the flow. Thus the
injection scale kinj is given by the diameter of cylinders L /8
and consequently the injection scale is around kinj=8. We use
here a large injection scale as we focus on the enstrophy
cascade range �Fig. 4�.

The penalization method is used to solve the flow around
the obstacles. Consequently the Brinkman–Navier–Stokes
equations are solved in the whole channel � including the
solid obstacles �s and the fluid domain � f. This problem has
been theoretically studied in Ref. 28.

The equations are discretized in time by a second-order
Gear scheme with an implicit treatment of the linear terms
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FIG. 1. �Color online� Two vortices interacting and giving birth to a third
one. �a� Vorticity field. �b� Interaction function with contour lines of
vorticity.
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FIG. 2. �Color online� Fourteen vortices of different signs interacting in a
2� periodic domain. �a� Whole vorticity field. �b� Interaction function with
contour lines of vorticity.
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and an explicit treatment of the convection term. The spatial
approximation is performed on uniform staggered grids us-
ing second-order centered finite differences for the linear
terms and a third-order upwind scheme for the convection
term.29 The location of the unknowns enforce the
divergence-free equation which is discretized on the pressure
points and the choice of uniform grids is necessary to main-
tain the accuracy of the finite differences schemes. The
whole problem is solved by a multigrid method with a cell
by cell Gauss–Seidel iterative procedure as smoother. A se-
quence of grids from 4�16 cells up to 1024�4096 cells is
used on the domain �= �0,1�� �0,4� to get accurate results.

With respect to the Reynolds number, the finest grid is fine
enough to properly capture the whole dynamics.

Several wavelet bases have been used to test the validity
of the interaction function. They all point to the same local-
izations for the enstrophy transfers, even if the colored pat-
terns were not exactly the same. The method does not de-
pend on the choice of the wavelet basis used in the
computations. The results obtained with Daubechies wave-
lets with ten vanishing moments are presented in here. The
wavelet decompositions have been performed over all the
scales �ten for this grid�.

V. NUMERICAL RESULTS

The computation of the enstrophy flux has been per-
formed for different configurations �several Reynolds num-
bers, several diameters for the obstacles� and many snapshots
of the flow for each configuration. We present here the re-
sults obtained for a series of 100 images. A snapshot of the
vorticity field from the upstream cylinders to the end of the
channel is given in Fig. 4. To compute the energy spectrum
and the enstrophy flux, we select a square of size L=1 lo-
cated at the end of the channel as domain of analysis. The
cutting process to select this domain creates many disconti-
nuities in the velocity and vorticity fields at the boundaries,
and thus introduces high frequency Fourier coefficients. This
phenomenon is well known from people using the classical
fast Fourier transform �FFT� algorithm and has been de-
scribed in Refs. 20 and 30. We avoid this problem by using a
windowed Fourier transform that removes the spurious coef-
ficients created by the discontinuities. We use, for the results
presented in this paper, a Tukey window with a parameter
equal to 0.1. A larger value for this parameter would cancel a
too large amount of the energy and the enstrophy, and a
smaller one would not sufficiently smooth the discontinui-
ties. The averaged energy spectrum for the 100 first snap-
shots is given in Fig. 5. We can observe two slopes on both
sides of the injection scale, the first slope being around k−2.5

and the second one around k−5.5 and so far from the classical
theory that predicts a decrease in k−3. The first slope is not
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FIG. 3. �Color online� Fourteen vortices of different signs interacting in a
2� periodic domain. �a� Partial vorticity field. �b� Enstrophy fluxes for the
whole flow and for the selected area.

FIG. 4. Snapshot of the vorticity field.
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FIG. 5. Energy spectrum.
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really clear but the second one is evident. Many papers in
literature discussed the influence of solid boundaries on the
evolution of two-dimensional turbulence in a finite
domain.31–35 According to these studies, the classical theory
proposed by Refs. 4 and 5 does not take into account the
effects of these particular boundary conditions. Indeed ac-
cording to Ref. 34, no-slip walls are sources of vorticity fila-
ments which may affect the behavior of two-dimensional tur-
bulence. Furthermore, they could show that their influence
are not restricted to regions close to the boundary but also
extend over the full domain. In our experiments, due to the
presence of many cylinders, the flow is dominated by vorti-
ces created by the cylinders and vorticity filaments in be-
tween.

The enstrophy flux corresponding to this spectrum is
given in Fig. 6. The enstrophy flux is positive above the
injection scale, and negative below. The zero crossing corre-
sponds approximately to the injection scale. Our simulations
do not produce a large plateau but an explanation for this is
the limitation of range of scales probed and the presence of
the boundaries. In our mathematical model, we did not use
any artificial dissipation terms which would improve the cre-
ation of the cascades.

The flux presented in Fig. 6 is, in fact, a mean obtained
by averaging 100 snapshot fluxes, but does not correspond to
the flux of any snapshot. In order to assess the local interac-
tions in the flow, we have to study the flux of few snapshots
separately. We can represent the fluxes of the 100 snapshots
in one color representation. The color map goes from blue
for negative values to red for positive values. The wavenum-
ber range extends from k=1 to k=100 since no flux could be
obtained beyond. This representation is given in Fig. 7. We
can observe that some snapshots present a strong direct en-
strophy flux, and others a strong inverse flux leading to the
average given in Fig. 6. We can find a very few snapshots
with the inverse and direct fluxes in the same time. This
proves that the direct enstrophy cascade is not a permanent
phenomenon, but rather a transient phenomenon that alter-
nates with an inverse enstrophy cascade. It can be noticed
that these inverse enstrophy flux periods coincide with strong
inverse energy flux periods. It is not surprising that strong
energy transfers carry also some enstrophy with them. As can
be also observed, the inverse energy cascade is only local-
ized between k=1 and the injection scale k=8 in accordance
with the classical theory.

A. Interaction function for the whole field

In order to study the interactions occurring into the en-
strophy cascade, the interaction function is now computed
for few snapshots with strong direct enstrophy fluxes. Snap-
shots 85 and 92 have been chosen for that purpose. The
vorticity field corresponding to snapshot 85 is given in Fig.
8�a�. Various structures can be observed in this vorticity
field. According to previous studies,19,23 we already know
that the vorticity filaments are responsible for the inverse
enstrophy cascade, but we do not have yet any information
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k

S
na

ps
ho

ts

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(a)

k

S
na

ps
ho

ts

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(b)

FIG. 7. �Color online� Fluxes for 100 snapshots. �a� Enstrophy flux. �b�
Energy flux.
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about the space localization of the interactions leading to this
cascade. The enstrophy interaction function, represented in
Fig. 9�a�, allows us to get this kind of information. The con-
trast and the color map have been chosen such that only the
most important coefficients are noticeable. Tuning the con-
trast would make regions appear more colored corresponding
to weak enstrophy fluxes. In this snapshot, a region with
strong values around �90,285� can be detected. This zone
corresponds to interactions between two vortices of opposite
signs and where most of the enstrophy cascade occurs. This
can be verified by computing the total enstrophy flux and the
partial one corresponding to this region. Different strategies
can be developed to select this area. We first chose all the
points where the enstrophy interaction function is greater
than a given threshold �here, the average value between the
absolute value maximum and the absolute value mean of the
snapshot�, and then chose a Gaussian mask that included all
these points. The total and partial enstrophy fluxes are given
in Fig. 10 and the selected area in the vorticity field in Fig.
8�b�. As expected, the partial enstrophy flux almost fits the
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FIG. 8. �Color online� Snapshot 85. �a� Vorticity field. �b� Partial vorticity
field.
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FIG. 9. �Color online� Snapshot 85 �vorticity field in contour lines�. �a�
Enstrophy interaction function. �b� Energy interaction function.
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total enstrophy flux proving that the main interactions creat-
ing the enstrophy cascade effectively take place in this re-
gion. About 80% of the total enstrophy flux takes place in
less than 15% of the flow surface. The energy interaction
function, computed in the same way as the enstrophy inter-
action function, is given in Fig. 9�b�. The inverse energy
cascade taking place at larger scales, one can observe large
regions of interactions for the energy. Consequently, a local
analysis of the energy fluxes is not relevant.

A single area of strong interactions has been detected by
the interaction function in this snapshot. However, it may
happen in some cases that the enstrophy flux is due to inter-
actions localized in multiple small areas. In this case, the
interaction function is still able to precisely locate them as
can be verified with the following example. The same kind
of analysis is now repeated for snapshot 92 �vorticity field
given in Fig. 11�a��. The corresponding interaction functions
are given in Fig. 12.

We can observe that the interactions occur in three dif-
ferent places. A smaller area around �425,75� can be visually

detected in Fig. 12�a� but failed the automatic quantitative
selection process. This area could be included in the selected
zones group by slightly modifying our threshold. The partial
enstrophy flux computed with this fourth zone would be even
closer to the total enstrophy flux. The partial and the total
vorticity fields are given in Fig. 11. These three areas corre-
spond to places where interactions between different objects
occur. We can then compare the total enstrophy flux to the
partial one obtained with the three selected regions. The re-
sults are given in Fig. 13. For this snapshot too, the enstro-
phy flux computed in the selected areas almost fits the total
enstrophy flux proving that the main interactions creating the
enstrophy cascade effectively take place in these three re-
gions. The energy interaction function shows also larger ac-
tivity area but smaller than those obtained for snapshot 85.

B. Interaction function for the filtered fields

Using the same kind of filtering as in Refs. 19, 20, and
23, the velocity fields can be cut into two subfields: one
subfield with the solid rotation part of the vortices �denoted
by the subscript s� and the remaining mainly composed of
vorticity filaments that roll up in spiral inside the vortices
�denoted by the subscript f�. The velocity decomposition v
=vs+v f obtained with the wavelet packets based filtering is
orthogonal and leads to the energy spectrum decomposition

E�k� = Es�k� + Ef�k� , �4�

where Es is the energy of the solid rotation vortices and Ef is
the energy of the vorticity filaments. Due to this orthogonal
decomposition, the enstrophy transfer function can be writ-
ten as

TZ�k� = ���k�̂ · �v · ����k�̂

= �s
��k�̂ · �v · ���s�k�̂ + �s

��k�̂ · �v · ��� f�k�̂

+ � f
��k�̂ · �v · ���s�k�̂ + � f

��k�̂ · �v · ��� f�k�̂ . �5�

The same decomposition can be also written for the energy
transfer function.

The global enstrophy transfer is thus split into four parts
corresponding to the multiscale transfers from one subfield

to itself or to the other one. For instance, �ŝ

��k� · �v ·��� f
̂�k�

is the enstrophy transfer from the vorticity filaments subfield
to the solid rotation subfield. The fluxes corresponding to
each term in the expression of the total enstrophy transfer
function are denoted as, for example, �Z

f→s which is the flux
corresponding to the transfer term previously described. We
already know from previous studies19,20,23 that the filamen-
tary structures are responsible for the enstrophy fluxes. In-
deed it has been shown that �Z

f→f is the main term in �Z

whereas �E
s→s is the main term in �E.

Moreover, one can specify how these interactions take
place or more exactly what are the media allowing those
transfers. Indeed, thanks to the decomposition of the trans-
port operator itself, it has been shown in Ref. 23 that the
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FIG. 11. �Color online� Snapshot 92. �a� Vorticity field. �b� Partial vorticity
field.
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solid rotations of the vortices are the means of transport of
the energy and enstrophy transfers. Thus the transport opera-
tor can be decomposed into two parts:

�v · �� = �vs · �� + �vf · �� . �6�

By performing this decomposition one can separate the en-
strophy transport operated by the solid rotations from the
transport operated by the filaments. Finally each term of Eq.
�5� can be also split into two parts leading to the following
complete decomposition:

TZ�k� = �s
��k�̂ · �vs · ���s�k�̂ + �s

��k�̂ · �vf · ���s�k�̂

+ �s
��k�̂ · �vs · ��� f�k�̂ + �s

��k�̂ · �vf · ��� f�k�̂

+ � f
��k�̂ · �vs · ���s�k�̂ + � f

��k�̂ · �vf · ���s�k�̂

+ � f
��k�̂ · �vs · ��� f�k�̂ + � f

��k�̂ · �vf · ��� f�k�̂ .

�7�

The second term in the right hand side of Eq. �7� describes
the enstrophy transfer from the solid rotations to themselves
by the filamentary structures. The main term responsible for
the enstrophy flux, as shown in Ref. 23, can thus be written
as

�Z
f→f = �Z

f→s→f + �Z
f→f→f , �8�

where �Z
f→s→f denotes enstrophy transported from filaments

to filaments by vortical structures, and �Z
f→f→f is the same

but by filamentary structures. The interaction functions cor-
responding to the three terms in Eq. �8� are given in Fig. 14,
but those corresponding to the other subfields are not given
here because they do not present any strong coefficients. One
can remark in Fig. 14 that the strong coefficients are local-
ized at the same place as in Fig. 9. These figures are coherent
with the results obtained in Ref. 23: the filamentary struc-
tures are responsible for the enstrophy cascade, and the solid
rotations �and not the vorticity filaments since there is no
strong coefficients for �Z

f→f→f� transport the enstrophy from
the filaments to the filaments. The interaction function pro-
vides a new insight in the enstrophy cascade since it shows
that the enstrophy transfers are not uniformly spread in the
whole flow but are localized in particular regions. In all the
experiments we performed, enstrophy transfers occur where
different sign vortices interact with each other stretching in
new filamentary structures.

C. Attempt of physical interpretations

Many numerical simulations corresponding to different
geometries �the same channel but with different numbers of
obstacles of various sizes� have been realized and studied.
We noticed that some snapshots could present strong direct
enstrophy fluxes whereas others present strong inverse en-
strophy fluxes. The observations of the corresponding vortic-
ity fields could not give any explanation about this two quite
different behaviors. However, the wavelet packets filtering
leading to the two subfields associated to the interaction
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FIG. 12. �Color online� Snapshot 92 �vorticity field in contour lines�. �a�
Enstrophy interaction function. �b� Energy interaction function.
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function analysis can give some information about the physi-
cal process. First, we isolated two of this kind of events from
several hundreds available snapshots. They correspond to ex-
periments on a fine grid with ten small cylinders across the
channel and nine small cylinders on each side �kinj�20�. The
corresponding enstrophy interaction functions are given in
Fig. 15. As can be seen on these figures, there is one particu-
lar zone in each snapshot where the interaction function de-
tects some strong activities. These zones are located around
�170, 180� for snapshot 147 and �200, 100� for snapshot 195.
The vorticity fields corresponding to these selected zones are
given in Fig. 16. The selected zones correspond to places
where vortices of different signs interact with each other. We
cannot notice any difference between the two snapshots in
Fig. 16 that could explain why they do have completely dif-
ferent behaviors from an enstrophy flux point of view. In-
deed, if we study their respective enstrophy fluxes �given in
Fig. 17� we can notice that snapshot 147 presents a strong
inverse enstrophy cascade whereas snapshot 195 has a strong

direct cascade. In both cases, the selected zones represent
less than 15% of the total surface but more than 80% of the
enstrophy fluxes.

However, the interaction function for the whole flow
does not give any explanation for the difference of enstrophy
behaviors between the two snapshots. However we can find a
beginning of explanation when studying the interaction func-
tions of the filtered fields obtained through the wavelet pack-
ets filtering process. We compute for each snapshot the in-
teraction functions of the eight terms in Eq. �8�. For snapshot
147, we found that the term �Z

s→s→s is the dominant term
whereas for snapshot 195 the term �Z

f→s→f is the main factor
in decomposition �8�. So in snapshot 195, the enstrophy is
transferred from filaments to filaments transported by vorti-
ces, leading to the direct enstrophy cascade classical mecha-
nism, whereas in snapshot 147 the enstrophy is transported
by vortices from vortices to themselves. A detailed study of
the snapshots shows that the mechanism for the direct enstro-
phy cascade is a strong stretching created by the interactions
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FIG. 14. �Color online� Interaction functions for the filtered fields �snapshot 85�. �a� �Z
f→f, �b� �Z

f→s→f, and �c� �Z
f→f→f.
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between two vortices of different signs. This stretching cre-
ates a long filamentary structure where the transfers are lo-
cated as it is observed with the corresponding interaction
function. We do not see this kind of long filamentary struc-
ture in snapshot 195, but we can see the interactions between
an elongated vortex and another vortex of the same sign. In
this case, we can notice that, according to the interaction
function, the main interaction takes place between the two
like sign vortices.

VI. CONCLUSION

We propose in this paper an original wavelet-based
mathematical tool for studying two-dimensional turbulent
flows. This object, called the interaction function, reveals the
local enstrophy fluxes in the flow. It is based on the scalar
product in a wavelet approximation space of the two terms
involved in the computation of the regular enstrophy flux.
This study confirms that the enstrophy flux is not a homoge-
neous phenomenon spread over the whole flow but a local
phenomenon corresponding to local interactions. We ob-

served that in most of the cases more than 80% of the en-
strophy flux take place in less than 15% of the flow surface.
An important application of the interaction function is ob-
tained in association to our regular wavelet packet filtering.
Indeed, using these two complementary tools we can observe
that inverse enstrophy fluxes are due to interactions between
vortices only whereas direct enstrophy fluxes are related to
vorticity filaments interactions with vortices. This is mainly a
confirmation of what has been thought for a while: the in-
verse energy cascade is for a large part due to the merging of
vortices and the direct enstrophy cascade is for a large part
due to the stretching of vortices that produces very long vor-
ticity filaments when they are laminated. In addition, the
balance between these two kinds of events governs the level
of enstrophy for large scales. When there are more merging
events the mean of the enstrophy flux can be negative for
scales larger than the injection scale. In the opposite, this
mean can be positive when stretching effects dominate in the
flow. An important application of our method is related to the

FIG. 15. �Color online� Enstrophy interaction function. �a� Snapshot 147.
�b� Snapshot 195.
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FIG. 16. �Color online� Selected zones of the vorticity fields detected by the
interaction function. �a� Snapshot 147. �b� Snapshot 195.

1-10 P. Fischer and C.-H. Bruneau Phys. Fluids 21, 1 �2009�

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558



study of the walls influence in a turbulent flow. The interac-
tion function can bring relevant information about the vortic-
ity creation by the boundary layers. This is a challenging and
open problem that cannot rely on classical tools and that
requires efficient and accurate space-scale techniques. An-
other application is to follow along the time the vortical
structures pointed out by the interaction function to deter-
mine the role of the physical events �merging, stretching,
etc.�.
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Snapshot 147. �b� Snapshot 195.
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